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Frontoparietal network topology as a neural
marker of musical perceptual abilities

M. Lumaca 1 , P. E. Keller 1,2, G. Baggio 3, V. Pando-Naude 1,
C. J. Bajada 4,M. A.Martinez5, J. H. Hansen5, A. Ravignani1,6, N. Joe 1, P. Vuust1,
K. Vulić7 & K. Sandberg 5

Why are some individuals moremusical than others? Neither cognitive testing
nor classical localizationist neuroscience alone can provide a complete
answer. Here, we test how the interplay of brain network organization and
cognitive function delivers graded perceptual abilities in a distinctively human
capacity. We analyze multimodal magnetic resonance imaging, cognitive, and
behavioral data from 200+ participants, focusing on a canonical working
memory network encompassing prefrontal and posterior parietal regions.
Using graph theory, we examine structural and functional frontoparietal net-
work organization in relation to assessments of musical aptitude and experi-
ence. Results reveal a positive correlation between perceptual abilities and the
integration efficiency of key frontoparietal regions. The linkage between
functional networks and musical abilities is mediated by working memory
processes, whereas structural networks influence these abilities through sen-
sory integration. Our work lays the foundation for future investigations into
the neurobiological roots of individual differences in musicality.

A central goal in cognitive neuroscience is to determine how neuro-
cognitive variability gives rise to interindividual differences in human
cognitive capacities and behaviors1–3. In the past decade, this line of
inquiry has gained traction in music science4 with the quest to eluci-
date the biological bases of the spectrum of variability in musical
aptitude within human populations5. This knowledge does not only
facilitate the development of neuroimaging biomarkers useful in
rehabilitation and educational settings6,7, but also has the potential to
inform us on the neurobiological underpinnings of musicality in
humans8. Our study specifically focuses on musical competence, a
universal and distinctly human perceptual ability9 characterized by
significant individual differences across the general population10.
Musical perceptual abilities are deeply rooted into our neurobiology9,

scaffolded by domain-general neurocognitive systems such as atten-
tion and working memory11–13. It remains a relatively unexplored issue
how variability in the neural architecture of these systems affects the
wide range of music perceptual competencies observed across indi-
viduals. Our research employs network neuroscience andgraph theory
on a comprehensive MRI, cognitive, and behavioral dataset (n > 200)
to examine the neurocognitive markers of music perceptual abilities
within the general population of music listeners.

Musical competence, the ability to perceive, remember, and dis-
criminate music14, is a critical component of human musicality and
hinges on core perceptuo-cognitive skills, including sensory integra-
tion, auditory discrimination, attention, andworkingmemory.As such,
musical competence is underpinned by the activity of extensive
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sensory and cognitive networks15. As a universal human ability emer-
ging early in humandevelopment16–18, it differs frommusic production,
which necessitates specialized motor skills and technical musical
knowledge (with the partial exception of singing19,20). It displays sig-
nificant variabilitywithin the general population, especially in thepitch
and rhythmic domains10,21. The neural investigation of perceptual
abilities that are minimally dependent on formal musical training may
offer deeper insights into the biological bases of individual differences
inmusical abilities5. Despite being grounded in the activity of complex
networks, musical abilities have been mainly addressed in neu-
roscience either focusing on the neural activation22,23 and
morphology24,25 of single brain regions or on the pairwise associations
(functional26,27 or structural28–31) of specific brain areas. A more holistic
and richer understanding of the neural underpinnings of musical
abilitieswould benefit fromanetwork-level approachonbraindata32 in
combination with an objective test of music perception.

Network neuroscience, recognizing the distributed nature of
music perceptual faculty, offers a compelling framework for this
endeavor33,34. It conceptualizes the brain as a complex network35: a
wiring diagram (or “graph”) consisting of nodes (distinct brain regions
or neural populations) linked by edges. In functional brain networks,
edges represent temporal relationships between activity in different
brain regions (e.g., based on estimates of functional connectivity36). In
structural brain networks, edges represent white matter tracts that
connect these regions, most often obtained using diffusion
tractography37. Network representations of the human brain offer two
main benefits. Firstly, they facilitate the description of higher-order
multivariate connectivity patterns and are thus more informative than
simpler estimates of bivariate connectivity. Even relatively basic cog-
nitive processes rely on the activity of interconnected elements within
a networked system. Secondly, network representations allow for
quantitative analysis of functional and structural connectivity patterns
within a unified mathematical framework: graph theory38. Leveraging
graph theory, network neuroscience quantifies three key properties of
brain networks: integration (enabling efficient processing of dis-
tributed information), segregation (supporting specialized processing
within localized clusters), and centrality (highlighting the importance
of hub regions in functional integration)39. By employing graph theory
on both structural and functional brain networks, this approach
effectively bridges the domains of neuroanatomy and brain dynamics.
The static architecture of functional and structural brain networksmay
thus provide the basis to understand the links between anatomical
organization, information processing, mental representations, and
behavior40,41. Research studying functional brain networks from
resting-state fMRI (rs-fMRI) and structural brain networks from diffu-
sion MRI (dMRI) indicates that nuances in such network properties
relate to differences in general cognitive abilities, including intelli-
gence,WM capacity, and cognitive control42–47. Such findings highlight
the potential of network neuroscience to inform our understanding of
how variation in relatively static aspects of brain organization shapes
variability in human cognition and behavior, including music percep-
tion and production.

Standardized objective tests of music perceptual abilities include
the Musical Ear Test (MET)48, the Advanced Measures of Music
Audiation49, the Profile of Music Perception Skills50, and the Swedish
Musical Discrimination Test51. These tests mainly assess abilities in
detecting pitch and timing variations in musical sequences, providing
reliable measures of music competence that can be effectively related
to brain network configurations. Among these tests, the MET, a well-
established test ofmusical aptitude, has undergone validation in large-
scale studies with listeners from different countries and diverse cul-
tural backgrounds21,52–54. It is notable for its openly accessible format,
correlating robustly with musical imitation scores used in musical
academies, without being influenced by demographic factors such as
age, sex, socio-economic status52, or personality traits21. Despite its

short duration (~20minutes) compared to the other tests (>40min-
utes), the MET maintains robust psychometric properties48. Unlike
aptitude or talent, ‘competence’ is a term that remains neutral, not
favoring either innate qualities (nature) or learned skills (nurture). This
test is effective in assessing interindividual differences in individuals
without formal musical training (‘non-musicians’), accounting for
latent musical capacities that can lead these individuals to outperform
the average musician’s MET scores21. The MET is also positively cor-
related with implicit (self-reported) measures of general musical
sophistication, like the widely used Goldsmiths Musical Sophistication
Index21,55. Consequently, the MET, when used in combination with
network neuroscience, is a reliable and ecologically valid tool for
exploring the network-level neural foundations of the human capacity
for music and in assessing how subtle neural variations affect musical
skills in the general population.

The biological roots of the human capacity for music have gar-
nered increased attention in the past decade within the fields of cog-
nitive science and biomusicology8,56. Despite limitations in defining the
components of musicality, this faculty is thought to arise from the
complex synergy of various perceptuo-cognitive elements, each with
unique neurobiological foundations and evolutionary histories56.
Workingmemory (WM), a neurocognitive systemwith limited capacity
crucial for temporary storage and manipulation of sensory
information57, is a foundational component of musical perceptual
abilities12 with a well-characterized network topology58–62. Research in
music psychology and neuroscience indicates a hierarchical process in
music perception involving serial-to-parallel conversion, integrating
auditory elements into increasingly complex musical structures, from
basic chunks to completemelodies63. Suchaprocess hinges on theWM
system’s ability to retain lower-level units while integrating new
information to form more elaborate musical constructs. Musical abil-
ities, as assessed with the MET, correlate significantly with WM capa-
city: greaterWMcapacity often translates to superiormusical skills14,64.
The brain network underpinnings of this relationship remain unex-
plored. WM relies on the integration of past and current sensory
information from a large-scale network65, whose core infrastructure
comprises bilateral dorsolateral prefrontal cortices and posterior
parietal cortices66–68. Higher WM scores are associated with strongly
integrative networks, promoting efficient inter-regional communica-
tion and rapid combination of information from distributed
regions65,69–71. Previous research showed that children with musical
training exhibit improved cognitive flexibility compared to their non-
trained counterparts, a phenomenon linked to increased brain acti-
vations in frontoparietal regions11. The extensive characterization of
frontoparietal networks and their relevance tomusical behaviors allow
us to formulate strong a priori hypotheses regarding their potential to
serve as brain network markers for music perception. Exploring the
relationship between MET scores, WM, and frontoparietal network
topology, both at a functional and structural level, could enhance our
understanding of the impact of domain-general neurocognitive sys-
tems on music perception and how they help shaping individual
differences72.

Our study employs graph theory analyzes to investigate the
impact of functional and structural WM neural organization on music
competence, integrating multimodal neuroimaging with behavioral
and cognitive data.While previous research has focused on the effects
ofmusic listening and training on brain network configuration73–77, our
investigation reverses this viewpoint. We specifically explore how
subtle interindividual differences in the frontoparietal network (FPN)
relate to differences in music competence, assessed using the MET.
Our hypothesis is thatmore globally efficient functional and structural
FPNs may enhance the hierarchical processing and integration of
musical elements, their retention in a temporary buffer, and their
comparison with previous musical information, thereby positively
impacting themusical competence of listeners. To assess the cognitive
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capabilities of our participants, we collected from them cognitive data
using theWechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV)78,
which includes a WM index. Musical ability extends beyond mere
perception and encompasses emotional and affective components
contributing to musical experience79. Alongside cognitive and beha-
vioral assessments, participants completed the Goldsmiths Musical
Sophistication Index (Gold-MSI)10, a self-report questionnaire detailing
formal and informal musical behaviors, experiences, and skills, which
includes an evaluation of affective reactions to music. This addition
allows us to explore whether the positive relationship between affec-
tive and perceptual capacities reported in previous studies10 is partly
rooted in the neural organization of WM systems. Neuroimaging
researchon individual differences requires large sample sizes (n > 100)
to obtain reproducible findings80–82. Also, graph theory should be
applied to both functional and structural modalities to achieve a
comprehensive understanding of how the organization of functional
and structural brain networks differently contributes to human beha-
vior. The large sample size of this study, in combination with a
network-of-interest approach that relies on a priori hypotheses, aims
to address the issue of low statistical power in individual differences
studies. Our use of graph theory in both functional and structural brain
networks can further help in assessing their distinctive role in support
of human behavior. The anticipated results are expected to shed light
on the impact of brain network variability on the broad spectrum of
musical abilities observed in humans and to inform future theories of
howbiological variabilitymay impactmusicdiversitywithin and across
human cultures83–86.

Results
Overview of the experimental design and analysis pipeline
Our dataset comprised MET48, Goldsmiths Musical Sophistication
Index (Gold-MSI)10, and Wechsler Adult Intelligence Scale (WAIS-IV)78

scores, alongwith functional and structural scans, froma large number
of healthy adults (Table 1). Participants were mostly non-musicians
(Suppl. Fig. 1). Non-musicians were selected in order to isolate neu-
robiological factors related to natural musical perceptual abilities,
minimizing the influence of well-documented environmental factors,
such as exposure to music and years of music training87. Our study
aimed to elucidate the interplay between the structural and functional
architecture of the frontoparietal network (FPN) and musical compe-
tence. We assessed the relationship between individuals’ propensities

for integration or segregation within the FPN and their musical ability.
This entailed examining how musical competence correlates with the
organization of FPN nodes, either in facilitating efficient communica-
tion and integration across distal nodes (indicated by higher global
efficiency and centrality) or in forming specialized, segregated clusters
(reflected by higher clustering coefficient and local efficiency). Global
efficiency is the most commonly used measure of functional integra-
tion, while in structural brain networks efficiency and centrality are the
relevant metrics88. Additionally, we probed the potential mediating
role of a domain-general cognitive feature, namelyWM, in these brain-
behavior correlations. Musical competence was quantified using the
percentage of MET total scores.

The analysis pipeline of this study is depicted in Fig. 1 (see
“Methods” for a detailed description). For each participant, an anato-
mical image underwent parcellation using the Destrieux atlas89,90,
which subdivides the human cerebral cortex into 148 distinct sulcal-
gyral cortical parcels (74 homologous regions) based on anatomical
landmarks and cytoarchitectonic boundaries. The resulting parcella-
tion was fed into the pipeline for the construction of functional and
structural networks (or connectivity matrices). In connectivity matri-
ces, each parcel is a node, and each pair of nodes is connected via a
functional or structural link (edge). These connectivity matrices dis-
play a comprehensivemapof connections between all pairs of nodes in
the parcellated brain. From these connectivity matrices, 16 cortical
nodes were selected to define two new subnetworks: a frontoparietal
(FPN) network of interest and an occipital network which served as a
control. Figure 2displays these two subnetworks.The FPN, selected for
the main analysis, included the bilateral dorsolateral prefrontal cortex
(middle and superior frontal gyrus and sulcus)91,92 and bilateral pos-
terior parietal cortex (inferior and superior parietal lobule, and intra-
parietal sulcus)93,94. In separate analyzes, functional and structural
matrices were filtered using a multi-threshold approach and were
binarized to create adjacencymatrices. Graph theorymetrics of global
efficiency, local efficiency, clustering coefficient, and betweenness
centrality88 were calculated from these subnetworks (Fig. 3) and
entered as dependent variables in amultiple regression analysis where
the percentage of MET total scores was the main predictor. A media-
tion analysis using structural equation modeling (SEM) assessed the
indirect influence of WM on the effect of topological nodal metrics on
the percentage of MET total scores.

Graph theory results for the structural networks
Figure 4A shows the results for the structural FPN (Suppl. Table 5). We
observed a positive correlation between percentage of MET total
scores and centrality in the right superior frontal gyrus (SupFG)
(F = 4.40, pFDR = 0.0002) and the right superior parietal lobule
(SupPL) (F = 3.70, pFDR = 0.002). Additionally, in the right SupPL,
percentage of MET total scores was associated positively with global
efficiency (F = 3.16, pFDR = 0.029). In contrast, a negative association
was found between percentage of MET total scores with segregation
measures in the right SupFG (local efficiency: F = −4.34, pFDR =
0.0003; clustering coefficient: F = −4.78, pFDR = 0.00004) and SupPL
(local efficiency: F = −4.21, pFDR = 0.0003; clustering coefficient:
F = −4.61, pFDR =0.00006). These results suggest that individuals
exhibit superiormusical perceptual abilities when the topology of FPN
physical pathways, within these two brain regions, implies stronger
potential for functional integration. Conversely, a potential for func-
tional segregation in these two nodes is associated with comparatively
worse musical perceptual abilities. No significant results were found
between graph theory metrics in the occipital control network and
MET scores (Suppl. Table 6).

Graph theory results for the functional networks
Figure 4B displays the results for the functional FPN (Suppl. Table 7). A
positive correlation was found between the global efficiency of the

Table 1 | Descriptive statistics for MET and Gold-MSI sub-
scales (N = 241)

Mean SD Range

MET Score Range

Total 73.53 9.16 38–94

Melody 35.99 5.52 24–49

Rhythm 37.80 4.59 25–48

Gold-MSI scores Score Range (theore-
tical max)

Active engagement 30.32 9.17 25–48 (63)

Perceptual abilities 41.95 8.09 17–63 (63)

Musical training 14.04 9.28 2–47 (49)

Emotions 28.97 6.67 9–43 (49)

Singing abilities 24.10 7.46 9–49 (42)

General sophistication 59.61 16.90 27–121 (126)

MET: Melody and Rhythm scores were calculated from 52 trials. Total scores were calculated from
104 trials. In this table, we report the descriptive statistics of the raw scores. Gold-MSI: Active
Engagement (amountof timeandmoneyspent inmusic-relatedactivities); PerceptualAbilities (self-
reported accuracy of music listening skills); Musical Training (amount of formal musical training
received); Emotions (ability to talk about emotions expressed in music); Singing (self-reported
accuracy of one’s own singing); General Sophistication (general index of musical sophistication).
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right middle frontal gyrus (MFG) and percentage of MET total scores
(F = 3.06, pFDR = 0.043), indicating that in individuals with higher
music perceptual abilities, the right middle frontal gyrus efficiently
communicates with andmost likely integrates specialized information
from other FPN regions. Notably, no significant correlations emerged
between the graph theorymetrics of the occipital control network and
MET scores (Suppl. Table 8).

Relationship between WM, music competence, and FPN
topology
A significant relationship (r = 0.21, pFDR <0.01) was observed between
WMI scores from the WAIS-IV and percentage of MET total scores
(Suppl. Fig. 3), indicating that higher WM scores are linked to superior
musical perceptual abilities in the MET. To explore the association
between FPN topology andWMperformance, we examined the impact
of graph theory metrics (dependent variable), alongside WMI scores
(independent variable), age, sex, andMusical Training Index (nuisance
regressors), in a linear multiple regression framework. Our analysis of
functional brainnetworks revealed a positive correlationbetweenWMI
scores and the global efficiency of the right MFG (F = 3.18, r = 0.20,
pFDR=0.02), supramarginal gyrus (F = 2.70, r = 0.19, pFDR=0.03), and
superior frontal sulcus (F = 2.71, r = 0.17, pFDR = 0.03) (Suppl. Table 9).
This result suggests that efficient communication and integration
capabilities of these right hemispheric brain regionswithin the FPN are
conducive to enhanced WM performance. Conversely, no significant
associationswereobservedwithWMI scores using nodalmetrics of the
functional occipital control network or metrics from structural net-
works (FPN and occipital) (Suppl. Tables 10–12).

WM mediates the relationship between rMFG efficiency and
music competence
A mediation model was developed to explore the relationship among
the efficiency of the right MFG (rMFG) within the functional FPN, WM
performance, and music competence. We hypothesized that WM
would mediate the relationship between rMFG efficiency and musical

competence. To test this hypothesis, we constructed a structural
equation model (SEM). The model included rMFG global efficiency as
predictor and the percentage MET total scores as dependent variable.
Bootstrap resampling procedures were leveraged to derive robust,
bias-corrected, accelerated confidence intervals for the parameters of
interest. Table 2 and Fig. 5 display the statistics of mediation effects in
the SEM. The SEM indicated a significant direct impact of rMFG effi-
ciency onWMI scores (standardized beta = 0.21, p =0.002). The direct
path fromWMI to percentage of MET total scores was also significant
(standardizedbeta =0.18,p =0.010). Additionally, rMFGefficiency had
a significant direct effect on musicality (standardized beta = 0.17,
p =0.013). Critically, the indirect effect of rMFG efficiency on musi-
cality, mediated through WMI, was significant (standardized beta =
0.21, 95% CI [1.180 to 12.477]). In summary, the results demonstrate
both direct effects of global neural efficiency onWM andmusicality as
well as an indirect pathway linking neural function to musical com-
petence through domain-general cognitive abilities.

Relationship between emotion, musical competence, WM and
FPN topology
A significant correlation was found between Gold-MSI Emotions sub-
scale and musical competence (Suppl. Fig. 3). This suggests that skills
in expressing musical emotions verbally affect, or are affected by,
musical abilities. However, no significant correlation was found
between Gold-MSI Emotions subscale and WMI (Suppl. Fig. 3;
r = −0.02, pFDR = 0.74). Similarly, no significant associations were
observed between the Emotions subscale and nodal metrics of the
functional and structural networks (FPN and occipital) (Suppl.
Tables 13–16).

Discussion
Using graph theory to analyze a large dataset of over 200 individual
brains (diffusion and resting-state fMRI), combined with cognitive and
musical ability assessments, we show how domain-general frontopar-
ietal networks (FPNs) implicated in working memory (WM) influence

Fig. 1 | Flowchart of the main analysis pipeline for single-participant data.
Anatomical data is parcellated into 148 cortical parcels (nodes) using the Destrieux
parcellation scheme. The fMRI surface data is aligned to this parcellation using
functional-structural coregistration, and spontaneous BOLD activity is extracted
from each node. Statistical relationships of this activity are computed for each pair
of nodes, creating a functional connectivity matrix (functional connectome; in
blue) that highlights the functional connections between all the cortical regions
(148× 148). In parallel, whole-brainACT is performed forHARDI images and aligned
to the Destrieux’s atlas, obtaining pairwise white matter associations between all

nodes (structural connectome; in green) (148 × 148). After defining two specific
subnetworks of 16 nodes each—frontoparietal and occipital—graph theory and
multiple regression analyzes are applied to examine the relationship between
musical scores and network topology (16 × 16). Finally, a mediation analysis is
conducted to determine if the relationship between brain network topology and
music perceptual scores ismediated byworkingmemory capacities. Abbreviations:
ACT anatomically constrained tractography, HARDI High Angular Resolution Dif-
fusion Imaging, rs-fMRI resting-state functional MRI, MET musical ear test, WMI
Working Memory Index.
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music perception skills in humans. Specifically, we found that higher
global communication efficiency in structural and functional FPNs,
notably in key areas of the right dorsolateral prefrontal cortex and the
right superior parietal lobule, correlated positively with enhanced
music perceptual skills. Critically, differences emerged when com-
paring results for functional and structural networks. For functional
networks, global efficiency in right middle frontal gyrus (rMFG) was
significantly associated with both musical competence and WM, the
latter serving as a mediator in the direct influence of FPN organization
on musical aptitude. Conversely, such direct association with WM
performance was not observed for key regions of the structural net-
works. These results were based on brain images acquired during rs-
fMRI and diffusion MRI scans, not during a musical or cognitive task.

The findings suggest that the inherent organization of FPN’s core
components may serve as a neural marker for musical perceptual
abilities in the general population, with distinct roles played by func-
tional and structural network organization.

Musicality, a multifaceted human trait, is the product of domain-
specific perceptual skills, such as pitch and rhythm perception, and
broader cognitive functions like attention and WM. Research into its
neurobiological roots necessitates a divide-and-conquer approach,
deconstructing musicality into its fundamental perceptual and cogni-
tive components for isolated examination56,95. Previous research has
mainly focused on the anatomy and function of auditory networks to
elucidate the neurobiological bases of music perceptual components
and their variability. Thesefindings show that the diverse performance

Fig. 2 | Target networks for graph theory analysis. A The frontoparietal network
included frontal cortical nodes (yellow) subserving high-order cognition and pos-
terior parietal nodes (green) involved in sensory integration. The occipital network
we used as a control consisted of occipital, occipito-temporal and occipito-parietal
cortical nodes supporting visual information processing. Each network contained
eight homologous nodes per hemisphere. B Diagrams for functional (left) and
structural brain networks (right). The color intensity of each edge reflects the
proportion of participants exhibiting a connection between two nodes (range 0:1)
across multiple network thresholds. The graph only displays the top 50% of the
most robust connections. Darker blue signifies connections present in all or nearly
all participants, a consistency maintained across all proportional thresholds from

0.15 to 0.30 in 0.01 increments. Complementing heatmaps are shown below each
diagram. Abbreviations: LH - Left Hemisphere; RH - Right Hemisphere; MFG -
middle frontal gyrus; SupFG - superior frontal gyrus; MFS - middle frontal sulcus;
SupFS - superior frontal sulcus; SuMarG - supramarginal gyrus; IntPS - intraparietal
sulcus; SupPL - superior parietal lobule; AngG - angular gyrus; InfOcG/S - inferior
occipital gyrus (O1) and sulcus; MOcG - middle occipital gyrus (O2, lateral occipital
gyrus); SupOcG - superior occipital gyrus (O1); FuG - lateral occipito-temporal gyrus
(fusiform gyrus, O4-T4); Cos/Lins - medial occipito-temporal sulcus and lingual
sulcus; OcPo - occipital pole; AoCs - anterior occipital sulcus and preoccipital notch
(temporo-occipital incisure); PoCs - parieto-occipital sulcus (or fissure).
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in discriminating and encoding music can be predicted by differences
in the spontaneous activity of the auditory cortex23 and in howstrongly
the left and right auditory cortices are functionally connected26,27,96.
Additionally, greater integrity of cross-callosal auditory projections is
associated with superior music-related perceptual skills30,97. So far, the
examination of the neural foundations of musical aptitudes has faced
two main constraints: relatively small sample sizes (n = 20–100) redu-
cing result replicability80,81 and a narrow focus on pairwise connectivity
between brain regions. These approaches have been effective in
highlighting the key role of bilateral auditory networks in music per-
ceptual abilities. However, they neglect the myriad of other connec-
tions that constitute the human brain architecture and that may
support other components of musicality. Network-based methods for
studying brain connectivity are optimal for gaining insights into how
clusters of brain regions coordinate to support cognitive and per-
ceptual capacities effectively.

A pivotal discovery of this study is the significant role played by
the functional topology of the rMFG, a key region of the dorsolateral
prefrontal cortex (DLPFC), in predictingmusic perceptual abilities in a
large sample of individuals. We found that this effect was partly
mediated by WM. The rMFG is critical for higher-level cognitive pro-
cesses, including executive functions and WM98–100. Accordingly,
functional studies linking WM and music perception often report
DLPFC activity101,102. Platel and colleagues103 observed bilateral activa-
tion in Brodmann areas 9 and 10 of the middle frontal gyri during an
episodic music memory task, using PET scans. They attributed this
DLPFC activity to the perceptual analysis of melodies in WM. Notably,
the rMFG is also implicated in the perception of rhythmic structure in
music104,105, underscoring the critical role of WM functions in the

perception of durations in auditory stimuli. One hypothesis is that
DLPFC might mediate the critical memory processes required during
music perception (encoding, maintenance, and integration) via inter-
actionwithposterior parietal regions, likely the seatof internal sensory
or perceptual representations58. Our findings indicate that this opera-
tion is more effective when an efficient functional organization is in
place, such as more direct functional routes between rMFG and the
rest of the network. This would explain the superior music abilities in
participants with higher intrinsic global efficiency in the prefrontal
region. Our finding corroborates network neuroscience research
indicating that a network’s information processing performance can
be augmented by sparse functional configurations that yield dis-
proportionately high efficiency43,106. Here, we show that this type of
organization in FPNs can provide a neuromarker ofmusic competence
in the general population.

The lack of a direct one-to-one correspondence between struc-
tural and functional networks107 may account for the divergent out-
comes observed in our graph-theoretic analyzes of these networks.We
observed that the integration capabilities and centrality of the right
superior parietal lobule within the structural FPN network predict
musical competence but do not correlate with WM performance. This
finding is consistent with prior research indicating a stronger asso-
ciation of cognitive performancewith functional rather than structural
connectivity108–111. Resting-state functional connectivity is more closely
associated with high-level cognitive tasks such as WM likely due to its
dynamic and flexible nature112, which aligns with the complex and
temporally integrated demands required by these tasks. Conversely,
structural connectivity is more closely linked to tasks with significant
sensory components, such as spoken language perception111,113,

Fig. 3 | Schematic representation of the four graphmetrics computed for each
node of the network. These metrics reflect three key informational properties of
brain networks: integration (global efficiency), centrality (betweenness centrality),
and segregation (clustering coefficient and local efficiency). In the diagram, nodes
where the graphproperties register lowvalues aremarkedwith red circles, whereas
nodes exhibiting high values are denotedwith green circles. Shortest path length is
defined as the minimum number of steps required to travel from one node to
another within the network. Higher shortest path length values suggest that more
steps are needed to connect twonodeswith adjacent nodes (or neighbors) having a

path length of 1. A nodehashigh global efficiency if it canquickly reach other nodes
through short paths, making it efficient in spreading information across the net-
work. A node displays high betweenness centrality if it is crossed by a large number
of shortest paths in the network. A high clustering coefficient is found in nodeswith
neighbors that are highly interconnected. A similar measure is the one of local
efficiency. A node has high local efficiency if the average shortest path length
among its neighboring nodes is low (i.e., its neighbors can efficiently exchange
information among themselves).
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Fig. 4 | Neurobehavioural correlations for the structural and functional fron-
toparietal networks. A Scatterplots showing linear relationships between graph
theory metrics of integration (global efficiency), segregation (clustering coefficient
and local efficiency) and centrality (betweenness centrality) (x-axis) and percentage
of MET total scores (%MET total; y-axis) for the right superior parietal lobule (light
green color; on the left) and the right superior frontal gyrus (cyan color; on the
right) within the frontoparietal network (N = 225).B Scatterplots for the association
between graph theory metrics for the right middle frontal gyrus (rMFG) within the
functional frontoparietal network (yellow color) and percentage of MET total

scores (N = 232). Only the relationship with the global efficiency of this node was
significant. Multiple regression analysis using GLM was conducted to assess the
statistical significance of the correlations shown in both panels. For each scatter-
plot, the Pearson’s correlation coefficient (R), along with the corresponding
F-values and false discovery rate (FDR)-corrected p-values (q< 0.05, two-tailed), are
reported in the Results section. The shaded gray area in the scatterplots represents
the 95% confidence interval around the regression line. Each data point on the
scatterplots corresponds to an individual participant.
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reflecting its role in establishing stable physical pathways for sensory
information processing. In our study, we extend this finding tomusical
perceptual abilities. The superior parietal lobule, recognized as a
higher-order association area and an integrative hub114,115 is thought to
encode and combine past and current sensory information, influen-
cing integrated representations for guiding subsequent adaptive
behavior. An alternative, not mutually exclusive, interpretation is that
the right superior parietal lobule is implicated in sensory-related
attentional processes essential for music perception. This region,
together with the superior frontal gyrus, is a key area of the dorsal
attention network116. Activity in this dorsal FPN reflects active goal-
directed control of attention117. WM is thought to encompass two
distinct operations with different neuroanatomical locations: firstly, a
selection mechanism that retrieves pertinent items, and secondly, an
updating function that redirects attentional focus118. This updating
process is characterized by transient activation in the superior frontal
and posterior parietal cortices. This observation aligns with our dis-
covery of a high centrality of these regions within the structural brain
network, correlating with enhanced music perception. It may imply
their crucial function in updating sensory representations for the
redirection of attentional focus to relevant items within the stimuli,
enhancing their discrimination. Previous research has shown that the
microstructural organization of dorsal fronto-parietal white matter
pathways, such as the anterior subdivision of the right superior long-
itudinal fasciculus (SLF I), is related to musical perceptual abilities in
non-musicians. Increased white matter coherence in this tract is posi-
tively correlated with the speed of musical learning119. In both inter-
pretations, higher centrality and communication efficiency of this
region can be assumed to aid sensory integration, attentional focus
towards pertinent stimuli, and comparison between auditory sequen-
ces. The structural organization of the superior parietal lobule may be
specialized for the attentional processing and integration of complex
sensory inputs, such as those required inmusic perception, rather than

the more abstract and manipulative cognitive processes
involved in WM.

Neurocognitive variability, a hallmark of the human brain, plays a
pivotal role in shaping the diverse range of abilities observed across
various cognitive and cultural domains. Although extensive research
has explored the interplay of brain function, cognitive abilities, and
cultural skills, these elements have largely been studied in isolation,
leaving a unified theoretical framework elusive. The neuronal recycling
hypothesis120 provides a potential solution, positing that the brain
repurposes its older circuits—initially evolved for general cognitive
functions—to accommodate evolutionarily more recent cultural skills,
all while maintaining their original constraints. Consequently, the
spectrum of individual proficiencies within cultural domains is closely
linked to the structural and functional nuances of the neural circuits
they co-opt aswell as to the cognitive functions these circuits originally
support121. Studies corroborating this theory reveal a significant cor-
relation between general cognitive functions and cultural behavior
proficiency, highlighting neural overlap across these domains122. Indi-
vidual network-level constraints in neurocognitive systems may pro-
vide a unique neuronal niche throughwhich culturalmaterial isfiltered
and to which it may eventually adapt. During the cultural transmission
of music, minor inter-individual differences in neural information
processing can manifest themselves in differences in musical
behavior123. Amplified and spread through cultural evolutionary
mechanisms, minor neurocognitive differences can have large system-
level effects, such as diversity within and across human cultures.
According to this framework, music can be seen as a useful model
system to investigate the link between variations in our innate neu-
rocognitive machinery and large-scale cultural phenomena.

While our study contributes to understanding the perceptual
aspects of musicality, musical ability extends far beyond mere
perception9. The ability to decode emotions from auditory stimuli is
another critical component that forecasts musicality79. Research has
shown a correlation between non-musicians’ capacity to recognize
emotions expressed through non-verbal vocalizations, facial expres-
sions, and theirmusical proficiency124. Our findings reveal a correlation
between melodic and rhythmic perceptual abilities and the subjective
experience of emotions inmusic10. This supports the idea ofmusicality
as a multifaceted trait consisting of various interconnected elements
whereone ability can influence another. However, ourfindings suggest
that these traits might be driven by the activity and organization of
partly distinct brain networks56. The absence of a significant correla-
tion between self-reported emotional responses tomusic,WM,and the
organizational properties of frontoparietal networks suggests that the
neural architecture underlying emotion-related aspects of musical
skills may be partially distinct from the ones involved in cognitive and
perceptual aspects of music processing. There is compelling evidence
suggesting that a large cortical-subcortical brain network subserves
music-induced emotions, with themajority of these regions belonging
to the limbic and reward system125. Future network studies should
employ more specific approaches (e.g., between-network con-
nectivity) to understand how trait- or function-specific brain networks
interact, giving rise to our capacity for music.

Table 2 | Results from the structural equation model (SEM)

Path Nodes connected Est. β SE 95% CI p-value

c Global E rMFG -> WMI 42.265 15.014 [17.981, 75837] 0.002

a WMI - >MET 0.115 0.044 [0.011, 0.197] 0.010

b Global E rMFG -> MET 24.518 9.913 [5.056, 44.023] 0.013

Indirect c*a 5.335 2.028 [1.180, 12.477] 0.043

Total c*a + b 29.853 9.654 [11.434, 47.269] 0.002

Themediation analysis was performed using the lavaan package in R. The SEMmodel was specified to examine the relationships between the neural metric, workingmemory subscale ofWAIS, and
musicality. The model was fitted using the maximum likelihood estimation method with bootstrapped standard errors (1000 iterations). Standardized path coefficients and their corresponding
p-values (two-tailed) are reported above. Abbreviations: Global E rMFG (Global Efficiency for rMFG in the functional network); WMI (Working Memory Index); MET (percentage of MET total score).

Fig. 5 | Path diagram for the mediation analysis using structural equation
modeling (SEM).Standardized coefficients are shown for eachpath. The bootstrap
statistical significance of the direct and indirect paths is presented in Table 2.
Results of the proposedmodel confirm that theglobal efficiencyof the rightmiddle
frontal gyrus within the functional frontoparietal network is positively associated
with percentage of MET total scores, through greater working memory abilities.
Abbreviations: rMFG - right middle frontal gyrus; GE - global efficiency; MET -
percentage of MET total scores; WMI - Working Memory Index.
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This work presents some limitations. Our research provides
information into the relatively static network-based underpinnings of
human musicality, which are relevant to understanding the brain net-
work predispositions of musical skills. Yet, further relevant informa-
tion could be gained by looking at brain dynamics during music
listening. Applying dynamic network-based methods on task-based
fMRI data33,34 could reveal the transient states and the network
reconfigurations predicting music perceptual abilities. A mechanistic
understanding of frontoparietal dynamics in music perception could
also assist in the creation of personalized neurostimulation protocols
that enhance neural information integration, with implications in
music therapeutic interventions and educational settings. Research
conducted in the past has demonstrated the potential of transcranial
direct current stimulation (tDCS), a noninvasive method of brain sti-
mulation capable of modulating cortical excitability126. Specifically,
tDCS applied to the right prefrontal region has been found to enhance
WM performance even several months following the completion of
training127–129. This enhancement has been observed across multiple
domains of WM129. Targeting the right middle frontal gyrus (rMFG) via
tDCS could be a strategic approach to enhance music perception
capabilities in individuals with music perceptual disabilities130 through
a mediation of WM, a promising avenue for clinical research.

The second limitation pertains to the tentative link we propose
between neural variability and cultural phenomena. Our inference is
based on limited evidence, primarily due to our participant sample
predominantly representing a single European culture131. Although
recent studies suggest the applicability of the Musical Ear Test (MET)
across diverse cultures53, future research should aim for further cross-
cultural validation of the MET to confirm its effectiveness and
generalizability50. Furthermore, replicating our neural findings with
participants from different cultural backgrounds is crucial to robustly
support preliminary evidence from macro-cultural studies that
associate neurogenetic variability with broad cultural phenomena85.
Finally, we limited our research to the neurocognitive bases of basic,
musical perceptual abilities in music listeners. The MET measures
melody and rhythm perceptual skills. However, musical ability is more
than mere perception and encompasses a broader range of skills,
including emotional capacity, creativity, and social and motor skills9.
Future work should assess how the network-level processes behind
these capacities are integrated, most likely in high-level hubs132, to
provide a more comprehensive understanding of the neurocognitive
foundations of human musical ability.

To conclude, our study uses a network science approach to elu-
cidate the complex interrelationship between neurocognitive varia-
bility and the spectrum of musical perceptual abilities seen across
humans. Our results suggest that intrinsic communication efficiency
and integration capacity within FPN core circuitry may aid music
perception faculties, with distinct contributions from functional and
structural network configurations. The functional topology of right
prefrontal regions may facilitate domain-general cognitive functions
like WM that support musicality. In contrast, structural properties of
superior parietal cortices may subserve sensory or attentional pro-
cesses more directly tied to auditory capabilities. Overall these find-
ings contribute to elucidating the distinct role of functional and
structural neurocognitive variability in support of musical abilities,
extending their roots to specific informational properties of brain
networks. They provide a framework for future exploration into the
neurobiological foundations of human musicality.

Methods
Participants
Data were acquired across multiple sessions at Aarhus University and
Aarhus University Hospital from healthy individuals as part of the EU
COST Action CA18106 The Neural Architecture of Consciousness. The
project protocol received ethical approval from De Videnskabsetiske

Komitéer for Region Midtjylland, Denmark. The scanning session
included the collection of resting-state fMRI, high-angular resolution
diffusion imaging (HARDI), and multi-parameter mapping data133.
Approximately one week prior to undergoing scans, participants
completed the Goldsmiths Musical Sophistication Index (Gold-MSI)
questionnaire in an online session. Typically within a few weeks of the
scans, in an optional session, they completed the Musical Ear Test
(MET) andWechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV).
Recruitment of participants was conducted via the Center of Func-
tionally Integrative Neuroscience (CFIN) at Aarhus University, lever-
aging both the university’s participant database and local advertising.
A total of 300 adult participants, with no personal history of neuro-
logical or psychiatric disorders and no hearing deficits, consented to
the study, were financially compensated for their participation, and
completed the MRI scanning session (see “MRI acquisition”) as well as
the Gold-MSI questionnaire (which were both mandatory for study
participation).

A subset of these participants (n = 241; 135 females, 18–49 years of
age) completed the optional MET test session. Biological sex was self-
reported by the participants. In terms of musical training, 60% had no
music lessons (n = 145), 36% had up to 5 years of training (n = 88), and
only a small subset (n = 8) had over 6 years of training and were clas-
sified as musicians134 (Suppl. Fig. 1). This classification is based on
Zhang et al. (2018) review of the literature which concluded that 6
years of training represents the general consensus for classifying
someone as a musician, even when considering other factors such as
the age of onset, intensity of practice, and type of training. Following
multivariate outlier analysis, 9 participants were excluded due to sig-
nificant deviations in Gold-MSI andMET scores, identified via PCA and
Euclidean distance criteria (Suppl. Fig. 2). Structural brain network
construction failed in 7 more participants. Consequently, the analysis
on functional and structural brain networks in relation to MET scores
was conducted with 232 (Suppl. Table 1) and 225 participants (Suppl.
Table 2), respectively. Additionally, a subset of these participants
(n = 201) had their domain-general cognitive abilities assessed using
theWechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV)78. Only
the Working Memory Index (WMI) was used for this study. Graph
theory analysis incorporatingWMI scores included 201 participants for
functional (Suppl. Table 3) and 195 for structural brain network ana-
lyzes (Suppl. Table 4).

Musical abilities
Musical Ear Test (MET). The Musical Ear Test (MET) comprises 104
trials: 52 melodic phrase pairs in the Melody subtest and 52 rhythmic
phrase pairs in the Rhythm subtest. Before testing began, participants
were instructed to use headphones and minimize distractions. Parti-
cipants evaluated whether sequences in each trial — piano tones for
Melody and drum beats for Rhythm — were identical, with deviations
involving at least one tone (Melody) or inter-onset interval (Rhythm).
Feedback was restricted to initial practice trials. Inter-trial intervals in
the audio were capped at 1500ms for Melody and range from 1659 to
3230ms for Rhythm, thus standardizingMET duration. Scoring awards
one point for each correct response, with Melody and Rhythm subtest
scores each calculated as the percentage of correct answers out of 52.
Thepercentage ofMET total scoreswas calculated as the percentage of
correct answers out of the sum of these subtest scores (i.e., 104). Per-
centage of MET total scores, strongly correlating with melodic
(r = 0.89) and rhythmic scores (r = 0.85) (Suppl. Figure 3), was the pri-
mary metric in subsequent analyzes, representing musical
competence.

Goldsmiths Musical Sophistication Index (Gold-MSI). The Gold-MSI
is a 38-item self-report questionnaire assessing musical behaviors,
experiences, and skills. It comprises five subscales: Active Engagement
(9 items, e.g., daily attentive music listening duration), Perceptual
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Abilities (9 items, e.g., identifying out-of-tune singing or playing),
Music Training (7 items, e.g., years of formal music theory training),
Singing Abilities (7 items, e.g., accuracy in matching recorded notes
while singing), and Emotions (6 items, e.g., selecting music for mood
enhancement). Additionally, a General Factor score is derived from 18
representative items across these subscales. For the first 31 items,
responses are rated on a 7-point Likert scale, ranging from complete
disagreement to complete agreement. The last eight items feature
variable response options. Scores for the subscales of the Gold-MSI
were calculated with the GMSI Scorer App (https://shiny.gold-msi.org/
gmsiscorer).

Working memory abilities
Wechsler adult intelligence scale. In the Wechsler Adult Intelligence
Scale, Fourth Edition (WAIS-IV), our analysis focused solely on the Digit
Span and Arithmetic subtests to assess WM in participants. The Digit
Span subtest comprises three distinct tasks: Digit Span Forwards, Digit
Span Backwards, and Digit Span Sequencing. The Digit Span Forwards
task involves the oral presentation of number sequences by the
experimenter, which participants are required to replicate verbatim.
Performance is measured by the number of sequences accurately
recalled. In the Digit Span Backwards task, participants must reverse
and repeat the sequences, with scores reflecting the count of sequences
correctly reproduced in reverse order. The Digit Sequencing task
necessitates rearranging spoken numbers in ascending order, scored
based on the number of sequences correctly ordered. The Arithmetic
subtest involves mentally solving arithmetic problems presented verb-
ally as their difficulty andmemory load increases. For each subtest, raw
scores were normalized to age-corrected z scores, with a mean of zero
and standard deviation of one, wherein higher scores signify enhanced
performance. The Working Memory Index (WMI) is derived by sum-
ming the scaled scores from these tasks and subsequently converting
this aggregate into an index score using a standard conversion table.

MRI acquisition
Data were acquired using a Siemens Magnetom Prisma-fit 3 T MRI
scanner. Following an initial scout scan, two resting-state fMRI
sequences (12 and 6minutes) were run, accompanied by quantitative
multi-parameter mapping133 (around 20minutes) —used here for syn-
thetically generated T1-weighted images— and high-angular resolution
diffusion imaging (HARDI) (around 10minutes), within a one-hour
scanning session. For each participant, 1500 functional volumes were
acquired (TR, 700ms; TE, 30ms; voxel size 2.5 mm3).

The MPM protocol was implemented based on the Siemens ven-
dor sequence. Three-dimensional (3D) data acquisition consisted of
three multi-echo spoiled gradient echo scans (i.e. fast low angle shot
[FLASH] sequences with MT, T1, and PD contrast weighting). Addi-
tional reference radio-frequency (RF) scans were acquired. The
acquisition protocol had the following parameters: TR of PD- and T1-
weighted contrasts: 18ms; TR of MT-weighted contrast: 37ms; mini-
mum/maximum TE of PD-, T1- and MT-weighted contrasts: 2.46/
14.76ms; flip angles forMT-, PD- andT1-weighted contrasts: 6°, 4°, 25°,
respectively; six equidistant echoes; 1mm isotropic reconstruction
voxel size; Field of view 224′ 256′ 176mm; AP phase encoding direc-
tion; GRAPPA parallel imaging speedup factor of 2; T1w, PDw andMTw
acquisition times: 3:50, 3.50, 7.52. The acquisition of low-resolution 3D
spoiled gradient echo volumes was executed using both the RF head
coil and the body coil. This dual acquisition facilitated the generation
of a relative net RF receive field sensitivity (B1 − ) map for the head
coil135–137. The approach obtained rapid acquisition by maintaining a
low isotropic spatial resolution of 4^3mm^3, a short echo time (TE)
approx 2ms, and a reduced flip angle of 6°, avoiding the use of parallel
imaging acceleration or partial Fourier. This procedure of capturing
volumepairs with the head and body coils was systematically repeated
prior to the acquisition of each of the MT, PD, and T1 contrasts.

The sequenceused to collectHARDI images included: 75 diffusion
directions at b = 2500 s/mm2; 60 directions at b = 1500 s/mm2; 21
directions at b = 1200 s/mm2; 30 directions at b = 1000 s/mm2; 15
directions at b = 700/mm2; 10 directions at b = 5 s/mm2, with the dif-
ferent b-shells acquired in the same series (flip angle = 90◦, TR/TE =
2850/71ms, voxel size = 2 mm3; matrix size = 100 x 100, number of
slices = 84). The phase-encoding direction was anterior to posterior
(AP). An opposite phase-encoding direction (PA) was also acquired
(b = 0 s/mm2) to allow EPI distortion correction138.

Neuroanatomical data processing
Synthetic T1-weighted images were generated using the longitudinal
relaxation rate (R1) and effective proton density (PD) high resolution
maps (acquired during the MPM sequence protocol). First, both maps
were thresholded in order to achieve the required FreeSurfer units.
The R1 map was converted to a T1 map by taking its reciprocal and
thresholded at zero. This was scaled by a factor of 1000. The PD map
was thresholded by zero and scaled by 100. All manipulations were
performed using FSL maths commands. Subsequently, the “mri_-
synthesize” FreeSurfer command was applied to create a synthetic
FLASH image based on previously calculated T1 (thresholded R1 map)
and proton density map. The optional flagged argument for optimal
gray and white matter contrast weighting was used with the following
parameters 20, 30, and 2.5. Finally, the synthetic T1-weighted image
was divided by four to achieve the scale that FreeSurfer expects.

The synthetic T1-weighted image was preprocessed using fMRI-
Prep 21.0.2139 (RRID:SCR_016216), which is based on Nipype 1.6.1140

(RRID:SCR_002502). The T1-weighted image were corrected for
intensity non-uniformity (INU) using theN4BiasFieldCorrection141, part
of the ANTs 2.3.3142 (RRID:SCR_004757). This corrected image served
as the T1w-reference throughout the preprocessing workflow. Skull
stripping was performed on this reference image using a Nipype
implementation of the antsBrainExtraction.sh workflow (from ANTs),
with the OASIS30ANTs as the target template. Brain tissue segmenta-
tion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter
(GM) was performed on the brain-extracted T1w using fast143 (FSL
6.0.5.1; RRID:SCR_002823). Brain surface reconstruction was carried
out using FreeSurfer’s recon-all function144 (version 6.0.1;
RRID:SCR_001847), and the brain mask estimated previously was
refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle145 (RRID:SCR_002438). Volume-based spatial
normalization of the brain images to the two standard spaces
(MNI152NLin2009cAsym, MNI152NLin6Asym) was executed through
nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of the T1w reference and the T1w template. The
templates employed for this normalization included the ICBM 152
Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym) and FSL’s MNI ICBM 152
non-linear 6th Generation Asymmetric Average Brain Stereotaxic
Registration Model146 (RRID:SCR_002823; TemplateFlow ID:
MNI152NLin6Asym).

dMRI processing and structural brain network construction
The diffusion MRI (dMRI) data was preprocessed using custom
MATLAB scripts developed internally at the Center of Functionally
Integrative Neuroscience (CFIN). The preprocessing steps included
noise reduction adapted from the approach by Veraart et al. 147,
correction of Gibbs ringing artifacts following the method descri-
bed by Kellner et al. 148, and motion, eddy currents, and field dis-
tortion corrections using the top-up and eddy tools from the FSL
toolbox149. The generation of structural brain networks was per-
formed using the MRtrix3 software toolkit. The analysis involved
several steps per participant. We first created a 5-tissue-type (5tt)
image which containedmasks of different tissue types (cortical gray
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matter, deep gray matter, white matter, CSF and “other”) within the
brain and is essential for Anatomically-Constrained Tractography
(ACT). Co-registration was then performed to align T1-weighted and
DWI images. A response function was created for each major tissue
type (white matter, gray matter, cerebrospinal fluid) for each par-
ticipant. The individual participant response functions were used to
create group-level response functions. Multi-Shell Multi-Tissue
Constrained Spherical Deconvolution (MSMT-CSD), was used to
estimate Fiber OrientationDistributions (FODs) within each voxel of
the brain, followed by normalization.

Next, whole-brain probabilistic tractography was performed
using the ACT framework and backtracking. Themaximum attempted
number of streamlines was 1*10^9 streamlines with 10 million
streamlines per brain network being selected. Each seed was deter-
mined dynamically from the FOD image using the SIFT model. The
FOD cutoff was 0.06, the maximum length of each selected stream-
lines was 250mm while the minimum was 20mm. The SIFT2 model
was then applied to the data. Structural networks were then generated
using the Destrieux parcellation for the cortex and the FSL FIRST
segmentations for the subcortical structures. Each network was mul-
tiplied by the SIFT proportionality coefficient (mu). Finally, a custom
automated pipeline for visualizing the diffusion data in a structured
and standardized way was run for quality control. We generated jpegs
of the 5TT images alongside GIFs of the registration of the T1w image
to the B =0 image. These visualizations were used to ensure that the
processing pipeline worked correctly.

rsfMRI processing and functional brain network construction
The processing of resting-state (rs-fMRI) volumeswas implemented by
using default surface-based preprocessing routines from the SPM
CONN toolbox (Whitfield-Gabrieli (http://www.nitrc.org/projects/
conn)150, implemented in Matlab (2016b). Functional data was rea-
ligned and unwarped without field maps using SPM12 (r7487),
employing a 6-parameter transformation for alignment and b-spline
interpolation for resampling. Outliers were identified using ART151

based on framewise displacement and global BOLD signal deviations,
and an average referenceBOLD imagewas created for each participant
excluding all outlier volumes. Coregistration of functional and anato-
mical data was achieved using mutual information. Functional images
were then mapped onto the cortical surface, averaging data across
layers between the pial andwhitematter surfaces. Finally, surface-level
functional data were smoothed using 40 iterative diffusion steps. Our
denoising process involved a standard pipeline, regressing out con-
founds like white matter and cerebrospinal fluid (CSF) signals, motion
artifacts, outlier scans, session effects, and linear trends. This included
the use of CompCor for noise component extraction from white
matter and CSF. Bandpass frequency filtering was applied to the BOLD
timeseries to retain frequencies between 0.008Hz and 0.09Hz. The
effective degrees of freedom of the BOLD signal post-denoising were
estimated for all participants.

We estimated region-to-region connectivity matrices across 16
regions of interest (ROIs) by calculating the functional connectivity
strength (Fig. 2). This was represented by Fisher-transformed bivariate
correlation coefficients derived from a weighted general linear model
(GLM) and stored in a functional connectivity matrix. The GLM
accounted for associations between BOLD signal timeseries of ROI
pairs, with weighting tomitigate transient magnetization effects at the
start of each run. The connectivity matrix only included Destrieux’s
cortical nodes (148x148). From this matrix, we selected 16 nodes for
one frontoparietal network of interest and one occipital control net-
work (16x16) (Fig. 2).

Graph theory analyzes
Graph theory analyzes for functional and structural connectivity
matrices, and for both frontoparietal and occipital networks, followed

the samepipeline. Connectivitymatrices (16×16) were thresholded at a
fixed network-level cost range (k) (0<k < 1), resulting in binarized,
undirected adjacency matrices. The analysis incorporated both posi-
tive and negative rs-FC values. To avoid reliance on specific and arbi-
trary threshold values (e.g., k = 0.15)152, graphmetrics were aggregated
across multiple thresholds (k = 0.15–0.30, interval 0.01)153. Within this
range, brain networks show small-world features (GE and LE have,
respectively, larger values than lattice and randomgraphs of equal size
and cost values; Supplementary Figs. 3–4). From the matrices, four
node-level graph theory metrics were computed using the Brain
Connectivity Toolbox (BCT)88: clustering coefficient, local efficiency,
global efficiency, and betweenness centrality (Fig. 3). All these metrics
offer clear interpretability and are prevalent in network studies. A
second-level General Linear Model (GLM) included MET as the main
predictor and age, sex, and musical training (Gold-MSI questionnaire)
as nuisance regressors. Node-level p-values were adjusted formultiple
comparisons using a false discovery rate of q < 0.05 (two-tailed), for
each graph metric.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data cannot be shared publicly as it is part of an ongoing study, and
thus considered unanonymized under Danish law, even if pseudony-
mized. Researchers who wish to access the data may contact Dr Kris-
tian Sandberg (kristian.sandberg@cfin.au.dk) at The Center of
Functionally Integrative Neuroscience and/or The Technology Trans-
fer Office (TTO@au.dk) at Aarhus University, Denmark, to establish a
data sharing agreement. After permission has been given by the rele-
vant ethics committee, data will be made available to the researchers
for replication purposes. As the project is ongoing, sharing requests
for other purposes will be evaluated on a case-by-case basis.

Code availability
Code for reproducing graph theory results is available on GitHub:
https://github.com/MassimoLumaca/neuroMET. Code for reprodu-
cing diffusion analysis is available on GitHub: https://github.com/
MassimoLumaca/neuroARC.

References
1. Genon, S., Eickhoff, S. B. & Kharabian, S. Linking interindividual

variability in brain structure to behaviour. Nat. Rev. Neurosci. 23,
307–318 (2022).

2. Kanai, R. & Rees, G. The structural basis of inter-individual differ-
ences in human behaviour and cognition. Nat. Rev. Neurosci. 12,
231–242 (2011).

3. Van Horn, J. D., Grafton, S. T. &Miller, M. B. Individual variability in
brain activity: a nuisance or an opportunity? Brain Imaging Behav.
2, 327–334 (2008).

4. Zatorre, R. J. Predispositions and plasticity in music and speech
learning: neural correlates and implications. Science 342,
585–589 (2013).

5. Gingras, B., Honing, H., Peretz, I., Trainor, L. J. & Fisher, S. E.
Defining the biological bases of individual differences in musi-
cality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140092
(2015).

6. Dadi, K. et al. Benchmarking functional connectome-based
predictive models for resting-state fMRI. Neuroimage 192,
115–134 (2019).

7. Cirillo, D. & Valencia, A. Big data analytics for personalized medi-
cine. Curr. Opin. Biotechnol. 58, 161–167 (2019).

8. Honing, H. On the biological basis of musicality. Ann. N. Y. Acad.
Sci. https://doi.org/10.1111/nyas.13638 (2018).

Article https://doi.org/10.1038/s41467-024-52479-z

Nature Communications |         (2024) 15:8160 11

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
https://github.com/MassimoLumaca/neuroMET
https://github.com/MassimoLumaca/neuroARC
https://github.com/MassimoLumaca/neuroARC
https://doi.org/10.1111/nyas.13638
www.nature.com/naturecommunications


9. Peretz, I. The nature of music from a biological perspective.
Cognition 100, 1–32 (2006).

10. Müllensiefen, D., Gingras, B., Musil, J. & Stewart, L. The musicality
of non-musicians: an index for assessing musical sophistication in
the general population. PLoS One 9, e89642 (2014).

11. Zuk, J., Benjamin, C., Kenyon, A. & Gaab, N. Correction: Behavioral
and Neural Correlates of Executive Functioning in Musicians and
Non-Musicians. PLoS One 10, e0137930 (2015).

12. Jäncke, L. Music andmemory. The Oxford handbook of music and
the brain (2019).

13. Snyder, B. Memory for music. in Oxford Handbook of Music Psy-
chology (eds. Hallam, S., Cross, I. & Thaut, M.) 107–117 (Oxford
University Press, 2008).

14. Swaminathan, S. & Schellenberg, E. G. Musical competence is
predicted by music training, cognitive abilities, and personality.
Sci. Rep. 8, 9223 (2018).

15. Chan, M. M. Y. & Han, Y. M. Y. The functional brain networks
activated by music listening: A neuroimaging meta-analysis
and implications for treatment. Neuropsychology 36,
4–22 (2022).

16. Trehub, S. E. Human processing predispositions and musical
universals. The origins of music (2000).

17. Ullal-Gupta, S., Vanden Bosch der Nederlanden, C. M., Tichko, P.,
Lahav, A. & Hannon, E. E. Linking prenatal experience to the
emerging musical mind. Front. Syst. Neurosci. 7, 48 (2013).

18. Zentner, M. R. & Kagan, J. Perception of music by infants. Nature
383, 29 (1996).

19. Trehub, S. E. Musicality in Infancy. Psihologijske teme https://doi.
org/10.31820/pt.32.1.1 (2023).

20. Trehub, S. E., Unyk, A. M. & Henderson, J. L. Children’s songs to
infant siblings: parallels with speech. J. Child Lang. 21,
735–744 (1994).

21. Correia, A. I. et al. Individual differences in musical ability among
adults with no music training. Q. J. Exp. Psychol. 76,
1585–1598 (2023).

22. Gaab, N., Gaser, C. & Schlaug, G. Improvement-related functional
plasticity following pitch memory training. Neuroimage 31,
255–263 (2006).

23. Zatorre, R. J., Delhommeau, K. & Zarate, J. M. Modulation of
auditory cortex response to pitch variation following training with
microtonal melodies. Front. Psychol. 3, 544 (2012).

24. Schneider, P. et al. Morphology of Heschl’s gyrus reflects
enhanced activation in the auditory cortex of musicians. Nat.
Neurosci. 5, 688–694 (2002).

25. Foster, N. E. V. & Zatorre, R. J. Cortical structure predicts success
in performingmusical transformation judgments.Neuroimage 53,
26–36 (2010).

26. Andoh, J. & Zatorre, R. J. Mapping interhemispheric connectivity
using functional MRI after transcranial magnetic stimulation on
the human auditory cortex. Neuroimage 79, 162–171 (2013).

27. Lumaca, M., Kleber, B., Brattico, E., Vuust, P. & Baggio, G. Func-
tional connectivity in human auditory networks and the origins of
variation in the transmission of musical systems. Elife 8, (2019).

28. Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V. &
Rodríguez-Fornells, A. White-matter structural connectivity pre-
dicts short-term melody and rhythm learning in non-musicians.
Neuroimage 181, 252–262 (2018).

29. Rajan, A. et al. Wired for musical rhythm? A diffusion MRI-based
study of individual differences in music perception. Brain Struct.
Funct. 224, 1711–1722 (2019).

30. Lumaca, M., Baggio, G. & Vuust, P. White matter variability in
auditory callosal pathways contributes to variation in the cultural
transmission of auditory symbolic systems. Brain Struct. Funct.
226, 1943–1959 (2021).

31. Loui, P., Li, H. C. & Schlaug, G. White matter integrity in right
hemispherepredicts pitch-relatedgrammar learning.Neuroimage
55, 500–507 (2011).

32. Tompson, S., Falk, E. B., Vettel, J. M. & Bassett, D. S. Network
approaches to understand individual differences in brain con-
nectivity: opportunities for personality neuroscience. Personal
Neurosci. 1, (2018).

33. Medaglia, J. D., Lynall, M.-E. & Bassett, D. S. Cognitive network
neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

34. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci.
20, 353–364 (2017).

35. Sporns, O. Networks of the Brain. (MIT Press, 2016).
36. Friston, K. J. Functional and effective connectivity in neuroima-

ging: A synthesis. Hum. Brain Mapp. 2, 56–78 (1994).
37. Hagmann, P. et al. Mapping the structural core of human cerebral

cortex. PLoS Biol. 6, e159 (2008).
38. Gross, J. L. & Yellen, J. Handbook of Graph Theory. (CRC

Press, 2003).
39. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of com-

plex networks in the brain. Nonlinear Biomed. Phys. 1, 3 (2007).
40. Bressler, S. L. Large-scale cortical networks and cognition.Brain

Res. Rev. 20, 288–304 (1995).
41. McIntosh, A. R. Towards a network theory of cognition. Neural

Netw. 13, 861–870 (2000).
42. Li, Y. et al. Brain anatomical network and intelligence. PLoS

Comput. Biol. 5, e1000395 (2009).
43. Van Den Heuvel, M. P., Stam, C. J. & Kahn, R. S. Efficiency of

functional brain networks and intellectual performance. J. Neu-
rosci. 29, 7619–7624 (2009).

44. Fornito, A., Harrison, B. J., Zalesky, A. & Simons, J. S. Competitive
and cooperative dynamics of large-scale brain functional net-
works supporting recollection. Proc. Natl Acad. Sci. USA. 109,
12788–12793 (2012).

45. Dwyer, D. B. et al. Large-scale brain network dynamics supporting
adolescent cognitive control. J. Neurosci.34, 14096–14107 (2014).

46. Stevens, A. A., Tappon, S. C., Garg, A. & Fair, D. A. Functional brain
networkmodularity captures inter- and intra-individual variation in
working memory capacity. PLoS One 7, e30468 (2012).

47. Song, M. et al. Brain spontaneous functional connectivity and
intelligence. Neuroimage 41, 1168–1176 (2008).

48. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C. & Vuust,
P. The Musical Ear Test, a new reliable test for measuring musical
competence. Learn. Individ. Differ. 20, 188–196 (2010).

49. Gordon, E. E. Developmental music aptitude as measured by the
primary measures of music audiation. Psychol. Music 7,
42–49 (1979).

50. Law, L. N. C. & Zentner, M. Assessing musical abilities objectively:
construction and validation of the profile of music perception
skills. PLoS One 7, e52508 (2012).

51. Ullén, F., Mosing, M. A., Holm, L., Eriksson, H. & Madison, G. Psy-
chometric properties and heritability of a new online test for
musicality, the Swedish Musical Discrimination Test. Pers. Individ.
Dif. 63, 87–93 (2014).

52. Swaminathan, S., Kragness, H. E. & Schellenberg, E. G. Themusical
ear test: norms and correlates from a large sample of canadian
undergraduates. Behav. Res. Methods 53, 2007–2024 (2021).

53. Wang, X. et al. Correction: validation and applicability of the
music ear test on a large Chinese sample. PLoS One 19,
e0300208 (2024).

54. Klarlund, M. et al. Worlds apart? Testing the cultural distance
hypothesis in music perception of Chinese andWestern listeners.
Cognition 235, 105405 (2023).

55. Müllensiefen, D., Gingras, B., Stewart, L. & Musil, J. J. Goldsmiths
Musical Sophistication Index (Gold-MSI) v1. 0: Technical Report

Article https://doi.org/10.1038/s41467-024-52479-z

Nature Communications |         (2024) 15:8160 12

https://doi.org/10.31820/pt.32.1.1
https://doi.org/10.31820/pt.32.1.1
www.nature.com/naturecommunications


and Documentation Revision 0.3. London: Goldsmiths, University
of London. (2013).

56. Honing, H., ten, Cate, C., Peretz, I. & Trehub, S. E. Without it no
music: cognition, biology and evolution of musicality. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 370, 20140088 (2015).

57. Baddeley, A. D. &Hitch, G. J.Workingmemory. recent advances in
learning and motivation. N. Y. 3, 47–89 (1974).

58. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. &
Haynes, J.-D. The distributed nature of working memory. Trends
Cogn. Sci. 21, 111–124 (2017).

59. Dehaene, S., Kerszberg, M. & Changeux, J. P. A neuronal model of
a global workspace in effortful cognitive tasks. Proc. Natl Acad.
Sci. USA. 95, 14529–14534 (1998).

60. Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D. &
Schacter, D. L. Intrinsic architecture underlying the relations
among the default, dorsal attention, and frontoparietal control
networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2013).

61. Marek, S. & Dosenbach, N. U. F. The frontoparietal network:
function, electrophysiology, and importance of individual preci-
sion mapping. Dialogues Clin. Neurosci. 20, 133–140 (2018).

62. Palva, J. M., Monto, S., Kulashekhar, S. & Palva, S. Neuronal
synchrony reveals working memory networks and predicts
individual memory capacity. Proc. Natl Acad. Sci. Usa. 107,
7580–7585 (2010).

63. Koelsch, S., Rohrmeier, M., Torrecuso, R. & Jentschke, S. Proces-
sing of hierarchical syntactic structure in music. Proc. Natl Acad.
Sci. 110, 15443–15448 (2013).

64. Hansen, M., Wallentin, M. & Vuust, P. Working memory and
musical competence of musicians and non-musicians. Psychol.
Music 41, 779–793 (2013).

65. Cohen, J. R. & D’Esposito, M. The segregation and integration of
distinct brain networks and their relationship to cognition. J.
Neurosci. 36, 12083–12094 (2016).

66. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for
salience processing and executive control. J. Neurosci. 27,
2349–2356 (2007).

67. Zou, Q. et al. Intrinsic resting-state activity predicts working
memory brain activation and behavioral performance. Hum. Brain
Mapp. 34, 3204–3215 (2013).

68. Glabus, M. F. et al. Interindividual differences in functional inter-
actions among prefrontal, parietal and parahippocampal regions
during working memory. Cereb. Cortex 13, 1352–1361 (2003).

69. Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T. S.
Global connectivity of prefrontal cortex predicts cognitive control
and intelligence. J. Neurosci. 32, 8988–8999 (2012).

70. ABreukelaar, I. et al. Cognitive ability is associatedwith changes in
the functional organization of the cognitive control brain network.
Hum. Brain Mapp. 39, 5028–5038 (2018).

71. Vaidya, C. J. & Gordon, E. M. Phenotypic variability in resting-
state functional connectivity: current status. Brain Connect 3,
99–120 (2013).

72. Slevc, L. R., Davey, N. S., Buschkuehl,M. & Jaeggi, S.M. Tuning the
mind: exploring the connections between musical ability and
executive functions. Cognition 152, 199–211 (2016).

73. Reybrouck, M., Vuust, P. & Brattico, E. Brain connectivity networks
and the aesthetic experience of music. Brain Sci. 8, 107 (2018).

74. Toiviainen, P., Burunat, I., Brattico, E., Vuust, P. & Alluri, V. The
chronnectome of musical beat. Neuroimage 216, 116191 (2020).

75. Wilkins, R. W., Hodges, D. A., Laurienti, P. J., Steen, M. & Burdette,
J. H. Network science and the effects of music preference on
functional brain connectivity: from Beethoven to Eminem. Sci.
Rep. 4, 6130 (2014).

76. Wilkins, R. W. Network neuroscience: an introduction to graph
theory network-based techniques for music and brain imaging
research. in (Oxford University Press, 2018).

77. Alluri, V. et al. Connectivity patterns during music listening: Evi-
dence for action-based processing in musicians. Hum. Brain
Mapp. 38, 2955–2970 (2017).

78. Lichtenberger, E. O. & Kaufman, A. S. Essentials of WAIS-IV
Assessment. (John Wiley & Sons, 2009).

79. Juslin, P. N. & Sloboda, J.Handbook ofMusic and Emotion: Theory,
Research, Applications. (Oxford University Press, 2011).

80. Dubois, J. & Adolphs, R. Building a science of individual differ-
ences from fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

81. Wu, J., Li, J., Eickhoff, S. B., Scheinost, D. & Genon, S. The chal-
lenges and prospects of brain-based prediction of behaviour.Nat.
Hum. Behav. 7, 1255–1264 (2023).

82. Liu, S., Abdellaoui, A., Verweij, K. J. H. & van Wingen, G. A.
Replicable brain–phenotype associations require large-scale
neuroimaging data. Nat. Hum. Behav. 7, 1344–1356 (2023).

83. Rzeszutek, T., Savage, P. E. & Brown, S. The structure of cross-
cultural musical diversity. Proc. Biol. Sci. 279, 1606–1612 (2012).

84. Lumaca, M., Ravignani, A. & Baggio, G. Music evolution in the
laboratory: cultural transmission meets neurophysiology. Front.
Neurosci. 12, 246 (2018).

85. Dediu, D. & Ladd, D. R. Linguistic tone is related to the population
frequency of the adaptive haplogroups of two brain size genes,
ASPM and Microcephalin. Proc. Natl Acad. Sci. USA 104,
10944–10949 (2007).

86. Ladd, D. R., Dediu, D. & Kinsella, A. R. Languages and genes:
reflections on biolinguistics and the nature-nurture question.
Biolinguistics 2, 114–126 (2008).

87. Hannon, E. E. & Trainor, L. J. Music acquisition: effects of encul-
turation and formal training on development. TrendsCogn. Sci. 11,
466–472 (2007).

88. Rubinov, M. & Sporns, O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52,
1059–1069 (2010).

89. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcel-
lation of human cortical gyri and sulci using standard anatomical
nomenclature. Neuroimage 53, 1–15 (2010).

90. FreeSurfer, F. B. FreeSurfer. Neuroimage (2012).
91. Barbey, A. K., Colom, R. & Grafman, J. Dorsolateral prefrontal

contributions to human intelligence. Neuropsychologia 51,
1361–1369 (2013).

92. Yamagishi, T. et al. Cortical thickness of thedorsolateral prefrontal
cortex predicts strategic choices in economic games. Proc. Natl
Acad. Sci. USA 113, 5582–5587 (2016).

93. Cabeza, R., Ciaramelli, E., Olson, I. R.&Moscovitch,M. Theparietal
cortex and episodic memory: an attentional account. Nat. Rev.
Neurosci. 9, 613–625 (2008).

94. Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. Posterior par-
ietal cortex and episodic retrieval: convergent and divergent
effects of attention andmemory. Learn.Mem. 16, 343–356 (2009).

95. Fitch, W. T. Four principles of bio-musicology. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 370, 20140091 (2015).

96. Elmer, S., Kühnis, J., Rauch, P., Abolfazl Valizadeh, S. & Jäncke, L.
Functional connectivity in the dorsal streamandbetween bilateral
auditory-related cortical areas differentially contribute to speech
decoding depending on spectro-temporal signal integrity and
performance. Neuropsychologia 106, 398–406 (2017).

97. Elmer, S., Hänggi, J. & Jäncke, L. Interhemispheric transcallosal
connectivity between the left and right planum temporale pre-
dicts musicianship, performance in temporal speech processing,
and functional specialization. Brain Struct. Funct. 221,
331–344 (2016).

98. Fletcher, P. C. & Henson, R. N. Frontal lobes and humanmemory:
insights from functional neuroimaging. Brain 124, 849–881 (2001).

99. Petrides, M. The role of the mid-dorsolateral prefrontal cortex in
working memory. Exp. Brain Res. 133, 44–54 (2000).

Article https://doi.org/10.1038/s41467-024-52479-z

Nature Communications |         (2024) 15:8160 13

www.nature.com/naturecommunications


100. Petrides, M. Lateral prefrontal cortex: architectonic and functional
organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360,
781–795 (2005).

101. Gaab, N., Gaser, C., Zaehle, T., Jancke, L. & Schlaug, G. Functional
anatomy of pitch memory—an fMRI study with sparse temporal
sampling. Neuroimage 19, 1417–1426 (2003).

102. Green, A. C., Bærentsen, K. B., Stødkilde-Jørgensen, H., Roep-
storff, A. & Vuust, P. Listen, learn, like! Dorsolateral prefrontal
cortex involved in themere exposure effect in music.Neurol. Res.
Int. 2012, 846270 (2012).

103. Platel, H., Baron, J.-C., Desgranges, B., Bernard, F. & Eustache, F.
Semantic andepisodicmemoryofmusic are subservedbydistinct
neural networks. Neuroimage 20, 244–256 (2003).

104. Thaut, M. H., Trimarchi, P. D. & Parsons, L. M. Human brain basis of
musical rhythm perception: common and distinct neural sub-
strates formeter, tempo, andpattern.Brain Sci.4, 428–452 (2014).

105. Bengtsson, S. L. et al. Listening to rhythms activates motor and
premotor cortices. Cortex 45, 62–71 (2009).

106. Bassett, D. S. et al. Cognitive fitness of cost-efficient brain func-
tional networks. Proc. Natl Acad. Sci. USA 106, 11747–11752 (2009).

107. Honey, C. J. et al. Predicting human resting-state functional con-
nectivity from structural connectivity. Proc. Natl Acad. Sci. Usa.
106, 2035–2040 (2009).

108. Hermundstad, A. M. et al. Structural foundations of resting-state
and task-based functional connectivity in the human brain. Proc.
Natl Acad. Sci. USA 110, 6169–6174 (2013).

109. Hermundstad, A. M. et al. Structurally-constrained relationships
between cognitive states in the human brain. PLoS Comput. Biol.
10, e1003591 (2014).

110. Mišić, B. et al. Network-level structure-function relationships in
human neocortex. Cereb. Cortex 26, 3285–3296 (2016).

111. Lin, Y.-C., Baete, S. H., Wang, X. & Boada, F. E. Mapping brain-
behavior networks using functional and structural connectome
fingerprinting in the HCP dataset. Brain Behav. 10, e01647 (2020).

112. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging.
Nat. Rev. Neurosci. 8, 700–711 (2007).

113. DelGaizo, J. et al.Mapping languagenetworks using the structural
and dynamic brain connectomes. eNeuro 4, 10.1523/
ENEURO.0204-17.2017 (2017).

114. Park, H. & Kayser, C. Shared neural underpinnings of multisensory
integration and trial-by-trial perceptual recalibration in humans.
Elife 8, (2019).

115. Aller, M. & Noppeney, U. To integrate or not to integrate: temporal
dynamics of hierarchical Bayesian causal inference. PLoS Biol. 17,
e3000210 (2019).

116. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional
connectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

117. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural
mechanisms of top-down attentional control. Nat. Neurosci. 3,
284–291 (2000).

118. Bledowski, C., Rahm, B. & Rowe, J. B. What ‘works’ in working
memory? separate systems for selection and updating of critical
information. J. Neurosci. 29, 13735–13741 (2009).

119. Engel, A. et al. Inter-individual differences in audio-motor learning
of piano melodies and white matter fiber tract architecture. Hum.
Brain Mapp. 35, 2483–2497 (2014).

120. Dehaene, S. & Cohen, L. Cultural recycling of cortical maps.
Neuron 56, 384–398 (2007).

121. Rabaglia, C. D. & Marcus, G. F. Neural reuse and human individual
differences. Behav. Brain Sci. 33, 287–288 (2010).

122. Rabaglia, C. D., Marcus, G. F. & Lane, S. P. What can individual
differences tell us about the specialization of function? Cogn.
Neuropsychol. 28, 288–303 (2011).

123. Lumaca, M. & Baggio, G. Cultural transmission and evolution of
melodic structures in multi-generational signaling games. Artif.
Life 23, 406–423 (2017).

124. Correia, A. I. et al. Enhanced recognition of vocal emotions in
individuals with naturally good musical abilities. Emotion 22,
894–906 (2022).

125. Juslin, P. N. & Sakka, L. S. NEURAL CORRELATES OF. The Oxford
handbook of music and the brain 285 (2019).

126. Bennabi, D. et al. Transcranial direct current stimulation for
memory enhancement: from clinical research to animal models.
Front. Syst. Neurosci. 8, 159 (2014).

127. Brunoni, A. R. & Vanderhasselt, M.-A. Working memory improve-
ment with non-invasive brain stimulation of the dorsolateral pre-
frontal cortex: a systematic review andmeta-analysis. Brain Cogn.
86, 1–9 (2014).

128. Hill, A. T., Fitzgerald, P. B. &Hoy, K. E. Effectsof anodal transcranial
direct current stimulation on working memory: a systematic
review and meta-analysis of findings from healthy and neu-
ropsychiatric populations. Brain Stimul. 9, 197–208 (2016).

129. Au, J. et al. Enhancing working memory training with tran-
scranial direct current stimulation. J. Cogn. Neurosci. 28,
1419–1432 (2016).

130. Sihvonen, A. J. et al. Neural architectures of music – Insights from
acquired amusia. Neurosci. Biobehav. Rev. 107, 104–114 (2019).

131. Jacoby, N. et al. Cross-cultural work in music cognition: chal-
lenges, insights, and recommendations. Music Percept. 37,
185–195 (2020).

132. van den Heuvel, M. P. & Sporns, O. Network hubs in the human
brain. Trends Cogn. Sci. 17, 683–696 (2013).

133. Weiskopf, N. et al. Quantitative multi-parameter mapping of R1,
PD*,MT, andR2* at 3T: amulti-center validation.Front.Neurosci. 7,
95 (2013).

134. Zhang, J. D., Susino, M., McPherson, G. E. & Schubert, E. The
definition of a musician in music psychology: A literature review
and the six-year rule. Psychol. Music 48, 389–409 (2020).

135. Leutritz, T. et al. Multiparameter mapping of relaxation (R1, R2*),
proton density and magnetization transfer saturation at 3 T: A
multicenter dual-vendor reproducibility and repeatability study.
Hum. Brain Mapp. 41, 4232–4247 (2020).

136. Papp, D., Callaghan, M. F., Meyer, H., Buckley, C. & Weiskopf, N.
Correction of inter-scan motion artifacts in quantitative R1 map-
ping by accounting for receive coil sensitivity effects. Magn.
Reson. Med. 76, 1478–1485 (2016).

137. Tabelow, K., Balteau, E., Ashburner, J. & Callaghan, M. F. hMRI–A
toolbox for quantitativeMRI in neuroscience and clinical research.
Neuroimage 194, 191–210 (2019).

138. Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct sus-
ceptibility distortions in spin-echo echo-planar images: applica-
tion to diffusion tensor imaging. Neuroimage 20, 870–888
(2003).

139. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for
functional MRI. Nat. Methods 16, 111–116 (2019).

140. Gorgolewski, K. et al. Nipype: a flexible, lightweight and exten-
sible neuroimaging data processing framework in python. Front.
Neuroinform. 5, 13 (2011).

141. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE
Trans. Med. Imaging 29, 1310–1320 (2010).

142. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric
diffeomorphic image registration with cross-correlation: evaluat-
ing automated labeling of elderly and neurodegenerative brain.
Med. Image Anal. 12, 26–41 (2008).

143. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images
through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans.Med. Imaging20,
45–57 (2001).

Article https://doi.org/10.1038/s41467-024-52479-z

Nature Communications |         (2024) 15:8160 14

www.nature.com/naturecommunications


144. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based ana-
lysis. I. Segmentation and surface reconstruction. Neuroimage 9,
179–194 (1999).

145. Klein, A. et al. Mindbogglingmorphometry of human brains. PLoS
Comput. Biol. 13, e1005350 (2017).

146. Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates
and atlases. Neuroimage 62, 911–922 (2012).

147. Veraart, J. et al. Denoising of diffusion MRI using random matrix
theory. Neuroimage 142, 394–406 (2016).

148. Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing
artifact removal based on local subvoxel-shifts. Magn. Reson.
Med. 76, 1574–1581 (2016).

149. Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to
correction for off-resonance effects and subject movement in
diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).

150. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional
connectivity toolbox for correlated and anticorrelated brain net-
works. Brain Connect 2, 125–141 (2012).

151. Mozes, S. &Whitfield-Gabrieli, S. Artifact detection toolbox (ART).
Gabrieli Laboratory: MIT (2011).

152. Langer, N., Pedroni, A. & Jäncke, L. The problemof thresholding in
small-world network analysis. PLoS One 8, e53199 (2013).

153. Lumaca, M., Vuust, P. & Baggio, G. Network analysis of human
brain connectivity reveals neuralfingerprintsof a compositionality
bias in signaling systems. Cereb. Cortex https://doi.org/10.1093/
cercor/bhab307 (2021).

Acknowledgements
This article is based upon work from COST Action CA18106 (The Neural
Architecture of Consciousness), supported by COST (European Coop-
eration in Science and Technology). We thank Signe Kirk Brødbæk,
Simon Durand, Nina Dyrberg, Sara Kolding, Audrey Mazancieux, Dunja
Paunovic, Bianka Rumi, and Povilas Tarailis for their assistance in data
collection. We thank Jelle van der Werff for technical helps. The Center
for Music in the Brain (MIB) is funded by the Danish National Research
Foundation (project number DNRF117). C.J.B. was funded by the Mea-
suring the Architecture of Consciousness (MARC) Project, financed by
the Malta Council for Science & Technology (MCST) through the
Research Excellence Programme (REP-2022-005), for and on behalf of
the Foundation for Science and Technology.

Author contributions
M.L. conceived the hypothesis. K.S. designed the study. K.S. recruited
the resources for the experiment. K.S., M.A.M., J.H.H., and K.V. collected
the data. N.J. digitalized the responses to the musical questionnaires.
M.L. performed pre-processing, denoising, and connectome construc-
tion of resting-state functional data. K.S. performed pre-processing of

diffusion data. C.J.B performed processing and connectome construc-
tion of diffusion data. M.L. performed graph theory and media-
tion analyzes. M.L. prepared the figures. P.K., G.B., and A.R. provided
essential help to frame the introduction within the neuroscientific lit-
erature of musical abilities. M.L. wrote the first draft of the manuscript.
C.J.B and K.S. wrote a significant part of the methods. G.B., K.S., P.K.,
P.V., V.P.N., and C.J.B., provided useful comments and edits during the
revision of the manuscript. All the authors contributed to and approved
the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52479-z.

Correspondence and requests for materials should be addressed to
M. Lumaca.

Peer review information Nature Communications thanks Indre Viskon-
tas and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-52479-z

Nature Communications |         (2024) 15:8160 15

https://doi.org/10.1093/cercor/bhab307
https://doi.org/10.1093/cercor/bhab307
https://doi.org/10.1038/s41467-024-52479-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Frontoparietal network topology as a neural marker of musical perceptual abilities
	Results
	Overview of the experimental design and analysis pipeline
	Graph theory results for the structural networks
	Graph theory results for the functional networks
	Relationship between WM, music competence, and FPN topology
	WM mediates the relationship between rMFG efficiency and music competence
	Relationship between emotion, musical competence, WM and FPN topology

	Discussion
	Methods
	Participants
	Musical abilities
	Musical Ear Test (MET)
	Goldsmiths Musical Sophistication Index (Gold-MSI)

	Working memory abilities
	Wechsler adult intelligence scale

	MRI acquisition
	Neuroanatomical data processing
	dMRI processing and structural brain network construction
	rsfMRI processing and functional brain network construction
	Graph theory analyzes
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




