
Vol:.(1234567890)

The Journal of Supercomputing (2023) 79:2850–2881
https://doi.org/10.1007/s11227-022-04775-y

1 3

How much BiGAN and CycleGAN‑learned hidden features 
are effective for COVID‑19 detection from CT images? 
A comparative study

Sima Sarv Ahrabi1 · Alireza Momenzadeh1 · Enzo Baccarelli1 · 
Michele Scarpiniti1  · Lorenzo Piazzo1

Accepted: 10 August 2022 / Published online: 26 August 2022 
© The Author(s) 2022

Abstract
Bidirectional generative adversarial networks (BiGANs) and cycle generative adver-
sarial networks (CycleGANs) are two emerging machine learning models that, up 
to now, have been used as generative models, i.e., to generate output data sampled 
from a target probability distribution. However, these models are also equipped with 
encoding modules, which, after weakly supervised training, could be, in principle, 
exploited for the extraction of hidden features from the input data. At the present 
time, how these extracted features could be effectively exploited for classification 
tasks is still an unexplored field. Hence, motivated by this consideration, in this 
paper, we develop and numerically test the performance of a novel inference engine 
that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for 
the detection of COVID-19 disease from other lung diseases in computer tomog-
raphy (CT) scans. In this respect, the main contributions of the paper are twofold. 
First, we develop a kernel density estimation (KDE)-based inference method, which, 
in the training phase, leverages the hidden features extracted by BiGANs and Cycle-
GANs for estimating the (a priori unknown) probability density function (PDF) of 
the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a 
target COVID-PDF for the detection of COVID diseases. As a second major con-
tribution, we numerically evaluate and compare the classification accuracies of the 
implemented BiGAN and CycleGAN models against the ones of some state-of-the-
art methods, which rely on the unsupervised training of convolutional autoencoders 
(CAEs) for attaining feature extraction. The performance comparisons are carried 
out by considering a spectrum of different training loss functions and distance met-
rics. The obtained classification accuracies of the proposed CycleGAN-based (resp., 
BiGAN-based) models outperform the corresponding ones of the considered bench-
mark CAE-based models of about 16% (resp., 14%).
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1 Introduction

The chest computed tomography (CT) scan is generally regarded as beneficial in 
diagnosing COVID-19 diseases and is especially useful when it is used in tandem 
with clinical examinations [1–5]. Due to the effective use of deep learning (DL) in 
computer vision and biomedical domains, researchers have explored the efficiency 
of DL-based methods to recognize COVID-19 from lung CT scans. The current DL 
approaches can be categorized as supervised, unsupervised, or weakly supervised 
methods.

1.1  Supervised learning approaches

A large number of research papers adopt supervised learning methods for the reli-
able detection of COVID-19 diseases [6–16] [17–20]. However, due to the lack of 
publicly available CTs on COVID-19 patients, researchers have been triggered to 
consider this deficiency, especially at the beginning of the spread of COVID-19. For 
instance, the authors of [21–30] adopt transfer learning methods to address the lack 
of large-sized data sets. In [31], the authors utilize GoogleNet and ResNet for super-
vised COVID-19 classification. The authors of [32] propose a statistical method to 
address issues, like as huge computational complexity and large datasets required by 
deep networks. In [33], a segmented CT scan is used as the input of a random forest 
classifier approach. The authors of [21] used an inception network on CT scans, but 
the resulting classification accuracy was below average. In [34], the authors propose 
a contrast enhancement scheme for CT scans, followed by a pre-trained VGG16 and 
AlexNet classification, reporting good accuracy.

However, the accuracy performance of supervised-trained models typically 
crashes when CT scans are used in the test phase that belong to unseen classes (that 
is, classes of test data which are not present in the training data sets). In princi-
ple, this loss of robustness suffered by supervised DL models may be effectively 
by-passed by resorting to unsupervised or weakly supervised DL models, which are 
trained only on data sets of the COVID-19 class. So doing, it expected that an unsu-
pervised/weakly supervised trained model may differentiate the COVID-19 class 
(i.e., the target class) from any other type of unseen chest images (i.e., the novelties) 
in a reliable way.

1.2  Unsupervised learning approaches

Autoencoders (AEs) have been employed in [35–40]. Specifically, the work in [37] 
focuses on a two-stage learning method and a triple classification task. The authors 
train their AE model on classes of COVID-19, pneumonia, and normal cases 
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separately. After obtaining the hidden feature vectors of all classes, a feature clas-
sifier is trained. The authors of [38] build up a robust statistical target histogram 
by exploiting the feature representations, which are generated by an unsupervised-
trained denoising convolutional AE (DCAE). The proposed method estimates the 
statistical distance between unknown and target histograms to classify the images 
according to suitably set decision thresholds. The DCAE proposed in [36] is trained 
on COVID-19, pneumonia, and a few other types of chest X-rays. Then, the hidden 
feature vector of a test image is compared to the features of the selected training data 
sets. The so-trained AE exhibits good test performance. However, unlike our work, 
this approach relies on training the considered model over each decision class and, 
then, does not guarantee to instances of unseen class.

1.2.1  Generative Adversarial Networks (GANs)‑based approaches

Motivated by the aforementioned considerations, we are interested in deep gener-
ative models, because learning COVID-19 patterns can be viewed as learning the 
distribution of the available training data. According to a recent taxonomy in medi-
cal image classification [41], we adopt the weakly supervised terminology for indi-
cating the exploitation of two sets of unpaired images. Being unsupervised/weakly 
supervised models, deep generative models (DGMs) aim to unveil meaningful pat-
terns in raw data. DGMs enable the approximation of statistical data distributions 
through density estimation. Deep neural networks (DNNs) are based only on point 
estimates and make deterministic predictions by using suitable feature vectors. Most 
works on DNNs do not pay much attention to the complexity of these models. On 
the other hand, probabilistic models typically rely on statistical hypothesis tests, 
which are more simple to implement through the computation of suitable distances 
in the latent space [42]. The actual capability of GANs to generate data makes them 
attractive for anomaly detection under two perspectives [43]. First, GANs can poten-
tially help to generate hard-to-acquire anomalous data points. Second, they can be 
used to learn the distribution of data for normal operating conditions and, then, can 
be exploited as anomaly or outlier detectors [44]. A conditional GAN-based model, 
called CovidGAN, is proposed in [45], which generates synthetic chest X-ray images 
to augment the available training set. The authors of [46] develop a Dense GAN 
and a multi-layer attention-based segmentation method for the generation of higher 
quality images. GANs are also utilized in [47], in order to generate X-rays data sets 
from 307 images of four different types. The method employed in [48] utilizes auxil-
iary classifier generative adversarial network (AC-GAN) to generate COVID-19 CT 
scans. Then, the authors of [48] compare their approach against competing DL mod-
els using transfer learning. The authors of [49] introduce a Mean Teacher plus Trans-
fer GAN (MTT-GAN) model, in order to generate COVID-19 chest X-ray images 
of high quality. Inception-Augmentation GAN (IAGAN), a semi-supervised GAN-
based augmentation method, is introduced in [50], in order to improve the detection 
capability of pneumonia and COVID-19 in chest X-ray images. The authors of [51] 
present the QuNet model to classify the COVID-19-infected patients by using X-ray 
images. In [52] an Enhanced Super Resolution GAN (ESRGAN) is used in order 
to improve the CT scan quality, before feeding it to a Siamese Capsule network. 
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Additionally, in [53], MESRGAN+ is derived by implementing a connected nonlin-
ear mapping between noise-contaminated low-resolution input images and deblurred 
and denoised HR images using the building blocks of GAN. A summarizing over-
view of the main literature on GAN-based models for COVID-19 detection is pro-
vided in Table 1.

Overall, differently from the proposed work, all these approaches do not exploit 
the use of an additional encoder (BiGAN) or a second generator (CycleGAN) that, 
ideally, learn to invert the mapping performed by the first generator. We argue that 
a trained BiGAN encoder and a pair of generators/discriminators, respectively, 
could provide useful feature representation for related tasks of scan classification. 
Although the increased computational cost with respect to a standard GAN archi-
tecture, we can expect that, by considering the performance-vs.-complexity tradeoff, 
the proposed method can represent a promising approach for the robust classifica-
tion of the COVID-19 disease from unlabeled CT scans.

1.3  Paper contributions and roadmap

Motivated by the performed review, in this contribution, we aim at exploiting how 
and at which extend the hidden features learned by weakly supervised BiGAN [55] 
and CycleGAN [56] models could be effectively exploited for robust classification 
of COVID-19 diseases from unlabeled CT scans. In fact, both BiGAN and Cycle-
GAN allow to efficiently extract meaningful features of the target class from the 
encoded vector, which can be successfully used to construct a statistical representa-
tion suitable to detect scans of COVID-19 patients from the others. Specifically, the 
main contributions of this paper are the following ones:

• We exploit the kernel density estimation (KDE) approach for deploy-
ing an inference method that utilizes the hidden features generated during 

Table 1  Synoptic view of recent work on GAN-based COVID-19 detection

Ref Approach Goal Training class

[45] CovidGAN X-ray synthetic augmentation COVID
[47] GAN +transfer learning X-ray synthetic augmentation Normal+COVID+Pneumonia
[46] Dense GAN+ U-Net Enhancing the quality of CT COVID
[54] Convolutional GAN X-ray synthetic augmentation Normal+COVID+Pneumonia
[48] AC-GAN CT synthetic augmentation COVID
[49] MTT-GAN X-ray synthetic augmentation COVID
[50] IAGAN X-ray synthetic augmentation COVID
[51] GAN X-ray synthetic augmentation Normal+COVID+Pneumonia
[52] Siamese-CapsNet Image resolution enhancement COVID+NON-COVID
[53] GAN Image resolution enhancement COVID+NON-COVID
This 

contri-
bution

BiGAN & CycleGAN CT Classification COVID
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the weakly supervised training of BiGANs and CycleGANs for estimating 
the underlying PDF of CT scans of COVID-19 patients, namely the target 
COVID-PDF. Afterward, in the test phase, the trained BiGAN/CycleGAN 
encoder is used for extracting the hidden features from the corresponding 
COVID/Non-COVID CT test scan, and, then, the distance among the target 
COVID-PDF and the corresponding PDF of the hidden features extracted 
from each test image is used for binary classification. For this purpose, a 
suitably designed binary detector is employed, which is equipped with a tun-
able decision threshold;

• We numerically evaluate the sensitivity of the achieved accuracies, test times 
and training times of the implemented BiGANs and CycleGANs on the 
employed training loss functions and inter-PDF distance metrics. The tested 
loss training functions are the cross-entropy (CE), least squares (LS) and 
Wasserstein (W) ones, while the Euclidean, Kullback-Leibler (KL) diver-
gence, Correlation and Jensen-Shannon (JS) divergence are tested as inter-
PDF distance metrics;

• The training of the BiGAN and CycleGAN models is, by design, of weakly 
supervised type. Hence, as a final contribution, we compare the attained 
BiGAN and CycleGAN performance against the corresponding ones of some 
recently published methods [38] and [57], which exploit the encoders of 
unsupervised trained CAEs as feature extractors. In this regard, we anticipate 
that the implemented CycleGAN model achieves the highest test accuracy, 
while the tested CAE models attain the lowest test and training times. The 
corresponding accuracies, test times and training times of the implemented 
BiGAN models fall somewhat in the middle.

To the best of our knowledge, the exploitation of a KDE estimation of the target 
COVID-PDF from the feature encoded by the BiGAN and CycleGAN for the 
classification of COVID/Non-COVID CT scans is novel and not yet investigated 
in the current literature.

The rest of the paper is organized as follows. In Sect. 2, we describe, at first, 
the employed training/test data sets, the implemented BiGAN and CycleGAN 
models and the related training loss functions. Afterward, we present the pro-
posed KDE-based method for test inference. Section 3 is devoted to the presen-
tation of the obtained numerical results and related performance comparisons. 
Finally, the conclusive Sect.  4 summarizes the main results of the paper and 
highlights some possible hints for future research.

2  Material and solving method

This section describes the used data sets and the implemented BiGAN and 
CycleGAN-based architectures for feature extraction, together with the compan-
ion PDF-based approach pursued for binary classification of the test images.
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2.1  Training and testing data sets

We selected 1000 COVID-19 CT scans related to 500 (anonymous) patients from 
several multiple open-access data sets [58], in order to generate the training data 
set. However, before training, a pre-processing step has been carried out, in which 
the borders of all CT scans have been cropped and all the gray-scale images have 
been resized to 100 × 100 pixels, in order to achieve a suitable processing complex-
ity-vs.-image resolution trade-off. Finally, the per-pixel mean of each image has 
been evaluated and subtracted. In the sequel, we will indicate as y (resp. Y) an input 
COVID-19 training image (resp., the set of the COVID-19 training images). For 
illustrative purposes, Fig. 1a reports four examples of COVID-19 training images. 
Since the considered CAE models require unsupervised learning, only the set Y is 
utilized for their training. However, for both BiGAN and CycleGAN models that 
rely on weakly supervised learning [55, 56], a second set X composed by 1000 input 
features (also referred to as latent feature maps) has been generated for their train-
ing. Specifically, according to [55], each training input feature x ∈ X has been gen-
erated by randomly sampling (in an independent and identically distributed way) 
from a continuous probability density function, which is evenly distributed over the 
interval [−100, 100] . The random procedure adopted for generating the training fea-
tures assures that the elements of the resulting training sets X and Y are unpaired, as 
required by the weakly supervised training of BiGAN and CycleGAN models [55, 
56]. In this regard, we anticipate also that, although, in our tests, the feature maps 
{x̂} extracted by each model have the same size of the corresponding input feature 
maps {x} , nevertheless, their size varies from model to model (see the 6th column of 

(a)

(b)

Fig. 1  a Four representative samples of lung CT scans from the training sets of size ( 100 × 100 ). b Rep-
resentative samples of lung CT feature maps extracted by the implemented BiGANs and CycleGAN
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Table 8). For illustrative purposes, Fig. 1b reports two feature maps extracted from 
the implemented BiGAN and CycleGAN models.

Finally, we point out that CT scans for testing have been randomly sampled from 
two data sets [58, 59], which embrace: (i) 500 CT slices of COVID-19 images (dif-
ferent from those used for the training); and, (ii) 500 additional CT scans, which 
cover normal cases, pneumonia cases and three types of lung cancer (namely, ade-
nocarcinoma, large-cell carcinoma and squamous-cell carcinoma).

2.2  The considered encoder‑equipped GAN models

In order to perform classification based on the compressed versions of images (fea-
ture representations), BiGANs and CycleGANs are of interest, because they allow 
to efficiently extract the encoded features of the target class. In the following, we 
shortly present the implemented models.

2.2.1  Cross‑entropy BiGANs for feature extraction

BiGANs offer a framework for weakly supervised feature learning. A BiGAN 
includes a GAN’s generator G, and an encoder E , which maps input data y ∈ Y  (i.e., 
COVID-19 images, in our framework) to feature representations E ≡ x̂ [43]. The 
BiGAN discriminator, D, discriminates not only in the data space (i.e., y-vs.-G(x) ), 
but jointly in the latent and data spaces (i.e., {y, E(y)}-vs.-{x,G(x)} ) versus (G(z); z), 
where the latent component is either an encoder output: E(y) or a generator input: x 
(see Fig. 2).

The BiGAN encoder, E , aims to learn to invert the mapping performed by the 
generator G [55]. Neither module can directly communicate with the other; the 
encoder cannot see the generator outputs and the generator cannot see the encoder 
outputs.

Fig. 2  Implemented training scheme of BiGAN [55] for feature extraction. x: input feature; y: input data; 
X: feature space; Y: data space; G: Generator; E : Encoder; D: Discriminator; x̂ : predicted and extracted 
feature
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The final goal of both encoder and generator is to fool the BiGAN discriminator, D 
[55]. For this purpose, the BiGAN encoder learns to predict features x̂ from input data 
y. Since previous work on BiGAN proved that the extracted features capture semantic 
attributes of the input data, we argue that a trained BiGAN encoder could provide use-
ful feature representation for related semantic tasks. Toward this end, the BiGAN neg-
ative-log-likelihood training objective is defined as follows (see [55] for major details):

While BiGANs retain many properties of GANs, they also guarantee that G and E 
are each other’s inverse at the global optimum. BiGAN training is carried out by 
using an optimizer for training the parameters �

D
 , �

G
 , and �E of modules D, G and 

E , respectively. Training consists of performing one or more steps in the positive 
gradient direction to update the discriminator parameters �

D
 . A step in the negative 

gradient direction is, then, performed, in order to update the encoder and genera-
tor parameters �E and �

G
 . In the following sections, we refer to the BiGAN trained 

according to Eq.  (1) as Cross-Entropy BiGAN (CE-BiGAN). The architecture of 
the actually implemented BiGAN is detailed in Table 2. In our tests, the size of the 
extracted latent vector E(y) in Fig.  2 is set to 1024. All the activation functions are 
leaky ReLUs with slope of 0.1, barring the last layer of the generator, in which the 
hyperbolic tangent activation function is used (see Table 2).

2.2.2  Least‑squares BiGANs for feature extraction

Least-squares generative adversarial networks (LSGANs) adopt the least squares 
loss function for training [60]. The authors of [60] point out two advantages of 
LSGANs over standard CE-GANs. First, LSGANs are capable of generating images 
of higher-quality than CE-GANs. Second, LSGANs also exhibit more stable perfor-
mance during the learning process. In fact, since a CE-GAN discriminator typically 
adopts the sigmoid cross-entropy loss function, when the generator is updated, van-
ishing gradient may happen for samples on the correct side of the decision bound-
ary, which are still far from the real data [60]. LSGANs attempt to bypass this prob-
lem by using the following least squares-based training loss function:

where a and b are the labels for true data and fakes, while c indicates the value that 
G wants D to believe for fake data [60]. As suggested in [60], in our test, we set 

(1)

min
G,E

max
D

V(D, E,G) =Ey∼py
Ex∼pE(.∣y)

[
logD(x, y)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
logD(y,E(y))

+ Ex∼px
Ey∼pG(.∣x)

[
1 − logD(x, y)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
log (1−D(G(x),x))

.

(2)

min
G

VLSGAN(G) ≜
1

2
Ex∼px

[
(D(G(x), x) − c)2

]
,

[2ex]min
D,E

VLSGAN(D, E) ≜
1

2

{
Ey∼py

[
(D(y, E(y)) − a)2

]

+Ex∼px

[
(D(G(x), x) − b)2

]}
,
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a = c = 1 , and b = 0 where 0-1 is binary labeling scheme used for fake-true data. 
We apply the loss function of Eq. (2) together with the linear activation function 
in the last layer of the discriminator of Fig. 2. The architecture of the implemented 
BiGAN is still the one of Table 2.

2.2.3  Wasserstein BiGANs for feature extraction

Wasserstein GANs (WGANs) [61] generate loss functions with better characteristics 
than the cross-entropy original GANs by using the Wasserstein distance. For this 
purpose, the authors of [61] impose weight clipping by requiring that the discrimi-
nator (called critic in their paper) falls in the 1-Lipschitz space. Accordingly, the 
loss function of a Wasserstein BiGAN (W-BiGAN) is defined as in [61]:

where M ≥ 1 is the number of terms in each summation. Ad pointed out in [62], the 
r.h.s. of (3) provides, indeed, a reasonable good computable approximation of the 
actual Wasserstein distance. Unlike the original BiGAN where D is a 0/1 classifier 
estimating the a posteriori probability that its input is a true data, in the Wasser-
stein BiGAN (W-BiGAN), D is a regressor, which estimates the trueness score of 
its input. In terms of implementation, the scalar output of D in the original BiGAN 
uses the sigmoid nonlinearity, while that of the W-BiGAN is linear. The Wasserstein 
loss in Eq. (3) is the difference of the trueness scores of true and fake samples. D is 
trained to maximize this difference, while G is trained to minimize it. D wants that 
its output: D(y, E(y) is higher for true samples y than for the generated fake samples: 
D(G(x), x), while G aims at the opposite. Due to the interactions between weight 
constraints and cost function, WGAN optimization process may result in either van-
ishing or exploding gradients if the clipping threshold calibration is not suitably 
tuned [62]. After several validation trials, we set the weight clipping value to 0.01 
and normalize the norm of error gradient vector to 10. The same architecture of 
BiGAN of Table 2 is utilized under the training loss function in Eq. (3), with the 
linear activation function in the last layer of the W-BiGAN discriminator.

2.2.4  CycleGANs for feature extraction

An input image that is transformed by a CycleGAN [56] can retain fine details, so to 
closely reproduce the structure of the input image. CycleGAN explores the unpaired 
style transfer paradigm, in which the model attempts to learn stylistic differences 
between sources and targets without explicitly pairing input to output [63]. As 
sketched in Fig. 3, a CycleGAN has two generators, G and E , such that G ∶ X ⟶ Y  
and E ∶ Y ⟶ X . Ideally, G and E should be the inverse of each other, so to imple-
ment one-to-one bijection. The authors of [56] train simultaneously both the genera-
tors G and E under both adversarial and cycle consistency losses, so to encourage 
E(G(x)) ≅ x and G(E(y)) ≅ y . A CycleGAN is typically equipped with two dis-
criminators DG and DE which are paired to the corresponding generators G and E , 

(3)LW-BiGAN =
1

M

∑

y∼py

D(y, E(y)) −
1

M

∑

x∼px

D(G(x), x),
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respectively. In [56], it is argued that a pair of generators/discriminators could learn 
the best possible translation from the source domain Y (or X) to the target domain X 
(or Y). The overall cycle consistency loss LCyc ensures that the reconstruction of the 
original input from the generated output is as close as possible, and it is defined as 
in [56]:

Afterward, the overall objective of a CycleGAN is a weighted sum of the adver-
sarial losses: LGAN1 and LGAN2 and the cycle consistency loss LCyc , and, then, it 
reads as in:

In our tests, � = 0.1 and the Wasserstein loss function is employed to implement 
both the adversarial losses LGAN1 and LGAN2 in Eq.  (5). The implemented Cycle-
GAN is sketched in Fig. 3. In this regard, we stress that we use it for feature extrac-
tion (see Fig. 3). The size of the extracted features is reported in the 6th column of 
Table 8.

2.3  The pursued KDE‑based inference approach

In order to estimate the probability density function (PDF) of the extracted hidden 
features, generated by (previously described) GAN-based models, the first step is to 
choose among parametric-vs.-non-parametric methods. Due to the fact that we have 
no a priori information about the actual shape of the PDF and we want to avoid bias 
effects, we choose a non-parametric estimate. For this purpose, we select the kernel 
density estimation (KDE) method due to its efficiency and expected performance 
[64]. To describe the KDE, we first illustrate it for the simple case of a univariate 

(4)LCyc(G, E) = Ex∼px
‖E(G(x)) − x‖1 + Ey∼py

‖G(E(y)) − y‖1.

(5)LCycleGAN

(
G, E,DG,DE

)
≜ LGAN1

(
G,DG

)
+ LGAN2

(
E,DE

)
+ �LCyc(G, E).

Fig. 3  Implemented scheme of CycleGAN for feature extraction. x: Input feature; y: Input data; x̂ : Gener-
ated and extracted feature; ŷ : Generated data; X: Feature space; Y: Data space; G: Generator; E : Encoder; 
DG : Generator’s discriminator; DE : Encoder’s discriminator
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PDF. Hence, let us consider a set of n real numbers: xi for i = 1, ..., n , drawn from 
a (hidden) Random Variable (RV) X , which possess an unknown PDF, fX(x) , to be 
estimated. Hence, the KDE estimate f̄x(x) of fx(x) is defined as:

The constant � is a normalization factor, which guarantees that the area under the 
curve f̄X(x), x ∈ ℝ , is unit valued. The kernel function, K(.), is used as an interpo-
lating function to build the PDF estimate. Although different kernels can be used, 
according to [64], we consider the Gaussian one, i.e., K(x) = e−x

2 . The parameter 
h in Eq. (6) is the kernel bandwidth, which is used to set the width of the kernel. It 
controls the size of the receptive field of the kernel. Since our inference method is 
based on the evaluation of the distances between actual and target PDFs, we have 
numerically ascertained that the impact of h is minor. Hence, we set the bandwidth 
to the unit.

The target COVID-PDF is evaluated by applying Eq. (6) to the average of all the 
extracted feature vectors obtained by the encoders of the considered architectures for 
all the training images.

2.4  Exploiting hidden features for test classification

After training on COVID-19 through the BiGANs and CycleGAN, we evaluate the 
proposed classification method. Using the procedure shown in Fig.  4, we classify 
each test image. To this end, we only deal with the encoders of BiGANs and the first 
generator’s encoder of CycleGAN. In order to accomplish this, each COVID-19 test 
image is fed to the trained encoder and its corresponding hidden feature vector is 
extracted. After computing the PDF of the test feature vector through KDE, the dis-
tance d between the target and test PDFs is evaluated and given as input to a binary 
threshold detector (see the lost block of Fig. 4). This last generates the final COVID/
non-COVID decision on the corresponding input image.

(6)f̄X(x) ≜
1

𝛼

n∑

i=1

K
(x − xi

h

)
.

Fig. 4  Proposed inference mechanism for binary classification of test images
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Figure 5 shows two examples of attained target and test PDFs.
Used distance metrics: The target COVID-PDF and the test PDF are compared 

by using a suitable distance in the latent space. In order to formally introduce 
the considered inter-PDF distances, let � and � be two equal-size probability 
column vectors and let: � ≜ (� +�)∕2 be the corresponding mean distribution 
vector. Hence, the considered Euclidean, KL, Correlation and Jensen-Shannon 
distances are formally defined in Table 3, where pi (resp. qi ) indicates the i-th 
entry of � (resp. � ) and the T superscript means vector transposition.

Setting of the decision threshold: The decision threshold for each considered 
distance is set by evaluating the PDFs of all training images. Then, we numeri-
cally calculate the distance between the target COVID-PDF and each training 
image PDF and set the threshold TH to the obtained maximum distance value. 
So doing, the attained value of the threshold is automatically tuned to the statis-
tical properties of both the underlying target PDF and used distance metric. In 
this regard, we anticipate that, in our tests of Sect. 3, the (numerically evaluated) 
values of the tuned decision thresholds typically range from 0.06 to 0.6.

Fig. 5  Instances of target and test PDFs

Table 3  Considered inter-PDF 
distances

Considered metric distance Formula

Euclidean ‖� −�‖2
Kullback-Leibler divergence n∑

i=1

pilog
�

pi

qi

�

Correlation
1 −

(𝐏−�̄�)
T
(𝐐−�̄�)

‖(𝐏−�̄�)‖2 ‖(𝐐−�̄�)‖2

Jensen-Shannon
√

KL(�∥�)+KL(�∥�)

2
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3  Comparative numerical results and discussion

The main goal of this section is twofold. First, after describing the experimen-
tal setup and the adopted performance indexes, we discuss the sensitivity of the 
training and test performance of the implemented BiGAN and CycleGAN models 
on the considered training loss functions and inter-PDF distance metrics. Sec-
ond, we present the accuracy-vs.-test time-vs.-training time performance of the 
implemented BiGAN and CycleGAN models and, then, compare them against the 
corresponding ones of the CAE-based models recently presented in [38] and [57].

3.1  Considered performance metrics

The considered performance metrics for the carried out binary classification tasks 
are based on the True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN) assignments. The meaning of these outcomes is detailed in 
Table 4. They can be represented in a compact form as the four elements of the 
resulting confusion matrix [65].

The main performance metrics can be derived by a combination of these items 
[65]. In the following sections, we consider accuracy, recall, precision, F1-score, 
area under the receiver operating characteristic (ROC) curve (AUC) as affiliated 
performance indexes. Formal definitions of these indexes are given in Table 5.

3.2  Experimental setup

All the numerical tests have been carried out on a PC equipped with: (i) an AMD 
Ryzen 9 5900X 12-Core 3.7 GHz processor; (ii) two GeForce RTX 3080 graphics 
cards; and (iii) 128 GB RAM.

Table 4  Main outcomes in binary classification

Taxonomy Description

True Positive (TP) COVID-19 image classified as COVID-19
True Negative (TN) Non-COVID-19 image classified as non-COVID-19
False Positive (FP) Non-COVID-19 image classified as COVID-19
False Negative (FN) COVID-19 image classified as non-COVID-19

Table 5  Performance metrics 
for binary classification [65]

Performance index Formula

Recall TP∕(TP + FN)

Precision TP∕(TP + FP)

F-score 2TP∕(2TP + FP + FN)

Accuracy (TP + TN)∕(TP + FN + FP + TN)
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The iterative solving algorithm used for the training of the implemented CE-
BiGAN, LS-BiGAN and LS-CycleGAN models is Adam [66], while the W-BiGAN 
is trained by using the RMSprop solver with clipping threshold set to 0.01 [61]. The 
hyper-parameters of all implemented solvers have been optimized through validation 
trials, and their main optimized values are reported in Table 6. Mini-batches of size 
of 16 have been utilized for model training under all implemented solvers.

3.3  Comparison of the simulated training loss curves

According to [55, 60, 61], a training iteration of each implemented BiGAN and 
CycleGAN model embraces m ≥ 1 gradient-based steps for the optimization of the 
underlying discriminators, which are followed by a single step for the optimiza-
tion of the corresponding generators. We have numerically ascertained that, in our 
framework, m = 1 (resp., m = 5 ) is suitable for the training of the CE-BiGAN, LS-
BiGAN and LS-CycleGAN models (resp., for the training of the W-BiGAN model).

The attained loss curves are reported in Fig.   6. Regarding the BiGAN model, 
a comparative examination of the training curves of Figs. 6a–c points out that the 
Wasserstein (resp., Cross-Entropy) loss function gives rise to the most (resp., less) 
stable behavior during the overall training phase, with the behavior of the least-
squares loss function falling somewhat in the middle. This conclusion is also sup-
ported by the following additional two remarks. First, a comparative view of the 
entries in the second column of Table 11 unveils that the number of training itera-
tions needed for achieving the convergence is the highest (resp., the lowest) one for 
the CE-BiGAN (resp., the W-BiGAN), with the ranking of the LS-BiGAN still fall-
ing in the middle. In detail, as it could be expected, the two discriminator losses of 
Fig. 6c nearly overlap, so that the resulting generator loss fluctuates around zero and 
asymptotically vanishes. Second, the results reported in Table  7 show that, under 
each checked distance metric, the corresponding test accuracy of the W-BiGAN is 
the highest one, although the relative gaps with respect to the competing CE-BiGAN 
and LS-BiGAN models are not so impressive. However, we have numerically ascer-
tained that, at least under the considered training dataset, the least-squares loss func-
tion gives rise to the most stable behavior in the training phase of the implemented 
CycleGAN (see the plots of Fig. 6d). So, in the following sections, we directly focus 
on the LS-CycleGAN model.

Table 6  Implemented solvers 
for the optimization and related 
hyper-parameter tuning. LR: 
Learning Rate; WclipV: Weight 
clip Value; GclipN: Gradient 
clip Norm

Model Solver LR �
1

WclipV GclipN

CE-BiGAN Adam 10−4 0.1 – –
W-BiGAN RMSprop 10−5 – 0.01 10
LS-BiGAN Adam 10−4 0.1 – 10
LS-CycleGAN Adam 10−4 0.35 – –
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Fig. 6  Training loss curves of 
the considered approaches

(a) Cross-entropy BiGAN loss curves.

(b) Least-Squares BiGAN loss curves.

(c) Wasserstein BiGAN loss curves.

(d) Least-Squares CycleGAN loss curves.
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3.4  Performance robustness with respect to the distance metrics

The impact of the considered distance metrics on the performance indexes of 
Table 5 in the test phase may be evaluated through a comparative view of the entries 
of Table 7. In this regard, three main conclusions may be drawn. First, the test per-
formance of all models is quite robust with respect to the choice of the distance 
metric used for implementing the classifier of Fig. 4. Specifically, the resulting accu-
racy gaps over the full spectrum of checked model-vs.-distance settings are, indeed, 
limited up to 5.7%. Second, the accuracies of the CE-BiGAN and LS-BiGAN (resp., 
W-BiGAN and LS-CycleGAN) models attain their corresponding maxima under 
the correlation (resp., Jensen-Shannon) distance metric. Third, the highest test accu-
racy is obtained by the LS-CycleGAN model combined with the Jensen-Shannon 
distance.

The numerically evaluated distance spectra between the test and target COVID 
PDFs of the checked models under their corresponding best distance metrics are 
drawn in Figs. 7, 8, 9 and 10, while the associated confusion matrices are reported 
in Fig. 11.

The reported distance spectra corroborate the conclusion that the gaps between 
the accuracy performance of the best-checked models are, indeed, limited, with a 
slight superiority of the LS-CycleGAN model combined with the Jensen-Shannon 
distance (see Fig. 11).

This conclusion is further supported by the ROC curves of Fig. 12 and the associ-
ated AUC values (see the legend of Fig. 12). These curves confirm, indeed, that the 
LS-CycleGAN model combined with the Jensen-Shannon distance metric (resp., the 
LS-BiGAN model combined with the Correlation distance metric) attains the high-
est (resp., lowest) AUC value of 0.992 (resp., 0.977).

Fig. 7  Correlation distances between test-PDFs and COVID-PDF of CE-BiGAN; Threshold: TH = 0.06
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3.5  Unsupervised‑vs.‑weakly supervised models: comparative performance

By design, all the considered BiGAN and CycleGAN models require weakly super-
vised (WS) training (see Sect. 2.1). Hence, it could be of interest to compare their 
implementation complexity-vs.-training time-vs.- test time-vs.-test accuracy trade-
offs against the corresponding ones of the companion models in [38, 57], which 
have been recently developed in the literature for COVID-19 detection/classifica-
tion. Like the considered BiGANs and CycleGANs, even the models developed in 
[38, 57] rely on suitably extracted hidden features for performing distance-based 
classification. However, unlike the here considered GAN-based models, both the 

Fig. 8  Correlation distances between test-PDFs and COVID-PDF under the LS-BiGAN model; Thresh-
old: TH = 0.08

Fig. 9  Jensen-Shannon distances between test-PDFs and COVID-PDF under the W-BiGAN model; 
Threshold: TH = 0.585
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Fig. 10  Jensen-Shannon distances between test-PDFs and COVID-PDF under the LS-CycleGAN model; 
Threshold: TH = 0.07

(a) (b)

(c) (d)

Fig. 11  Confusion matrices for the best setting of model/distance metric
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models developed in [38, 57] exploit the encoders of UnSupervised (US)-trained 
Denoising CAEs (DCAEs) to extract suitable hidden features from COVID-19 input 
images. Shortly, the extracted hidden features are utilized in [38] for building up 
suitable target and test histograms, while they are used in [57] for estimating the 
underlying test and target PDFs. Hereinafter, we refer to the model in [38] (resp., 

Fig. 12  ROCs of the tested models under the corresponding best distance metrics

Table 7  Model performance under different distance metrics

Bold indicates the best result

Model Distance Accuracy Precision Recall F1-score Test CTs

CE-BiGAN
Euclidean 0.9760 0.9760 0.9765 0.9760 1000
Correlation 0.9770 0.9770 0.9778 0.9770 1000
KL divergence 0.9740 0.9740 0.9746 0.9740 1000
Jensen-Shannon 0.9720 0.9720 0.9728 0.9720 1000

LS-BiGAN
Euclidean 0.9490 0.9490 0.9492 0.9490 1000
Correlation 0.9640 0.9630 0.9653 0.9630 1000
KL divergence 0.9560 0.9560 0.9567 0.9560 1000
Jensen-Shannon 0.9300 0.9300 0.9314 0.9299 1000

W-BiGAN
Euclidean 0.9770 0.9780 0.9781 0.9780 1000
Correlation 0.9770 0.9770 0.0772 0.9770 1000
KL divergence 0.9770 0.9770 0.9772 0.9770 1000
Jensen-Shannon 0.9780 0.9780 0.9788 0.9780 1000

LS-CycleGAN
Euclidean 0.9760 0.9760 0.9766 0.9760 1000
Correlation 0.9700 0.9700 0.9711 0.9700 1000
KL divergence 0.9860 0.9860 0.9863 0.9870 1000
Jensen-Shannon 0.9870 0.9870 0.9873 0.9870 1000
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[57]) as the Histogram-Based DCAE (HB-DCAE) (resp., Probability density-Based 
CAE (PB-CAE)).

The middle columns of Table 8 allow us to compare the main operating settings 
of the considered WS/US models in terms of sizes of the used input images, num-
bers of utilized training and test images and sizes of the extracted feature maps. 
A comparative description of their interior architectures and numbers of trainable 
parameters (i.e., model sizes) is presented in Table 10, where the ×2 factors account 
for the fact that a CycleGAN is composed, by design, of two generators and two dis-
criminator nets (see Fig. 2).

The corresponding performance of the tested models is measured through numer-
ical evaluation of the resulting test accuracies (see the last column of Table  8), 
together with the number of required training iterations and associated training and 
test times (see Table 11). In order to guarantee fair accuracy comparisons, the same 
number (i.e., 1000) of training and test images is utilized in all tests (see the 4th 
and 5th columns of Table 8). Furthermore, in order to carry out fair comparisons 
among the evaluated training times, the following exit condition has been applied in 
all performed training simulations: The training phase of a model is stopped when 
the best training accuracy over a window of 30 consecutive iterations improves less 

Table 8  Implemented unsupervised and weakly supervised models for COVID-19 detection. HB-DCAE: 
Histogram-Based DCAE [38]; PB-CAE: PDF-Based CAE [57]; US: Un-Supervised; WS: Weakly Super-
vised; TRIM: Number of TRaining IMages; TSIM: Number of TeSt IMages

Bold indicates the best result

Model Model training Size of the 
input images

#TRIM #TSIM Size of the extract 
features

Resulting 
best test 
accuracy

HB-DCAE US 200 × 300 1000 1000 50 × 75 × 64 0.8270
PB-CAE US 200 × 300 1000 1000 128 × 1 0.7610
CE-BiGAN WS 100 × 100 1000 1000 1024 × 1 0.9770
W-BiGAN WS 100 × 100 1000 1000 1024 × 1 0.9780
LS-BiGAN WS 100 × 100 1000 1000 1024 × 1 0.9640
LS-CycleGAN WS 100 × 100 1000 1000 25 × 25 × 256 0.9870

Table 9  Performance evaluation 
metrics related to some 
comparisons with other state-
of-the-art approaches using the 
same dataset

Reference Model Accuracy Precision Recall F1-score

[34] AlexNet 0.9060 0.9060 0.9209 0.9052
[34] VGG16 0.9140 0.9140 0.9266 0.9134
[17] ResNet50 0.9245 0.9245 0.9359 0.9302
[58] CovidNet-ct 0.9790 0.9790 0.9714 0.9752
[52, 53] MERSGAN+ 0.9765 0.9820 0.9840 0.9830
[33] Random forest 0.9004 0.8917 0.9025 0.8971
[18] AI-system 0.9656 0.9020 0.9710 0.9352
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than 0.1% compared to the corresponding best training accuracy attained over the 
previous iteration window.

Finally, Table 9 shows some comparisons with other state-of-the-art approaches 
in the case of supervised COVID/Non-COVID classification, using the same dataset. 
Specifically, we provide comparisons with famous CNN models such as AlexNet 
[34], VGG16 [34], ResNet50 [17], and CovidNet-CT [58]. In addition, we also con-
sider the MERSGAN+ proposed in [52, 53], which combines a modified enhanced 
super-resolution GAN with a Siamese capsule network, the random forest approach 
proposed in [33] for large-scale screening, and the AI-based system exploiting 
U-Net architectures introduced in [18].

An examination of Table 9 shows that the proposed BiGAN approaches generally 
outperform the most common supervised classification methods, although the Cov-
idNet-CT [58] and MERSGAN+ [52] ones obtain similar results. On the other hand, 
the proposed CycleGAN always outperforms all the state-of-the-art approaches.

Overall, the results shown in Table 9 compared to those of Table 8 demonstrate 
the effectiveness of the proposed methods, since, although these are weakly super-
vised approaches, they are able to perform the same or better than the supervised 
ones.

3.6  Performance‑vs.‑computational complexity tradeoff

Figure  13 provides a compact synoptic view of the implementation complexity-
vs.-training time-vs.-test time-vs.-accuracy tradeoffs attained by the tested US/WS 
models. Specifically, in Fig. 13, the diameters of the disk-shaped markers are pro-
portional to the corresponding model sizes (i.e., the number of trainable parameters 
reported in Table 10).

An examination of Fig. 13 leads to the following insights about the relative merits 
of the compared models. In terms of test accuracy, the GAN-based models, although 
present a not negligible training time, outperform the CAE-based ones, with the 
accuracy of the most performing GAN model (e.g., the LS-CycleGAN one) that is 
larger than the accuracy of the most performing CAE model (e.g., the HB-DCAE 
one) of about 16.1% (see also the last column of Table 8). Furthermore, due to their 
larger learning capability, the GAN-based models are capable to operate on input 
images whose sizes are smaller than the ones required by the CAE-based models 
(see the 3rd column of Table 8). We have numerically ascertained that these results 
are mainly dictated by the US-vs.-WS nature of the tested DL models.

However, in terms of training times, opposite conclusions take place. In fact, as 
a direct consequence of the major sizes of the GAN-based models compared to the 
corresponding ones of the CAE-based models, both the number of training itera-
tions and the resulting training times of the implemented BiGAN and CycleGAN 
models are larger than the corresponding ones of the HB-DCAE and PB-CAE ones. 
Specifically, the training time of the ‘fastest-to-train’ GAN-based model (e.g., the 
LS-CycleGAN) is larger than the one of the ‘fastest-to-train’ CAE model (e.g., the 
HB-DCAE) of about 18.5 times.
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Finally, a similar conclusion holds for the corresponding test times. Specifi-
cally, the per-image test times of the ‘fastest-to-test’ GAN-based models (e.g., 
the Bi-GAN models) are larger than the one of the ‘fastest-to-test’ CAE model 
(e.g., the PB-CAE) of about 80 times (see the last column of Table 11). In this 
regard, we have numerically ascertained that the achieved test times are mainly 
dictated by the sizes of the extracted features. This is also the reason why the 
test time of the LS-CycleGAN is larger than the ones of the BiGAN models (see 
Fig. 13b).

(a)

(b)

Fig. 13  a Per-model training time versus test accuracy. b Per-model test time versus test accuracy
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Overall, by considering the complexity-vs.-training time-vs.-test time-vs.-
accuracy tradeoff, we can argue that the proposed method can represent a prom-
ising approach for the robust classification of the COVID-19 disease from unla-
beled CT scans.

4  Conclusion and hints for future research

In this paper, we developed a KDE-based inference method, which leverages the 
hidden features extracted by BiGANs and CycleGANs for estimating, in the train-
ing phase, the (a priori unknown) PDF of the CT scans of COVID-19 patients (that 
is, the target COVID-PDF). Afterward, in the test phase, the distance (in the latent 
space) between the PDF of each test CT scan and the target COVID-PDF is evalu-
ated, and, then, a tunable binary detector is implemented for generating the COVID/
Non-COVID final decisions. We have numerically checked the implementation 

Table 10  Details and number of trainable parameters of the considered model architectures. BN: Batch-
Normalization; Conv: Convolution; ConvTr: Transposed Convolution

BiGANs CycleGAN HB-DCAE[38] PB-CAE[57]

Generator
Conv+BN – 21 + 24 (×2) – –
ConvTr+BN 4+4 3 + 3 (×2) – –
Dense 1 3 (×2) – –
Trainable parameters 82,753,665 35, 264, 003 (×2) – –

Discriminator
Conv + BN 4+0 6 + 6 (×2) – –
Dense 4 – – –
Trainable parameters 83,826,561 6, 960, 321 (×2) – –

Encoder
Conv+BN 4+4 3+3 3+2 3+2
Dense 1 – – 1
Trainable parameters 82,515,072 374,016 376,640 31,096,768

Table 11  Training/test times of 
the considered models

Model Number oftrain-
ing iterations

Per-iteration 
time (s)

Per-image 
test time (s)

CE-BiGAN 115,000 0.7 0.79
W-BiGAN 70,000 1.08 0.80
LS-BiGAN 140,000 0.9 0.79
LS-CycleGAN 7000 2.23 14.38
HB-DCAE 3125 0.27 0.05
PB-CAE 6250 0.306 0.01
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complexity-vs.-performance trade-offs attained by the designed BiGAN and Cycle-
GAN models under several settings of training loss functions and distance met-
rics for test classification. In order to better corroborate the obtained numerical 
results, we have also checked the corresponding implementation complexity-vs.-
performance trade-offs of some state-of-the-art competing models, which utilize 
the encoders of unsupervised-trained CAEs as feature extractors. The comparative 
analysis of the obtained numerical results supports the final conclusions that: i) the 
test accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models 
outperform the corresponding ones of the benchmark CAE-based models of about 
16% (resp., 14%); while, ii) the average training times of the tested CAE-based mod-
els are lower than the ones of the developed Cycle/BiGAN-based models of about 
18–19 times.

The presented results open, indeed, the doors to five main research directions 
regarding the utilization of Cycle/Bi-GAN-based engines for image classification.

First, recovery of hyperspectral images (i.e., images composed by a number of 
inter-depending multispectral spatial slices) is an ill-posed (typically, nonconvex) 
constrained inverse problem, in which high-resolution multiband images must be 
recovered from their low-resolution (i.e., mixed and/or noise-affected) counterparts 
[67]. Recently, in [67, 68], supervised-trained CNN-based methods have been devel-
oped for unmixing and classification of hyperspectral images. Hence, developing 
effective Cycle/BiGAN-based models for the weakly supervised recovery/classifica-
tion of hyperspectral images may be a first research topic of potential interest.

Second, in [68], supervised-trained graph convolutional networks (GCNs) (i.e., 
CNNs capable to operate on input data described by assigned adjacency graphs) 
have been designed for hyperspectral image classification. Motivated by the good 
performance reported in [68], we believe that an interesting research topic could 
concern the design of BiGAN and CycleGAN models that are capable to operate 
over graph-structured input data, in which long-range spatial dependence is captured 
by suitable adjacency matrices.

The recent contribution [69] proposes a CNN-based architecture for the joint 
extraction and fusion of features from multi-modal input data (i.e., heterogeneous 
input data that refer to a same object/scene to be classified). The design of novel 
BiGAN and CycleGAN architectures for multi-modal learning could be a third 
research line of potential interest.

A further hint for future research arises from the consideration that hyperspectral 
images are typically represented as data cubes with spatial-spectral information, in 
which non-negligible inter-data correlation is typically present along the spectral axis. 
To suitably exploit this correlation, the recent contribution in [70] proposes a new super-
vised-trained transformer-based DNN model (referred to as SpectralFormer) for the reli-
able classification of hyperspectral images. Hence, an interesting topic could concern 
the exploitation of BiGANs and CyCleGANs for the design of transformer-based DNN 
architectures that rely on weakly supervised training for image classification.

Finally, a potential drawback of the developed BiGAN and CycleGAN models is 
that their training times are quite long (i.e., more than 18 times larger than the cor-
responding ones of the tested CAE-based models). Hence, how to exploit Cloud/
Fog-based [71, 72] virtualized [73] and (possibly) multi-antenna [74, 75] computing 
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architectures for the parallel and distributed training of heavy BiGAN/CycleGAN 
models in interference-affected broadband wireless domains [76, 77] could be a final 
research topic of potential interest.
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