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Abstract
The high longitudinal electric fields generated in plasma wakefields are very attractive for a new
generation of high gradient plasma based accelerators. On the other hand, the strong transverse
fields increase the demand for a proper matching device in order to avoid the spoiling of beam
transverse quality. A solution can be provided by the use of a plasma ramp, a region at the
plasma injection/extraction with smoothly increasing/decreasing plasma density. The transport
of a beam inside a plasma ramp, beside its parameters, depends on the profile of the ramp itself.
Establishing the transfer matrix for a plasma ramp represent a very useful tool in order to
evaluate the beam evolution in the plasma. In this paper a study of a cosine squared ramp is
presented. An approximate solution of the transverse equation of motion is evaluated and
exploited to provide a simple transfer matrix for the plasma ramp. The transfer matrix is then
employed to demonstrate that this kind of ramp has the effect to minimize the emittance growth
due to betatron dephasing. The behavior of a squared cosine plasma ramp will be compared
with an experimentally measured plasma ramp profile in order to validate the applicability of
the transfer matrix to real cases.
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1. Introduction

Plasma-based devices have been proven to be a valid candid-
ate for the development of a new generation of accelerating
machines [1] due to the high accelerating gradients, up to tens
of GVm−1 [2–4], that they are able to produce. The main
actual task of plasma wakefield acceleration is the preserva-
tion of the beam quality during the acceleration process both
in terms of emittance and energy spread. Recent results have
proven that modern plasma modules and schemes are able to
accelerate bunches that can be fully characterized [5, 6] and
exploited in order to pilot a free electron laser [7, 8], a device
that notoriously requires high quality bunches only.

Due to these reasons, emittance preservation is a main topic
for the design of plasma based facilities [9] and several efforts
were performed in order to evaluate optimal conditions for
beam transport inside plasma [10]. Unfortunately, in most
cases of interest, the transverse beammatching inside a plasma
requires a focusing at the injection from fewmicrometers up to
sub-micrometer scale in order to completely avoid emittance
growth. A plasma ramp [11] is usually referred to as a section
of plasma where the density varies smoothly. This is a par-
tial definition that ignores the studies performed on low dens-
ity constant plasma ramps [12]. In this case, the increase of
the plasma density is totally sharp, but, for all purposes, this
can be considered a ramp. A more correct definition is that a
plasma ramp is a section of the plasma profile that introduces
a smooth variation of transverse beam parameters. It has been
widely demonstrated that for several ramp shapes [12–15] the
presence of a plasma ramp is very helpful to reduce emit-
tance growth inside plasma. However, these studies all refer
to adiabatic ramps [11–13], a kind of ramp where the focusing
strength varies slowly compared to the oscillation wavelength
of the bunch. This feature can be mathematically expressed as
[12]

A=
1

4η3/2 (z)

∣∣∣∣dη (z)dz

∣∣∣∣≪ 1, (1)

where A is defined as adiabaticity parameter and η(z) is the
plasma focusing strength evolving along the direction of the
bunch z. On the other side, analytical and numerical solu-
tions have been derived for a limited number of non-adiabatic
ramps with different shapes [12, 14]. Adiabatic ramps are the
most promising in terms of performances, but less appealing
in terms of applications. Tapered profiles have been discussed
in order to experimentally obtain the smoothly varying shape
required for adiabatic focusing [16, 17]. From a practical point
of view, the introduction of a long adiabatic ramp at the injec-
tion and extraction of a plasma channel severely reduces the
average accelerating field of the whole plasma section, frus-
trating the efforts for increasing the accelerating gradient that
is the strong point of plasma acceleration itself. Besides, in
non confined plasma, as for example from capillary discharge,
non-adiabatic ramps are naturally formed [18] without further
technological effort. As pointed out from Ariniello et al [12],
in most cases the longitudinal shapes of the plasma ramps with

an analytical solution are described by discontinuous functions
or present a discontinuity of the first longitudinal derivative at
the junction point between the ramp and the flat-top channel.
This kind of ramp is clearly unphysical, despite most of the
derived solutions can still be considered as good approxima-
tions to reality. The work proposed in this paper is focused on
the study of rampswith squared cosine shape, a class of plasma
ramps that never presents a fully adiabatic behavior for real-
istic ramp lengths. The evaluation of the transfer matrix for
this ramp, that is a key byproduct of the analytical integration
of the motion equations, requires the solution of Hill’s differ-
ential equation when the focusing term is a sinusoidal func-
tion, an equation also known as Mathieu differential equation
(MDE) [19]. An approximated solution will be provided for
this equation in the case of medium range non-adiabatic ramp.
The solutions will be applied in order to prove the stabiliz-
ing effect of the ramp in terms of transverse emittance growth.
Finally, the transfer matrix will be applied to find the matching
of ameasured plasma profile in order to prove the possibility to
practically obtain a plasma ramp with the characteristics and
the behavior of a squared cosine ramp.

2. Transverse matching condition of a plasma
channel at the plateau

The transverse matching condition for a bunch injected into a
focusing channel can be mathematically expressed in several
ways, which are equivalent to each other due to the relationship
that is intrinsic to the envelope equation [20]

β ′ ′ (z)+ 2k2ext (z)β (z) =
2

β (z)
+

β ′2 (z)
2β (z)

, (2)

where k2ext(z) is the normalized focusing strength and β is
the Twiss β-function. The envelope equation is derived by
means of the Courant-Snyder equation in combination with
the equations of motion and is valid assuming the paraxial
approximation, a low energy spread and constant emittance of
the bunch. The β-function expressed in equation (2) is derived
from the equations of motions and describes the ability of a
transport line to focus a particle bunch, given the required
boundary conditions. We neglected the subscript x,y since this
equation is valid for an arbitrary choice of transverse direc-
tions and in our work we will assume cylindrical symmetry. If
the focusing force is constant along the channel, the matching
condition is a trivial quasi-stationary solution of equation (2)

β (0) =
1
kext

β ′ (0) = 0

β ′ ′ (0) = 0. (3)

It is easily verified that, assuming any two of these equations,
the third one follows immediately from equation (2). The
focusing term in our case of interest is given by the varying
plasma focusing force. Its description is not a trivial task since
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plasma wave is formed as a result of the interaction of the driv-
ing pulse, either a driving bunch or a laser pulse, with the back-
ground bulk. The effects of the plasma ionization, the forma-
tion of the plasma wave and the ion motion will be neglected.
From now on, it will be assumed that the bunch transported
inside plasma is totally contained in a plasma bubble in non-
linear regime. The focusing force, under these assumptions,
can be represented by the ion column model [10]. The plasma
density np(z,r) is generally not constant in either longitudinal
or transverse direction, but for the purposes of this work, the
transverse dependency of the plasma density will be neglected
as well. The normalized focusing strength of the ion channel
is

k2ext (z) =
k2p (z)

2γ
, (4)

where γ is the bunch average Lorentz factor and kp =
[e2np(z)/ϵ0mec2]1/2 is the plasma wave number. The match-
ing conditions for a plasma plateau with a constant density is
then

β0 =

√
2γ
kp

, (5)

that for typical plasma and beam parameters is of the order
of 1 µm or smaller. An input plasma ramp is a device where
the density np(z) is not constant, but rises from 0 up to the
nominal value n0 of the channel. In order to simplify any fur-
ther evaluation, it will be assumed that the energy variation
of the bunch inside the ramp itself is negligible. In order to
verify this assumption, the longitudinal field inside the ramp
must be estimated. The average accelerating gradient acting
on a ramp can be evaluated from the shape of the ramp, hav-
ing an equation that links the accelerating gradient to the
plasma density. The most natural connection would be given
by the wavebreaking limit [21] Ez[eV] = 96(np[cm−3])1/2,
that describes the maximum accelerating gradient that can be
generated in a plasma wave without destroying its oscillating
behavior. In a linear ramp arising from 0 to n0 in a length L,
the average field would be given by 2/3 of the wavebreak-
ing limit evaluated at the end of the ramp. Thus, the assump-
tion of negligible acceleration is certainly valid as long as
γ0 ≫ 64L[m](n0[cm−3]])1/2/me[eV] where me is the electron
mass expressed in electronvolt. However, the usage of the
wavebreaking limit is an extreme feature, since the plasma
accelerators rarely reach fields that are even comparable. It is
safe to state that the average accelerating gradient is usually at
least one order of magnitude lower. The overall complexity of
this aspect suggests that it is best verified with numerical simu-
lations, afterwards. From now on, the work takes into account
bunches with an energy of several hundreds ofMeVs, a plasma
density around 1016cm−3 and ramps with a length of few cen-
timeters, that have been tested to be well below this limit.
Anyway, the assumption allows from equation (4) to state that
np and k2ext are equal, except for a constant, so the focusing
strength grows from 0 up to a nominal value as well. We can
write k2ext(z) = η(z)where we assume that η(z) is a continuous
and differentiable function in an arbitrary domain since the

behavior of realistic plasma ramps require these assumptions.
Further, from equation (5), one can also write η(0) = 1/β2

0 .
With a proper configuration, a plasma ramp can help to relax
the matching conditions at the entrance of the plasma. We will
assume that the beam is traveling with a negative momentum,
namely that beam starts from z0 > 0 at the beginning of the
ramp, traveling up to z= 0 where the ramp ends and start
traveling inside the channel located at z< 0 for an undefined
length. The reverse transfer matrix of the channel, thus the
behavior of a beam moving from z= 0 from left to right, will
be computed. Based on our previous considerations, amatched
beam at z= 0 will have the following Twiss vectorβ (0)α(0)

γ (0)

=

 β0

0
1/β0

 . (6)

If C(z) and S(z) are the even and odd solutions to Hill’s
equation inside the plasma ramp respectively

y ′ ′ (z)+ η (z)y(z) = 0; (7)

the transfer matrix for the Twiss parameters [20] isβ (z)α(z)
γ (z)

=

 C2 −2CS S2

−CC ′ CS ′ +C ′S −SS ′

C ′2 −2C ′S ′ S ′2

 β0

0
1/β0

 , (8)

where, for sake of clarity, we omitted the dependency of the
functions on z. So we have a new set of equations for the Twiss
functions at any point in the ramp

β (z) = C2β0 + S2/β0

α(z) =−CC ′β0 − SS ′/β0

γ (z) = C ′2β0 + S ′2/β0. (9)

In the assumption of a continuous and differentiable η(z),
the solutions to Hill’s equation are continuous, differentiable
twice with continuous second derivative.

3. Symmetric ramps

The most simple case occurs when the ramp function η(z) is
an even function. A linear differential equation of nth order

n∑
k=0

uk (z)
dky
dzk

= t(z) ; (10)

is symmetric as long as the even terms, uk=2j(z) and t(z), and
the odd terms, uk=2j+1(z), have opposite parities. Recalling
equation (7) one recognizes that t(z) = 0 and u2(z) = 1 are
both even functions while u1 = 0 is an odd function. If we
assume that u0 = η(z) is an even function too, equation (7)
is a symmetric differential equation of the second order that
admits an even, C(z), and an odd, S(z), solution. These func-
tions can be normalized so that C(0) = 1 and S ′(0) = 1. The
boundary conditions at z= 0 can be summarized as follows

3



Plasma Phys. Control. Fusion 65 (2023) 115005 S Romeo et al

β (0) = β0 α(0) = 0

γ (0) = 1/β0 β ′ ′ (0) = 0. (11)

We recall that the derivative of an even function is odd and
vice versa. Since C and S are assumed to be differentiable, we
can also write the following boundaries

C(0) = 1 C ′ (0) = 0

S(0) = 0 S ′ (0) = 1. (12)

It is easy to verify that substituting equation (12) into
equation (9), the conditions equation (11) are automatically
respected, thus for an even function the only requirement for
boundary is re-normalization of the solutions.

4. Squared cosine plasma ramp

The symmetric choice of the form for η(z) is the following
η (z) = 1

β2
0

for z⩽ 0;

η (z) = 1
β2
0
cos2

(
π z
2L

)
for 0⩽ z⩽ L;

η (z) = 0 for z> L;

(13)

that is a continuous, differentiable function with continuous
first derivative, for which it is also possible to find a set of
Twiss parameters at injection that guarantee the matching at
z= 0. For this kind of ramp, the adiabaticity parameter from
equation (1) can be evaluated as

A=
πβ0

4L

sin
(
π z
2L

)
cos2

(
π z
2L

) . (14)

In figure 1 the value of A is shown as a function of z/L from
0 (plateau) to 1 (end of the ramp) for different values of L/β0.
The adiabaticity parameter presents a divergence at z=L and
goes to 0 at z= 0, meaning that for any value of L this kind
of ramp is non-adiabatic. For high values of L/β0, the val-
ues of z/L whereA≪ 1 increase, meaning that non-adiabatic
behavior is concentrated in the first part of the ramp, getting
adiabatic when the bunch approaches to the plateau. As a con-
sequence, adiabatic approach is not possible and C and S shall
be evaluated from Hill’s equation. The Hill’s equation for the
ramp can be written as

d2y(z)
dz2

+
1
β2
0

cos2
(π z
2L

)
y(z) = 0 (15)

that, by the use of trigonometric identities and substitution of
variables, can be turned into the following equation

d2Y(v)
dv2

+
2L2

π2β2
0

[1+ cos(2v)]Y(v) = 0, (16)

where v= π z/2L. Equation (16) can be identified as an MDE
[22], whose general form is

V ′ ′ (v)+ [a− 2qcos(2v)]V(v) = 0. (17)

Figure 1. Evolution of the adiabatic parameter as a function of z/L
for different values of L/β0.

Assuming periodic boundary conditions, analytical solutions
of MDE exist only for given couples of a and q. This does not
occur in the description of a plasma ramp since the boundaries
are given in equation (12). The general solutions to MDE are
known as Mathieu even C(a,q,v) and odd S(a,q,v) functions.
As stated, the Mathieu functions can be normalized in order to
respect the boundary conditions, so we can write the general
solutions for the Hill’s equations in the ramp as


C(z) =

C
(

2L2

π2β2
0
,− L2

π2β2
0
,π z
2L

)
C
(

2L2

π2.β2
0
,− L2

π2β2
0
,0

) ;

S(z) = 2L
π

S
(

2L2

π2β2
0
,− L2

π2β2
0
,π z
2L

)
S ′

(
2L2

π2β2
0
,− L2

π2β2
0
,0

) ;

(18)

where S ′ is the Mathieu odd function derivative. The solu-
tion equation (18) respects all the criteria from the boundary
conditions. The normalized solution can be expressed in the
compact form



c(ξ;R) = C(z) =
C(2R2,−R2,π2 ξ)
C(2R2,−R2,0) ;

s(ξ;R) = S(z)
β0

= 2R
S(2R2,−R2,π2 ξ)
S ′(2R2,−R2,0) ;

c ′ (ξ;R) = β0C ′ (z) = 1
2R

C ′(2R2,−R2,π2 ξ)
C(2R2,−R2,0) ;

s ′ (ξ;R) = S ′ (z) =
S ′(2R2,−R2,π2 ξ)
S ′(2R2,−R2,0) ;

(19)

where ξ = z/L and R= L/πβ0 is the ratio between the length
of the ramp and the betatron wavelength at the plateau. By
inserting equation (19) in equation (8) one can evaluate the
evolution of Twiss parameters inside the ramp as

4
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Figure 2. Comparison of the evolution of Twiss β-function and
α-function inside a plasma ramp (purple) evaluated by means of
numerical simulation (red), numerical integration of envelope
equation (yellow) and transfer matrix of the plasma ramp (black).

β

β0
= c2 (ξ)+ s2 (ξ)

α=−c(ξ)c ′ (ξ)− s(ξ)s(ξ) ′ . (20)

It is important to notice equations (19) and (20) only depend on
parameter R, describing an entire class of ramps. The match-
ing behavior of the ramps is exactly the same as long the
R parameter is the same. In figure 2 the evolution of the
Twiss β-function and α-function is shown, evaluated by use of
equations (19) and (20) compared to the numerical integration
of envelope equation and equation (20) and a numerical simu-
lation performed with the hybrid kinetic-fluid code Architect
[23]. The considered bunch energy is E0 = 500 MeV, the peak
plasma density is n0 = 1016cm−3 and the ramp length is 10
mm.As can be clearly seen, equation (20) is substantially equi-
valent to numerical integration of envelope equation and they
are both in good agreement with simulation results.

5. Approximated transfer matrix

By setting ξ= 1 it is possible to describe the evolution of
the bunch from the beginning to the end of the ramp, thus
treating the whole ramp as a single focusing element. From
equations (8) and (19) one can write the normalized transfer
matrix for the Twiss function for an injection ramp

Rinj =

 s ′2 −2ss ′ s2

−c ′s ′ cs ′ + c ′s −cs
c ′2 −2cc ′ c2

 (21)

Figure 3. Set of equation (19) evaluated at ξ= 1 as a function of R.

and for an extraction ramp

Rext =

 c2 −2cs s2

−cc ′ cs ′ + c ′s −ss ′
c ′2 −2c ′s ′ s ′2

 , (22)

where c= c(R) and s= s(R). This kind of matrix is defined
for the transport of Twiss parameters that are normalized with
respect to β0, namelyβ∗

1(2)

α1(2)

γ∗
1(2)

= Rinj(ext)

β∗
2(1)

α2(1)

γ∗
2(1)

 ; (23)

where β∗ = β/β0 and γ∗ = γβ0. The subscript index 1 refers
to the bunch parameters at the end of the ramp while the index
2 refers to the parameters in the plateau. Since Mathieu func-
tions are transcendental, it is preferable to find an approxim-
ated form that allows to handle equations (21) and (22) in a
more simple way. From figure 3, one can notice that the nor-
malized Mathieu transfer elements have a sinusoidal behavior
of period π, together with a slow evolution of the envelope.
The envelope of c,s increases with R while the counterpart for
c ′,s ′ decreases. The function c has a phase delay of approx-
imatively π/2 with respect to s, as well as c′ with respect to
s′. In the same way the Mathieu transfer elements present a
phase delay with respect to their derivatives. Further, from
Liouville’s theorem we have that the transfer matrix is unim-
odular [20], namely

cs ′ − sc ′ = 1. (24)

Taking into account all these properties, one can assume the
following approximated form for these equations:

c= aRb cos(2R+ω)

s= aRb sin(2R+ω)

c ′ =− 1

a
(
cos2ω− sin2ω

)R−b sin(2R−ω)

s ′ =
1

a
(
cos2ω− sin2ω

)R−b cos(2R−ω) . (25)

5
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Figure 4. (c2 + s2)(c ′2 + s ′2) as a function of R. The function
saturates quickly at 2 for values of R> 5.

Figure 5. Comparison of the function
√
c2 + s2/2+√

2/(c ′2 + s ′2)/2 with the resulting fit
√
3R1/4.

Inserting equation (25) into condition equation (24) leads to
cos(2ω) = cos2ω− sin2ω, meaning that Liouville’s theorem
is satisfied by equation (25) for any value of ω. In order
to evaluate this phase delay, an useful information can be
retrieved by plotting the quantity (c2 + s2)(c ′2 + s ′2), shown
in figure 4. As one can notice, this function saturates quickly
at 2 for values of R> 5, whereby the consistency of the
approximation holds if ω is such that (c2 + s2)(c ′2 + s ′2) = 2.
Since from equation (25) follows that (c2 + s2)(c ′2 + s ′2) =
1/cos2(2ω) = 2, cos(2ω) =

√
2/2 or ω = π/8. In a similar

fashion, it is possible to fit the values of a and b taking into
account the following equation

2aRb =
√
c2 + s2 +

√
2

c ′2 + s ′2
, (26)

where we are considering the average between the two func-

tions
√
c2 + s2 and

√
2/(c ′2 + s ′2) since taking into account

only one term of the sum gives lightly different fit results. The
fit is shown in figure 5 and the resulting parameters are a= 1/4
and b=

√
3. The final result for the approximation is

Figure 6. Comparison of the numerical solution for Mathieu
functions with the approximation from equation (27).

c(R)≈
√
3R1/4 cos(2R+π/8)

s(R)≈
√
3R1/4 sin(2R+π/8)

c ′ (R)≈−
√

2
3
R−1/4 sin(2R−π/8)

s ′ (R)≈
√

2
3
R−1/4 cos(2R−π/8) . (27)

A comparison between equation (19) evaluated at ξ= 1 and
equation (27) as functions ofR is shown in figure 6 and the cor-
responding difference between the two expressions is shown in

6
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Figure 7. Difference between exact and approximated solutions for
Mathieu functions.

figure 7. The agreement is quite good for R> 1 and improves
for increasing values of R.

6. Stabilizing effect of plasma ramp

The presence of ramp, as previously stated, helps to relax the
matching conditions for the β-function. If a beam does not
meet perfectmatching conditions, equation (21) can be applied
in order to retrieve β∗ = β(0)/β0 and α= α(0). If these val-
ues are not exactly 1 and 0, the envelope will oscillate inside
the plateau, causing an emittance growth due to betatron deph-
asing [24]. The maximum expected emittance growth due to
betatron dephasing can be evaluated through the following
equation

εfin =
εinj
2

(
1+α2

β∗ +β∗
)
. (28)

Figure 8 reports the increase of the stability valley as a func-
tion of R if we impose an emittance increase within 20% of
the initial value. What one can deduce from this result is that
the presence of the ramp dampens the envelope oscillations
that are occurring inside the ramp itself, leading to a condition
where themismatching on the plateau is lower in a muchwider
range of Twiss parameters. This result is consistent and com-
plementary with the claim performed by Dornmair et al [25]
that the introduction of a plasma ramp dampens the oscilla-
tions of the centroid of the beam due to a transverse injection
misalignment of a witness bunch respect to the plasma wake
and limits the emittance growth.

7. Comparison with a realistic ramp

The assumption of a squared cosine shape was motivated by
their smoothness properties that makes them good candidates
for representing a realistic experimental setup. The ability to
effectively control the plasma density, creating the desired
shape, is of primary importance for any possible application
of the present work. As previously discussed, ramps naturally
arise from discharge capillary generated plasma and they can

Figure 8. Emittance growth as a function of βinj/β0 and αinj for
different values of R. The presence of a ramp greatly relaxes the
matching conditions, broadening the stability region where the
emittance increase is lower than 20%.

be manipulated by modifying the capillary geometry. With a
proper tapering of the capillary tips, it is already possible to
obtain a squared cosine plasma ramp. In figure 9 several meas-
urements of the plasma density profile of a capillary with a
step tapering are shown. In this particular configuration, the

7
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Figure 9. Plasma density measurements in the tapered capillary.
Capillary profile is schematized in the background, considering the
y-axis as millimeters. On the top it is shown the normalized plasma
profile measured at several times after the discharge. After 2 µs the
profile stabilizes at a squared cosine like plasma profile. On the
bottom it is shown the measurement at 1900 ns delay, together with
a squared cosine fit and an approximation of the line made of 20
segments.

capillary is 3 cm long in total, with the gas entering in a
single inlet located at the center. The diameter is 1 mm in
the capillary center and becomes 1.3 mm on the edges in a
4mm length. Plasma density is measured at various times after
the discharge occurred and the peak density is in the range
1× 1017cm−3 − 6× 1017cm−3. This range of densities is too
high for the purposes of EuPRAXIA working point [9], but
still provides an indication that it is possible to engineer the
ramp shape at any density. In figure 10 it is shown the evolu-
tion of the normalized Twiss parameters for the ramps shown
in figure 9. The plateau density was set at 1× 1016cm−3 and
the Twiss parameters at the injection are evaluated by means
of equations (27). The evolution for both ramps is very con-
sistent, meaning that small deviation from the cosine shape
do not introduce major variations in the beam dynamics. The
matching is not perfect, since the outcoming normalized Twiss
parameters at the plateau are of the order of α≈ 0.02 and
β/β0 = 0.85. The expected emittance growth for this kind of
bunch, according to equation (28), is below 1.4%; therefore,
from all practical purposes, this can be considered an optimal
matching.

Figure 10. Twiss functions evolution of a 500 MeV bunch inside
the squared cosine plasma ramp and the segmented plasma ramp
shown in figure 9. The longitudinal coordinate on the x-axis is
normalized respect to the ramp length. The injection conditions of
this bunch was evaluated by means of equation (27) and the
normalized Twiss parameters at the end of the ramp are
−0.02< α< 0.02 and β/β0 ≈ 0.85.

8. Conclusions

In this paper a wide-ranging study regarding the treatment
of plasma ramps in linear optics approximation has been
presented. In order to uniquely define the focusing strength
of a plasma ramp, the ion column model has been adop-
ted together with the assumption of negligible acceleration in
the ramp, deriving a linear dependency between the focusing
strength and the plasma density as a function of the longit-
udinal coordinate. The insertion of the ramp shape into the
Hill’s equation evidenced that the treatment of plasma ramps
with an even functional form is more simple since there is a
solid demonstration that it is always possible to find for this
kind of ramp a solution that satisfy the matching condition at
the plateau. The choice of a ramp with squared cosine shape
has been performed since this function is continuous, derivable
and even. This kind of ramp is non-adiabatic for every value of
length, leading to the necessity of a solution for the differen-
tial equation without any adiabatic approximation. The result-
ing differential equation results to be equivalent to an MDE,
that has been widely studied in literature, but none of the cases
of study could be reconducted to the framework of the paper
itself. The solutions given by the Mathieu functions were fully
satisfying, showing an high degree of agreement not only with
the numerical solution of envelope equation, but with a numer-
ical simulation of a witness bunch injected in the wake of a
driver inside plasma. This provided a validation for the use, in
the proposed framework, of the ion column model with negli-
gible deceleration for the treatment of plasma ramp. A further
treatment of this case of study led to the choice of treating the
ramp as a single focusing element, studying the normalized
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even and odd solutions of theMDE at the end of the ramp only.
An approximation of this kind of solutions was found, leading
to the definition of the Mathieu transfer matrix for the plasma
ramp. This empirical approximation assumed the character of
an analytical approximation after the evaluation of the para-
meters. The fact that the parameters can be expressed as func-
tions of integer numbers and that this approximation results to
be progressively more precise with the increase of R, suggests
that could be possible to derive a solid and analytical demon-
stration of the equation (27). Anyhow, this kind of demonstra-
tion lies beyond the aim of this work. Beyond the great simpli-
fication of the evaluation of the matching conditions in pres-
ence of a ramp with the squared cosine shape, a successful
use of the approximated equations has been performed, eval-
uating in a purely analytical way that one of the effects of the
plasma ramp is to dampen the betatron oscillations on the plat-
eau even in mismatched cases. Finally, the experimental feas-
ibility of this kind of ramps have been shown, comparing the
transverse evolution of a bunch both in a ramp with a squared
cosine shape and a segmented profile that wasmeasured exper-
imentally. The convergence of the results has shown that it is
possible to design and realize a plasma ramp that matches the
behavior of the squared cosine plasma ramp and that it is pos-
sible as well to find an optimal matching with the only use
of the proposed matching equations. In conclusion, the theor-
etical approach that has been performed in this paper shows
great potential and a wide range of possible application in the
design of plasma based accelerators.
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