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Spatial velocity correlations in inertial systems of
active Brownian particles

Lorenzo Caprini * and Umberto Marini Bettolo Marconi

Recently, it has been discovered that systems of active Brownian particles (APB) at high density organise

their velocities into coherent domains showing large spatial structures in the velocity field. This

collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle force favoring

the alignment of the velocities. This phenomenon was investigated in the absence of thermal noise and

in the overdamped regime where inertial forces could be neglected. In this work, we demonstrate

through numerical simulations and theoretical analysis that velocity alignment is a robust property of

ABP and persists even in the presence of inertial forces and thermal fluctuations. We also show that a

single dimensionless parameter, such as the Péclet number customarily employed in the description of

self-propelled particles, is not sufficient to fully characterize this phenomenon either in the regimes of

large viscosity or small mass. Indeed, the size of the velocity domains, measured through the correlation

length of the spatial velocity correlation, remains constant when the swim velocity increases and

decreases as the rotational diffusion becomes larger. We find that, contrary to the common belief, the

spatial velocity correlation not only depends on inertia but is also non-symmetrically affected by mass

and inverse viscosity variations. We conclude that in self-propelled systems, at variance with passive

systems, variations in the inertial time (mass over solvent viscosity) and mass act as independent control

parameters. Finally, we highlight the non-thermal nature of the spatial velocity correlations that are fairly

insensitive both to solvent and active temperatures.

1 Introduction

Many systems of biological or technological interest display
fascinating spatial velocity correlations extending over lengths
larger than the size of the individual constituents. This pheno-
menon is an example of the intriguing non-equilibrium behavior
typical of active1–3 and granular matter systems4,5 and is in stark
contrast with the observed behavior characteristic of equilibrium
colloidal suspensions where the particle velocities are
uncorrelated and follow the Maxwell–Boltzmann distribution.

Colonies of bacteria, such as Bacillus subtilis or Myxococcus
xanthus, display spatial velocity correlations exponentially
decaying with a correlation length much larger than the typical
bacterium size.6–8 The velocity field of bacteria forms vortex-
domains or clusters where the velocities are mutually aligned
and continuously rearrange according to different patterns.
This phenomenon occurs at large densities and is often called
bacterial turbulence and has been mostly investigated in the
framework of hydrodynamic phenomenological theories.9–12

Particle-based numerical studies have reproduced the formation
of velocity domains either in models containing an explicit

velocity alignment interaction term13 or in models where the
observed rich variety of polar phases14 was mainly due to the
elongated shape typical of many species of bacteria.

Recent experiments with cell monolayers revealed similar
spatial structures in the velocity field extending over a range of
B10–20 microns for mesenchymal cells up to B500 microns.
Their size, in the case of very adhesive epithelial cells, reaches
B50 times the one of the single cells.15 Many cells, such as the
typical Madin–Darby Canine Kidney (MDCK) cells16 or human
bronchial epithelial cells (HBEC),17 are not elongated but still
form large groups with correlated velocities often organizing in
vortex structures17,18 (without showing the formation of polar
bands) and give rise to velocity correlations exponentially
decaying in space.19,20 To explain these behaviors, several
models have been proposed.21 At the particle level, alignment
interactions between particle polarizations or particle velocities
have been often included in cell dynamics.22,23 However, in
recent studies, these phenomenological interactions have been
replaced by additional frictional forces19 or complex anti-
alignment interactions of biological origin24 that could also
give rise to a similar phenomenology.

Despite their different origins, one common feature of these
systems is the formation of domains with correlated velocities
even in the absence of the polar bands that instead are typically
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observed in Vicsek-like models. At variance with the mentioned
theoretical approaches, the local velocity alignment has been
recently reproduced via the dissipative stochastic dynamics
without introducing any explicit alignment interactions
between the particle orientations25–27 or some kind of local
interaction between particle velocity and self-propulsion. Dense
systems of purely repulsive active Brownian particles (ABP)
form domains where the velocities are aligned or arranged in
vortex-like patterns when they attain hexatic or solid order26 or
in the dense phase of the non-equilibrium phase-coexistence,25

known as motility induced phase separation (MIPS).28–30 ABP
already contains the following minimal ingredients producing
velocity patterns: (i) persistent self-propulsion forces and (ii)
purely repulsive interactions. However, so far, these results have
been obtained through theoretical analysis and simulations
neglecting two important aspects: the inertial forces and thermal
noise due to the molecules of the solvent. In apparent contradiction
with the results of ref. 25–27, a successive investigation, based
on thermal overdamped ABP31 and focused on micro-phase
motility induced phase separation, did not reveal the presence
of spatial velocity correlations. Two natural questions arise: (i)
does the velocity alignment in ABP systems occur only in the
absence of thermal fluctuations? (ii) Is this ordering suppressed
if one takes into account the effect of the acceleration?

We anticipate the main result of the present study: the
spatial patterns in the velocity field of active systems survive
in the case of underdamped active dynamics and thermal
noise. Our investigation also proves three important results
derived by combining numerical and theoretical methods:

(i) The inadequacy of the s–o-called Péclet number, as a
single active force dimensionless parameter, in understanding
the dynamical collective phenomena. Indeed, we unveil the
non-symmetric role of persistence time and swim velocity, with
the spatial velocity correlation function being independent of
the latter but deeply affected by the former.

(ii) Asymmetric role of mass and inverse viscosity in the
velocity correlation functions whose changes are not controlled
only by the inertial time (mass over viscosity), but depend on
both parameters.

(iii) Marginal role of thermal and active temperatures for the
dynamical collective phenomena presented so far. The temperature
increase does not affect the correlation length of the spatial
velocity correlation, revealing a dynamical scenario fairly different
from what one expects for equilibrium ferromagnetic systems.

The article is structured as follows: in Section 2, we introduce
the model describing the self-propelled system in the under-
damped regime and, in Section 3, we present the velocity align-
ment phenomenology. Sections 4–6 discuss the role of the active
force, inertial forces and temperature. Finally, we conclude by
summarizing the main results and presenting some final remarks.

2 Model

In order to investigate the collective dynamics of a system of
inertial self-propelled particles, we perform numerical simulations

of the underdamped version of the ABP model, and build a
theoretical framework by employing the Active Ornstein–Uhlen-
beck (AOUP) model containing the same deterministic force
terms. In the two models, the active forces are different but
share similar statistical properties, such as the temporal auto-
correlation. We resort to this procedure because it greatly
simplifies the theoretical analysis leading also to analytical
predictions for the probability distribution function.32 Both
the AOUP and the ABP have been successfully employed to
reproduce many aspects of the active matter phenomenology
including accumulation near an obstacle,33–35 spatial velocity
correlations,26,27 entropy production36–39 and phase-
coexistence without attraction.36,40 The underdamped ABP
equation of motion, describing a system of interacting self-
propelled particles of mass m, are:

:xi = vi, (1a)

m _vi ¼ �gvi þ Fi þ fai þ
ffiffiffiffiffiffiffiffiffi
2gT

p
hi; (1b)

where xi and vi represent the particle position and velocity,
respectively. The drag coefficient, g, and the solvent temperature,
T, determine the thermal diffusion coefficient, Dt, via the
Einstein relation, gDt = T/m. The term Z is a white noise vector
with zero average and unit variance, accounting for the random
collisions between the self-propelled particles and the particles
of the solvent, such that hZi(t)Zj (t0)i = d(t � t0)dij. As for
equilibrium colloids, the solvent exerts a Stokes drag force
proportional to vi. Often, the thermal diffusivity of active
colloidal and bacterial suspensions41 is negligible compared
to the effective diffusivity produced by the active force. The
effect of inertia is also considered not to be important in the
case of typical active particles such as microscopic self-
propelled colloids or bacteria swimming in solution. However,
this approach needs to be reconsidered in the light of recent
studies focused on the interplay between inertia and active
forces42–48 motivated by the existence of experimental macro-
scopic systems, such as vibro-robots49,50 or camphor surfers51

which behave as active particles.
The particle interactions are represented by force, Fi =

�riUtot, where Utot ¼
P
io j

U xi � xj
�� ��� �

is a pairwise potential.

We choose U as a shifted and truncated Lennard-Jones
potential:26,52

UðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� 	
; (2)

for r r 21/6s and zero otherwise.
The constants e and s determine the energy unit and the

nominal particle diameter, respectively. In the spirit of minimal
modeling, the self-propulsion is represented through a stochastic
force, namely fa

i . At this level of description, the details about
the chemical or mechanical origin of the self-propulsion1,3,41,53

are not specified. This force drives the system far from
equilibrium36,54 and determines a persistent motion in a random
direction lasting for a time smaller than a characteristic
persistence time, t. The two dimensional ABP self-propulsion
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is a force with constant modulus f0 and time-dependent orien-
tation ni = (cos yi,sin yi):

f a
i = f0ni. (3)

The angle yi performs a Brownian motion:

_yi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
wi; (4)

where wi is a white noise with zero average and unit variance
and Dr = 1/t a rotational diffusion coefficient determining how
persistent is the propagation direction. The parameter f0 fixes
the swim velocity induced by self-propulsion:

v0 ¼
f0

g
: (5)

Finally, we introduce the active temperature:

Ta ¼ f0
2t
g
¼ gtv02: (6)

in agreement with previous definitions employed for over-
damped active dynamics.44,55 This parameter will play a rele-
vant role in the following.

The AOUP model56–64 employed to ease the theoretical
analysis replaces the ABP self-propulsion (3) by an Ornstein–
Uhlenbeck process:

t_f
a

i ¼ �fai þ f0
ffiffiffiffiffi
2t
p

xi; (7)

where xi is a white noise vector with zero average and unit
variance, such that hxi(t)xj (s)i = dijd(t � s). In the AOUP, the
modulus of fa

i is not held rigidly fixed but fluctuates around the
mean value f0. The correlation time, t, of the active force, is
chosen to have a common value in AOUP and ABP.65,66 In both
models the self-correlation of the active force decays in time
with an exponential law.

Regarding the aptness of the AOUP for adequately reproducing
the salient features of the ABP, we mention a recent study67 of the
single-particle velocity distribution in the case of dense active
solid configurations, similar to those analyzed in this paper. In
that work, we concluded that in the large persistence regime (i.e.
for a broad range of t including the values analyzed in this work)
the ABP single-velocity properties are well-described by those of an
AOUP system at variance with the small persistence regime.

3 Velocity alignment

We have integrated numerically eqn (1) and eqn (4) for a system
of N particles moving in a square domain of size L under
periodic boundary conditions. The simulations are performed
keeping fixed the packing fraction f = N/L2s2p/4 in such a way
that the system attains a solid configuration without showing
changes in the positional structure of the system for a broad
range of activity parameters (both f0 and Dr). Indeed, it is
known that the increase of both f0 (or equivalently of v0) and
t induces the solid–hexatic and finally the hexatic–liquid
transition.26,68,69 A further increase of f0 and t leads to a non-
equilibrium phase-coexistence that, at variance with passive
Brownian particles, occurs even in the absence of attractive

interactions.70–76 This phenomenon, known as motility induced
phase separation (MIPS), is due to the particle slowdown caused
by interactions.52

Ref. 25 and 26 (for a phase-separated and homogeneous
liquid, hexatic and solid configurations, respectively) demon-
strated the spontaneous occurrence of velocity alignment in the
case of athermal ABP in the overdamped regime despite the
absence of any form of alignment interaction. As a first result,
we show that the spontaneous velocity alignment occurs even in
the case of the underdamped dynamics modeled by eqn (1), that
accounts for both the finite particle acceleration and thermal
fluctuations induced by the solvent. Fig. 1 shows a pair of snap-
shots illustrating the comparison between a system governed by
eqn (1) with g = 102 and m = 1 and a system evolving with the
overdamped dynamics whose details are reported in Appendix A.
In particular, in panels (b) and (c), the color-map represents the
velocity direction of each particle, while panels (d) and (e) show
the orientation of the self-propulsion. In the former case, the
particles are colored according to the angle formed by the velocity
vi of each particle with the x axis, while, in the latter case,
according to the angle yi of the self-propulsion. While the self-
propulsion directions are random without showing any spatial
structure (as expected from eqn (4)), large domains containing
aligned velocities are observed. This means that vi does not
coincide with fa

i in dense configurations where the interparticle
interactions are not rare events. The same scenario could be
detected in the bulk of the dense phase of MIPS that reaches very
large packing fractions attaining configurations that could even
display the hexatic or almost-solid orders.25

To quantify the size of the velocity domains, we study the
spatial velocity correlation function, C(r), defined as:

CðrÞ ¼ hvðrÞ � vð0Þihv2i ;

normalized by dividing with the velocity variance, hv2i. The asso-
ciated correlation length provides a measure of the average size of a
velocity domain since particles not belonging to the same domain
display uncorrelated velocities. The observable C(r) is reported in
Fig. 1(a) for two different values of Dr both for the underdamped
and the overdamped dynamics for large values of g such that the
inertial forces play a marginal role. Two values of Dr are reported,
such that t = 1/Dr c m/g, and both reveal a fair agreement between
overdamped and underdamped dynamics. As already shown in ref.
26, the spatial velocity correlation decreases more slowly as Dr is
increased, in particular, the correlation length scales as t1/2 with t =
1/Dr in the overdamped regime. How this scaling with t would be
modified due to inertial effects is described in Section 5.

3.1 Theoretical prediction

We have extended to the dynamics (1) the analytical method
previously employed in the study of the spatial velocity correlation
functions in the case of overdamped ABP in dense
configurations.25–27 The details of the calculations are reported
in Appendix B and lead to the following formula for the Fourier
transform of the steady-state equal-time velocity correlation
obtained by assuming the solid phase through the 6-fold
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symmetry:

hv̂ðqÞ � v̂ð�qÞi ¼ 2T

m
þ 2Ta

m

1

1þ t=tI

1

1þ t2

1þ t=tI
o2ðqÞ

(8)

where tI = m/g is the inertial time and Ta the active temperature,
defined in eqn (6). The vector q is a vector of the Fourier space and
v̂(q) is the Fourier transform of the velocity vector. The frequency
o(q) in the long-wavelength limit, q - 0, reduces to:

o2ðqÞ � 3oE
2

2
�x2q2 (9)

with

oE
2 ¼ 1

2m
U 00ð�xÞ þU 0ð�xÞ

�x

� 	
:

The terms U0(%x) and U00(%x) represent the first and the second
derivatives of U calculated at %x, the average distance between two
nearest neighbor particles. The full expression for o2(q) is
reported in Appendix B.

Using formula (9), we can find (see Appendix C) the following
expression for the real space velocity correlation, holding for
large distances (at least, r 4 s):

CðrÞ � 2

hv2i
Ta

m

1

1þ t=tI

�x2

l2
l
8pr

� 	1=2

e�r=l; (10)

where the correlation length l is given by

l2 ¼ 3

2
�x2
oE

2t2

1þ t
tI

: (11)

The overdamped result derived in ref. 25–27 is recovered in the

limit tI { t, i.e. when the solvent viscosity is sufficiently large
(or the particle mass sufficiently small) compared to the
persistence time of the active force.

For some choices of the parameters of the active force, it is
possible to obtain large values of l so that a huge group of
particles moves in the same direction. Hence, to exclude the
undesired finite-size effects, we always performed simulations
in such a way that the condition L c l is satisfied (in particular,
the ratio L/l is not smaller than 10 for the whole range of
parameters analyzed). This condition guarantees that the spatial
velocity correlation approaches zero by avoiding finite-size
effects and is fundamental to get results consistent with the
theoretical analysis. If this condition is not fulfilled, particles
could form a single velocity domain (spanning the entire
simulation box) oriented in a direction that changes with a typical
time p t. This state is known as active traveling crystals77–79 and
disappears performing simulations with larger boxes.

On the other hand, eqn (10) displays a non-physical
divergence at the origin and does not correctly reproduce the
behavior of C(r) for small separations, namely r o s. The
divergence is determined by the absence of an upper cutoff in
the q-integral that is used to derive analytically the Fourier anti-
transform of eqn (8). The divergence disappears by considering
the correct integration limits when anti-transforming eqn (8).
In Appendix D, we calculate the variance of the velocity
distribution employing the exact expression of o(q) and obtain
the analytical expression of the kinetic temperature, Tk = mhv2i/2,
in the presence of inertial forces and thermal noise:

Tk ¼ T þ Ta

1þ t=tI þ 6oE
2t2

J

p
; (12)

Fig. 1 Comparison between the velocity domains of overdamped and underdamped dynamics. Panel (a): Spatial velocity correlation, C(r) = hv(r)�v(0)i/hv2i,
for two different values of Dr, as detailed in the legend. For both values, we compare the correlation obtained via underdamped dynamics eqn (1) (denoted
by the symbol U) with the one corresponding to overdamped dynamics eqn (15) (symbol O). The dashed black lines represent the theoretical predictions,
obtained by fitting the functional form given by eqn (10) with the function f (r) = ae�r/l/r1/2, where l is given by eqn (11) and a and b are two positive fitting
parameters. Panel (b–e): Snapshot configurations for Dr = 10 relative to underdamped dynamics (panels (b and d)) and to overdamped dynamics (panels (c
and e)). Particles are colored according to the velocity direction in panels (b) and (c) and according to the orientational angle, y (identifying the direction of
the active force), in panels (d) and (e), respectively. The velocity vector in the overdamped case is represented by

:
x as described in Appendix A. The

simulations have been obtained using f = 1.1 with N = 104. The other parameters are g/m = 102, e = 102, s = 1, T = 10�1, and f0 = 5� 103, corresponding to a
swim velocity of v0 = 50. We also mentioned that the simulation with Dr = 10, 5 corresponds to Peclet numbers, Pe = v0/(Drs) = 10, 20, respectively.
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where the term J is a function of t, tI and oE. The term in
eqn (12) is reported in Appendix D and contains the complete
elliptic integral of the first kind. Here, we just stress that does
not show any dependence on Ta or T. Formula (12) generalizes
the overdamped result of ref. 67, (derived for overdamped ABP,
such that tI { t), and provides an analytical prediction for the
kinetic temperature.

We remark that the predictions regarding the spatial velocity
correlations and kinetic temperature hold in the solid-like
regime and, as already shown in ref. 26, break down when
the solid–hexatic transition takes place and the number of
defects becomes statistically relevant. In addition, expression
(10) can be used to extract l from simulations through numerical
fits for comparison with prediction (11).

In the next sections, we report an extensive numerical study
by varying both the parameters of the active force and inertial
force, taking advantage of the comparison with our theory. The
effect of the density increase has been already discussed in ref.
26 where the phase diagram (packing fraction, f, vs. t plotting l
as a color gradient) has been reported. In this paper, we do not
perform numerical investigation by varying density but recall
that the larger the r, the larger the l. In the solid-like phase,
this is consistent with eqn (11), since the increase of r leads to
decrease of %x and, thus, the increase of the factor U00(%x) + U0(%x)/%x
appearing in the expression for oE

2 that is proportional to l.

4 Role of the self-propulsion

In ABP systems, the degree of activity is often accounted for by a
single dimensionless parameter, the so-called Péclet number,
Pe = v0/(Drs), so that the decrease of Dr has the same effect as
the increase of v0. Actually, most of the studies concerning
systems of interacting ABP are obtained via this procedure and
the ABP phase diagram is usually described in terms of two
parameters: density and Péclet number.43,69,80–82

Herein, we demonstrate that variations of v0 and 1/Dr are not
interchangeable, as far as the spontaneous velocity alignment
is concerned. We show that a single parameter, the Péclet
number, is unable to fully capture the non-equilibrium dynamical
properties of active particles. In a previous study on the dense
phases of overdamped ABP,26 the role of t at fixed self-
propulsion was investigated numerically and the results were
found to be in agreement with the theoretical predictions (l p

t1/2
p 1/D1/2

r ). This could suggest that l increases as Pe grows.
We study the velocity correlation function by varying the self-
propulsion intensity, f0 (and, thus, v0), and keeping fixed the
remaining parameters and, Dr, in particular, so that Pe
increases as shown in Fig. 2(a). In Fig. 2(b), we display the
correlation length, l, measured by fitting the functional form
reported in eqn (11). This procedure reveals that C(r) and l are
not affected by the increase of f0 for a broad range of f0 values
for which the system remains in solid-like configurations.
In other words, the correlation length (and, thus, the size of
the velocity domains) remains constant when Pe is increased by
changing v0 but the increased Pe is changed through Dr = 1/t.

As a result, Pe cannot be a good dimensionless parameter
suitable to describe the spatial velocity correlation. When f0

exceeds a threshold value (that in Fig. 2 is f0 4 5 � 103

corresponding to v0 = 50), the function C(r) decays faster just
because a solid–hexatic transition takes place but still maintains
the functional form (10). The faster decay, corresponding to a
decrease in the correlation length, is not surprising since the
lack of orientational order in the hexatic phase and periodic
order in the liquid phase has been recognized as one of the main
reasons for l decrease.26 Further details on the occurrence of the
solid–hexatic transition in this system are reported in Appendix
E. In the literature (see for instance ref. 26, 68 and 69), the
positional order of the system has been studied in terms of the
Péclet number (pv0/Dr), implicitly assuming that the increase of
v0 can be mapped onto the decrease of Dr. However, to the best
of our knowledge, there is no quantitative validation of the
symmetric action of v0 and 1/Dr on the full phase diagram of
ABP. In other words, it is not clear if, by varying Pe through v0 (at
fixed Dr) or 1/Dr (at fixed v0), the solid–hexatic and hexatic–liquid
transition lines of the phase diagram could be modified. Instead,
this problem has been recently addressed regarding the MIPS
transition line which results affected by the protocol used to vary

Fig. 2 Spatial velocity correlation as a function of self-propulsion
intensity. Panel (a): Spatial velocity correlation, C(r), for different values of
the self-propulsion intensity, f0 = v0g. The dashed black lines are the
theoretical predictions, obtained by fitting the functional form given by
eqn (10) via the function f (x) = ae�r/l/r1/2, where l is given by eqn (11) and a
is a positive fitting parameter. Panel (b): Correlation length, l, of C(r) as a
function of v0. The value of l has been obtained by fitting the function
f (r) = ae�r/c/r1/2, fitting also the constant c to be compared with l. The
dashed black line has been obtained evaluating eqn (11) with the set of
parameters of the simulation, where %x has been measured numerically and
reads %x = 0.91. The parameters employed in the numerical study are f = 1.1
with N = 104, g = 102, m = 1, e = 102, s = 1, T = 10�1 and Dr = 10. Since the
Péclet number is defined as Pe = v0/(Drs), we remark that it varies from
Pe = 10�2 to Pe = 102, in panel (b), and that the hexatic phase is observed
for Pe Z 5 (corresponding to f0 Z 5 � 103 and v0 Z 50).
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the Péclet number.83 It is likely that the homogeneous phases
could also be affected by the procedure employed to change.

Finally, for values of f0 producing spatial inhomogeneity
(namely for f0 4 2 � 104 corresponding to v0 4 2 � 102), l
increases again revealing a non-monotonic behavior. This
effect is due to the phase-separation inducing a local increase
in the density and thus the growth of l in the denser phase, as
already observed in ref. 26.

We also stress that our numerical results in the solid phase
are supported by the main prediction, eqn (10) and (11).
Indeed, the correlation length, l, does not contain an explicit
dependence on f0 (and, thus, v0). This parameter appears as a
simple prefactor in the shape of hv(r)�v(0)i, specifically, through
the active temperature. Thus, it cannot deeply affect the
occurrence of velocity alignment, except for values of f0

comparable with T as shown in detail in Section 6.

5 The asymmetric role of mass and
viscosity

In passive systems, the role of inertial forces could be encapsulated
in a single parameter, the inertial time, tI = m/g, corresponding to
the ratio between the mass and solvent viscosity. This time
controls the relaxation towards equilibrium but does not affect
the steady-state properties of the system. By contrast, as we show
hereafter, in the ABP case, the scenario is different revealing the
non-symmetric role played by mass and inverse viscosity, and their
influence on the steady-state properties of the system and the
dynamical collective phenomena reported so far.

Fig. 3(a) displays the correlation length, l, numerically
extracted from C(r) for different values of tI. The green and

orange curves are obtained by varying m at fixed g and by
varying g at fixed m, respectively, and clearly show different
results for the same tI but different values of m and g.
In particular, if tI is increased by varying g, l reaches a constant
value, while if tI is increased by varying m, l monotonically
decreases with m. This is consistent with the prediction (11),
that in the underdamped regime where the inertial time is the
larger one, tI c t, and explicitly reads:

lu2 ¼ �x2
3

4

t2

m
U 00ð�xÞ þU 0ð�xÞ

�x

� 	
: (13)

On the contrary, if tI is decreased by varying g, l monotonically
decreases while, if tI is decreased by varying m, l approaches a
constant value, consistently with the outcome of eqn (11), in the
overdamped regime, i.e. when tI { t:

lo2 ¼ �x2
3

4

t
g

U 00ð�xÞ þU 0ð�xÞ
�x

� 	
: (14)

This asymmetric role of mass and inverse viscosity is a pure
non-equilibrium effect without a passive counterpart suggesting
that a single parameter is not enough to describe the dynamical
properties of far equilibrium systems.

In Fig. 3(b), we display l as a function of t for two different
values of g and m = 1 to evaluate how inertial forces affect the
scaling with the persistence time of the active force. At first, we
observe that the effect of the inertial forces is to reduce the
correlation length of the spatial velocity correlation through the
constant prefactor 1/(1 + tI/t) appearing in the expression of l2,
eqn (11). The comparison between the overdamped prediction,
eqn (14) (dashed lines), and the numerical data (points) reveals
a fair agreement with the prediction of eqn (11) (solid lines).

Fig. 3 Correlation length for different values of mass and viscosity. Panel (a): Correlation length, l, of C(r) as a function of the inertial time, tI at fixed t =
0.1. The green and yellow data have been obtained by varying g at m = 1 and m at g = 50. Panel (b): l as a function of the persistence time, t, for two
different values of g = 10 (blue points) and 102 (red points) with m = 1. In both panels, the points are obtained from numerical simulations while the solid
lines from theoretical prediction, eqn (11). The dashed blue and red lines in panel (b) are obtained from eqn (14) and, finally, the dashed black line is an
eye-guide to evidence the linear behavior with t. The numerical values of l have been obtained by fitting the function f (r) = ae�r/c/r1/2, where c is the
estimate of l. The remaining parameters of the simulations are f = 1.1, N = 104, e = 102, s = 1, T = 10�1 and f = 5 � 103.
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The prefactor approaches 1 in the overdamped regime, for tI { t,
giving rise to the behavior lp t1/2 that has been already reported
in ref. 26. For tr tI, the inertia starts playing a role in decreasing
the value of l. For very small values of tI, inertial effects cannot be
appreciated since they could be observed only when t is such that
l o s corresponding to particle velocities at different positions
almost uncorrelated. In this regime of parameters, l /

ffiffiffi
t
p

in the
whole range of t where the velocity field has a spatial structure. On
the contrary, eqn (13) shows that in the regime tI c t, the
prefactor reduces to t2/m in such a way that l p t. Thus, when
tI is large, the correlation length displays two distinct regimes
with t that are shown in Fig. 3(b), for g = 10 (red curve): a linear
increase for small values of t, such that when tI c t, is followed
by the overdamped scaling, l p t1/2, always occurring in the
opposite regime, tI { t.

6 Role of the temperature

The temperature, T, is crucial in determining whether it is
possible to detect the spontaneous velocity alignment and the
occurrence of spatial velocity correlations. Fig. 4 shows C(r) at
fixed f0 and Dr, for different values of T and keeping fixed g and
m (and, thus, Ta). Interestingly, C(r) decays with distance at the
same rate, but its amplitude decreases until it approaches an
almost flat vanishing shape when T is sufficiently large. Our
observations are in agreement with the theoretical prediction
(10), as shown by the comparison between points and solid
lines in Fig. 4. In particular, in panel (a) the insensitivity of l to
changes of T is numerically corroborated by comparing with
the theoretical prediction. The solvent temperature T only
affects the amplitude of the normalized spatial profile of the
velocity correlation entering the analytical expression for C(r)
just through the term hv2i (proportional to Tk, eqn (12)). Indeed,
its value increases when T grows at variance with the expression
hv(r)�v(0)i, which remains unchanged for r 4 s (eqn (10)).

Hence, the amplitude of C(r) for each r 4 s is controlled by
the ratio Ta/T, through a function p1/(T/Ta + a) where a is
constant with respect to T and Ta. To summarize, a change in
the solvent temperature can be mapped onto a change of
the active temperature so that the relative contribution of the
active and thermal fluctuations is mainly controlled by the non-
dimensional ratio Ta/T.

While these conclusions apply to solid-like configurations,
we argue that the transition from solid-like to hexatic-like
behavior does not occur in the same broad range of temperatures
observed in the passive systems ( f0 = 0), due to the larger values of
the packing fraction considered in this study.

Finally, some authors claimed the need to use alignment
interactions to get consistent spatial structures in the velocity
correlations23 or asserted that their numerical simulations did
not produce any evidence of the existence of velocity
domains.31 We believe that these claims are a consequence of
the range of temperatures considered in their numerical system,
which were perhaps too large compared to Ta according to the
predictions (10) and (12). Another relevant cause motivating
these claims could be the lack of periodic order, as it occurs in
homogenous active liquids.

7 Conclusion

In this article, we have studied the solid and the dense cluster
regimes of a system of interacting active particles evolving
according to the underdamped version of the active Brownian
particles model. Our first target was shedding light on an
emergent collective phenomenon, namely, the spatial ordering
of the velocity field. This phenomenon was already observed in
systems of overdamped, athermal ABP, but demanded further
investigation by using more realistic dynamics. The under-
damped dynamics is the natural approach to include the
inertial forces and the effect of thermal noise. We confirmed
the spontaneous occurrence of velocity domains and quantified
their average size by measuring the correlation length of the
spatial velocity correlation function. We corroborated our
numerical findings employing theoretical arguments analytically
predicting both the spatial shape of the velocity correlation and
the parameter dependence of its correlation length.

We have also shown that a single dimensionless parameter,
such as the Péclet number (usually defined as proportional to
the swim velocity and the persistence time) fails to fully
describe the velocity alignment phenomenon in dense ABP
systems or their phase-separated configurations. A change in
the persistence time cannot be mapped onto a change in the
swim velocity, in contrast with the widespread opinion in the
literature. Indeed, the size of the domains (corresponding to
the correlation length of the spatial velocity correlation)
increases with the persistence time while it remains constant
with the self-propulsion intensity (that is proportional to the
swim velocity). Despite the Péclet number having been intensively
used to describe the structural properties of the system (usually,
the phase diagram is described as a function of density and Péclet

Fig. 4 Panel (a): Spatial velocity correlation, C(r), for different values of
the self-propulsion intensity, f0 = v0g. The dashed black lines are the
theoretical predictions, obtained by fitting the functional form given by
eqn (10) via the function f (r) = ae�r/l/r1/2, where l is given by eqn (11) and a
is a fitting parameter. Panel (b): T/v0

2 vs. correlation length, l. The values of
l have been extracted from the data fitting the function f (r) = ae�r/c/r1/2,
fitting also the constant c. The simulations are obtained with the following
parameters: f = 1.1, N = 104, s = 1, g = 102, m = 1, e = 102, v0 = 50, and
Dr = 10.
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number), it gives an insufficient description of the spatial proper-
ties of the velocity field. To the best of our knowledge, a phase
diagram obtained by changing the Péclet number through the
persistence time as an alternative to the swim velocity has not
been yet evaluated in the case of purely repulsive ABP. Our
analysis suggests that a three-dimensional phase diagram is
needed to characterize the phenomenology of active Brownian
particles (at least, concerning the dynamical collective
phenomena) and further investigations about the MIPS transition
line or the solid–hexatic and hexatic–liquid transitions could be
needed.

We have also explored the role of the inertial forces finding
fascinating results that hold in solid configurations or the
dense clusters of MIPS. Inertial forces introduce a typical time,
tI, in addition to the persistence time of the active force. When
the former is a larger one, the correlation length is decreased
providing two main results: (i) inertia reduces the velocity
alignment with respect to the overdamped case. (ii) The scaling
of the correlation length with the persistence time is deeply
affected. A linear regime, pt, for an initial broad interval of
t values, appears before the overdamped regime, scaling as
/

ffiffiffi
t
p

, and takes over as the persistence time becomes larger
than the inertial time. Last but not least, we surprisingly
observe a further non-equilibrium effect manifesting in the
non-symmetric role of mass and inverse viscosity in the
correlation length of the spatial velocity correlations. While
the t scaling is controlled by the inertial time, we show that the
value of the correlation length explicitly depends on the mass
and viscosity values separately and not only on their ratio
(the inertial time). This observation suggests further investigations
to test the role of the inertia on the phase diagram by varying
both g and m separately (and not just the inertial time), with
particular attention to the coexistence line of the motility
induced phase separation that could be deeply affected.

Finally, we highlight the non-thermal nature of the collective
phenomenon described so far that is marginally affected by a
temperature change, at variance with equilibrium models, such
as the XY models. The increase of the solvent or active
temperature leaves correlation length (and, thus, the size of the
velocity domains) unchanged, at least in the dense configurations
evaluated in this work. The use of T/Ta can be recognized as the
dimensionless parameter necessary to compare the strengths of
active force and thermal fluctuations. The increase of this ratio
reduces the amplitude of the rescaled velocity correlation because
of the T/Ta dependence on the kinetic temperature. We conclude
that, to observe the velocity domains (or, equivalently, spatial
structure in the velocity correlations), it is necessary to fix the
solvent temperature rather smaller than the active temperature so
that the active force term (that produces effective alignment
interactions) is not overwhelmed by the uncorrelated thermal
fluctuations.

Finally, we mention an interesting perspective concerning
the generalization of our theory to active particles with attractive
interactions.84 Understanding how the dynamical scenario
presented so far could be modified represents a challenging
issue that could even shed light on the properties of the so-called

living crystal scenario.85–87 Even at small densities, attractive
active particles are able to form clusters with hexatic or solid
orders that move and rotate even in the steady-state. In this
framework, the analysis of the velocity properties could provide
further clues to understand the experimental phenomenology of
active colloids.

Conflicts of interest
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Appendix
A Overdamped ABP dynamics

In this Appendix, we report the numerical details employed to
simulate overdamped ABP to measure the spatial velocity
correlations shown in Fig. 2. Each particle is described by an
equation of motion for its position xi:

g _xi ¼ Fi þ fai þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2gmT

p
Zi; (15)

where the parameters g, T, m have the same physical meaning
as in eqn (1).

The term Z is a white noise vector with zero average and unit
variance due to the collision by the solvent particles. The force
term Fi models steric interactions between particles and is
derived from the same potential used to simulate eqn (1).
Finally, fa

i represents the active force that, in the literature
based on ABP simulations, is usually expressed as

f a
i = gv0ni.

This is consistent with our notation and, in particular, with the
swim velocity definition, eqn (5). In this system, the velocity
vector employed to calculate the spatial velocity correlation
function is obtained from the relation vi = :xi.

B Derivation of eqn (8)

In order to obtain the velocity correlation function in the
Fourier space, i.e. eqn (8), we shall make two simplifying
assumptions in eqn (1):

(i) We consider the AOUP model, assuming that f a
i evolves

through eqn (7), an approximation often employed to obtain
theoretical predictions of ABP numerical studies.

(ii) Each particle performs small oscillations around a node
of a hexagonal lattice having a 6-fold symmetry.

(iii) Introducing the displacement ui of particle i with respect
to its lattice position, x0

i , namely

ui = xi � x0
i ,

the interaction between a pair (i, j ) of nearest neighbor particles
is approximated by an elastic term of the form

Uel ¼
1

2
moE

2 ui � uj
� �2

and the total inter-particle potential
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reads:

Utot � m
oE

2

2

X
iaj

ui � uj
� �2

:

The frequency oE is given by:

oE
2 ¼ 1

2m
U 00ð�xÞ þU 0ð�xÞ

�x

� 	
;

and its expression can be obtained following ref. 25. Here, the
derivation is reported for completeness. Starting from the
Taylor expansion of the non-linear potential, U(r), the force
can be approximated as:

F(xi � xi+j) E �Ĥj�(ui � ui+j),

where the Ĥj are 2 � 2 matrices coupling the central particle to
the j-th particle and are defined in terms of the second
derivatives of the potential U:

Ĥj ¼
Uxx �rij

� �
Uxy �rij

� �
Uyx �rij
� �

Uyy �rij
� �

0
@

1
A (16)

when the argument is %rij = x0
j � x0

i . Explicitly, for the 6 nearest

neighbour lattice nodes, we have �rij ¼ �r cos
jp
3

� 	
; sin

jp
3

� 	� 	
for

j = 1, 6. With these assumptions, we obtain:

Uxx �rij
� �

¼ U 00ð�rÞ cos2 j
p
3

� �
þU 0ð�rÞ
j�rj sin2 j

p
3

� �

Uyy �rij
� �

¼ U 00ð�rÞ sin2 j
p
3

� �
þU 0ð�rÞ
j�rj cos2 j

p
3

� �

Uxy �rij
� �

¼ Uyx �rij
� �

¼ U 00ð�rÞ �U 0ð�rÞ
j�rj


 �
cos j

p
3

� �
sin j

p
3

� �
:

As shown in the ESI of ref. 25, in the solid configurations, the
matrix Ĥj can be approximated by its average over the 6
neighboring particles, %h, so that the force acting on the particle
i reads:

Fi � �
X
j

Ĥj � ui � uiþj
� �

� ��h
X
j

ui � uiþj
� �

;

where

�h ¼ 1

6

X
j

Ĥj ¼
1

2
U 00ð�rÞ þU 0ð�rÞ

j�rj


 �
Î ¼ moE

2 Î

In which Î is the identity matrix. Therefore, the equations of
motion become:

_vi ¼ �
g
m
vi � oE

2
Xn:n
j

ui � uj
� �

þ fai
m
þ

ffiffiffiffiffiffiffiffiffiffi
2
g
m
T

r
Zi (17a)

_f
a

i ¼ �
1

t
fai þ

ffiffiffi
2

t

r
f0xi; (17b)

where the sum is over nearest neighbour only. To proceed
further, we introduce the discrete Fourier transforms of
the displacement about the lattice positions, velocity and

active force, û(q), v̂(q), and f̂a(q), respectively. They are
defined as:

ûðqÞ ¼ 1

N

X
j

uje
�iq�x0

i

v̂ðqÞ ¼ 1

N

X
j

vje
�iq�x0

i

f̂aðqÞ ¼ 1

N

X
j

faj e
�iq�x0

i

where i is the imaginary unit and q = (qx,qy) are the Cartesian
components of the vectors of the reciprocal Bravais lattice. The
equations of motion (17) in the Fourier space become:

d

dt
v̂ðqÞ ¼ � g

m
v̂ðqÞ � o2ðqÞûðqÞ þ f̂aðqÞ

m
þ

ffiffiffiffiffiffiffiffiffi
2g
T

m

r
ẐðqÞ (18a)

t
d

dt
f̂aðqÞ ¼ �f̂aðqÞ þ f0

ffiffiffiffiffi
2t
p

x̂ðqÞ; (18b)

where the frequency o2(q) reads:

o2ðqÞ ¼ � 2oE
2 cos qx�xð Þ þ 2 cos

1

2
qx�x

� 	
cos

ffiffiffi
3
p

2
qy�x

 !
� 3

" #

�3
2
oE

2�x2q2 þO q4
� �

;

(19)

and in the last line, we have performed a Taylor expansion
around q = 0. Solving the dynamics (18), we get the final
expression for the positional correlation function:

hûðqÞ � ûð�qÞi ¼ 2T

mo2ðqÞ þ
2f0

2

mo2ðqÞ
t
g

1

1þ t2

1þ t=tI
o2ðqÞ

and the velocity correlation functions:

hv̂ðqÞ � v̂ð�qÞi ¼ 2T

m
þ 2f0

2

m

t
g

1

1þ t=tI

1

1þ t2

1þ t=tI
o2ðqÞ

; (20)

both evaluated in the Fourier space. Eqn (20) coincides with
eqn (8) using the definition of Ta.

C Derivation of eqn (10)

The velocity real space correlation, i.e. eqn (10), is obtained by
inverting formula (20):

vx � vx0h i ¼ 2T

m
dx;x0 þ

2f0
2

m

t
g

1

1þ t=tI

X
q

eiqðx�x
0Þ

1þ t2

1þ t=tI
o2ðqÞ

(21)

For large particle separations, r = |x � x0| 4 s, the first term is
negligible while the second term can be evaluated by performing
the following approximations: (i) the finite lattice sum is
replaced by a double integral over (qx,qy) variables, (ii) the
frequency is replaced by its small q-expansion and (iii) the limits
of integration are extended from �N to N. Using these
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approximations, we have:

vx � vx0h i � 2
f0

2t
mg

1

2p
�x2

l2
1

1þ t
tI

K0ðr=lÞ;

where the coherence length (or correlation length) l is
given by:

l2 � 3

2
�x2
oE

2t2

1þ t
tI

(22)

and K0(r/l) is the zero-order modified Bessel function of the
second kind which has the following asymptotic behavior
when r/l c 1:

K0ðr=lÞ �
pl
2r

� 	1=2

e�r=l:

Therefore, for large separations, we find the following
approximation:

vx � vx0h i � 2
f0

2t
mg

1

1þ t
tI

�x2

l2
l
8pr

� 	1=2

e�r=l: (23)

Switching to a continuous notation such that vx - v(x), fixing
r = |x � x 0| and formally dividing by the velocity variance hvx

2i,
we obtain eqn (10) after using the definition of Ta while
eqn (22) coincides with eqn (11).

D Kinetic temperature: eqn (12)

To obtain an analytical expression for the kinetic temperature,
we need to calculate eqn (21) in r = |x � x0| = 0. In this case,
we need to consider the exact expression of o2(q) without
employing any small q expansion. We replace the sum by a
double integral over a finite domain:

vx � vxh i ¼ 2T

m

þ 2f0
2

m

t
g

1

1þ t=tI þ 6oE
2t2

ðp
�p

dk1

2p

ðp
�p

dk2

2p
1

1� zs k1; k2ð Þ

where we have performed a change of variables of integration
and introduced s(k1,k2), the so-called structure function of the
triangular lattice:88

s k1; k2ð Þ ¼ 1

3
cos k1ð Þ þ cos k2ð Þ þ cos k1 þ k2ð Þð Þ;

with

z ¼ 1

1þ 1þ t=tI
6oE

2t2

:

In detail, one can evaluate the integral as:ðp
�p

dk1

2p

ðp
�p

dk2

2p
1

1� zs k1; k2ð Þ ¼
6

pz
ffiffiffi
c
p KðkÞ;

where K(k) is the complete elliptic integral of the first kind:

KðkÞ ¼
ðp=2
0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2ðyÞ

q ;

with

c ¼ 9

z2
� 3þ

ffiffiffiffiffiffiffiffiffiffiffi
3þ 6

z

r

k ¼ 2

3þ 6

z

� 	1=4

c1=2
:

Hence, in the limit t - N, we have z - 1 and the integral
in eqn (24) weakly (in fact, logarithmically) diverges for any
two-dimensional lattice, being connected to the fact that the
probability of returning to the origin by a random walker in two
dimensions is certain. However, in the same limit, the
dependence on t of the prefactor in front of the integral makes
the resulting contribution of the self-propulsion to the velocity
variance vanishingly small. This can be seen as a consequence
of the well-known fact that the velocity of active particles also
depends on the forces they experience in such a way that they
are slower in those regions where the curvature of the local
potential is high. Finally, upon defining:

J ¼ 6

z
ffiffiffi
c
p KðkÞ;

we get the exact expression for the kinetic temperature reported
in eqn (10). Because of the definitions of k, c and z, the
term depends only on t, tI and oE and, thus, is independent
of T and Ta.

E Solid–hexatic transition and decrease of k

In this Appendix, we confirm the study of ref. 26 also in
the underdamped ABP showing that, when the solid–hexatic
transition takes place, an abrupt decrease of l occurs with
respect to prediction (12). However, here, the solid–hexatic
transition is approached by increasing v0 (at constant Dr) as
in ref. 69, while in ref. 26 this has been obtained by decreasing
Dr = 1/t.

Following ref. 26 and 69, we monitor the structural properties
of the system investigating the behavior of the orientational
order parameter, C6(xi). This is defined as C6 xið Þ ¼

P
j

e6iaij=Ni,

where the sum is restricted to the first neighbors of particle i,
namely, Ni and aij is the angle – with respect to the x axis – of the
segment joining the i-th and the j-th particle. To distinguish
between solid and hexatic phases, we focus on the correlation
function of C6(xi):

g6 r ¼ jxi � xj j
� �

¼ C6ðxiÞC�6ðxjÞ
� 

= C6
2ðxjÞ

� 
: (24)

Indeed, g6(r) is roughly constant in the solid phase, while decays
roughly as a power law in the hexatic phase. Fig. 5 shows
the value of g6(r) for the configurations reported in Fig. 5. This
analysis confirms that for v0 r 50 (corresponding to f0 = 5 � 103

and Pe = 5, Dr = 10) the system is in the solid configuration since

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
6 

Fe
br

ua
ry

 2
02

1.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
' d

i R
om

a 
L

a 
Sa

pi
en

za
 o

n 
7/

30
/2

02
4 

9:
45

:2
0 

A
M

. 
View Article Online

https://doi.org/10.1039/d0sm02273j


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 4109–4121 |  4119

the function g6(r) is almost independent of r, while starting from
v0 = 102 (corresponding to f0 = 104 and Pe = 10, Dr = 10), the
system attains hexatic configurations because g6(r) decays
algebraically. We also comment that the solid–hexatic transition
point, here occurring for 5 o Pe* o 10, could depend on the
specific value of Dr considered in the numerical study since there
is no numerical or theoretical evidence that mapping the
increase of v0 onto the decrease of Dr leaves the solid–hexatic
transition unchanged.
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F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp and
L. Alvarez, et al., J. Phys.: Condens. Matter, 2020, 32, 193001.

4 T. Van Noije, M. Ernst, E. Trizac and I. Pagonabarraga, Phys.
Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.,
1999, 59, 4326.

5 A. Baldassarri, U. M. B. Marconi and A. Puglisi, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2002, 65, 051301.

6 C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein
and J. O. Kessler, Phys. Rev. Lett., 2004, 93, 098103.

7 F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-Andersen,
A. Deutsch and M. Bär, Phys. Rev. Lett., 2012, 108, 098102.

8 H. Wioland, F. G. Woodhouse, J. Dunkel and
R. E. Goldstein, Nat. Phys., 2016, 12, 341–345.

9 H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
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Commun., 2018, 9, 1–9.
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77 A. M. Menzel and H. Löwen, Phys. Rev. Lett., 2013,
110, 055702.

78 A. M. Menzel, T. Ohta and H. Löwen, Phys. Rev. E: Stat.,
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