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Highlights Impact and implications
� Hepatoblastomas display marked changes in the expres-
sion of epigenetic genes.

� Epigenetic transcriptome dysregulation correlates with poor
clinical outcomes.

� The histone-methyltransferase G9a is a key gene in hep-
atoblastoma development.

� Targeting G9a activity abrogates metabolic reprogramming
in hepatoblastoma cells.

� Epigenetic drugs may hold promise for the treatment of
patients with hepatoblastoma.
https://doi.org/10.1016/j.jhep.2023.05.031

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association

(http://creativecommons.org/licenses/by/4.0/). J. Hepatol. 2023, 79, 989–1005
In spite of recent advances in the management of hepato-
blastoma (HB), treatment resistance and drug toxicity are still
major concerns. This systematic study reveals the remarkable
dysregulation in the expression of epigenetic genes in HB
tissues. Through pharmacological and genetic experimental
approaches, we demonstrate that the histone-lysine-
methyltransferase G9a is an excellent drug target in HB,
which can also be harnessed to enhance the efficacy of
chemotherapy. Furthermore, our study highlights the profound
pro-tumorigenic metabolic rewiring of HB cells orchestrated by
G9a in coordination with the c-MYC oncogene. From a broader
perspective, our findings suggest that anti-G9a therapies may
also be effective in other c-MYC-dependent tumors.
for the Study of the Liver. This is an open access article under the CC BY license
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Background & Aims: Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have
limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a
very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regu-
lators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models.
Methods: We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult,
peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most
relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a
genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed.
Results: Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in as-
sociation with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in
tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited
growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of b-catenin and
YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional
rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic
adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB
metabolic reprogramming.
Conclusions: HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic
effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Hepatoblastoma (HB) is the most common pediatric liver ma-
lignancy and its incidence has tripled over the past 30 years.1

Significant advances in the clinical management of patients
with HB have recently been achieved thanks to the efforts of
different international consortia.2 An efficient combination of
surgery and chemotherapy at early disease stages may result in
a 5-year survival rate of over 80% for these patients.1 However,
those diagnosed with advanced unresectable tumors, lesions
that remain inoperable after chemotherapy, or recurrent dis-
ease face a much worse prognosis.1,2 On the other hand,
currently implemented chemotherapy may result in lifelong
severe toxic effects. Therefore, a better understanding of the
Keywords: Hepatoblastoma; Epigenetics; Metabolic reprogramming; G9a; c-MYC.
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pathobiology of HB is still needed to provide more effective
treatments, particularly for the most aggressive forms.3

From a genetic perspective, HBs display the lowest rate of
somatic mutations across childhood cancers.4 Indeed, HBs
only harbor an average of 2.9 mutations per tumor, and most of
these alterations consist in activating mutations or deletions of
the CTNNB1 gene encoding b-catenin, which are present in
over 70% of cases in association with higher malignancy.5 The
second most frequently mutated gene, �10% of cases, is
NFE2L2.6,7 Transcriptomic studies identified distinct HB sub-
classes corresponding to tumors representing different stages
of liver development or differentiation and aggressiveness.8–11

The paucity of genetic alterations in HB, together with the
23; available online 10 June 2023
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Fig. 1. Heatmap showing the expression of epigenetic modifiers in healthy liver tissues, peritumoral liver tissues, HB tissues and HB cells. Expression levels
(RNA-sequencing data) are relative to those in healthy pediatric livers. Epigenetic modifiers are functionally grouped as DNMTs, TETs, MBPs, PRMTs, KMTs, HDMs,
HMRs, HATs, HDACs and HARs. Transcriptomic data are integrated from the indicated studies. DNMTs, DNA methyltransferases; HARs, histone acetyl-readers; HATs,
histone acetyltransferases; HB, hepatoblastoma; HDACs, histone deacetylases; HDMs, histone-lysine demethylases; HMRs, histone methyl-readers; KMTs, histone-
lysine methyltransferases; MBPs, DNA-methyl-binding proteins; PRMTs, protein-arginine methyltransferases; TETs, DNA demethylases.
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Fig. 2. Heatmap showing the expression of epigenetic modifiers in peritumoral liver tissues and HB tissues classified according to: (A) Genome-wide DNA
methylation status in the epigenetic clusters in Epi-CA and Epi-CB.16 (B) Transcriptomic molecular subgroups C1, C2A and C2B defined in Ref. [10]. Epi-CA/B,
epigenetic cluster A/B; HB, hepatoblastoma.
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Fig. 2. Continued.
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Research Article
identification of robust transcriptomic subclasses suggest that
mechanisms other than structural genetic variations likely play
important roles in HB development. Dysregulation of epigenetic
mechanisms is currently recognized to participate in carcino-
genesis in many organs, including the liver.12 Earlier studies in
HB already identified alterations in genomic DNA methylation,
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Fig. 3. Expression of selected epigenetic modifiers in healthy liver tissues, perit
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finding low levels of global DNA methylation and hyper-
methylation at the promoters of putative tumor suppressor
genes.13–15 Importantly, more recent works including a higher
number of patients with HB have provided comprehensive
DNA-methylome analyses, enabling the establishment of
epigenetic clusters with histological and clinical correlations,16
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Table 1. GI50 of epigenetic inhibitors in HB cell lines.

HB cell line inhibitor HuH6 (lM) HepT1 (lM) HepG2 (lM)

DNMT DNMTi (5-Azacytidine) 8.31 11.6 15.3
PRMT PRMT1i (EPZ019997) >50 >50 >50
KMT NSD3i (BI-9321) >100 >100 75

G9ai (BIX01246) 2.67 5.71 1.7
G9ai (UNC0642) 4.1 4.5 4.4
G9ai + DNMT1i (CM272) 0.130 0.290 0.495
SMYD3i (EPZ031686) >100 >100 >100
EZH2i (UNC1999) 5.8 9.2 7.7
SUV39H2i (OTS186935) 3.8 3.6 2.9

HDM KDM1Ai (Ladademstat) 20.3 16.2 16.5
HDAC HDAC1i (Entinostat) 9.1 6.5 5.0
HAR BRD4i (JQ1) 17.8 20.68 17.8

DNMT, DNA methyltransferase; HB, hepatoblastoma; HAR, histone acetyl-reader; HDAC, histone deacetylase; HDM, histone-lysine demethylases; KMT, histone-lysine methyl-
transferase; PRMT, protein-arginine methyltransferases.

Table 2. GI50 of CM272 in HB primary cell lines.

PDX cell line CM272 (nM)

HB-279 1,700
HB-282 420
HB-284-M 760
HB-243 796
HB-295 400
HB-303 530
HB-214 540
HB-229 1,600
HB-233 280
HB-305 445
HB-310 375

HB, hepatoblastoma; PDX, patient-derived xenograft.
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that have been further validated.11,17,18 Notably, these epi-
genomic traits were markedly associated with the previously
defined transcriptomic subclasses, supporting the significance
of epigenetic dysregulation in HB pathogenesis.

The ultimate causes leading to DNA methylation abnormal-
ities in HB are not completely understood. Recent studies
described the upregulation of DNA methyltransferases 1 and
3A (DNMT1, DNMT3A) and the DNMT adaptor protein UHRF1,
along with the DNA demethylases TET1 and TET2 in HB.16,19,20

Besides DNA methylation, epigenetic mechanisms regulating
gene expression encompass other molecular processes
including chromatin remodelers, non-coding RNAs and the
covalent modification of histones.12,20,21 Histone modifications
comprise a growing list of reversible post-translational modifi-
cations (PTMs), such as acetylation, methylation, phosphory-
lation and sumoylation, among others.22 Histone PTMs often
work in concert with other epigenetic mechanisms like DNA
methylation to control the recruitment of remodeling complexes
and transcription factors.22 As occurs for DNA methylation,
histone PTMs are introduced, removed and recognized by a
complement of epigenetic modifiers known as epigenetic
writers, erasers and readers.12 Unraveling the intricate pro-
cesses of epigenetic regulation is important not only to un-
derstand carcinogenic mechanisms, but also to elucidate novel
therapeutic strategies. Indeed, a variety of “epidrugs” targeting
epigenetic effectors are actively being developed with prom-
ising preclinical antitumoral results, including sensitization to
chemotherapy.21 Regarding HB, some studies highlighted the
inhibitory potential of epigenetic drugs targeting histone
deacetylases or the acetylated histone reader BRD4.20,23 In this
work we performed an integrative transcriptional analysis of
180 epigenetic modifiers in a broad set of tumor tissues and
evaluated the antitumoral effects of the inhibition of selected
targets in relevant HB models. Our findings underscore the
profound dysregulation of epigenetic mechanisms in HB and
their involvement in key aspects of tumor biology. We have also
identified new vulnerabilities in the metabolic reprogramming of
HB cells that can be tackled with epigenetic inhibitors.

Materials and methods

Transcriptomic data

Transcriptomic data were obtained from the following sources:
GSE133039:16 34 tumoral and 32 peritumoral tissues;
GSE104766:10 19 tumoral and 23 peritumoral tissues;
Journal of Hepatology, Octob
GSE81928:24 21 tumoral and 6 peritumoral tissues; GSE75271:9

50 tumoral and 5 peritumoral tissues; GSE111845:25 10 fetal, 10
pediatric and 10 adult healthy liver tissues; GSE89775:26 10
tumoral and 3 healthy pediatric liver tissues. GSE151347:27 7 tu-
moral, 11 peritumoral and 4 metastasized primary tumors.
ENCODE: 2 fetal, 1 pediatric and 1 adult healthy liver tissues.

Human tissue samples

Written informed consent was obtained from each patient. The
study was approved by the Human Ethics Committee of the
Hospital Universitari Germans Trias i Pujol, Badalona, Spain
(protocol PI15-057), according to the 1975 Declaration of Hel-
sinki guidelines.

Additional information is provided in the supplementary
materials.

Results

Landscape of epigenetic gene expression in healthy liver,
peritumoral liver and HB tissues

We performed a combined analysis of three previous RNA-
sequencing studies comprising a total of 72 peritumoral and
91 tumoral HB tissues, four samples of metastasized tumors,
plus six samples of recurrent tumors.10,16,24 For comparisons,
transcriptomes from normal human fetal, pediatric and adult
liver tissues, as well as 11 primary HB cell lines and three
established HB cell lines (HepG2, HuH6 and HepT1), were in-
tegrated. Gene expression in healthy pediatric liver samples
was used as reference. We analyzed 180 genes from three
different categories: i) epigenetic writers: DNMTs, histone-
er 2023. vol. 79 j 989–1005 995
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Fig. 4. Analysis of G9a, DNMT1, and UHRF1 expression in HB. (A) Spearman correlation analyses of G9a, DNMT1, and UHRF1 mRNA levels in HB tissues. The
regression coefficient (R) and p value of each correlation are indicated. (B) G9a, DNMT1 and UHRF1 mRNA levels in peritumoral tissues (PT), HB tissues classified into
the Epi-CA and Epi-CB epigenetic groups and in recurrent tumors (R). (C) G9a, DNMT1 and UHRF1 mRNA levels in peritumoral tissues (PT), HB tissues classified into
the C1, C2A and C2B transcriptomic groups. *p <0.05, ***p <0.001. (D) Representative immunohistochemistries of G9a, DNMT1, and UHRF1 in HB tissues. Tumoral (T)
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Epigenetic targets in hepatoblastoma
lysine methyltransferases (KMTs), protein-arginine methyl-
transferases (PRMTs), histone acetyl-transferases (HATs); ii)
epigenetic erasers: DNA demethylases (TETs), histone-lysine
demethylases (HDMs), histone deacetylases (HDACs); and iii)
epigenetic readers: DNA-methyl-binding proteins (MBPs), his-
tone methyl-readers (HMRs) and histone acetyl-readers (HARs)
(Table S1).12 As observed in Fig. 1, and in an additional cohort
of patients9 (Fig. S1), marked changes in the expression of
numerous epigenetic genes, mostly upregulation, were
observed between HB samples and peritumoral tissues. Inter-
estingly, many genes upregulated in HB were also highly
expressed in fetal liver compared to pediatric liver. Overall,
these differences were preserved in primary HB cell lines. A
recent study identified two distinct epigenetic clusters in HB
(Epi-CA and Epi-CB) according to genome-wide DNA methyl-
ation status.16 As compared to Epi-CA tumors, Epi-CB tumors
996 Journal of Hepatology, Octob
have a more profound dysregulation of DNA methylation, a
high-risk transcriptomic signature and are associated with a
worse prognosis.16 The expression of epigenetic genes in tu-
mors classified as Epi-CA and Epi-CB was more significantly
altered in the latter group (Fig. 2A, Fig. S2A). Consistently,
overall expression of epigenetic genes was more dysregulated
in the transcriptomic subgroup C2A defined by Hooks et al.,10

which identifies highly proliferative and high-risk tumors,
compared to C1 tumors with good prognosis and C2B tumors
of intermediate risk (Fig. 2B, Fig. S2B).

Expression of genes selected according to their alteration in
HB tissues is shown in Fig. 3A,B. Although transcriptional
downregulation in tumor tissues was observed in some cases,
increased expression was prevalent. In all categories we
identified genes whose expression was high in the fetal liver,
became reduced in healthy pediatric and adult organs, and was
er 2023. vol. 79 j 989–1005
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induced in tumors, including metastatic and recurrent tissues.
We confirmed the recently described upregulation of DNMT1,
DNMT3A, DNMT3B, TET1, TET2, TET3, UHRF1, EZH2, HDAC1
and HDAC2 in HB tissues.16,19,23,28,29 We also observed the
marked induction of other epigenetic genes involved in
tumorigenic processes, including MBD3, PRMT1, KMT5C,
G9a, NSD3, SMYD3, SUV39H2, JARID2, KDM1A, KAT2A,
HDAC11, SIRT7, BRD4 and SMARCA430–36 among others.
Interestingly, many genes overexpressed in HB samples were
already upregulated in peritumoral tissues compared to healthy
pediatric livers (e.g. ZBTB4,MBD6, PRMT1, KMTC5C, KDM6B,
SGF19, ING4, KAT8, KAT2B, SIRT7, BRD7, BRD4).

Pharmacological targeting of epigenetic regulators in
HB cells

We next evaluated the antiproliferative potential of selected
available epigenetic drugs in HB cell lines. We tested molecules
targeting different classes of epigenetic modifiers significantly
upregulated in tumor tissues, such as: DNMTs, KMTs
(SUV39H2, SMYD3, G9a, NSD3, EZH2), KDMs (KDM1A), HATs
(KAT2A), HDACs (HDAC1/3), PRMTs (Type-I PRMTs) and HARs
(BRD4). Albeit some inhibitors had limited efficacy (GI50 20-
100 lM), others showed GI50 values in the low micromolar
range (Table 1). Most effective compounds were among KMTs
inhibitors, and those targeting the KMT G9a stood out. The
best response was obtained with CM272, a potent substrate-
competitive inhibitor of G9a that also targets DNMT1.37 In
view of this, we tested CM272 in 11 well-characterized patient-
derived HB cell lines,38 validating a robust growth-inhibitory
effect (Table 2).

Characterization of G9a and DNMT1 as epigenetic targets
in HB

Epigenetic effectors undergo extensive functional crosstalk
among themselves and with other transcriptional regula-
tors.12,39 This has been well described for G9a, DNMT1, and
the epigenetic scaffold UHRF1 in different tumor types.19,39–41

We found a significant positive correlation between the
expression of G9a, DNMT1 and UHRF1 mRNA levels in HB
tissues (Fig. 4A). Moreover, the expression of these three genes
was higher in tumors within the epigenetic cluster Epi-CB and
the transcriptomic group C2A, which include patients with
poorer prognosis10,16(Fig. 4B,C). Increased levels of G9a,
DNMT1 and UHRF1 proteins, and the G9a-mediated H3K9me2
histone mark,41 were also validated by immunohistochemistry
in representative HB tissues vs. peritumoral parenchyma
(Fig. 4D, Fig. S2C), and in HB cell lines (Fig. 4E).

These findings, together with the observed antiproliferative
efficacy of G9a inhibitors, particularly CM272, on HB cells
supported an oncogenic role for G9a and DNMT1. Thus, we
further evaluated the effects of CM272 on HB cells and relevant
in vitro and in vivo models. Consistent with its pharmacological
targets, CM272 treatment decreased total levels of H3K9me2
and DNA methylation (Fig. 5A,B, Fig. S3A). CM272 markedly
autophagy-related proteins in CM272-treated HuH6 cells. (F) Metabolomic analysis
GSSG relative to untreated controls are shown. *p <0.05. Data are means ± SD. Pair
E). Data are individual values with means ± SD. Paired two-tailed Student’s t tests
glutathione; HB, hepatoblastoma; NES, normalized enrichment score. (This figure a
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inhibited HB cells’ clonogenic and migratory capacities
(Fig. 5C,D), without inducing apoptosis (not shown). Cisplatin-
based therapy is regularly implemented in patients with HB;
however, resistance frequently occurs or develops.1–3 Epige-
netic drugs may increase the therapeutic response to chemo-
therapy.21,22 Thus, we tested the effect of CM272 on cisplatin
efficacy in HuH6 and HepT1 cells. We found that cisplatin GI50
was reduced by 59% (from 2.7 to 1.1 lg/ml) and 62% (from 3.2
to 1.2 lg/ml) in HuH6 and HepT1 cells, respectively. Moreover,
CM272 had a synergistic growth-inhibitory effect when com-
bined with cisplatin or the PARP inhibitor olaparib (Fig. S3B,C).
We also evaluated the antitumoral efficacy of this molecule in
human HB organoids. CM272 inhibited organoids’ growth at
significantly lower concentrations than cisplatin (Fig. 5E).
Importantly, as opposed to cisplatin, it had no effect on healthy
organoids (Fig. 5E).

The antitumoral properties of CM272 were also validated in
a xenograft mouse model with a primary HB cell line from a
well-characterized tumor38 (Fig. 5F). Tumor growth inhibition
was accompanied by a tendency to reduced mitotic figures
(14–54 vs. 13–45 mitoses/20x field) and increased areas of
necrosis in treated mice, while no differences were found in
apoptotic cells (not shown). No signs of toxicity such as weight
loss or serum parameters of liver and kidney injury were
observed in treated mice (not shown). The significant anti-
proliferative efficacy of G9a inhibitors in HB cells suggests that
this KMT plays an important role in HB. Therefore we evaluated
tumor development in mice expressing constitutively active
forms of b-catenin (DN90-b-catenin) and YAP1 (YapS127A)
upon tail vein injection of hydrodynamic plasmids, a recognized
model for HB,42 using wild-type (WT) mice, and mice with
hepatocyte-specific deletion of G9a (G9aDhepKO) (Fig. 5G). We
observed that while WT mice had tumor-laden livers,
G9aDhepKO animals showed very few and smaller nodules
(Fig. 5G, Fig. S4A, B). Lesions in WT mice had more prominent
cellular crowding and more frequent mitoses (Fig. S4C). G9a
and DNMT1 proteins were readily detected in tumor nodules
(Fig. 5G). Expression of genes involved in HB development and
known to be induced in this mouse model, such as Ctgf, Cyr61,
Survivin1 and c-Myc,42 was markedly induced in WT mice tu-
mors, but not in G9aDhepKO liver tissues (Fig. 5G). Consistently,
RNA-sequencing analyses in this genetic model indicated that
G9a was a key determinant in the transcriptomic rewiring
observed in HB, and other pediatric tumors, including hepa-
tocellular dedifferentiation and the establishment of a c-MYC
signature characteristic of most aggressive HBs (Fig. S5A,B).

Mechanisms involved in the antitumoral effects of CM272
in HB

In view of the marked inhibition of tumorigenesis triggered by
DN90-b-catenin and YapS127A expression in G9aDhepKO
mouse livers, we first evaluated if CM272 had a direct effect on
the activity of these pathways, or if it affected the expression of
b-catenin and YAP inhibitors in HB cells. However, CM272
treatment did not affect b-catenin nor YAP nuclear
of HuH6 cells treated with CM272 (GI50, 48 h). Levels of amino acids, GSH and
ed two-tailed Student’s t tests were used (A). NES and significance are shown (B,
were used (F). GO, gene ontology; GSH, reduced glutathione; GSSG, oxidized

ppears in color on the web.)
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translocation, and with the exception of SFRP1 (see below) it
did not increase the expression of negative modulators of these
pathways (data not shown). To explore the antitumor mecha-
nisms of CM272, we examined the transcriptional responses of
HuH6 and HepT1 cells. In agreement with the observed anti-
proliferative and anticlonogenic activities, gene ontology (GO)-
based functional classification of differentially expressed genes
identified general categories related to cell growth, differentia-
tion and interaction with the cellular microenvironment (Fig. 6A).
According to the pharmacological activity of CM272, the
expression of RASSF1A, HHIP, SFRP1, IGFBP3, MAT1A and
FBP1, tumor suppressors and key metabolic genes epigeneti-
cally repressed in HB19,20 were induced (Fig. 6A, Fig. S6A), and
this response was accompanied by a decrease in the levels of
the G9a-mediated H3K9me2 repressive mark in their proximal
promoters (Fig. S6B). Perhaps more interestingly, and aligned
with categories identified by GO, gene set-enrichment analysis
(GSEA) revealed significant changes in the expression of genes
involved in the response to nutrient levels, amino acid transport
and metabolism, mRNA translation and rRNA processing
(Fig. 6B). These transcriptional effects were also captured by
proteomic studies in HuH6 cells. We identified 504 differentially
expressed proteins, of which 264 were upregulated and 240
downregulated. Downregulated proteins included membrane
transporters (SLC1A5, SLC39A7, SLC39A14), enzymes
involved in amino acid metabolism (PHGDH, PYCR1, PYCR2,
ASNS), and other metabolic pathways (TALDO1, HDLBP,
PCK2, MTHFD2), ribosomal proteins (RPL13, RPL21, RPL14,
RPL8) and additional proteins commonly upregulated in cancer
(POLD1, CBX3, YARS1) (Fig. 6C). Among the upregulated
proteins, we found enzymes (AHCY, HPGD) and negative reg-
ulators of tumor growth (FTH1, DDX28, YAF2) frequently
repressed in cancer. Interestingly, we also detected increased
levels of key autophagy proteins (TOMM7, SQSTM1, ATG3)
(Fig. 6C). GO functional analysis of differentially expressed
proteins overlapped to a great extent with transcriptomic data
(Fig. 6D). Similarly, GSEA revealed categories related to amino
acid transmembrane transport, RNA metabolism, ribosome
biogenesis and autophagy (Fig. 6E). To evaluate if the effects of
CM272 on the expression of genes involved in amino acid
transport and metabolism were functionally translated we
performed targeted metabolomic analyses. We observed sig-
nificant reductions in the intracellular levels of several essential
and non-essential amino acids, as well as in total glutathione
upon CM272 treatment (Fig. 6F, Fig. S7).
CM272 impairs the adaptive response of HB cells to high
metabolic demand

To sustain rapid proliferation and survival, tumor cells repro-
gram their metabolism to meet exacerbated bioenergetic and
biosynthetic demands. According to our multiomic analyses,
interference with this biosynthetic rewiring may underlie CM272
antitumoral activity. Consistently, we found that CM272
downregulated genes frequently induced in tumors such as the
amino acid deprivation in HepT1 cells. (G) Effect of CM272 pretreatment (GI50, 24 h) o
<0.05, **p <0.01, ***p <0.001. Data are means ± SD. Paired two-tailed Student’s t
Kruskal-Wallis ANOVA test was used (F, G). GSEA, gene set-enrichment analysis;
color on the web.)

Journal of Hepatology, Octob
amino acid transporters SLC7A11, SLC7A5, and SLC1A5; the
proline biosynthetic enzyme PYCR1;43 ASNS (asparagine
synthetase); the enzymes involved in serine and one carbon/
folate metabolism PHGDH and MTHFD2; and BCAT1
(branched-chain aminotransferase 1)43–45 (Fig. 7A, Fig. S8A).
SLC7A11, involved in cysteine uptake and commonly induced
in tumors contributing to malignancy,45 was among the most
potently downregulated genes. To test the functional signifi-
cance of SLC7A11 inhibition on the antitumoral effects of
CM272 we measured its efficacy in the presence of N-ace-
tylcysteine, a cell membrane-permeable cysteine precursor.
We observed that by replenishing intracellular cysteine levels
the GI50 of CM272 increased by threefold (Fig. S8B). Notably,
we also observed that CM272 reduced the expression of RPS6
(ribosomal protein S6), upregulated in cancer with pro-
tumorigenic consequences.46 Importantly, the expression of
most of these genes was significantly induced in HB tissues
and in correlation with that of G9a (Fig S9A,B). Interestingly, we
also validated the accumulation of the autophagy adaptor
protein p62 (sequestosome/SQSTM1) (Fig. 7A), indicative of
impaired autophagic flux.47

Cancer metabolic rewiring is frequently orchestrated by
oncogenes, among which c-MYC, with a central role in HB,5,8

stands out.44,45,48 Cairo et al. distinguished two tran-
scriptomic subclasses of HB, C1 and C2, with C2 tumors being
less differentiated and more aggressive.8 C2 tumors showed a
strong enrichment in the expression of bona fide MYC target
genes. We performed GSEA using this gene set, and the
“Hallmark MYC-targets V1” gene set, on the transcriptomic
data from HuH6 cells treated with CM272. CM272 induced a
significant negative enrichment in the expression of c-MYC
target genes (Fig. 7B). Consistently, c-MYC expression was
downregulated by CM272 in HuH6 and HepT1 cells (Fig. 7C,
Fig. S10A). Interestingly, CM272 not only downregulated c-
MYC mRNA levels, but it also reduced c-MYC protein half-life
(Fig. 7D, Fig. S10B). The effects of CM272 on c-MYC expres-
sion were reproduced with the G9a inhibitor UNC0642
(Fig. S10C). The involvement of c-MYC inhibition in the anti-
tumoral effects of CM272 was tested using HB cells over-
expressing the oncogene. We observed that the growth-
inhibitory activity of CM272, as well as its effects on the
expression of key metabolic genes, were attenuated upon c-
MYC overexpression (Fig. S10D,E).

Activating transcription factor 4 (ATF4) is also a critical
mediator of metabolic changes supporting cancer cell survival,
often in cooperation with c-MYC.45,49,50 We found that ATF4
expression is upregulated in HB in correlation with that of G9a
(Fig. S11A, B). Moreover, the expression of the lysine deme-
thylase KDM4C, recently reported to contribute to ATF4 tran-
scriptional induction in cooperation with G9a,51 was also
upregulated in HB tissues (Fig. S11C). Notably, GSEA of a well-
characterized ATF4 target gene set52 indicated that CM272
reduces ATF4 transcriptional activity (Fig. 7E). Consistently,
CM272 lowered ATF4 mRNA and protein levels in HB cells
(Fig. 7E, Fig. S10F). ATF4 is essential in the adaptive cellular
n the response of the indicated genes to amino acid deprivation in HepT1 cells. *p
tests were used (B–E). NES and significance are shown (B, E). Non-parametric
HB, hepatoblastoma; NES, normalized enrichment score. (This figure appears in
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response to reduced amino acids levels, triggering the
expression of genes involved in amino acid synthesis and up-
take.45 We observed that CM272, and UNC0642, markedly
blunted ATF4 upregulation induced by amino acid restriction in
HB cells (Fig. 7F, Fig. S10G). Consistently, the expression of
ATF4 target genes, including membrane amino acid trans-
porters and metabolic enzymes was markedly abated (Fig. 7G).
In agreement with these observations, we also found that the
expression of Atf4, and that of the ATF4 and c-MYC target
genes involved in amino acid transport, metabolism and ribo-
some biogenesis discussed above, was significantly reduced in
G9aDhepKO vs.WT mice in our HB model (Fig. S12A). Moreover,
overexpression of G9a in HB cells enhanced the expression of
c-MYC and ATF4, and regulated the levels of downstream
metabolic genes like SLC1A5 and FBP1 (Fig. S12B).

Taken together, all these findings suggested that CM272
can reprogram the transcriptome of HB towards a less malig-
nant and more differentiated phenotype. To further confirm this
tenet, we evaluated the effects of CM272 on the expression of
a gene set that defines the transcriptome of adult healthy he-
patocytes.53 To this end we selected HepT1 cells, which ac-
cording to the expression of this gene set are significantly less
differentiated than HuH6 cells (Fig. S12C). Interestingly, CM272
treatment induced a significant positive enrichment in the
expression of this complement of genes in HepT1 cells
(Fig. S12C). These transcriptomic effects had a functional
translation, as CM272 treatment promoted a shift in the relative
production of ATP from glycolysis to mitochondrial respiration,
thus counteracting the aerobic glycolysis characteristic of tu-
moral cells (Fig. S12D).

Discussion
Accumulating evidence indicates that epigenetic alterations
can play a role in HB development and response to therapy.
Dysregulation of DNA methylation has been recognized for
almost 20 years, and is currently considered a hallmark of HB,
enabling the identification of epigenetic subtypes with differ-
ential biological characteristics and prognosis.16,18,29 Yet,
epigenetic mechanisms are very complex and intertwined,
extending well beyond the control of DNA methylation. Muta-
tional burden is low in HB, even in its most aggressive
forms,6,54 and to our knowledge mutations in epigenetic
modifiers have not been reported. Conversely, the altered
expression/activity of epigenetic modifiers has increasingly
been recognized as contributing to malignancy in multiple
cancer types.12,22 In this study, we performed what we believe
is the most comprehensive analysis of the expression of
epigenetic modifiers in HB tissues. We observed significant and
consistent alterations, mostly upregulation, in the expression of
genes belonging to every category of epigenetic gene. Inter-
estingly, the overall pattern of epigenetic gene expression in HB
was reminiscent of that in the fetal liver, and is aligned with the
global DNA hypomethylation reported in fetal as well as HB
tissues.16 This finding, which is consistent with the global
transcriptomic reprogramming of HB towards prenatal pha-
ses,5 further underscores the involvement of epigenetic
mechanisms in HB development. In fact, we observed that the
upregulation of epigenetic genes was more pronounced in the
Epi-CB and C2A molecular subgroups, corresponding to
aggressive tumors resembling early developmental stages.10,16

Notably, the expression of a significant number of epigenetic
1002 Journal of Hepatology, Octob
modifiers in peritumoral tissues was already elevated
compared to healthy pediatric livers. This might indicate that
epigenetic alterations predisposing liver tissue to neoplastic
conversion may already occur before tumor development. This
“field cancerization” effect is well recognized in hepatocellular
carcinoma development,55 as these tumors normally arise on a
background of chronic injury and inflammation, while in HB,
underlying liver disease is generally absent at diagnosis.
However, recent observations indicate that field cancerization
may also be involved in HB,56 and our findings suggest that
dysregulated expression of epigenetic modifiers may be part
of it.

The reversible nature of epigenetic PTMs makes targeting
these mechanisms an attractive strategy for cancer therapy.21

Our transcriptomic screening for relevant epigenetic genes in
HB identified the consistent upregulation of the KMT G9a,
particularly in tumors with more aggressive clinical and mo-
lecular profiles. Pharmacological interference with G9a meth-
yltransferase activity markedly inhibited the in vitro and in vivo
growth of primary HB cells, as well as that of HB tumoroids.
The involvement of G9a in HB development suggested by our
molecular tool CM272 was further substantiated in vivo. Tumor
development upon hepatic delivery of oncogenic forms of b-
catenin and YAP1, a genetic model of HB,42,48 was blunted in
mice lacking G9a expression in hepatocytes. As shown by
ourselves and others, elevated G9a expression contributes to
malignant traits in solid tumors.32,41,57 Notably, the pro-
tumorigenic activities of G9a, including the repression of tu-
mor suppressor genes (TSGs), are frequently mediated in as-
sociation with the DNMT1/UHRF1 complex.32,57 We found a
strong correlation between G9a, DNMT1 and UHRF1 expres-
sion in HB tissues and, most interestingly, the dual G9a/DNMT1
inhibitor CM272 reactivated the expression of key TSGs known
to be repressed by the DNMT1/UHRF1 complex in HB cells in
association with increased H3K9 methylation, the outcome of
G9a activity.19

To elucidate the antitumor mechanisms of CM272 in HB in
an unbiassed manner and beyond the reactivation of TSGs, we
performed a series of multiomic analyses. Cancer cells repro-
gram their metabolism to boost biosynthesis of cellular building
blocks and fuel bioenergetic demands to sustain uncontrolled
proliferation and growth.44,45 These critical responses encom-
pass activation of the uptake and synthesis of amino acids,
including non-essential amino acids,43,45 ribosome biogenesis,
protein synthesis, and salvage autophagy, among other re-
actions supporting macromolecule synthesis.44,49,52 We
observed that CM272 markedly reduced the expression of
amino acid transporters (SLC1A5, SLC7A5, SLC7A11), meta-
bolic enzymes (BCAT1, PYCR1, ASNS), as well as genes
involved in ribosome biogenesis, RNA processing and trans-
lation, such as RPS6, which are often upregulated in cancer
cells.43,44,46 These genes, which we also found overexpressed
in HB tissues, are known to be important for malignant cell
growth.44–46 Moreover, the downregulation of SLC7A11
expression and the concomitant reduction in intracellular
reduced glutathione levels may underlie the increased efficacy
of cisplatin in CM272-treated HB cells.58

Taken together, our findings indicate that c-MYC antago-
nism could be a major determinant of the antitumor effects of
CM272. Indeed, G9a inhibition markedly antagonized the c-
MYC-driven transcriptome in HB cells. This oncogene, a well-
er 2023. vol. 79 j 989–1005
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known target of the Wnt/b-catenin pathway, is frequently
overexpressed in HB.5,8,56 Furthermore, c-MYC is essential for
the development of experimental HB triggered by oncogenic b-
catenin and YAP1 expression in mouse livers.42,48 Notably,
when this same HB model was implemented in G9aDhepKO
mice, c-MYC expression was blunted and tumor development
was drastically reduced, phenocopying the response of c-
MYC-KO animals.48 These observations may have broader
significance, as they support an important role for G9a in c-
MYC-driven tumorigenesis in vivo.59 c-MYC is a master regu-
lator of the transcriptional metabolic reprogramming occurring
in cancer, and this reprogramming is central to c-MYC-induced
tumor growth.44,50 Direct targets of c-MYC include the afore-
mentioned amino acid transporters, enzymes, and ribosomal
proteins downregulated by CM272 in HB cells. We found that
G9a inhibition reduced c-MYC mRNA levels, which is consis-
tent with recent findings in multiple myeloma cells.60 Addi-
tionally, we also observed that G9a targeting significantly
decreased c-MYC protein half-life. Although the underlying
mechanisms merit further investigation, our current observa-
tions, together with the notion that c-MYC can in turn trigger
G9a expression in breast cancer cells,59 emphasize the strong
interaction between these two genes in cancer.

Interestingly, the transcription factor ATF4 cooperateswith c-
MYC in regulating multiple metabolic genes, with ATF4 being
critical for c-MYC-dependent tumorigenesis in certain cell
types.45,50 ATF4 expression is mainly regulated at the trans-
lational level; however, increased ATF4 transcription has been
found in certain tumors.49,52 We showed that ATF4mRNA levels
are elevated in HB tissues in correlation with those of G9a.
Activation of ATF4 is essential for the adaptation of cancer cells
to nutrient limitation, prominently to the lack of amino acids, as
Journal of Hepatology, Octob
occurs inside a growing tumor mass.49 Concomitant with the
reduction in amino acid levels detected in CM272-treated HB
cells, we observed a significant downregulation in ATF4 gene
expression. Furthermore, the potent induction of ATF4 expres-
sion elicited by amino acid restriction was abated upon G9a in-
hibition. It has beenshown thatATF4 transcription is activatedby
the histone demethylase KDM4C, which reduces the repressive
H3K9me2 and H3K9me3 marks on the ATF4 promoter.51 As we
observed increased KDM4C expression in HB tissues, it is
tempting to speculate that the concomitant upregulation of
KDM4C andG9a could result in increased levels of the activating
H3K9me1 mark on the ATF4 promoter. Nevertheless, the inter-
playbetween these twoepigenetic effectors inATF4 regulation in
HB requires further elucidation.

Altogether, we have shown a remarkable alteration in the
landscape of epigenetic effector expression in HB tissues.
Among them, we identified the KMT G9a as a strong candidate
involved in HB growth. Our mechanistic studies also led us to
expose the extensive metabolic reprogramming taking place in
HB. As observed in other solid tumors, c-MYC, in cooperation
with ATF4, may play a central role in this metabolic rewiring.
However, pharmacological inhibition of c-MYC has not been
achieved yet, and thus alternative pathways to antagonize c-
MYC function need to be defined. We demonstrated that G9a
inhibition impaired c-MYC expression, inducing a state of
metabolic anergy and leading to growth suppression in HB
cells. These effects were accompanied by the induction of
genes characteristic of the adult differentiated hepatocyte and
the consistent reprogramming of ATP metabolism. This study
suggests that epigenetic drugs may hold promise for the
treatment of patients with HB, particularly those with more
aggressive forms of the disease.
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