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Abstract. Among the performance-enhancing procedures for Hopfield-type
networks that implement associative memory, Hebbian unlearning (HU) (or
dreaming) strikes for its simplicity and lucid biological interpretation. However,
it does not easily lend to a clear analytical understanding. Here, we show how
HU can be efficiently described in terms of the evolution of the spectrum and
the eigenvectors (EVs) of the coupling matrix. That is, we find that HU barely
changes the EVs of the coupling matrix, whereas the benefits of the procedure
can be ascribed to an intuitive evolution of the spectrum. We use these ideas to
design novel dreaming algorithms that are effective from a computational point
of view and are analytically far more transparent than the original scheme.
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1. Introduction

Hopfield-type neural networks are a ubiquitous framework for modeling associative
memory [1]. The task at hand is to reconstruct an extensive number P = αN of binary
patterns {ξµi }=±1, µ ∈ [1, . . .,P ], called memories, based on noise corrupted inputs.
This outcome is achieved through a dynamical process, dictating the evolution in time
of a collection of N binary neurons {Si =±1}, i ∈ [1, ..,N ]

Si (t+1) = sign

 N∑
j=1

JijSj (t)

 , i = 1, ..,N , (1)

where J is the coupling matrix of the network. The dynamics can be run either in parallel
(i.e. synchronously) or in series (i.e. asynchronously in a predetermined or in a random
order) over the i indices. The reconstruction process is based on initializing the network
dynamics into a configuration similar enough to one of the memories and iterating
equation (1) asynchronously until a fixed point is reached. The network performs well
if such asymptotic states are similar enough to the memories. Whether this is the case
depends on the number of patterns one wants to store and on the choice of the coupling
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matrix J. We will focus on i.i.d. memories generated with a probability P (ξµi =±1) =
1/2. In this setting, Hebb’s learning prescription [2]

JH
ij =

1

N

p∑
µ=1

ξµi ξ
µ
j , JH

ii = 0 (2)

used in [1] allows retrieving memories up to a critical capacity αH
c ∼ 0.14 [3]. Even when

α < αH
c memories are not perfectly recalled, the system’s state always presents a small

finite fraction of misaligned spins.
Several techniques have been developed to build more performing coupling matrices,

that is, to reduce the retrieval errors and increase the critical capacity and the size of the
basins of attraction to which the memories belong [4–8]. One such technique is Hebbian
unlearning (HU). Inspired by the brain functioning during REM sleep [9], the unlearning
algorithm [10–13] is a training procedure for the coupling matrix J to facilitate error-
free retrieval and increased critical capacity in a symmetric neural network. More than
40 years after its inception, the mechanism underlying HU efficacy is still not completely
understood. In this work, we first provide a novel characterization of HU in terms of the
evolution of the spectrum of the coupling matrix. Intuition gathered from this analysis
is then used to design two novel and efficient dreaming algorithms whose performance,
contrary to HU, can be characterized analytically.

2. HU

The coupling matrix is built according to the following iterative procedure:

Algorithm 1. Hebbian unlearning.

Initialize J using Hebb’s rule equation (2)
for d =1 to Dmax do

Initialize network to a random state S.

Follow dynamics equation (1) to a stable point S*.
for i ̸= j do

Jij ← Jij − ϵ
N S*

i S
*
j

end for
end for

The learning rate ϵ and the number of dreams Dmax are free parameters of the
algorithm. Algorithm 1 does not change the diagonal elements of the coupling mat-
rix, which are fixed to Jii = 0. This is an example of a two-phase learning process:
the first phase explicitly exploits the information contained in the dataset through
Hebb’s rule. The iterative part of the training process, on the other hand, can be con-
sidered unsupervised in the sense that the network does not have access to the data
but uses only the information implicitly encoded in the Hebb’s rule to improve its
performance.
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Figure 1. The minimum stability ∆min as a function of the normalized number of
dreams for different values of α. The threshold ∆ = 0 is indicated with the gray
dotted line. For α< 0.59, ∆min crosses zero at D in, peaks at D =Dtop and then
becomes negative again at D =Dfin. The three appropriate relevant amounts of
dreams are indicated as follows: D =Din by ‘x ’, D =Dtop by a dot, D =Dfin by a
‘+’. All measurements are averaged over 50 realizations of the network. N =400,
ϵ= 10−2.

One way to benchmark a learning algorithm is by tracking the evolution of the
minimum stability ∆min ≡mini,µ{∆µ

i }, where the stability ∆µ
i is defined by:

∆µ
i =

ξµi√
Nσi

∑
j=1

Jijξ
µ
j , σi =

√√√√ N∑
j=1

J2
ij/N . (3)

The stability’s value tells us if a given pattern is aligned or not to its memory field.
As soon as ∆min > 0, memories themselves become fixed points of the dynamics [14],
allowing error-free retrieval when the dynamics is initialized close enough to one of them.
For sufficiently small values of the learning rate, below the critical load α < αHU

c ∼ 0.6,
the evolution of ∆min in HU follows a non-monotonic curve as a function of Dmax, as
illustrated in algorithm 1. The number of dreams D =Din marks the point where ∆min

crosses 0. Here, all the memories are fixed points of the dynamics. Two other points,
D = (Dtop,Dfin), are shown in the plot, corresponding to the maximum of ∆min and the
point where ∆min becomes negative again. The scaling of (Din,Dtop,Dfin) with N , ϵ, α
was studied in [13].

In addition to error-free retrieval, when α < αHU
c , dreaming creates large basins of

attraction around the memory. This can be measured in terms of the retrieval map:

mf (m0)≡
〈 1

N

N∑
i=1

ξµi S
µ
i (∞)

〉
, (4)

where S⃗µ(∞) is the stable fixed point reached when the dynamics is initialized to a

configuration S⃗µ(0) having overlap m0 with a given memory ξ⃗µ. The symbol · denotes
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Figure 2. Retrieval map mf(m0) for the unlearning algorithm at the three relevant
steps indicated in figure 1, and before unlearning. All measurements are averaged
over 10 realizations of the network. N =1000, α=0.4, ϵ= 10−2. The performance
of the algorithm is maximal at D =Din.

the average over different realizations of the memories and ⟨·⟩ the average over different
realizations of S⃗µ(0). Figure 2 shows the retrieval map for N =1000 and α=0.4. The
HU’s performance is the best at D =Din. Interestingly, as discussed in [13], the curve
relative to Gardner’s optimal symmetric perceptron [4, 14] and to unlearning at D =Din

coincide with good accuracy.
Although the HU has served as a source of inspiration for many interesting training

algorithms, some of which can be studied analytically [8, 15–17], the fundamentally
non-linear sampling process for the dreaming configurations S* makes it analytically
untreatable. The next section highlights this apparently obscure procedure.

3. Two novel dreaming algorithms

An interesting interpretation of the HU algorithm emerges while analyzing the evolution
of the spectrum and of the eigenvectors (EVs) of the coupling matrix J during the
dreaming procedure. Before dreaming, the spectrum of J is of the Marchenko–Pastur
type [18], and the N -dimensional vector space is split between a degenerate N −P
dimensional eigenspace orthogonal to all the memories, and a P dimensional space
spanned by the memories splits into non-degenerate eigenspaces. Figure 3 focuses on
the evolution under dreaming of the ranked spectrum of J. The evolution of the ranked
spectrum indicates that HU is targeting, and reducing, the largest eigenvalues of the
coupling matrix, whereas all other eigenvalues are increased by a constant amount at
every dream, maintaining a traceless coupling. This leads to a plateau at the high

end of the ranked spectrum. In figure 4, we qualify the evolution of the EV ζ⃗ of the
coupling matrix J as a function of the dreaming number. For each D, the eigenvalues

are ranked from 1 to N. For each rank, we measured the overlap ω(ζ⃗(D), ζ⃗(D− 1))
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Figure 3. The y-axis presents the value of the eigenvalues; the x -axis presents
their ranking. Curves of different colors correspond to the measures of the ranked
spectrum taken after different amounts of dreams. Before dreaming, the spectrum
is of the Marchenko–Pastur type. HU progressively flattens the high portion of the
ranked spectrum.

Figure 4. The x -axis presents the normalized number of steps of the dreaming
algorithm. The y-axis presents the eigenvalues of the coupling matrix, for one
sample, N =100. Eigenvalues at different steps of the algorithm are connected
by colored lines. Darker colors indicate a high overlap between the corresponding
eigenvectors. Only lines corresponding to overlaps larger than 0.1 are shown. The
overlap among subsequent eigenvectors is high, except for the highest and lowest
parts of the ranked spectrum, where the eigenvalues are effectively degenerate.

between the corresponding EVs at step D and at step D − 1. Eigenvalues of the same
rank at different dreaming steps are connected by a continuous line, and colored with
a color code connected to ω. For clarity, only lines corresponding to overlaps larger
than 0.1 are shown. As the dreaming procedure unfolds, the majority of the EVs do
not change much (blue lines), and the lines do not cross. This means that EVs evolve
continuously, while the corresponding EVs barely change. The highest and lowest parts
of the ranked spectrum, on the other hand, show some crossing of lines, and low values
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of the overlaps (in red). This is attributed to the eigenvalues becoming almost equal,
leading to an effectively degenerate eigenspace, corresponding to a plateau in figure 3.

These observations suggest the following alternative algorithm.

3.1. Eigenvector dreaming

Algorithm 2. EVdreaming.

Initialize J using Hebb’s rule equation (2)
forD =1 to Dmax do

1-Find an orthonormal basis of eigenvectors ζµ of J.
2-Select the eigenvector ζuD with the largest absolute eigenvalue.
3-Update Jij ← Jij − ϵζuD

i ζuD

j .

4-Reset diagonal terms to zero Jii ≡ 0
end for

In this algorithm, the update of the couplings reduces the value of the highest
eigenvalue by an amount ϵ, leaving the EVs unchanged. Resetting the diagonal to
zero, on the other hand, increases the value of every eigenvalue by a stochastic
amount (section 3.2), and also modifies the EVs. Each step of this algorithm is
based on the spectrum of the current coupling matrix. It is noteworthy that this
algorithm can be implemented using purely local rules, by iterating a synchronous
update

St+1 = f
(
JSt

)
; f (x) =

x

||x||2
, (5)

which converges toward the EV of J with the largest eigenvalue.

3.2. Initial Eigenvector dreaming (IEV)

An even simpler dreaming procedure, which does reproduce the qualitative features of
HU (specifically, the centrality of the spectrum evolution and the marginality of the
eigenspaces evolution), is obtained by modifying the coupling matrix on the basis of the
EVs of the initial coupling matrix JH , as listed in algorithm 3. We call this procedure
IEV (dreaming).

Algorithm 3. IEVdreaming.

1-Initialize J using Hebb’s rule equation (2)
2-Find an orthonormal basis of eigenvectors ζµ of the initial coupling matrix.
for D =1 to Dmax do

3-Consider the most recent coupling matrix JD−1, and select the eigenvector ζuD with the largest
absolute eigenvalue.

4-Update Jij ← Jij − ϵζuD

i ζuD

j .

5-Remove the average value of the diagonal elements of J : Jii← Jii− ϵ
N .

end for

This algorithm is simple enough that it can be analyzed in some detail.

https://doi.org/10.1088/1742-5468/ad138e 7
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3.3. A first analysis of IEV dreaming

As a first approach, imagine removing step 5 of the iterative process, and simply setting
the diagonal to zero after the cycle. The resulting J reads

JD
ij =

N∑
µ=1

ζµi ζ
µ
j

(
λµ− ϵ

D∑
d=1

δud
µ

)
+ ϵ

D∑
d=1

(ζud
i )

2
δij

=
N∑
µ=1

ζµi ζ
µ
j

(
λµ− ϵ

D∑
d=1

δud
µ

)
+ ϵ

D∑
d=1

⟨(ζud
i )

2⟩δij

+ ϵ
D∑
d=1

[
(ζud

i )
2−⟨(ζud

i )
2⟩
]
δij ,

(6)

where the average ⟨(ζud
i )2⟩ is computed over the statistics generated by the choice of

the EV uD to be dreamed at each step, given the realization of disorder (i.e., the value
of the EVs ζµi ). Since the EVs of a Wishart matrix are isotropically distributed on the
(N − 1)-dimensional sphere, one has that ⟨(ζud

i )2⟩= 1/N . The result is then

JD
ij ≃

N∑
µ=1

ζµi ζ
µ
j (λµ− ϵdµ)+ ϵ

D

N
δij + ηij , (7)

where dµ =
∑D

D=1 δ
uD
µ and ηij is a diagonal random matrix

ηij ≡ ϵ
D∑
d=1

[
(ζud

i )
2−⟨(ζud

i )
2⟩
]
δij . (8)

The first two terms preserve the EVs of J. The η correction changes both the EVs and
eigenvalues of the coupling matrix, and assuming that η is small enough, we can compute
these changes perturbatively. In particular, the degenerate eigenspace corresponding to
the low eigenvalue plateau will be split by corrections λ→ λ+ δλi, i = 1, . . .,N −P given
by the N −P eigenvalues of the matrix

Aµν ≡ ζµ⊤ηζν , µ,ν = 1, . . .,N −P , (9)

where the EVs all belong to the low eigenvalue degenerate plateau (any orthonormal
set of EVs is equivalent). In the thermodynamic limit, the impact of η on J becomes
negligible, as shown in figure 5. The x -axis represents N. The y-axis represents the
eigenvalues of the A matrix equation (9) divides by the absolute height of the low plat-
eau. In the thermodynamic limit, all curves tend to zero, showing that the corrections
become negligible compared to the low plateau value. Some insight into this behavior
can be gained by considering the statistics of the diagonal element of η. Their average
is zero, by definition. If the ξµi involved in equation (8) were a finite number, they could

https://doi.org/10.1088/1742-5468/ad138e 8
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Figure 5. Dispersion of the corrections to the low plateau eigenvalues, divided by
the low plateau eigenvalue, at D top, as a function of N, for different values of α.
As the system size is increased, the corrections become negligible compared to the
low plateau eigenvalue.

be treated as i.i.d. normal variables N (0,1/N), and the statistics of η could be heur-
istically understood as proportional to a χ2 distribution, whose variance scales as 1/N
(this is not exact because not every EV is dreamed the same number of times). Since
we dream of an extensive number of EVs, the ξµi are not independent (for one thing,

they are constrained by normalization
∑N

µ=1 ξ
µ
i = 1). Intuitively, this has the effect of

reducing the variance of ηii . Hence, the χ2 distribution is an upper bound for the size
of η, going to zero. Given that the dreaming procedure is described by a simple update
rule

JD
ij ≃

N∑
µ=1

ζµi ζ
µ
j (λµ− ϵdµ)+ ϵ

D

N
δij. (10)

This algorithm is very inexpensive from the computational point of view since one does
not need to compute EVs multiple times.

Whether the correction to the diagonal elements of J is conducted at each step
of the algorithm or at the end, affects the choice of the EV that gets dreamed: if
the correction is performed at the end, the negative degenerate plateau will quite
soon be higher in absolute value than the high plateau (we call this inversion). The
algorithm then starts selecting EVs from the low plateau, which are orthogonal to
the memories, having no effect on the stabilities. In contrast, the choice in algorithm
3 reproduces the qualitative behavior of HU in an analytically simple setting, since
taking out the diagonal at each step decreases the absolute value of the low negat-
ive plateau while increasing the absolute value of the positive plateau, delaying the
inversion.

https://doi.org/10.1088/1742-5468/ad138e 9
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Figure 6. Evolution of ∆min while iterating different dreaming procedures, for some
α values. N =400, ϵ=0.001. D top is indicated by a cross, and D inv is indicated by
a dot. The new algorithms have very similar performances before D inv, indicating
the IEV dreaming is indeed a good model of EV dreaming.

4. Algorithm performance

Figure 6 depicts representative examples of the evolution of ∆min according to the
different dreaming procedures. The newly introduced algorithms have very similar per-
formance before the inversion point D inv (marked by circles on the curves in figure 6).
This also indicates that the IEV dreaming is indeed a good model of EV dream-
ing. They also display the same qualitative behavior as HU. In figure 6, crosses on
the curves indicate when the algorithms start dreaming for the first time in the low-
est eigenvalue of the highest portion of the ranked spectrum. This condition corres-
ponds to the highest portion of the ranked spectrum becoming a plateau. In our
new procedures, this instant is very close to D inv. After D inv, IEV and EV display
a plateau in the stability curve, which lasts until the inversion point, marked by
dots in the curves. After the inversion point, which experimentally happens first in
EV dreaming, EV and IEV display different behaviors since the procedure becomes
very sensitive to the EVs dreamt. The behavior of IEV dreaming is detailed in
section 5.

Figure 7 compares the different algorithms in terms of the retrieval mapping, at
d=Din, where the performance is optimal. The quantitative differences in the ∆min

profile between the algorithms are reduced to virtually no difference, when the retrieval
mapping is concerned. Below the critical load wide basins of attractions are produced
around the memories.

Defining the critical capacity of an algorithm αc as the highest load such that
∆min > 0 is reached before D inv, we find αIEVd

c ∼ 0.57 and αEVd
c ∼ 0.55, to be compared

with αHU
c ∼ 0.59.
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Figure 7. Retrieval mapping for the various dreaming procedures, at D =Din,
where attraction basins are the largest. N =400, α=0.4, ϵ=0.01. Different curves
coincide, suggesting that our new dreaming procedures capture the essence of HU.

Figure 8. Evolution of the ranked spectrum during IEV dreaming.

5. Analytical characterization of IEV dreaming

In the case of IEV dreaming, both the values of D top and D inv can be computed ana-
lytically. Let us define by λl(D) the height of the low plateau, by λ1−α(D) the height of
the lowest eigenvalue in the high part of the ranked spectrum, and by δ(D) the distance
between the high plateau and λ1−α(D) (figure 8).

Before dreaming, one has

λl (0) =−α (11)

λ1−α (0) = 1− 2
√
α (12)

δ (0) = 4
√
α . (13)

At each dream, the change in the ranked spectrum consists of an increase of every
eigenvalue due to the resetting to zero of the diagonal elements of J, and a decrease

https://doi.org/10.1088/1742-5468/ad138e 11
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Figure 9. Comparison between analytical estimate and simulations for D inv and
D top as a function of α. Parameters for the simulations are N =1000, ϵ=0.001.
The agreement is excellent, as finite size effects are already small at this size.

in the dreamed eigenvalue, as per equation (10). Before D top, that is before the high
part of the ranked spectrum is completely flattened into a plateau, the evolution of the
spectrum can be characterized by:

λl (D) = λl (0)+
ϵD

N
(14)

λ1−α (D) = λ1−α (0)+
ϵD

N
, (15)

while δ(D) can be determined numerically, noting that the area A(D) is:

A(D) =
ϵD

N
. (16)

Similar geometrical reasoning for D >Dtop leads to even simpler equations:

λl (D) = λl (Dtop)+
ϵ(Dtop−D)

N
(17)

λ1−α (D) = λ1−α (Dtop)+
ϵ(Dtop−D)

N

(
1− 1

α

)
(18)

δ (D) = 0 . (19)

Given these relations, D top and D inv are determined by:

δ (Dtop) = 0 (20)∣∣λl (Dinv)
∣∣= ∣∣λ1−α (Dinv)+ δ (Dinv)

∣∣ . (21)

These theoretical results for D top and D inv are compared to the results of the numerical
simulations in figure 9, with excellent agreement.
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In IEV dreaming, the evolution of the stabilities is determined exclusively by the
evolution of the spectrum of J, since the EVs do not change,

∆µ
i = ξµi

∑N
ν=1λνζ

ν
i w

µ
ν√∑N

ν=1 (λνζνi )
2
, (22)

where wµ
ν are the coordinates of the memories in the basis of the EVs:

wµ
ν ≡ (ζν · ξµ) . (23)

After D top, when the spectrum is composed by two plateaus P±, this expression sim-
plifies to:

∆µ
i = ξµi

∑
ν∈P+

ζνi w
µ
ν√∑

ν∈P+
(ζνi )

2+
(

λl(D)
λ1−α(D)

)2∑
ν∈P−

(ζνi )
2

, (24)

which is constant (after D top) as a consequence of equations (17) and (18). This explains
the plateaus in figure 6.

For α< 0.5, one has Dinv = P/ϵ, and λl(Dinv) = λ1−α(Dinv) = 0. This means that
at D inv, we have J =0. In numerical simulations, given a finite value of ϵ, this never
happens. Instead, from D inv the network dreams of every EV of the high plateau, making
it smaller than the low plateau, and then every EV in the low plateau. Over N dreams,
all EVs have been dreamt once. Thus, each eigenvalue is decreased once by −ϵ and
increased N times by ϵ

N , restoring it to the initial value. This is reflected in a periodic
behavior of ∆min, which oscillates (see figure 6). For α> 0.5, the inversion occurs with
well separated plateaus λl(Dinv)< 0< λ1−α(Dinv). Hence, around D inv, when the high
plateau and the low plateau become closer than ϵ in absolute value, the network starts
dreaming of one EV of the low plateau. At each dream, the corresponding eigenvalue is
made even smaller, i.e. bigger in absolute value, and the network gets stuck dreaming
it repeatedly. Asymptotically, this EV (orthogonal to the memories) dominates the
coupling matrix, leading again to zero stability without oscillations (figure 6).

Notice that, if one decides to always dream of the EV with the largest eigenvalue
(without the absolute value), one gets rid of the inversion phenomenon. The dream-
ing procedure will then always lead to a spectrum with two plateaus. This spectrum
corresponds to a diagonal-free version of the pseudoinverse learning rule [19], whose
thermodynamics has been studied in [20]. In the present work, we decided to base
dreaming on the absolute value of the EVs to preserve the idea of choosing to dream
configurations on the basis of a dynamics, as per equation (5).

6. Conclusions

This paper unveils an interesting feature of HU, namely, the fact that EVs of the coup-
ling matrix do not change significantly during the algorithm, and the improvement in
the recognition performance is mostly due to a modification of the spectrum. Starting
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from this observation, we have proposed two new effective unlearning algorithms: EV
dreaming and IEV dreaming, which emphasize the splitting of the learning problem into
a trivial EV evolution and a non-trivial spectrum evolution, respectively. IEV dreaming
is the simplest algorithm, being computationally efficient and easy to control analytic-
ally. IEV dreaming turns out to give a very good description of EV dreaming, and a
qualitatively good description of HU. Finally, in our new algorithm, we find a strong
correlation between the moment when the lowest eigenvalues of the high plateau starts
being dreamed, and the moment when the algorithm stops increasing the minimum
stability ∆min. This correlation, which follows from simple analytical arguments in the
case of IEV dreaming, is also present, to a lesser extent, in HU.
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