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Abstract: Advance assessment of the potential functional improvement of patients undergoing
a rehabilitation program is crucial in developing precision medicine tools and patient-oriented
rehabilitation programs, as well as in better allocating resources in hospitals. In this work, we
propose a novel approach to this problem using machine learning algorithms focused on assessing
the modified Barthel index (mBI) as an indicator of functional ability. We build four tree-based
ensemble machine learning models and train them on a private training cohort of orthopedic (OP)
and neurological (NP) hospital discharges. Moreover, we evaluate the models using a validation set
for each category of patients using root mean squared error (RMSE) as an absolute error indicator
between the predicted mBI and the actual values. The best results obtained from the study are
an RMSE of 6.58 for OP patients and 8.66 for NP patients, which shows the potential of artificial
intelligence in predicting the functional improvement of patients undergoing rehabilitation.

Keywords: artificial intelligence; machine learning; rehabilitation; Barthel Index; algorithms; func-
tional improvement

1. Introduction

One out of six people in the European Union needs to be referred to rehabilitation ser-
vices because of the occurrence of a disability, caused by either acute or chronic disease [1].
Once the treatment starts, the evaluation of clinical progress is of importance in all the fields
of medicine, including rehabilitation, and it appears critical for determining the effective-
ness and efficiency of the selected treatments. Given the nature of disabilities, impacting
several domains of persons’ lives differently and often being difficult to objectively measure
as a clinical end-point, studies have focused on specific indicators to predict the effective-
ness and efficiency of rehabilitation interventions. From this point of view, Rehabilitation
Effectiveness (REs) [2,3] and Rehabilitation Efficiency (REy) [4] have been used to measure
the results of rehabilitative interventions in different categories of patients [5]. Recent stud-
ies [6–8] found a trade-off relation between REs and REy concerning the length of stay (LOS)
and patient-baseline modified Barthel Index (mBI) [9–11]. With a view to the intended use
of resources, as well as their best possible use in healthcare, trying to predict the potential
functional improvement of patients undergoing rehabilitation in terms of effectiveness and
efficiency may help in developing precision medicine tools and tailored, patient-specific
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rehabilitation [7]. Instead of using statistical methods to identify those factors that may
affect rehabilitation processes and their outcomes [7,12,13], recently, machine learning
methods have been used [14]. Machine learning is a multidisciplinary field used in many
application domains such as computer vision, natural language processing, and medical
domains, from images to structured and semi-structured data, which studies algorithms
that automatically improve from experience. It is often considered a subfield of artificial
intelligence which builds mathematical models and learns generalization patterns from
data which are then used to make predictions on unobserved instances [15–20]. Because of
their flexible nature, machine learning methods can be more accurate than conventional
regression or correlation in predicting future scenarios [21–23]. Based on this assumption,
the present study aims to make advance assessment of the potential functional improve-
ment of post-acute patients undergoing rehabilitation to develop precision medicine tools
and patient-oriented rehabilitation programs, as well as to allocate resources in hospital
better, using a predictive model in terms of mBI exploiting machine learning algorithms.
Specifically, our proposal involves utilizing tree-based ensemble machine learning models,
such as xGBT, LightGBM, CatBoost, and gradient boosting [24–26], to analyze patient data
obtained from the Acceptance/Discharge Report (ADR) [27] during the time of admission
to a rehabilitation program. These models can extract complex nonlinear relationships that
can accurately model the distribution of rehabilitation outcomes. We chose these models
based on their ability to learn from various types of input data, including categorical and
continuous data, which is advantageous for our study’s private dataset that consists of
multiple variables of different types. In conclusion, this study’s contributions are as follows:

1. To the best of our knowledge, this is the first study that attempts to predict functional
improvement from ADR data which represents real-world scenarios registered in Italy.

2. We study the applicability of machine learning in assessing the rehabilitation outcome
in advance.

3. An in-depth analysis of how different models and combination affects the accuracy
with which the proposed algorithms predict the target variable.

2. Materials and Methods
2.1. Dataset

We retrospectively evaluated data collected from 2015 to 2018, using a database of
approximately 4050 unique hospital discharges at IRCCS San Raffaele of Rome, Italy from
the neurology and orthopedy departments referring to records registered in the “Accep-
tance/Discharge Report for the rehabilitation area” (ADR), which implements the Italian
law (DGR 731/2005) [27]. The inclusion criteria for the analysis were: age ≥ 18 years, and
time between the onset of the disease and rehabilitation hospitalization ≤ 60 days since
we included only post-acute patients defined according to the appropriateness criteria
for admission to rehabilitation defined in Italian national laws. In addition, the length
of hospitalization was >14 days and ≤90 days from the first day of hospitalization since
patients hospitalized for more than 90 days are extremely rare, whereas patients in rehabili-
tation for less than two weeks are also rare cases of patients in good condition. Moreover,
patients with missing data such as hospitalization pathology, age, or functional ability at the
time of hospitalization were excluded due to their importance in the rehabilitation process
and its outcome. However, the process of treating the missing data is better explained
in the Section 2.2. The initial dataset contained 120 items that corresponded to the data
items present in the ADR regarding the patients. To protect the privacy and comply with
regulations, all data were anonymized by removing identifying information such as names,
birth dates, and identity numbers, and assigning a unique random ID. Pathologies were
categorized using the standard International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD9-CM), and patients were classified into two main groups based
on ICD9-CM codes [27]: orthopedic patients (OP) and neurological patients (NP). The
reason behind grouping the data in these two macro-categories and not finer categories
is due to the small quantity of the data and the intra-group variability in pathologies.
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In addition, demographic information about the dataset is presented in Table 1, and the
range of ICD9-CM macro-categories used to categorize the data is shown in Table 2. The
dataset contained mostly categorical variables, with only a few quantitative ones. The study
protocol was reviewed and approved by the Ethical Committee of the IRCCS San Raffaele
Pisana of Rome on 18/07/2018 (code number 07/18) and was developed in accordance
with STROBE guidelines [28].

Table 1. Demographic insights on patients.

Demographic Data Neurology Patients Orthopedic Patients

Number of patients 1580 1841

Mean age 69± 13 72± 11

Mean mBI at admission 31± 13 37± 10

Mean mBI at discharge 72± 23 81± 18

Mean mBI change 41± 18 44± 14

Mean length of hospitalization 45± 14 30± 9

Gender: Male% 53.5% 34.1%

Gender: Female% 46.5% 65.9%

Nationality: Italian% 98.1% 99.2%

Nationality: Other% 1.9% 0.8%

Table 2. Variables used as input to machine learning algorithms. The ranges 710–739 and 320–389
show the macro-categories for orthopedic and neurologic classification based on ICF9-CM associated
with base pathology or COD_27 and used to divide patients into OP and MP.

ADR Code Variable Name Type Possible Values

COD_52 mBI at admission Quantitative [0–100]

Age Age Quantitative [18–97]

Gender Gender Categorical {0 (M), 1 (F)}

COD_26 Pathology subject to rehabilitation Categorical ICD9-CM

COD_27 Base pathology associated to intervention Categorical ICD9-CM [710–739, 320–389]

COD_28-35 Associated pathologies Categorical ICDM9-CM

COD_36 Cognitive impairment Categorical [0 (N), 1 (Y)]

COD_37 Behavior impairment Categorical [0 (N), 1 (Y)]

COD_38 Communication/Language impairment Categorical [0 (N), 1 (Y)]

COD_39 Sensory impairment Categorical [0 (N), 1 (Y)]

COD_40 Manipulation impairment Categorical [0 (N), 1 (Y)]

COD_41 Balance impairment Categorical [0 (N), 1 (Y)]

COD_42 Locomotion impairment Categorical [0 (N), 1 (Y)]

COD_43 Cardiovascular impairment Categorical [0 (N), 1 (Y)]

COD_44 Respiratory system impairment Categorical [0 (N), 1 (Y)]

COD_45 Ulcer Categorical [0 (N), 1 (Y)]

COD_46 Sphincter control impairment Categorical [0 (N), 1 (Y)]

COD_47 Urinary system impairment Categorical [0 (N), 1 (Y)]

COD_48 Nutrition impairment Categorical [0 (N), 1 (Y)]
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2.2. Input Features

For this study, we chose the pathology subject to the intervention and functional ability
(mBI) before the intervention, with 24 additional variables extracted from the ADR, as
input to the machine learning algorithms to assess functional ability at hospital discharge
of the patient undergoing the intervention. The reason behind selecting only this group of
features out of 120 data items in the original dataset is because many variables contained
information that was not relevant to the task representing standard ADR voices such
as the name of the hospital, the doctor in charge, type of facilities, etc. An overview of
input variables is shown in Table 2. One of the main issues during the preparation of
the input features was dealing with missing values as almost all variables were affected.
The approach to address this issue was specific to the characteristics of each variable. For
continuous variables such as mBI at admission and age, patients with missing values
were excluded from the analysis due to the substantial influence of these variables on the
outcome. Imputations were not considered suitable in this case. For categorical variables,
the handling of missing values varied based on the variable’s nature. Proper attention was
also given to outliers. From a statistical point of view, outliers are defined as data points
that differ significantly from the rest of the data (i.e., having a negative mBI in admission)
and can be very tricky to deal with to preserve the generalization of the machine learning
model [29–33]. In this work, we defined outliers based on the mBI at admission and mBI at
discharge, defining two normality conditions: (i) mBI at admission should be≥10 according
to standard rules [27], and (ii) mBI at discharge should be higher than that at admission.
Cases where these conditions are not met are treated as outliers. The decision to keep
or drop outliers was based on their nature. Cases in which (i) is not met are considered
outliers since patients with mBI in admission < 10 are very rare and represent patients in
very bad condition whose outcome cannot be correctly predicted and might alter the model
to make bad predictions and lose generalization (ability to predict fair results in normal
cases); for this reason, outliers of this nature are excluded. Meanwhile, cases in which (ii) is
not met indicate that the rehabilitation was not successful, which is also a phenomenon
that happens very rarely. However, the data is considered a good outlier since it may give
important information regarding normal patient cases where the rehabilitation process
does not give the desired results. Hence, these outliers kept improving the ability of the
machine learning model to deal with special cases that rarely occur without significantly
affecting the generalization of the model. Moreover, dummy variables and labels were
created for categorical variables, to transform them into suitable input forms for machine
learning algorithms. Meanwhile, continuous variables were scaled and normalized using
the following formula:

z =
x− µ

σ
(1)

where x represents the value of the continuous variable, µ is the mean of the continuous
variable computed on the training set, σ is the standard deviation of the continuous variable
computed from the training set, and z is the normalized value of x. An overview of the
input features before preprocessing is shown in Table 2.

2.3. Outcome Variable

The variable that has served as a target for this study is the mBI after rehabilitation,
which is a scale consisting of 10 items used to measure basic Activities of Daily Living.
These 10 items pertain to tasks related to self-care and mobility, and each task is assigned
a score reflecting the individual’s ability to perform it. A higher score indicates better
performance ability, whereas a score of zero indicates a total inability to perform the
task. The sum of individual scores for all 10 items ranges from a minimum of 0 (totally
dependent) to a maximum of 100 (independent) [11]. Additionally, this instrument is easily
administered by clinicians without requiring formal training or certification programs and
has demonstrated good reliability [27].
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2.4. Machine Learning Algorithms

To evaluate and compare machine learning algorithms, the dataset was split into two
distinct subsets—one for NP and one for OP—and further partitioned into training and
testing sets. The training set was generated by randomly selecting 80% of the dataset’s
unique records, with the remaining 20% reserved for testing the algorithms. Five algorithms
were utilized in the experiment, including four common algorithms (xGBT, LightGBM
gradient boosting, and CatBoost [24–26]), as well as a custom algorithm developed by the
researchers using stacking ensemble learning techniques to combine multiple machine
learning models and form a more powerful one [34–36]. All models were developed using
Python 3 and the scikit-learn [34] library for machine learning algorithms and statistical
testing. Hyperparameters for each model were optimized using the grid search technique
and 10-fold cross-validation solely on the training set. The way hyperparameter tuning is
undertaken according to the grid search technique is straightforward. As input, it takes a
specific model and set of values for each hyperparameter of that model generated from
a linear space with predefined upper and lower bounds, and in order to find the best
hyperparameters, it iteratively evaluates the model using cross-validation with different
hyperparameter combinations from the set of values in input. At the end, the hyperparam-
eters of the best-performing model on cross-validation are returned from the algorithm.
This process aims to find the hyperparameters that give the best results for each model.

2.5. Customized Machine Learning Algorithm

The customized proposed method leverages all the selected features, using a joint
architecture based on tree ensemble models such as CatBoost, gradient boosting, extreme
gradient boosting, and light gradient boosting, and more simple models such as ridge
regression, kernel ridge, and elastic net. The mentioned features are the result of the
preprocessing phase applied to the data. The proposed system can be split into two levels.
A first level, composed of powerful learners, takes as input the features that are a matrix of
size n×m where n is the number of observations and m is the number of input features,
and produces a vector pi of size n for each learner. Since multiple learners are present in this
level, the overall output is a set of vectors P = {p1, p2, . . . , pd} and has a dimensionality
n× d where d is the number of learners that compose this level of the model. The second
level can also be called the meta learner, and it consists of a simple supervised model. In
this level we used ridge regression and kernel ridge for the models dealing with OP and
NP, respectively. At this point the model takes as input the produced matrix P from the
first level and produces a vector of size n that represents the final prediction for each of
the subtasks. The overall architecture can be seen as a stacked ensemble where learners
of the first level are trained on the same data, but they come out with different properties,
which is why we use a second level that tries to learn how to use these properties to
create a more powerful and robust model. The following schema illustrates this ensemble
(Figure 1). Regarding the first-layer learners, the tree ensembles were the models of choice
due to their popularity and remarkable results obtained in regression tasks during the
years. Mathematically speaking, these ensemble models can be defined as follows. For a
given dataset with n samples and m features, D = (xi, yi) (|D| = n, xi ∈ Rm, yi ∈ R), a tree
ensemble model uses K additive functions to predict an outcome and the mathematical
formulation of the outcome is as follows:

ŷi = φ(xi) =
K

∑
k=1

fk(xi), (2)

where fk represents the k− th additive function which corresponds to the k− th tree on the
ensemble model. This mathematical formulation is generally adapted to all the ensemble
trees while they differentiate from each other through the tree splitting algorithm [24–26].
Thus, based on this formula, the first predictions are produced directly from the features
creating an n× l data matrix where l represents the number of learners which in our case
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is 3. Regarding the second-level learner, it is based on a simple ridge regression model
that takes as input the produced n× l matrix and gives in output a vector of n elements
optimized by minimizing the following formula:

L =
n

∑
i=i

(ŷi − yi)
2 + λ

n

∑
i=1

B2
i , (3)

where ŷi is the estimated value, yi is the ground truth, B2
i is the penalization term, and L

stands for loss. Thus, essentially, ridge regression is nothing more than a residual sum of
squares (RSS) plus a squared penalization term. In addition, since we have two different
macro groups of patients, NP and OP, the customized models for each have different
configurations which means a different learner in the first and second layers is chosen
based on performance with respect to the metric of interest. An illustration of the models for
OP and NP is shown in Figure 2a,b, respectively. As can be seen, there are some differences
on the used models in the first and second layers. In the first layer for OP, LightGBM is
used in combination with xGBT and CatBoost, whereas for NP we used Gradient Boosting
instead of LightGBM. In the second layer, for OP we used the classic ridge regression
whereas for NP the kernelized version of it is used. This is same as kernel ridge with the
addition of the kernel trick to create non-linearity.Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 7 of 17 
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2.6. Outcome Statistical Analysis

The machine learning prediction algorithms, which were trained using the training
cohort, were evaluated on the testing cohort by measuring the RMSE, or root mean squared
error. This metric represents the absolute fit of the model to the data by calculating the
square root of the residuals’ variance [35]. The choice to use RMSE was based on the nature
of the problem at hand, as we were interested in precisely gauging the model’s predictive
capabilities. To further support the findings with statistical evidence, we also calculated
the R-squared value, a statistical measure that indicates the proportion of variance in
the dependent variable explained by independent variables in the regression model [34].
Additionally, a 95% confidence interval and p-values were calculated using a one-sample,
two-tailed t-test.

3. Results
3.1. Data Extraction

The dataset provided for this study contained a total of 4050 records, each correspond-
ing to a unique patient. After undergoing cleaning and preprocessing, the number of
remaining patients was reduced to 3421. Various factors led to exclusions, such as coding
errors, missing values, and outliers that were deemed inappropriate for the scope of this
research. After the cleaning process was completed, the dataset was divided into two
groups based on ICD9-CM codes corresponding to the patients’ base rehabilitation pathol-
ogy: OP patients (1841) and NP patients (1580). Each group was further subdivided into a
training set (80% of patients) and a testing set (20% of patients), resulting in 1473 training
patients for OP and 1264 training patients for NP, along with 368 testing patients for OP
and 316 testing patients for NP. A diagram of the data extraction process can be found in
Figure 3.
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3.2. Variable Importance Ranking

To gain a better understanding of how input features impact the machine learning
models, we conducted a variable importance analysis. The aim was to assign an impor-
tance score to each variable based on its influence on the final outcome, and the analysis
was performed separately for the xGBT, LightGBM, and CatBoost models [37]. We used
inbuilt functions from the scikit-learn library to rank the variables based on the amount
of variance reduction that each variable caused to the final model output, as described
in [38]. We conducted ranking separately for OP and NP cases, and Tables 3 and 4 present
the top 10 important features for each model for OP and NP, respectively. Based on the
results shown in Tables 3 and 4, the standard important features in the top 10 ranking are
Barthel Index at admission, Age, Behavior impairment, Cognitive impairment, and the “no
associated pathologies” variable in all the machine learning models. Notably, each model
provides almost the same results in both OP and NP cases, with differences in the base
pathology category, which defines the base pathology and indicates whether the patient
is part of NP and OP according to the ICD9-CM classification. CatBoost and XGB have
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very similar results with minor changes, whereas LightGBM is very different compared
with them.

Table 3. Top 10 important features from the three machine learning algorithms, CatBoost, LightGBM,
and XGB on OP patients.

CatBoost LightGBM XGB

mBI at admission mBI at admission mBI at admission

Age Cognitive impairment No associated pathologies

No associated pathologies Ulcer impairment Age

Handling impairment Age Handling impairment

Behavior impairment Amputees Cognitive impairments

Cognitive impairments Organ or tissue replaced by other means Behavior impairment

Nutrition impairment Urinary impairment Nutrition impairment

Hypertension No associated pathologies Communication impairment

Vertebral pathology Femur osteosynthesis Gender

Control impairment Behavior impairment Hypertension

Table 4. Top 10 important features from the three machine learning algorithms, CatBoost, LightGBM,
and XGB on NP patients.

CatBoost LightGBM XGB

mBI at admission mBI at admission mBI at admission

Age Cognitive impairment No associated pathologies

No associated pathologies Ulcers impairment Age

Handling impairment Age Handling impairment

Behavior impairment Parkinson Cognitive impairment

Cognitive impairment Organ or tissue replaced by other means Behavior impairment

Nutrition impairment Urinary impairment Nutrition impairment

Hypertension No associated pathologies Communication impairment

Parkinson Non-traumatic myelo-radiculopathies Gender

Sphincter control impairment Behavior impairments Hypertension

3.3. Prediction Accuracy and Analysis

Tables 5 and 6 display the prediction accuracy based on RMSE and the goodness
of fit explained by R-squared for all models in OP and NP. The results indicate that all
models perform remarkably well [22] in both metrics, with the customized model achieving
slightly lower RMSE for both OP and NP (6.58 and 8.66, respectively). In terms of R-squared,
LightGBM performs the best for OP data (0.868), whereas xGBT is the top performer for NP
data (0.85). The reason why the customized model gives better results in terms of RMSE but
not in terms of R-squared (even though the difference is very small considering the scale)
is because the customized model is slightly more biased in proportion to RMSE than the
other models, as can be seen in Tables 5 and 6. In this case, the bias indicates that the model
is giving higher importance to some variables. However, as long as R-squared is significant,
the metric of interest for our purpose is RMSE because it shows the absolute mean error
of the prediction and it is also on the same scale as the dependent variable [35], in our
case mBI at discharge. In addition, in Figure 4a a simple comparison between estimated
mBI and ground truth mBI is shown through scatter plots for both NP and OP datasets
with the x axis representing the ground truth and the y axis representing the predictions.
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As can be seen from the plots, the points are distributed mostly close to the x = y line
except for some outlier points. Thus, the results of our model are meaningful, and the
prediction distribution is close to the real one. Moreover, to further illustrate the usefulness
of the model, in addition to the scatterplot, we demonstrate the Bland–Altman plot in
Figure 4 which also shows a comparison between ground truth and the predicted variable
in terms of means and differences. From the plots, we can see that for both cases the
difference mean is close to 0 (−0.63 for NP and −0.25 for OP, respectively) which again
proves the distributions of predictions and ground truth are similar. Furthermore, from
the distribution of points in the plot we can observe that the model is not consistently
overestimating or underestimating the outcome, and most of the points fall inside the
95% interval bounded from 1.96± std where the std shows the standard deviation of the
differences between ground truth and predictions. To make our results statistically more
significant, in Tables 5 and 6 we report the 95% confidence intervals and p-values for all
models. As can be seen, our customized model has the smallest interval among all for
both NP and OP. Regarding the p-value, it was calculated by performing the one-sample
two-tailed t. In essence, the one-sample two-tailed t-test is used to determine whether
two distributions are significantly different from each other, in our case the prediction
distribution and the ground truth distribution of the test sample, based on the means of
the samples. In other words, we are testing the hypothesis that the mean of the prediction
distribution is equal to the mean of the ground truth data. To do so, we first extract the
prediction distribution from the test set by applying the models, and afterward use this
distribution together with the mean of the ground truth test set to run the one-sample
two-tailed t-test and extract the p-value with respect to the hypothesis. As can be observed,
the p-value for our model is 0.84 in the case of NP and 0.85 for OP, showing with a high
probability that there is not enough evidence to throw the null hypothesis, meaning that
there is no statistical evidence to deny the equality between the mean of the prediction’s
distribution and the ground truth distribution.

Table 5. Root mean square error (RMSE), bias, confidence interval (CI), p-value, and R-squared
statistics for all models for OP.

Model RMSE for OP Bias R-Squared CI (95%) p-Value RMSE CV

xGBT 6.71 4.42 0.862 78.15–83.1 0.77 6.01

LightGBM 6.59 4.41 0.868 79.1–82.9 0.79 5.95

CatBoost 6.8 4.62 0.84 78.6–83.27 0.76 6.21

Our model 6.58 4.5 0.837 79.21–82.92 0.79 5.91

Table 6. Root mean squared error (RMSE), bias, R-squared, confidence interval (CI), and p-value for
all models for NP.

Model RMSE for NP Bias R-Squared CI (95%) p-Value RMSE CV

xGBT 8.9 5.78 0.85 67.81–73.98 0.79 7.11

LightGBM 9.23 5.99 0.835 66.8–73.07 0.61 8.02

CatBoost 9.09 5.92 0.84 67.79–73.1 0.72 8.1

Our model 8.66 5.81 0.836 67.78–72.71 0.81 6.87

3.4. Ablation Study

A crucial aspect of our study was to determine the optimal set of algorithms to
develop a robust predictive model. We conducted a series of experiments using various
algorithms and ensemble techniques on both OP and NP datasets. The primary aim of
these experiments was to identify the top three learning algorithms for the first layer
and determine the best approach for the second layer (if necessary) of the ensemble. We
initially selected a group of pre-existing algorithms such as xGBT, LightGBM, Gradient



Int. J. Environ. Res. Public Health 2023, 20, 5575 11 of 16

Boosting, and Support Vector Regressor (SVR) for the first layer. For the second layer,
we chose a group of simple learning algorithms, including lasso, ridge regression, kernel
ridge regression, elastic net, and a manual weighting approach where each of the first layer
algorithms was assigned an equal weight of 0.33. Table 7 displays the results obtained
during the experiments for all the various algorithm combinations we tried. We measured
the RMSE using cross-validation on the training set for each combination to extract the best
parameters and then validated each model on the test set. Our findings indicate that some
of the models perform well on their own without the addition of a second layer. However,
the best results are achieved in combination with a second layer in both cases. Specifically,
in the case of NP, the combined model of the first layer consisting of xGBT, CatBoost,
and G. Boosting independently produced RMSE values of 8.9, 9.09, and 9.18, respectively.
However, with the addition of a second layer to combine them, the performance improved
to an RMSE of 8.85 in the case of Ridge and 8.66 in the case of Kernel Ridge. In contrast, for
OP, the best-performing first-layer models, consisting of xGBT, LightGBM, and CatBoost,
produced RMSE values of 6.71, 6.59, and 6.8, respectively. The addition of a second layer
slightly improved the performance, with an RMSE of 6.58 in the case of Ridge. Overall, our
results suggest that the second layer is more beneficial for NP patients than for OP patients,
providing a higher performance improvement in terms of RMSE.
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Figure 4. Comparison between the ground truth distribution and the predicted distribution of mBI at
discharge for OP (a) and NP (b).

Table 7. Ablation study for choosing best model combinations for both NP and OP according to
RMSE metric.

First Layer Second Layer RMSE NP RMSE OP

xGBT - 8.9 6.71

LightGBM - 9.23 6.59

CatBoost - 9.09 6.8

G. Boosting - 9.18 6.91

SVR - 11.2 9.17

xGBT + CatBoost + LightGBM Weighting 9.32 6.77

xGBT + CatBoost + G. Boosting Weighting 9.2 6.84

xGBT + CatBoost + SVR Weighting 10.1 8.21

xGBT + CatBoost + LightGBM Lasso 9.28 6.78

xGBT + CatBoost + G. Boosting Lasso 9.11 6.81

xGBT + CatBoost + SVR Lasso 9.91 8.14

xGBT + CatBoost + LightGBM Ridge 9.01 6.58
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Table 7. Cont.

First Layer Second Layer RMSE NP RMSE OP

xGBT + CatBoost + G. Boosting Ridge 8.85 6.77

xGBT + CatBoost + SVR Ridge 9.42 8.21

xGBT + CatBoost + LightGBM Kernel Ridge 8.87 6.59

xGBT + CatBoost + G. Boosting Kernel Ridge 8.66 6.69

xGBT + CatBoost + SVR Kernel Ridge 9.21 7.92

4. Discussion

This study aimed to identify an algorithm that, using data extracted from ADR, was
able to provide a prediction of mBI at discharge. For this purpose, the dataset was split
into two independent sections based on the pathology object of the rehabilitation program:
neurological and orthopedics patients. The results of the customized predictive model
showed RMSE equal to 6.58 and 8.66 in orthopedics and neurological patients, respectively.
These results show that it performs similarly to the three traditional machine learning
models, namely CatBoost, xGBT, and LightGBM. More specifically, CatBoost gives an
absolute error of 6.8 for OP and 9.09 for NP, xGBT gives 6.71 for OP and 8.9 for NP,
LightGBM gives 6.59 for OP and 9.23 for NP, and as noticed all of them produce a slightly
higher absolute mean error compared with a customized model which is more noticeable
in the case of NP. From a clinical point of view, according to the clinicians’ part of this study,
the obtained data can be considered valid support to predict an adequate rehabilitation
prognosis right from the patient’s admission to a post-acute rehabilitation department [39].
To support the conclusion, we compare the RMSE results with the standard deviation
that exists in the target variable. Specifically, the standard deviation is 22.71 and 17.88
for NP and OP, respectively, which means the approach can be useful in practice from a
clinical point of view with RMSE being much lower than the standard deviation. Moreover,
regarding the obtained RMSE or the absolute mean error values, they could be explained
based on the quality of the used dataset, which could be affected by the subjectivity of
the operator who fills in the single form. On the other hand, to be noted is the fact that
the models perform better for OP data than NP data in both the RMSE and R-squared
metrics. This difference for neurological patients could be explained by the clinical and
therefore functional variability (which can also be noted from the standard deviation) that
distinguishes this category of patients: it is in fact known that, since the diagnosis of stroke
or multiple sclerosis, the variability among cases can be considerably different [40]. This
obviously impacts functionality and therefore the rehabilitation process, and consequently
has effects on the outcome and the possibility of predicting the trend in an optimal way
instead for patients with disabilities of orthopedic origin (in this case, the patients examined
were almost all outcomes of hip replacement surgery). Furthermore, differences found
between the two groups could be due to individual variability in terms of the appearance
of any complications occurring during the rehabilitation period, responsible for changes in
the patient’s clinical status and thus determining unpredictable changes on Barthel output
(Figures 4 and 5).

4.1. Study Strengths and Limitations

In this study, the actual mBI score at discharge could be predicted with high accuracy;
thus, the approach can truly assist the clinical practice in rehabilitation wards. The current
study’s use of multiple machine learning algorithms has suggested intriguing variations
in the importance of different variables depending on the modeling technique and the
task. The explored models were based on decision trees [38]. They closely resembled each
other, especially in the case of CatBoost and XGB, where the top 10 important features
were almost the same, presenting some minor differences in variable ranking. Finally, this
study shows that machine learning can have an important impact on the development of
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intelligent tools that can help medical improvement and can also serve as a breakthrough
to a new method of applying machine learning in rehabilitation process enhancement.
Limitations we faced during this study are related to data quality, data quantity [41,42],
and machine learning. Firstly, since machine learning models are data-centric models, the
quality of data is particularly important. In our case, the main problem regarding data
quality is found with the most important input feature (based on the feature importance
ranking of all the algorithms) and with the outcome variable. This is due to the nature of
mBI and the way it is measured, which is characterized by a high degree of subjectivity.
Secondly, the quantity of data being used is very important. It is said that machine learning
models learn from “experience” which comes with the data. This fact is directly related to
the quantity of data that machine learning is taking as input during training; the higher
the quantity, the better it is. In our case, the quantity was very low both for NP and OP
cases. The type of therapy was not factored into the algorithm. Having it as part of future
algorithms would be beneficial for therapy progression in the future. The categories are
very broad and should be limited in future works. The type of rehabilitation activities
that feed into the narrower diagnosis-based algorithm will allow for a more useful tool
for therapists in the future. Finally, it is acknowledged that machine learning models act
like a black box which makes their interpretation extremely difficult. This interpretation
difficulty directly affects the understanding of the relationship that exists between input
variables and the outcome.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 5. Bland–Altman plots on OP (a) and NP (b). std: standard deviation. 

4.1. Study Strengths and Limitations 
In this study, the actual mBI score at discharge could be predicted with high accuracy; 

thus, the approach can truly assist the clinical practice in rehabilitation wards. The current 
study’s use of multiple machine learning algorithms has suggested intriguing variations 
in the importance of different variables depending on the modeling technique and the 
task. The explored models were based on decision trees [38]. They closely resembled each 
other, especially in the case of CatBoost and XGB, where the top 10 important features 
were almost the same, presenting some minor differences in variable ranking. Finally, this 
study shows that machine learning can have an important impact on the development of 
intelligent tools that can help medical improvement and can also serve as a breakthrough 
to a new method of applying machine learning in rehabilitation process enhancement. 
Limitations we faced during this study are related to data quality, data quantity [41,42], 
and machine learning. Firstly, since machine learning models are data-centric models, the 
quality of data is particularly important. In our case, the main problem regarding data 
quality is found with the most important input feature (based on the feature importance 
ranking of all the algorithms) and with the outcome variable. This is due to the nature of 
mBI and the way it is measured, which is characterized by a high degree of subjectivity. 
Secondly, the quantity of data being used is very important. It is said that machine 
learning models learn from “experience” which comes with the data. This fact is directly 
related to the quantity of data that machine learning is taking as input during training; 
the higher the quantity, the better it is. In our case, the quantity was very low both for NP 
and OP cases. The type of therapy was not factored into the algorithm. Having it as part 
of future algorithms would be beneficial for therapy progression in the future. The 
categories are very broad and should be limited in future works. The type of rehabilitation 
activities that feed into the narrower diagnosis-based algorithm will allow for a more 
useful tool for therapists in the future. Finally, it is acknowledged that machine learning 
models act like a black box which makes their interpretation extremely difficult. This 
interpretation difficulty directly affects the understanding of the relationship that exists 
between input variables and the outcome. 

4.2. Machine Learning Feasibility and Implications 
The possibilities and implications of machine learning extend far beyond the scope 

of our study. Machine learning systems offer a powerful tool that could enhance the 
rehabilitation process by facilitating the design of personalized treatment plans and 
enabling more efficient and accurate monitoring of patients. Machine learning systems 
excel at analyzing data, and as more data becomes available, these systems become even 
more proficient at performing multiple tasks. 

Figure 5. Bland–Altman plots on OP (a) and NP (b). std: standard deviation.

4.2. Machine Learning Feasibility and Implications

The possibilities and implications of machine learning extend far beyond the scope of
our study. Machine learning systems offer a powerful tool that could enhance the rehabili-
tation process by facilitating the design of personalized treatment plans and enabling more
efficient and accurate monitoring of patients. Machine learning systems excel at analyzing
data, and as more data becomes available, these systems become even more proficient at
performing multiple tasks.

4.3. Limitations

There are several implications to consider. Firstly, the lack of standardization in reha-
bilitation makes it difficult to develop unique tools according to well-defined standards.
This is primarily due to the absence of standardized data, which is a challenge not only
in rehabilitation but in the healthcare industry, given the diverse range of protocols, tech-
niques, technologies, routines, and so on used in different healthcare units. Secondly, biased
data is a significant concern in applying machine learning to rehabilitation, as human eval-
uation can influence the data acquisition process. For example, mBI used in our study is
subject to bias when expert clinicians evaluate a patient’s functional ability based only on
observations and medical records. Even highly qualified clinicians cannot guarantee an
unbiased quantitative evaluation of mBI, especially when multiple clinicians are involved.
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The type of therapy was not considered in the algorithm. Having that as part of future
algorithms would be beneficial for therapy progression in the future. The categories are
very broad and should be limited in future work. The type of rehabilitation activities that
feed into the narrower diagnosis-based algorithm will allow for a more useful tool for
therapists in the future. Finally, using machine learning in rehabilitation raises ethical and
privacy concerns, as collecting and using personal health data requires careful management
to ensure patient confidentiality and informed consent. Furthermore, relying on technology
may diminish human interaction and empathy, which are essential aspects of the rehabilita-
tion process. Therefore, although the feasibility of using machine learning in rehabilitation
is promising, it must be approached with caution and sensitivity to ensure that patients
receive the best possible care.

5. Conclusions

In this work, an original combination of machine learning models and careful data
preprocessing is used to realize an original method for predicting effectiveness in rehabili-
tation. Obtained results showed how all the proposed models, including the customized
one, perform significantly well, thus demonstrating how the use of machine learning can
help in predicting mBI and improving the rehabilitation process accurately. In conclusion,
an enhancement of the dataset, which should be extended by integrating new measures,
is needed. Furthermore, an increase in the sample size and quality of data improvement,
which showed contradictory elements probably due to the human factor, will make model
learning more effective. As for future development, interesting topics concern the investiga-
tion of new models, deep learning models, and also other feature engineering approaches
that could help in extracting more useful information.
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