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Abstract: Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology,
revolutionizing disease diagnosis and management. This paper provides a comprehensive overview
of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency,
facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental
concepts of AI, including machine learning (ML) and deep learning (DL), and their application in
ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity
and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in
retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular
Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive
retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and
sickle cell retinopathy. We focus on the current landscape of AI technologies, including various
AI models, their performance metrics, and clinical implications. Furthermore, we aim to address
challenges and pitfalls associated with the integration of AI in clinical practice, including the “black
box phenomenon”, biases in data representation, and limitations in comprehensive patient assessment.
In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals,
advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging
AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize
healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving
landscape of medicine.

Keywords: artificial intelligence; AI; early diagnosis; retinal diseases

1. Introduction

Artificial intelligence (AI) has been referred to as the fourth industrial revolution
in mankind’s history [1]. The term was coined by John McCarthy in 1956, defining a
branch of computer science dedicated to designing machines capable of learning and
reasoning like humans to solve complex problems. Machine learning (ML), created by
Arthur Samuel in 1959, is a field of AI where a program, when exposed to a vast amount of
data, can learn to recognize specific patterns within that data [2]. This is achieved with the
help of multiple interconnected algorithms layered together, each working on recognizing
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particular features. Collectively, this system is referred to as a neural network, as it attempts
to simulate the functioning of neurons in the human brain.

Deep learning (DL) is a subdivision of machine learning wherein multiple artificial
neural networks (ANNs) are layered together to better mimic the human brain’s processing
capabilities [3]. Convolutional neural networks are a type of ANN that are widely used
for image and video analysis [4]. The successful data interpretation by these programs can
be reported in terms of sensitivity, specificity, or a receiver operating characteristic (ROC)
curve, which plots the true positive rate against the false positive rate [5].

The past two decades have witnessed a surge in AI-powered solutions within the
medical field. Digital images and numerical data are frequently used to train AI and ML
algorithms. The unique nature of the retina, being readily accessible through various
imaging techniques like fundus photography and optical coherence tomography (OCT),
has positioned it as an ideal candidate for AI-assisted diagnosis. With 30 million OCT scans
performed annually in the US alone, this field of ophthalmology provides a vast repository
of raw data for algorithm training [6].

The significant variability and progressive nature of retinal diseases typically necessi-
tate multiple consultations for an accurate diagnosis, constant monitoring, and personalized
management, thereby straining both time and resources [7]. This situation can lead to
delayed diagnosis and suboptimal visual outcomes. AI seeks to efficiently analyze the
large amount of patient data generated, aiming to reduce patient burden, facilitate early
diagnosis, enhance management strategies, and ultimately improve long-term prognosis.

2. Materials and Methods

The review was conducted utilizing PubMed (https://pubmed.ncbi.nlm.nih.gov) and
Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). PubMed,
a widely used and trusted biomedical literature database maintained by the National
Library of Medicine (NLM), was chosen as the primary database for this research endeavor.
Its extensive coverage of peer-reviewed journals in the field of medicine and life sciences
makes it an ideal resource for retrieving relevant scientific literature. Research was con-
ducted using a combination of search terms. These terms included variations of “Artificial
Intelligence”, “Machine Learning”, and “Deep Learning”, combined with terms related to
ophthalmology and specific retinal diseases, such as diabetic retinopathy (DR), age-related
macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity
(ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa,
Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. Boolean
operators (AND, OR, NOT) were utilized to combine these terms logically, ensuring com-
prehensive coverage of the relevant literature while minimizing irrelevant results. The
search was limited to articles written in English to ensure relevance and accessibility. Titles
and abstracts of retrieved articles were manually screened to select those relevant to the
study objectives. Full texts of selected articles were then reviewed to extract informa-
tion on AI models utilized, performance metrics reported, clinical implications discussed,
and challenges associated with AI integration in clinical practice. Additionally, manual
searches of reference lists from relevant articles were conducted to supplement electronic
database searches, and citation tracking was utilized to identify additional relevant studies
citing key articles. The comprehensive search strategy employed in this study aimed to
ensure the inclusion of all of the relevant literature on the topic, thus providing a thorough
understanding of AI applications in retinal disease diagnosis and management.

3. Applications of Artificial Intelligence in Retina
3.1. Diabetic Retinopathy

Diabetic retinopathy (DR), a microvascular complication of Diabetes Mellitus, stands as
a leading cause of preventable blindness in the working-age population, with an estimated
prevalence of 28.54 million facing vision-threatening complications [8]. The American
Academy of Ophthalmology (AAO) Preferred Practice Patterns recommends annual screen-
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ing for DR [9]. AI-based DR screening systems aim to reduce costs and improve patient
access to screening. These systems utilize algorithms to detect early signs of DR from
color fundus photography. These features include microaneurysms [10], red lesions [11,12],
hemorrhages, and blood vessel segmentation [13,14].

The IDx-DR (Idx, Iowa City, IA, USA) was the first AI system approved by the Food
and Drug Administration for the detection of DR [15]. Using color fundus photos, this
system effectively identifies specific biomarkers of DR, providing guidance on whether a
visit to an ophthalmologist is necessary or if a follow-up screening next year is sufficient [16].
In the published literature, the system has demonstrated impressive results across diverse
populations, including North African, Caucasian, and Sub-Saharan groups [17]. Using the
DL-enhanced algorithm with IDx-DR against the publicly available Messidor-2 dataset,
the sensitivity and specificity of the system were found to be 96.8% and 87% [18]. In its
pre-registered clinical trial, the IDx-DR reported a sensitivity and specificity of 87.2% and
90.9% in detecting more than mild DR [16].

In Europe, the EyeArt (EyeNuk Inc., Woodland Hills, CA, USA) and Retmarker
(Retmarker Ltd., Voimbra, Portugal) systems are approved as AI-based class IIa medical
devices to assist in DR screening [19,20]. EyeArt analyzes retinal images to determine the
necessity of referral for diabetic retinopathy. The system is reported to have a sensitivity
and specificity of 91.7% and 91.5% [20]. Interestingly, in a study by Rajalakshmi R et al.,
the software was tested with smartphone-based fundus images, showing sensitivities and
specificities of 99.3% and 68.8% for referable DR and 99.1% and 80.4% for sight-threatening
DR, respectively [20]. The Retmarker software, developed in Portugal, is unique in its ability
to compare fundus photographs from the current screening to previous screenings and
comments on disease progression [21,22]. In a study using data from over twenty thousand
patients, the software was found to have a sensitivity of 85% and 97.9% for referable and
proliferative DR [23]. Additionally, the software tracks the rate of new microaneurysm
formation, which can signal worsening diabetic retinopathy [21]. Comparative analysis
revealed that EyeArt achieved a higher sensitivity compared to Retmarker when analyzing
the same dataset (93.8% as compared to 85%). The reported false-positive rate, however,
was also significantly higher for EyeArt (80.1% compared to 53.3%) [24].

Islam et al. developed an AI model based on the principle of supervised contrastive
learning to detect DR from fundus photographs. The model was validated against the
APTOS 2019 blindness detection dataset and achieved an AUC of 0.9850 and an accuracy
of 98.36% [25]. Another study proposed an AI model to help diagnose DR using OCT scans.
They used 188 scans to help validate their algorithm and reported an accuracy of 96.81%
for DR diagnosis [26]. Gulshan et al. were sponsored by Google to train a CNN-based
AI model to help detect referable DR. Their model was tested using the EyePACS-1 and
Messidor-2 dataset and was reported to achieve an AUC of 0.991 and 0.990, respectively [27].
Zhang et al. in 2022 developed a CNN-based system that would automatically classify DR
using fundus images. They trained and validated this model against the Messidor-2 and
EyePACS-1 and reported an accuracy, sensitivity, and specificity of 89.9%, 88.2%, and 91.3%
with the EyePACS-1 dataset and 91.8%, 90.2%, and 93% with the Messidor-2 dataset [28]. A
summary of the various studies that have developed AI models to aid with the diagnosis
of DR has been tabulated in Table 1.

Table 1. Summary of selected studies using artificial intelligence in the diagnosis, stages, and
prognosis of diabetic retinopathy (DR).

Study Disease AI Tool Study Cohort/Database Imaging
Analyzed

Performance
Metrics

Pires et al. [29] DR diagnosis CNN
Messidor-2 (1748 images),

Kaggle (88,702 images),
DR2 (520 images)

CFP
Accuracy = 98.2%
(Messidor-2), 98%

(DR2)
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Table 1. Cont.

Study Disease AI Tool Study Cohort/Database Imaging
Analyzed

Performance
Metrics

Jiang et al. [30] DR diagnosis CNN 30,244 images CFP

AUC = 0.946
Sensitivity = 85.57%
Specificity = 90.85%
Accuracy = 88.21%

Esfahani et al. [31] DR diagnosis ResNet-34 (CNN) Kraggle (35,000 images) CFP Sensitivity = 85%
Specificity = 86%

Abramoff et al. [18] DR staging CNN Messidor-2 (1748 images) CFP
AUC = 0.98

Sensitivity = 96.8%
Specificity = 87%

Pratt et al. [32] DR staging CNN Kraggle (35,000 images) CFP
Sensitivity = 30%
Specificity = 95%
Accuracy = 75%

Zhang F et al. [33] DR grading
ResNet-34,

Inception v3
(CNN)

1089 images CFP AUC = 0.958
Kappa = 0.860

Katz et al. [34] DR grading W-net (CNN) 6981 images CFP Accuracy 98.9%

DR—diabetic retinopathy, CFP—color fundus photographs, CNN—convolutional neural network, AUC—area
under the curve.

3.2. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of irreversible vision
loss in the elderly population in developed countries. Affecting nearly 9% of individuals
between ages 45 and 85 globally, the prevalence of AMD is projected to reach a staggering
288 million by 2040 [35,36]. Notably, up to 84% of cases remain undiagnosed in the early
stages, often due to the absence of symptoms [37]. To address this, the AAO recommends
regular biennials for individuals aged 65 and above, underscoring the growing need for
AI-driven solutions to support large-scale screening efforts and alleviate the burden on
clinicians [38].

In 2013, Grinsven et al. introduced an ML system designed to detect and quantify
drusen from color fundus photographs. Based on the detected drusen, the algorithm
assessed the risk of developing advanced AMD [39]. It achieved an ROC curve of 0.948 and
had a similar performance when compared to ophthalmologists in detecting drusen. Burlina
et al. developed deep CNNs to analyze fundus photographs for automated AMD severity
grading. The accuracy values with which the system was able to classify different classes
of AMD were reported to be 79.4%, 81.5%, and 93.4% [40]. Chou et al. validated their
DL model against 699 fundus photographs to diagnose AMD and reported an accuracy,
sensitivity, and specificity of 83.67%, 80.76%, and 84.72%, respectively. In addition to disease
diagnosis, AI models have also been used to predict disease severity and progression in
patients with AMD [41]. Waldstein SM et al. used AI algorithms to analyze drusen volumes
and hyperreflective foci volumes in the OCT scans as biomarkers for AMD progression [42].
Yan et al. used a CNN to develop an AI model to help predict disease progression in AMD
patients. They tested their model against 31,262 OCT images and reported an AUC of
0.85 [43,44].

AI-driven methodologies have also been used to distinguish geographic atrophy
from conditions that mimic AMD, such as extensive macular atrophy with pseudodrusen-
like appearance (EMAP), a severe and rapidly progressive form of macular degeneration
predominantly affecting middle-aged individuals [45–47]. Specifically, Chouraqui M et al.
utilized a DL classifier based on the ResNet-101 design, pre-trained with 30◦ × 30◦ and
55◦ × 55◦ FAF images, to differentiate these two conditions [48]. The authors trained
the network with images from 135 EMAP and 185 AMD patients and achieved good-to-
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excellent results, particularly using the 55◦ × 55◦ classifier (sensitivity 90%, specificity
84.6%) (Table 2).

Table 2. Summary of selected studies using artificial intelligence in the diagnosis, stages, and
prognosis of age-related macular degeneration (AMD).

Study Disease AI Tool Study
Cohort/Database

Imaging
Analyzed Performance Metrics

Burlina et al. [40] AMD diagnosis CNN 67,401 images CFP

AUC = 0.970
Sensitivity = 83.1%
Specificity = 93.6%
Accuracy = 90.2%

Bhuiyan et al. [49] AMD progression DL >4600 participants
from AREDS CFP

Sensitivity 91% (year 1),
92% (year 2)

Specificity = 85% (year 1),
84% (year 2)

Accuracy = 86% (year 1),
85% (year 2)

Banerjee et al. [50] AMD progression DL 13,954 images OCT AUC = 0.96

Schmidt-
Erfurth et al. [51] AMD progression DL 495 images OCT AUC = 0.68

Lee et al. [52] AMD diagnosis DNN 48,312 cases, 52,690
controls OCT

AUC = 0.98
Sensitivity = 84.6%
Specificity = 91.5%
Accuracy = 87.6%

CFP—color fundus photographs, AMD—age-related macular degeneration, CNN—convolutional neural network,
DL—deep learning, DNN—deep neural network, OCT—optic coherence tomography, AUC—area under the
curve.

3.3. Macular Neovascularization, Diabetic Macular Edema, and Other Macular Diseases

Optical coherence tomography (OCT) scans serve as the cornerstone to diagnose and
monitor a wide range of macular disorders. Machine learning algorithms excel at analyz-
ing images with intricate details and consistent views. These features make OCT scans
particularly amenable for this application due to their high level of detail and uniformity
within the captured area. Some of the widely studied biomarkers include subretinal fluid
(SRF), intraretinal fluid (SRF), and pigment epithelial detachment (PED) [53].

Schlegl et al. developed an algorithm capable of identifying retinal fluid on OCT
scans, further distinguishing between subretinal and intraretinal fluid. When tested against
1200 OCT scans from patients with neovascular age-related macular degeneration (nAMD)
and diabetic macular edema, the model achieved an AUC of 0.98 for detecting subretinal
fluid and 0.94 for detecting intraretinal fluid [44]. Han et al. developed an AI model
using a CNN to diagnose nAMD and also compared the diagnostic accuracy of the model
to that of ophthalmologists. The study cohort included 4749 spectral domain optical
coherence tomography images and the model achieved an accuracy of 87.4%, which was
at par with the ophthalmologists [54]. Song et al. used a CNN to develop an AI model to
predict nAMD. They trained and tested the algorithm against 671 spectral domain optical
coherence tomography images and reported an accuracy, sensitivity, and specificity of
93%, 87.3%, and 92.2%, respectively [55]. Romo-Bucheli D et al. developed a DL model
using DenseNet and a recurrent neural network (RNN) that analyzed OCT scans to predict
treatment requirements in patients with nAMD. The model achieved an AUC of 0.85 and
0.81 in detecting patients with low and high treatment requirements [56] (Table 3).



Medicina 2024, 60, 527 6 of 15

Table 3. Summary of selected studies using artificial intelligence in the diagnosis, stages, and
prognosis of the other retinal diseases included in this study.

Study Disease AI Tool Study
Cohort/Database

Imaging
Analyzed Performance Metrics

Han et al. [57] HR screening Anomaly detection
(AD) model (DL) 90,499 images CFP

AUC = 0.895
Sensitivity = 81.29%
Specificity = 82.75%
Accuracy = 82.37%

Arsalan et al.
[58] HR CNN DRIVE, CHASE-DB1,

STARE (1960 images) CFP

AUC = 0.9697
Sensitivity = 85.26%
Specificity = 97.91%
Accuracy = 98.83%

Chen Q [59] RVO ResNet-50 (CNN) 600 CFPs from
481 pateints CFP

AUC 1
Sensitivity—100%
Specificity—89%

Inception-v3
(CNN)

AUC 0.99
Sensitivity—100%
Specificity—97%

DenseNet-121
(CNN)

AUC 1
Sensitivity—99%
Specificity—92%

SE-ReNeXt-50
(CNN)

AUC 1
Sensitivity—100%
Specificity—91%

Wu Q [60] ROP OC-Net (DL) CFP

AUC—0.90
Accuracy—52.8%
Sensitivity—100%
Specificity—37.8%

SE-Net
(DL)

Wang J [61] ROP Id-Net (DeepROP)
(DNN) CFP Sensitivity—96.62%

Specificity—99.32%

Gr-Net (DeepROP)
(DNN)

Sensitivity—88.46%
Specificity—92.31%

Alam M [62] SCR Support vector
machine OCTA

Sensitivity—100%
Specificity—100%
Accuracy—100%

K-nearest neighbor OCTA
Sensitivity—95%
Specificity—93%
Accuracy—93%

Discriminant
analysis OCTA

Sensitivity—93%
Specificity—92%
Accuracy—92%

CFP—color fundus photographs, RVO—retinal vein occlusion, DL—deep learning, CNN—convolutional neural
learning, ROP—retinopathy of prematurity, DNN—deep neural network, SCR—sickle cell retinopathy, OCTA—optic
coherence tomography angiography, AUC—area under the curve.

3.4. Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is among the leading causes of childhood blindness
worldwide. It is characterized by abnormal vascular proliferation, predominantly affecting
premature infants, with an incidence rate reported to be as high as 68% in the premature
population [63,64]. The International Classification of ROP (ICROP) currently classifies
ROP as a “Plus” disease, severe ROP that requires prompt treatment, and a “Pre-plus”



Medicina 2024, 60, 527 7 of 15

disease, a less severe form of the disease. This classification is based on biomarkers, such as
arterial tortuosity and venous dilation, for accurate disease assessment [65].

Wang et al. developed DeepROP, a DNN-based system employing two CNN classifiers
(Id-Net and Gr-Net) to facilitate early detection of ROP using retinal fundus photographs.
Id-Net is designed to identify features and cases of ROP, whereas Gr-Net categorizes the
severity of ROP in these cases as minor or severe. Remarkably, both of these classifiers
achieved high sensitivity (99.62% for Id-Net and 88.46% for Gr-net) and specificity (99.32%
for Id-net and 92.31% for Gr-net) [61]. Wu Q et al. also developed and validated a DL
algorithm for the detection (OC-Net) and grading (SE-net) of ROP. The mean AUC was
reported to be 0.90 and 0.87 for OC-Net and SE-net, respectively [60]. Redd KT et al.
tested the i-ROP DL severity score in their cohort of 870 infants. They reported an AUC of
0.960 along with a sensitivity and specificity of 94% and 79%, respectively [66] (Table 3).

3.5. Retinal Vein Occlusion

Retinal vein occlusion (RVO) ranks as the second most common retinal vascular
disease after diabetic retinopathy [67,68]. It is characterized by sudden painless loss of
vision. The disease is further classified into central, branch, and hemicentral retinal vein
occlusion, with the branch of RVO being the most common variant [59]. Diagnostic features
observable on fundus photographs include exudates, microaneurysms, superficial and
deep hemorrhages, telangiectatic vessels, and sclerosed veins [59,69,70]. Early and accurate
diagnosis of RVO is crucial, as it may enable timely intervention and potentially prevent
severe visual impairment in these patients.

Chen J. S et al. developed a DL system using four different AI algorithms for the
early screening of RVO [71]. These algorithms were tested on a cohort of 8600 color
fundus photographs, and their Inception-v3 model was reported to have a sensitivity
and specificity of 99% and 95%, respectively. Abitbol et al. tested DenseNet121, an AI-
based system to diagnose retinal vascular disorders, including RVO. The model reported
an AUC of 0.912 and an accuracy of 88.4% while analyzing a study cohort of 224 ultra-
widefield color fundus images [72]. Nagasato et al. validated two AI models using
465 ultrawide-field fundus photographs and reported a sensitivity and specificity of 94%
and 97%, respectively [73]. Kang et al. worked on a study cohort of 2992 eyes using a
CNN-based AI model and achieved an accuracy, sensitivity, and specificity of 97.7%, 96%,
and 98% for the diagnosis of RVO [74] (Table 3).

3.6. Hypertensive Retinopathy

Uncontrolled high blood pressure, or systemic hypertension, can damage various
organs, including the retina. Persistent high pressure can strain the endothelium of retinal
blood vessels, induce compensatory smooth muscle cell hypertrophy in the arterial walls,
and eventually cause the narrowing of vessel lumens [75,76]. The long-term sequelae of
this process, observable through fundus examination, include intraretinal exudates, cotton
wool spots, and flame-shaped hemorrhages [77].

In the recent literature, many AI-based systems have been tested to effectively screen
and grade patients with hypertensive retinopathy (HR). In 2022, Dong et al. used CNNs to
develop an algorithm to diagnose various retinal pathologies, including HR. The algorithm
was validated using more than 120,000 fundus photographs and was reported to achieve
an AUC of 0.837 for the diagnosis of HR [78]. Han et al. used DL to develop an anomaly
detection model to screen for ocular pathologies. The model was tested on ninety-thousand
fundus photographs and achieved an AUC of 0.895, with a sensitivity and specificity of
81.2% and 82.7% for the diagnosis of HR [57]. Akbar et al. used DL to develop an AI model
to aid with grading HR in patients. The model was validated against three different patient
datasets, AVRDB, VICAVR, and INSPIRE-AVR, and was found to achieve an accuracy of
98.1%, 95.6%, and 95.1% with each of them, respectively [79]. Abbas et al. in 2021 used
DenseNet to create HYPER-RETINO to help classify HR. Their algorithm was tested on
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1400 fundus photographs and was reported to have a sensitivity and specificity of 90.5%
and 91.5% [80] (Table 3).

3.7. Retinitis Pigmentosa

Retinitis Pigmentosa (RP), or rod–cone dystrophy, is the most common inherited
retinal disorder, characterized by the progressive atrophy of rod photoreceptors followed
by secondary degeneration of cones [81]. The current global incidence of RP is reported
to be between 1 in 2000 and 1 in 4000 individuals [82]. Clinically, the disease presents
with impaired night vision and narrowing of the visual field. As the disease progresses,
patients experience progressive vision loss and decreased contrast perception. The clinical
triad of bone spicules in the retinal periphery, a pale optic disk, and vessel narrowing
on fundoscopy represent the current mainstay of diagnosis and the gateway to genetic
testing [82]. Some of the recent studies have used AI to aid with this image processing for
an early and accurate diagnosis of the disease.

Chen T et al. developed a DL model to accurately detect RP using color fundus
photographs of patients. Their model was reported to achieve an accuracy of 96.00%, which
was comparable with that of ophthalmologists when they examined the same images [83].
Nagasato D et al. studied five DL models, Visual Geometry Group-16, Residual Network-50,
Inception V3, DenseNet121, and EfficientNetB0, to estimate visual function in patients with
RP. These models were validated against ultra-widefield fundus autofluorescence images
from 695 patients and were found to accurately estimate the visual acuity and central
sensitivity in these patients (p < 0.001) [84]. Liu TYA et al. trained their DL algorithm
to predict visual impairment in patients with RP. They tested their model against two
different patient datasets and achieved an AUC of 0.83 and 0.78, respectively [85]. Arsalan
et al. developed a DL-based segmentation network (RP segmentation network; RPS-Net)
to accurately detect pigment in color images and was reported to have an accuracy of
99.5% [86] (Table 3).

3.8. Stargardt Disease

Stargardt disease, the most common monogenic retinal dystrophy, affects approxi-
mately 1 in 6578 individuals [87,88]. The disease is primarily caused by biallelic mutations
in the ABCA4 gene, leading to the abnormal accumulation of bisretinoids in the RPE and
subsequent degeneration of photoreceptors and RPE cells [89]. The large genetic variability
of this complex gene contributes to the wide range of phenotypic heterogeneity observed
in Stargardt disease [90]. Nonetheless, typical funduscopic alterations characteristic of the
disease include (1) macular atrophy, (2) flecks, and (3) peripapillary sparing [88].

Recent AI approaches applied to Stargardt disease primarily leverage fundus aut-
ofluorescence (FAF) and OCT scans. Wang et al. pioneered the use of a deep learning
CNN system (U-Net) for the semantic segmentation of Stargardt atrophic lesions using FAF
images [91]. Initially trained to distinguish Stargardt FAF images from those of healthy
controls, the system was subsequently expanded to include FAF images from patients
with AMD. This approach yielded promising segmentation outcomes compared to manual
grading, achieving a DICE similarity coefficient and an overlapping ratio of 0.87 + 0.13 and
0.78 + 0.17, respectively.

For OCT imaging, retinal layer segmentation has predominantly employed graph-
based methods to detect atrophic areas and flecks associated with Stargardt disease. Uti-
lizing a supervised AI deep learning framework, Mishra et al. implemented a 12-retinal
layer algorithm that demonstrated subpixel accuracy in analyzing OCT scans from the
ProgSTAR study, showcasing the potential of AI in enhancing diagnostic precision and
understanding of Stargardt disease [92].

3.9. Best Vitelliform Macular Dystrophy

Best vitelliform macular dystrophy (BVMD) is the second most common macular
dystrophy with an estimated prevalence of 1 in 10,000 in the United States. The disease is
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characterized by dominantly inherited mutations in the BEST1 gene on chromosome 11,
leading to the production of a dysfunctional bestrophin protein. Malfunctioning of this
chloride channel, situated on the basolateral membrane of RPE cells, results in the subreti-
nal accumulation of lipofuscin and unphagocytosed photoreceptor outer segments [93].
Clinically, this condition is marked by the characteristic “egg yolk” (vitelliform) macular
lesion and a reduced Arden ratio (<1.5) on electrooculogram [94]. Although the original
classification relied on fundus examination and photography, recent advances in retinal
imaging have deepened our understanding of BVMD pathophysiology, leading to more
accurate diagnosis and the development of novel staging systems [95–98].

In the realm of AI approaches, efforts to distinguish BVMD from Adult Vitelliform
Lesions (AVLs) have shown promising results. Crincoli et al. classified FAF and OCT images
from 182 BVMD eyes and 96 eyes with AVLs using the Inception-ResNet-v2 CNN [99].
This study achieved a 90% accuracy in differentiating the two conditions using deep
learning classifiers on both ImageJ-processed and unprocessed images, surpassing human
diagnostic performance.

3.10. Sickle Cell Retinopathy

Sickle cell disease (SCD), caused by a mutation in the β-globin gene of hemoglobin,
is one of the most common inherited blood disorders [100]. This mutation causes the
erythrocytes to change from their disc shape to a sickle shape during periods of ischemia,
resulting in microvascular occlusions in the body [101]. SCD patients face a risk of vision
loss due to blocked blood vessels in the retina [102]. Chronic tissue ischemia from these
microvascular blockages can precipitate severe ocular complications, including abnormal
new blood vessel growth (neovascularization), vitreous hemorrhage, and detachment of the
retina [103]. Considering these risks, early detection and preventive measures are crucial to
avoid vision loss in these patients. Therefore, dilated fundus examinations, which allow
detailed examination of the retina, are currently recommended for SCD patients starting at
age 10 [104].

Innovations in AI have shown promise in enhancing the diagnostic accuracy for
SCD-related ocular conditions. Cai S et al. trained a CNN to detect the classic sea fan
neovascularization in patients with SCD using ultra-widefield color fundus photographs.
In their study, the CNN was able to achieve an AUC of 0.988 with a sensitivity and
specificity of 97.4% and 97%, respectively [105]. Sevgi DD et al. used a DL algorithm
to analyze vascular and ischemic parameters, like the ischemic index, vessel length, and
area in patients with SCD. The imaging modality used was ultra-widefield fluorescein
angiography scans. They concluded that the DL algorithm was more accurate at detecting
these parameters compared to alternative image processing systems [106]. Alam M et al.
used three different AI algorithms to evaluate sickle cell retinopathy biomarkers in optical
coherence tomography angiography (OCTA) scans. All three algorithms achieved high
sensitivity specificity and accuracy while testing (Table 1) [62].

4. Challenges and Pitfalls to the Use of AI

One of the major challenges in using AI for disease diagnosis is the “black box phe-
nomenon”. This term describes AI systems whose internal mechanisms are opaque, mean-
ing their internal workings are difficult or impossible to understand. Users are left with
the inputs (data fed into the system) and outputs (the resulting diagnosis or prediction),
but the reasoning process behind these outputs remains hidden [107,108]. The accessibil-
ity and affordability of these systems can also pose a challenge to the developing world,
even though the main concern regards the image quality and lack of complete datasets,
in addition to false positive and false negative outcomes. Developing, validating, testing,
and implementing these AI models require substantial financial resources, which can be a
major limiting factor [24].

Assessing the cost impact of AI in retinal disease diagnosis remains challenging, given
its limited routine use. However, preliminary evidence suggests that AI can reduce costs
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by improving diagnostic accuracy and streamlining workflows [23]. However, further
comprehensive analysis should explore these potential savings alongside the clinical impact
of AI integration, considering factors such as workflow efficiency, diagnostic accuracy,
and patient outcomes. By understanding both the economic and clinical implications,
stakeholders can better leverage AI technologies to enhance patient care and optimize
resource utilization.

Beyond the “black box phenomenon”, where the inner workings of AI systems remain
opaque, concerns extend to image quality and misclassifications, which significantly impact
diagnostic accuracy. For instance, misidentifying vessels or swapping arteries and veins
can lead to erroneous conclusions. Additionally, while AI systems offer valuable insights,
the responsibility for final decision making still rests with clinicians, highlighting the need
for transparency and accountability in their use.

Another aspect is the fact that diagnostic assessments for retinal diseases are now paid
for and supported by several private healthcare insurers. Therefore, there are implications
for the patient not only from identifying issues but also increased fees due to potentially
higher risk scores.

A critical concern with AI models is their potential to perpetuate existing social and
racial biases if trained exclusively on data from specific demographic groups. Therefore,
as expected, it is important to incorporate data from various ethnicities and nationalities
to increase the generalizability of these systems in real-world scenarios [109]. We need
ethnicity or other population-based characteristic feeds, as this is important for risk profiling
and patient management. It is also important to note that while these systems excel at
analyzing specific data points, they can overlook crucial aspects of a patient’s health that a
comprehensive patient–physician interaction uncovers. Additionally, the lack of a physical
examination and focus on specific disease biomarkers can cause these systems to overlook
the broader picture [110].

5. Future Perspectives

In addition to examining current applications and challenges, this review also en-
deavors to outline future perspectives and research directions in the field of AI for retinal
disease diagnosis. Looking ahead, there is a burgeoning interest in exploring novel AI
techniques, such as federated learning and transfer learning, to enhance the performance
and generalizability of AI models across diverse populations and clinical settings. Fur-
thermore, integrating multimodal imaging data, including OCT, fundus photography, and
angiography, holds promise for improving diagnostic accuracy and expanding the scope
of AI-driven retinal disease assessment. Additionally, the development of interpretable
AI models that provide transparent decision-making processes is crucial for enhancing
trust and acceptance among clinicians and patients. Moreover, there is a growing emphasis
on leveraging AI not only for diagnosis but also for personalized treatment planning and
monitoring of retinal diseases, ushering in a new era of precision medicine in ophthal-
mology. Collaborative efforts between clinicians, researchers, and industry partners are
essential for advancing AI technologies and translating them into clinically impactful tools
that ultimately benefit patients worldwide. By addressing these future perspectives and
research directions, this review aims to catalyze continued innovation and progress in the
field of AI-driven retinal disease diagnosis.

6. Conclusions

In the face of expanding patient populations and limited healthcare resources, the
integration of artificial intelligence (AI) into retinal disease diagnosis offers a promising
solution. AI algorithms, adept at analyzing complex retinal imaging data, enhance diagnos-
tic accuracy and efficiency. However, it is crucial to recognize that AI should complement
rather than replace human expertise. The collaborative synergy between AI and clinicians
optimizes diagnostic precision, leading to improved patient outcomes. This collabora-
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tive paradigm holds the potential to revolutionize retinal disease diagnosis, mitigating
healthcare disparities and advancing towards a healthier future for all.
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