
Automation in Construction 156 (2023) 105072

A
0
n

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Crack Monitoring from Motion (CMfM): Crack detection and measurement
using cameras with non-fixed positions
Valeria Belloni a,∗, Andreas Sjölander b, Roberta Ravanelli a, Mattia Crespi a,c, Andrea Nascetti d,e

a Geodesy and Geomatics Division, Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Rome, Italy
b Division of Concrete Structures, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
c Sapienza School for Advanced Studies, Sapienza University of Rome, Rome, Italy
d Geomatics Unit, Department of Geography, University of Liège, Liège, Belgium
e Geoinformatics Division, Department of Urban Planning and Environment, KTH Royal Institute of Technology, Stockholm, Sweden

A R T I C L E I N F O

Dataset link: https://github.com/Geod-Geom/C
MfM

Keywords:
Crack detection and measurement
Convolutional Neural Networks
Digital Image Correlation
Camera movement
Concrete beam testing
Infrastructure monitoring

A B S T R A C T

The assessment of cracks in civil infrastructures commonly relies on visual inspections carried out at night,
resulting in limited inspection time and an increased risk of crack oversight. The Digital Image Correlation
(DIC) technique, employed in structural monitoring, requires stationary cameras for image collection, which
proves challenging for long-term monitoring. This paper describes the Crack Monitoring from Motion (CMfM)
methodology for automatically detecting and measuring cracks using non-fixed cameras, combining Convolu-
tional Neural Networks and photogrammetry. Through evaluation using images obtained from laboratory tests
on concrete beams and subsequent comparison with DIC and a pointwise sensor, CMfM demonstrates accurate
crack width computation within a few hundredths of a millimetre when compared to the sensor. This method
exhibits potential for effectively monitoring temporal crack evolution using non-fixed cameras.
1. Introduction

Civil infrastructures include critical structures, such as bridges,
tunnels, highways, and buildings. Many of these structures are be-
coming older and increasingly prone to severe failures that can lead
to loss of lives and high economic costs. To prevent such infrastruc-
ture damage and failures, strict safety regulations for infrastructures
have been recently defined. For this reason, administrators of infras-
tructures require more efficient monitoring systems to determine the
health of tunnels, bridges, and other critical structures. Structural
Health Monitoring (SHM) is one of the major approaches adopted to
perform non-destructive evaluations of infrastructures [1]. Detection
and measurement of cracks are essential SHM activities to ensure the
structural capacity of concrete structures during their technical life
span which is normally designed to be 100 years or more and can be
achieved through recurrent monitoring, assessment and maintenance.
Mostly, cracks are associated with concrete degradation and reinforce-
ment corrosion which reduce the structural capacity. The extent of
cracks constitutes, therefore, a key parameter in evaluating the safety
and durability of structural components [2–4]. For this reason, cracks
should be detected as soon as possible and monitored over time.
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Nowadays, large civil infrastructures are routinely inspected to
detect and measure cracks and to estimate the associated risk. Tradi-
tionally, this work is accomplished through visual inspection by experi-
enced workers. However, this procedure is time-consuming, expensive,
and prone to human errors. Furthermore, many of the monitored areas
are difficult to reach or dangerous for standard inspection, which means
that the severity of the cracks must be judged from the ground or
using mobile platforms. Moreover, the service these infrastructures
provide must often be interrupted to ensure the safety of inspectors.
To minimize the impact of infrastructure downtime, inspections are
usually carried out at night for a limited time. This aspect, com-
bined with the length/width of the infrastructure to monitor, makes
it very difficult and sometimes practically impossible to inspect the
infrastructure in detail, increasing the risk that potentially dangerous
cracks are not detected. Also, conventional devices for deformation and
crack measurements, such as strain gauges, Linear Variable Differential
Transducers (LVDT), and Fibre Optic Sensors (FOS) can provide only
locally accurate information, limited to the area of the structure where
they are installed [5].

In the last decades, different non-contact techniques for infras-
tructure monitoring, such as Digital Image Correlation (DIC), have
been widely investigated to overcome the main drawbacks related to
vailable online 11 September 2023
926-5805/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.autcon.2023.105072
Received 25 January 2023; Received in revised form 17 August 2023; Accepted 22
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

August 2023

https://www.elsevier.com/locate/autcon
http://www.elsevier.com/locate/autcon
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
https://github.com/Geod-Geom/CMfM
mailto:valeria.belloni@uniroma1.it
https://doi.org/10.1016/j.autcon.2023.105072
https://doi.org/10.1016/j.autcon.2023.105072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2023.105072&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Automation in Construction 156 (2023) 105072V. Belloni et al.
visual inspection and standard devices [6–10]. With 2D DIC, a fixed
camera can monitor in-plane displacements and strains by tracking the
movement of individual pixels in time series of co-registered images.
Yet, for long/wide infrastructures, the area that can be monitored with
this technique is limited since the permanent camera setup is usually
not suitable for long-term infrastructure monitoring and is difficult to
ensure outside the controlled laboratory conditions.

Nowadays, cameras can be easily placed on vehicles or drones, en-
abling an automatic collection of infrastructure imagery from different
points of view. An important objective of inspections is to determine
whether or not the length and width of the cracks have propagated
since the last inspection [11]. However, due to the limitations of
standard 2D DIC, crack propagation cannot be measured from images
collected from different points of view since in these cases the position
of the camera between the inspections differs. Therefore, the informa-
tion from the images collected using mobile mapping systems can only
be adopted to generate a digital representation of the infrastructure
(the so-called digital twin), detect the defects, and manually compare
the features of the cracks between different inspections. Due to the
large amount of collected data, this approach is still time-consuming,
inefficient, and affected by human errors [12].

This study presents a novel algorithm, Crack Monitoring from Mo-
tion (CMfM), which integrates photogrammetric techniques with deep
learning methods for the automatic detection and monitoring of cracks.
CMfM uses a series of images collected by non-fixed cameras to moni-
tor the crack propagation over time. Unlike conventional techniques,
CMfM is entirely automatic, does not require fixed artificial targets
or un-deformed regions within the images and overcomes the 2D DIC
limitations of using a fixed camera. Therefore, our methodology opens
up new possibilities for automatically monitoring crack propagation
using images collected with mobile mapping systems in long infras-
tructures such as tunnels and bridges. The widespread adoption of
CMfM can hence lead to significant improvements in structural health
monitoring and maintenance. The approach employs Convolutional
Neural Networks (CNNs) for automatically detecting the shape of the
cracks and a skeletonization approach for delineating the centre line of
the defects and for automatically selecting the points of interest around
the cracked area. Then, it computes the change in the distance between
the selected points on the left and right sides of the crack for estimating
the crack width propagation over time. The proposed approach is based
on homography estimation and template matching techniques.

The paper is organized as follows: Section 2 gives a description of
the available sensors and techniques for crack monitoring; Section 3
presents the proposed methodology; Section 4 describes and discusses
the results from laboratory tests in which we measure the crack prop-
agation in concrete beams with CMfM, the standard DIC technique
and a pointwise LVDT; Section 5 outlines some conclusions and future
prospects. Finally, the Appendix presents the results of different simu-
lations performed using synthetic data to assess the methodology under
ideal conditions.

2. Techniques for crack monitoring

2.1. Standard measurement techniques

Several devices have been extensively tested to study the funda-
mental physics of structural behaviour. Among them, strain gauges,
LVDT, and FOS have been widely applied to investigate the deforma-
tion mechanism of structural elements subjected to loading systems.
The LVDT measures the displacements in a specific direction. Strain
gauges and FOS measure the strains and they can be adopted in
continuous monitoring systems where several sensors are linked to a
control unit. However, this approach can be highly invasive for the
infrastructure since electrical or fibre optic cables need to be placed
to make connections [13].
2

As regards standard crack measurements, different approaches can
be adopted depending on the required accuracy, precision and cost of
the monitoring system. For standard infrastructure inspections
(Fig. 1(a)), graduated cards provided with a set of different thickness
lines (Fig. 1(b)) are normally used to visually estimate the crack
width [13].

Fig. 1. Visual inspection (a) using graduated cards (b).

This method gives a rough estimation of the crack features (width and
length) at the specific time of the inspection but it is subjective and
difficult to follow up over time. The movement of cracks could vary
due to seasonal effects such as temperature and load conditions. It is,
therefore, important to monitor the variation of crack features over
time to understand how cracks affect structural behaviour.

Strain gauge, LVDT and FOS have been widely investigated for crack
measurements. Independently from the adopted device, a common
feature is the possibility to measure displacements/strains only along
specific directions, which must be decided in advance before installing
the instrument. These devices are more expensive than manual inspec-
tion but they can provide higher accuracy and objectivity. Strain gauges
and LVDT have long been used to monitor the structural response of
specimens in the laboratory [5,14] and on existing structures [15,16]
since they usually provide reliable measurements. The sensors need to
be attached to the surface of the investigated material and connected
by wires to a data logger to record the measurements (Fig. 2).

Fig. 2. Strain gauge (a) and LVDT (b) sensors.

The basic principle of these sensors is to measure the change in
electrical resistance caused by displacement. However, measurements
are only provided at the location of the sensors, which require direct
contact with the surface. For this reason, the number and placement
of the adopted devices should be carefully planned before testing to
get useful results. Furthermore, these sensors are sensitive to temper-
ature, which needs to be taken into account through the simultaneous
measurement of the air temperature. Then, the effects of temperature
variations can be removed by considering the specific thermal expan-
sion coefficient of the material inside the sensor. Finally, these devices
are sensitive to electromagnetic fields which can disturb the signal of
the instruments. For measurements of concrete materials, strain gauges
are usually adopted in the laboratory to monitor the structural response
of a material subjected to a loading system. The aim is to retrieve the
rheology of the material (e.g. strength, elasticity, plasticity, and fatigue)
and increase the understanding of its behaviour. Also, the measured
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data can be used to verify or update numerical models. One of the ben-
efits of strain gauges is that the sensor can be attached to reinforcement
bars embedded in the structure and thereby measure the interior strain.
Unfortunately, according to Leung [17] cracks have a small effect on
the stiffness of the structure in reinforced concrete. For this reason, the
strain gauges must be placed very close to the crack to capture any
structural effects due to cracking. To measure the propagation of cracks
in the concrete, the LVDT sensor is normally considered more reliable
and suitable during laboratory tests. The LVDT is composed of two
metal plates, which need to be glued to the surface on each side of the
crack. Then, the distance between the two elements is measured during
the deformation to retrieve the crack width. This type of instrument is
easy to use but it presents different drawbacks. First of all, the exact
location of the crack must be known before installing them. This is, of
course, a strong limitation, especially outside the controlled laboratory
conditions of specific tests (i.e. notched beams). Furthermore, the LVDT
performs the measurement only along a fixed length and direction and,
as well as strain gauges, can be damaged during destructive tests [18].
Finally, when long infrastructures need to be monitored, the procedure
is time-consuming and not always allowed, especially in the case of
historical or inaccessible structures [13].

Today, different types of FOS are available and capable of measur-
ing strain, pressure, and temperature in civil engineering structures.
The operating principle is based on measuring the changes in light
properties. By coupling an optical fibre to a structure and monitoring
the change in light intensity, phase, or wavelength at the output,
information on the structural condition can be deduced. A FOS enables
to overcome the limitation of strain gauges related to the temperature
as they measure temperature and strain at the same time. Furthermore,
a single FOS can be used to measure both the axial and transverse
strains and it is not affected by electromagnetic interference since
no electric current passes through them. Compared to standard point
sensors that can detect changes only at specific locations, FOS for
distributed sensing of cracks can be adopted. Among them, Fibre Bragg
Grating (FBG) allows for strain measurements at multiple locations and
provides more extensive information [17]. Unfortunately, their use in
long infrastructure systems is still limited since they are more expen-
sive than their electrical counterpart and they present some practical
problems. One of them is related to the placement and alignment of
the cable which must be connected to the concrete to be able to detect
and measure the width of cracks. This can be achieved by glueing the
cable on the surface of the concrete, but that makes it vulnerable to
damage. An alternative solution is to attach the cable to the reinforce-
ment and embed the cable in the concrete. However, there is a risk
that the cable is damaged or detached from the reinforcement during
concreting. Regarding the application of FOS for crack monitoring in
concrete, it is worth mentioning the approach presented by Bremer
et al. [19]. The principle of their crack detection system is to attach the
device to a textile structure embedded in the concrete. In this way, the
displacement of the concrete is, through the textile structure, enforced
to the FOS which breaks at small crack sizes (1.4 mm in the performed
test). The position of the crack can then be determined with an optical
time-domain reflectometer [19].

Overall, graduated cards, strain gauges, LVDT and FOS can provide
relevant and accurate (at different levels) measurements for crack
monitoring, but only in pre-selected locations and directions. They re-
quire permanent installations onsite and they can provide very limited
flexibility to follow the evolution of the cracks over time.

2.2. Image-based techniques

Image-based techniques, different from the described standard ones,
can simultaneously address the problems of crack delineation and mea-
surement. In this respect, different image-based approaches for crack
3

monitoring have been widely developed, representing a promising
alternative to visual inspection and standard devices. Image binariza-
tion is the simplest image processing technique currently employed
to perform crack delineation and measurement. Cracks are usually
darker than their surrounding area since they are characterized by
low-intensity values compared to the background. For this reason,
thresholding techniques have been widely investigated to segment the
shape of the crack and extract its features. However, the use of this
type of method (e.g. the Otsu thresholding [20]) is not accurate enough
since it strongly depends on the binarization parameters, the image
quality, the background characteristics and the change in lighting
conditions [2]. Regarding the choice of the optimal parameters, Kim
et al. [21] performed a parametric analysis to determine the optical
parameters of five different binarization methods. They also proposed
a comparative analysis of these techniques for crack delineation and
measurement in concrete structures.

To enhance binarization method performance, the combination with
other techniques has also been extensively explored. Sohn et al. [22]
proposed a crack monitoring system using different image processing
techniques including image enhancement, noise removal, histogram
thresholding, and thinning for crack linear feature extraction. Ito et al.
[23] explored the combination of shading correction, thresholding and
thinning. Similar methods were also presented in [24] and [25]. Yu
et al. [26] adopted image processing techniques combined with a semi-
automatic mobile system for tunnel inspection and crack measurement.
Zhang et al. [27] utilized morphological image processing techniques
combined with thresholding operations and Extreme Learning Machine
classifiers to perform image segmentation, feature extraction and crack
classification. They also proposed an algorithm for crack quantification
based on the skeleton graph to calculate the crack length and width.
Yamaguchi and Hashimoto [28] combined a high-speed percolation
method with binary and dilation processing, shading correction, ero-
sion and thinning processing to extract cracks on concrete surfaces.
They developed an image-based method for crack measurement with
sub-pixel accuracy in real concrete structure applications [29].

In addition to binarization methods, other techniques have been
widely investigated. Dare et al. [30] proposed a bilinear interpolation
method for crack width measurement with sub-pixel accuracy. How-
ever, the approach required human intervention for feature extraction
and could only provide pixel measurements. Later, Chen et al. [31] im-
proved the approach using quadratic curve interpolation. Dias-da Costa
et al. [32], Valença et al. [33] proposed a combination of photogram-
metry and image processing for computing the strain field and mapping
the cracked areas. The processing was almost completely automatic but
it required a regular grid of circular targets painted on the sample that
could be affected by imperfections and discontinuities of the concrete
surface. Barazzetti and Scaioni [13] presented the IMCA (IMage Crack
Aperture) tool for crack border and width extraction based on the
behaviour of the RGB component intensity along cross-sections of
cracks. Finally, deep learning techniques (Convolutional Neural Net-
works — CNNs) have been recently investigated to automatically detect
the shape of the cracks [34–39]. CNNs represent powerful techniques
for automatic feature extraction and classification problems. They are
designed to automatically and adaptively learn spatial hierarchies of
features through backpropagation by using convolution layers, pooling
layers and fully connected layers. Starting from a set of labelled images
for training the network, CNNs can be adopted to build a classifier
for automatically detecting objects (e.g. cracks) in new images. Among
the developed approaches, semantic segmentation provides pixel-level
classification by detecting all the pixels that belong to the crack and
this approach represents the most accurate method for the specific task
of crack detection [38]. In particular, the U-Net architecture is the most
adopted in the field of semantic segmentation [40].

Among image-based approaches, the optical DIC technique has also
been extensively used as a standard method to measure displacements,
strains and crack propagation when high accuracy is required [14,41–

43]. The 2D DIC technique provides in-plane full-field displacements
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and strains over large areas without the need for direct contact with
the structural element to monitor. Moreover, compared to standard
techniques, 2D DIC is less expensive and easier to use especially if larger
areas need to be monitored since it requires only a camera to acquire
the images and natural light for illuminating the scene. The typical
2D DIC acquisition system is composed of a planar sample connected
to a loading system, a standard camera to acquire the images and a
computer to process the recorded images (Fig. 3).

Fig. 3. Example of image acquisition system of 2D DIC.

The method uses a simple experimental setup and sample prepa-
ration, especially if the specimen surface has a natural texture char-
acterized by a random gray intensity distribution which is normally
ensured by the texture of materials such as concrete [10]. In some cases,
a speckled pattern is sprayed on the surface to improve the performance
of the technique. Even if 2D DIC presents lots of advantages, three re-
quirements need to be satisfied to accurately estimate the displacement
fields from the images:

• the camera position must be kept fixed during the entire ac-
quisition since the displacements are directly extracted from the
images;

• the sample must be characterized by a flat surface, the optical axis
of the camera should be kept perpendicular to the flat surface
and out-of-plane displacements should be small enough to be
neglected;

• the imaging lens system should not be affected by geometric
distortions to avoid additional displacements due to distorted
image coordinates [10]. If the effect of geometric distortions
cannot be neglected, camera calibration models [44,45] should
be used.

It is worth mentioning that different studies have been carried out
to understand the effects of lens distortion, out-of-plane motion and
non-parallelism between the image plane and the object surface [46–
49]. In Feng et al. [46] the authors underlined that even significant
misalignments up to 5 degrees with respect to the parallelism condition
have a very small impact (within 0.5%) on the estimated displacement.

Nowadays, two different DIC approaches for full-field kinematic
measurements are available: the subset-based DIC (local DIC) and the
finite element-based DIC (global DIC) [50]. Local DIC compares the
gray intensity changes of a sample surface in the un-deformed (or
reference) and deformed states, respectively. Specifically, it computes
displacement and strain fields by correlating each subregion of the Area
Of Interest (AOI) at different levels of deformation to the corresponding
subregion at the reference stage. Thus, subset-based DIC processes
each calculation point independently, without applying displacement
continuity to the global displacement fields [51]. This procedure is per-
formed by tracking the pixel inside the AOI using matching algorithms
(Fig. 4).
Global DIC, conversely, usually discretizes the AOI using finite element
mesh and then tracks all these elements in the target image simulta-
neously. In this way, displacement continuity can be explicitly ensured
between adjacent elements by the shared nodes [14].
4

Fig. 4. DIC pixel tracking.

As regards crack monitoring, both local and global approaches have
been widely investigated [43,52–60]. Usually, when a crack appears in
the acquired images and the DIC technique is adopted, a sudden jump
in the displacement fields can be detected. Therefore, starting from the
DIC displacement fields, the crack width can be computed to study the
failure mechanism of concrete or other materials. It is important to
underline that when complex or multiple cracks occur, modified DIC
techniques should be taken into account to improve the performance
of the method. Fagerholt et al. [61] proposed a modified global DIC
approach using an adapted mesh with node splitting to improve the
methodology and capture discontinuous displacement fields or complex
phenomena. Helm [62] modified the local Newton Raphson-based DIC
process to automatically analyse specimens with multiple growing
cracks that can be difficult to measure with standard DIC.

Thanks to its simplicity and its advantages over standard techniques,
the DIC method has been extensively adopted in controlled labora-
tory environments to perform measurements during experimental tests
(Fig. 5(a)). However, even if the technique is powerful and easy to use,
the need for a fixed camera represents a constraint that strongly limits
the use of DIC outside the controlled lab environment. For measure-
ments over a long period, the position of the camera could be difficult
to secure, especially in case of wind, vibrations or ground instability.
In this scenario, one possible solution is to identify and filter the
displacements related to the frequencies of the camera movement using
triaxial accelerometers mounted on the camera. However, this method
can only be adopted if the camera and the structural motion frequencies
are not similar. A different solution is to directly subtract the motion
of a static object/scene in the images from the total motion [63,64].
Furthermore, for large civil infrastructures, a fixed camera can only be
used to measure displacements, deformations and crack movements in
a few critical sections (Fig. 5(b)).

Fig. 5. DIC setup inside (a) and outside (b) the controlled laboratory conditions.
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Therefore, the procedure of crack monitoring on concrete structures
by quantifying the changes detected from multi-temporal images allows
to delineate and consider the whole crack, overcoming the limitation
of monitoring pre-selected locations/directions only. Nevertheless, the
camera installation requirements at fixed locations represent, also in
this case, a strong practical limitation for image-based techniques. For
this reason, to monitor the long-term deformation or propagation of
cracks in bridges or tunnels, a moving camera (also mounted on mobile
mapping systems or drones) is the most feasible option. In this case,
image acquisition can be performed at different epochs and the camera
can be removed and replaced between each measurement, releasing
the acquisition constraints and reducing the effects of environmental
conditions. However, if the camera is removed and replaced during
the acquisition period, the position and attitude of the camera differ
at each time and the image coordinates change in all the acquired
images. Therefore, when using portable cameras, the images include
not only the deformation of the surface but also the effect of the camera
movement. To remove this effect, static areas inside the images are
normally required. The problem is then solved by using the perspective
transformation which describes the relationship between un-deformed
points (usually manually marked points) on the images acquired before
and after the camera movement. The unknown coefficients of the trans-
formation are estimated using the least squares method starting from
a coordinate set of fixed points. Finally, once the transformation coef-
ficients are estimated, the effect of the camera movement is removed
and the deformation or the crack propagation is computed. Using the
approach based on perspective transformation, Yoneyama and Ueda
[64] leveraged fixed reference regions on both sides of a bridge to
remove the effect of camera movement and measure the bridge deflec-
tion. Adopting a similar approach, Sohn et al. [22] proposed a crack
monitoring system. They used targets with known image coordinates
and object space coordinates to estimate the projective transformation
and create the reference crack coordinates in the object space. Then,
they transformed the crack image coordinates of each image acquired
with a moving camera into the same object coordinate of the real
surface using a modified iterated Hough transform algorithm. They
combined the procedure with image processing techniques to detect
and quantify the change of cracks on the concrete surface. Similarly,
Nishiyama et al. [65] placed reflective targets along both sides of cracks
5

in a concrete tunnel to measure their propagation over time using non-
fixed cameras. Specifically, they converted digital images acquired from
arbitrary positions to images facing the targets through the perspective
projection and they finally computed the distance between the target
centres to obtain the crack width over time.

To the best of our knowledge, the use of un-deformed regions,
or targets, inside the images is the only solution currently available
for the use of non-fixed cameras. However, un-deformed regions are
hardly available inside the acquired images and difficult to identify
automatically. Furthermore, considering the length of the infrastructure
to monitor, the target setup is always time-consuming and not feasible
since it requires the infrastructure to be closed down for traffic. There
is also a potential risk of target falling during inspections, especially
for long-term maintenance. For all these reasons, the approach based
on fixed regions or targets represents a reasonable method only to
monitor crack propagation during the construction period, or if a few
small areas need to be monitored during a short period. For recurrent
inspections, performed when the infrastructure is in operation, the
logistic constraint to set up and maintain targets still represents a severe
limitation, mainly for long/wide infrastructure. For all these reasons,
we developed CMfM to detect and monitor the in-plane evolution
of cracks through the analysis of a time series of images captured
with non-fixed cameras. The methodology is described in detail in the
following section.

3. Methodology

This section presents CMfM, the novel methodology we developed,
tested and validated to release the 2D DIC logistic constraint related
to the fixed position of the camera and bring the technique to a
fully operational level for long-term infrastructure monitoring. The
method is completely automatic and it does not require the presence
of targets or un-deformed regions within the images. Therefore, it
can be widely adopted for improving the efficiency and objectivity of
structural monitoring.

The workflow of CMfM is divided into three main steps (Fig. 6):

• data collection;
• crack and interest point detection;
• crack width monitoring.
Fig. 6. CMfM workflow.
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3.1. Data collection

The first step of CMfM is data collection whose aim is to capture
a time series of images using non-fixed cameras. With our approach,
standard commercial cameras or smartphones can be used to collect
images of cracks at different levels of the deformation process (time
𝑡0, 𝑡1, 𝑡2,… , 𝑡𝑛). Usually, the first image is referred to as the reference
image, while all the others are named deformed. The images can
be acquired from different positions to capture the in-plane crack
propagation during short-term and long-term monitoring. The proposed
methodology focuses on measuring the in-plane crack propagation
since planar surfaces are considered a good approximation for the
majority of structural elements (e.g. beams or generic material samples
of laboratory tests, pillars of bridges and tunnel lining), especially if the
area of interest captured in the images is limited.

3.2. Crack and interest point detection

The second step of CMfM is the automatic detection of the crack
of interest in the reference image 𝐼(𝑡0). For this purpose, we used a
semantic segmentation approach, implementing a U-Net segmentation
network [40] combined with different backbones (e.g. Visual Geom-
etry Group [66] — VGG 16 and VGG 19) using pre-trained weights
from ImageNet [67]. We developed the processing pipeline within the
Google AI platform using Keras-TensorFlow and Segmentation Model
libraries. For training the U-Net segmentation network, we used a
subset of a dataset available online [68] containing around 11.220
images (448 × 448 pixels) and corresponding crack annotations merged
from different available crack segmentation datasets [69–74]. This
dataset includes indeed cracks with different scales and cracks related
to completely different scenarios: ideal cracks, crack-similar-looking
objects, cracks on a noisy background and cracks covered by moss [75].
In the present work, we considered only the cracks related to the most
interesting cases for crack detection in concrete materials, selecting
around 2500 images and the corresponding annotations. We performed
data augmentation using the Albumentation Python library [76] to
virtually increase the size of the dataset and make the neural network
more robust. Specifically, we applied a horizontal flip of the images
around the 𝑦-axis with a probability 𝑝 = 0.5, a combination of scaling
(𝑚𝑎𝑥 = 0.2), rotation (𝑚𝑎𝑥 = 20◦) and shifting (𝑚𝑎𝑥 = 0.1) of the
images with a probability 𝑝 = 1.0, and a random crop of part of the
images with a probability 𝑝 = 1.0. We trained the network using 80%
of the imagery in the dataset for 80 epochs (batch size = 4) with a
learning rate of 0.00001 and a reducing learning rate on the plateau.
We used a combination of dice and binary-focal loss functions and the
Adam optimizer [77]. We used the remaining 20% of the imagery as
the test set to assess the network performances. During testing, we set
a fixed threshold of 0.5 to obtain binarized segmentation images from
the probability maps. Then, we computed five common segmentation
accuracy metrics for the quantitative accuracy assessment: Accuracy
(A), Intersection over Union (IoU), Precision (P), Recall (R) and F1
score (F1). Formulas for the metrics are given in the following equa-
tions, where TP are true positives, TN are true negatives, FP are false
positives, and FN are false negatives:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 = 2𝑃𝑅
𝑃 + 𝑅

n particular, we calculated the standard metrics for each image and
hen we aggregated the values using the medians and standard devia-
ions for each metric.
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Figs. 7 and 8 show the results achieved using the U-Net architecture
combined with the VGG 16 backbone. Fig. 7 presents the loss and F1
curves for training and testing; Fig. 8 shows the segmentation accuracy
metrics on the test set.

In our approach, we first apply the trained model to the reference
image (Fig. 9(a)) to detect the crack (Fig. 9(b)). Then, we use a
skeletonization algorithm to delineate the centre line of the identified
crack (Fig. 9(c)). Finally, we automatically select N sections along the
crack skeleton (Fig. 9(d)) identifying pairs of points on the left and right
sides of the crack. These points identify the locations where the crack
width propagation is measured using the methodology reported in the
following section.

3.3. Crack width monitoring

The third step of CMfM is the automatic crack width monitoring.
This step is based on the Scale-Invariant Feature Transform (SIFT)
algorithm that is used to automatically match corresponding features
in all the collected images even with variations in scale and view-
points [78]. The SIFT matched points are adopted to estimate the
homography transformations (𝐻0𝑖 with 𝑖 = 1,… , 𝑛) representing the
camera movement between the reference image 𝐼(𝑡0) and all the 𝑛
subsequently acquired deformed images 𝐼(𝑡𝑖) with 𝑡𝑖 > 𝑡0 and 𝑖 = 1,… , 𝑛
(Eq. (1)).

𝐼(𝑡0)
𝐻01
⇄
𝐻10

𝐼(𝑡1)

⋮

𝐼(𝑡0)
𝐻0𝑖
⇄
𝐻𝑖0

𝐼(𝑡𝑖) (1)

⋮

𝐼(𝑡0)
𝐻0𝑛−1
⇄

𝐻𝑛−10
𝐼(𝑡𝑛−1)

(𝑡0)
𝐻0𝑛
⇄
𝐻𝑛0

𝐼(𝑡𝑛)

f a crack appears in the images, the homography is automatically
stimated using only the points on one side of the crack (Fig. 10).
CMfM can adopt two robust methods instead of a simple least-

quares scheme for estimating the homographies. In this way, the
lgorithm uses only the good matches or the so-called inliers to provide
he correct homography estimation. The two used robust methods are
ANdom SAmple Consensus (RANSAC) [79] and Least Median [80].
uch methods test many different random subsets of the corresponding
oint pairs (of four pairs each for the homography computation) and
stimate the homography matrix using the selected subset and a simple
east square algorithm. It is worth mentioning that RANSAC can handle
ny ratio of outliers but it needs a threshold to distinguish inliers from
utliers. On the other hand, the Least Median method does not need
ny threshold but it works correctly only when there are more than
0% of inliers. The quality of the computed homography is evaluated
hrough the number of inliers for RANSAC and the median re-projection
rror for Least Median. The best subset is used to produce the initial
stimate of the homography matrix and the mask of inliers. Finally, the
omputed homography matrix is refined using all the inliers with the
evenberg–Marquardt algorithm to reduce the re-projection error [81,
2].

Once the homography is estimated for each image pair (Eq. (1)),
he points of interest automatically selected in the reference image
(𝑡0) (Fig. 11(a)) are projected from the reference image to each one
f the 𝑛 deformed images using the estimated homographies 𝐻0𝑖.
hen, CMfM adopts the selected points on the reference image and
he projected points on each deformed image to perform a template
atching procedure and compute the displacements of the points of

nterest caused exclusively by the deformation of the monitored object.
hrough the approach implemented in CMfM, indeed, the homography
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Fig. 7. Loss and F1 score training curves.
Fig. 8. Computed metrics (medians and standard deviations) on the test set.

between each image pair is firstly estimated and then applied to the
selected points. In this way, the computed displacements do not include
the effect of the camera movement but only the effect of the crack
propagation. At the end of the processing, the positions of the points of
interest in the deformed images (time 𝑡𝑖) obtained through the matching
step are re-projected back on the reference image using the inverse
homography matrices 𝐻 . The aperture of the crack is then computed
7

𝑖0
Fig. 9. Original image (a), automatic crack detection (b), crack skeletonization (c) and
automatic point sampling (d).
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Fig. 10. Homography estimation between the reference image 𝐼(𝑡0) and one of the
deformed images 𝐼(𝑡𝑖).

Fig. 11. Automatically selected points (𝑡0 — red) in the reference image (a) and
re-projected points (𝑡𝑖 — blue) from the deformed to the reference image (b).

on the reference image as the difference of the distances between the
initial pairs of points (time 𝑡0 — red in Fig. 11) and the re-projected
point positions (time 𝑡𝑖 — blue in Fig. 11) of each deformed image. All
the measurements are, therefore, carried out on the reference image.
This is the reason why our approach does not need information on
the spatial resolution for each camera position, but only the spatial
resolution of the reference image. Therefore, the only requirement
of our methodology is a reference scale at the reference stage (time
𝑡0) which is used for computing the pixel dimension and estimating
the scale. It is also worth highlighting that our approach applies the
estimated homography only to the points of interest and not to the
entire images. In this way, we avoid reprojecting and resampling the
images preserving the original texture information.

4. Results

We tested the performance of the proposed methodology by pro-
cessing the data collected during two different laboratory tests. Firstly,
we tested CMfM on images acquired with an iPhone XS placed close to
the cracked area (from a distance of about 10 cm) of a concrete beam
subjected to loading. Then, we investigated a more challenging dataset
of images acquired with an iPhone SE from a higher distance (around
35 cm). The two datasets are available on Mendeley Data [83,84].
8

4.1. Experimental test 1

The aim of the first case study was to measure the crack propagation
in a concrete beam using CMfM and compare the results with the
measurements obtained employing the standard 2D DIC and an LVDT.
The setup consisted of a 800 × 150 × 100 mm (length × width ×
height) post-tensioned concrete beam subjected to three-point bending
(Fig. 12).

Fig. 12. Laboratory setup for the three-point bending test.

Before testing, we placed two 3.4 mm steel bars in the plastic tubes
and post-tensioned them to approximately 18 kN. We applied an exter-
nal load of 1.5 kN to prevent crack generation at the top of the beam
during post-tension. No internal structural connection existed between
the steel and the concrete. This setup normally yields the development
and controlled propagation of one single and centric-placed crack.

To collect the data, we adopted three cameras and we installed an
LVDT on one side of the beam. We placed the devices according to the
following scheme:

• side A - a Canon EOS 2000D (22.3 × 14.9 mm CMOS sensor, 24
Megapixels, pixel size of 3.72 μm) fixed on a tripod during the
entire test at a distance of 45 cm and an iPhone XS camera
(12 Megapixels) manually moved between each acquisition at a
distance of around 10 cm (Fig. 13(a)).

• side B - a Canon EOS 5D Mark 2 (35.8×23.9 mm CMOS sensor, 21.1
Megapixels, pixel size of 6.41 μm) at a distance of 50 cm mounted
on a tripod and moved between each load step to acquire images
from slightly different positions, and an LVDT (range of 10 mm
and a displacement measurement over a distance of 144 mm)
placed at the bottom and centre part of the beam (Fig. 13(b)).

Fig. 13. Instrument setup on side A (a) and side B (b).

During testing, we applied the load according to a fixed scheme.
At the beginning of each step, we increased the load by 1 kN and we
maintained it constant during the entire interval. The LVDT recorded
the horizontal displacements during all the steps. For each load step,
we acquired three images on both sides of the beam using the fixed and
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moving Canon cameras. Before cracking, we acquired all the images on
side A using only the fixed camera (Fig. 14(a)). On side B, we captured
the first image of each step using a fixed position, then we rotated and
translated the camera before acquiring the second and third images
(Figs. 14(c) and 14(d)).

Fig. 14. Images collected on side A (a, b) and side B (c, d) using the Canon cameras.

After cracking, we adopted the Canon cameras according to the
above-mentioned scheme and, on side A, we used the iPhone XS to
acquire one image for each load step using slightly different camera
poses. Fig. 15 shows examples of images acquired using the iPhone XS
camera.

Fig. 15. Images collected on side A using the iPhone XS at the time 𝑡0 (a) and 𝑡6 (b).

We carried out the comparison between the fixed and the moving
cameras using the images acquired on side A with the fixed Canon EOS
2000D camera and the non-fixed iPhone XS cameras. In particular, we
considered a series of six reference-deformed image pairs to monitor
the crack propagation over time. Firstly, we automatically detected the
crack in the reference image of the moving camera using the trained
U-Net network and we identified the centre line of the defect using a
skeletonization algorithm. Then, we automatically selected the points
of interest at a defined distance from the skeleton on the left and right
sides of the defect.

We processed the images acquired with the non-fixed camera adopt-
ing the RANSAC method with a threshold of 0.8 to estimate the
homography between each of the considered image pairs. In this way,
we reduced the impact of the outliers. We combined the reference
9

image 𝐼(𝑡0) corresponding to the time 𝑡0 with each one of the six de-
formed images (𝐼(𝑡𝑖) with 𝑖 = 1,… , 6) acquired at different levels of the
crack propagation (𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6). We projected the selected points
of interest from the reference image to each one of the six deformed
images using the estimated homography matrices. Then, we computed
the displacement of each projected point of interest (filtered by the
homography transformation) using the template matching algorithm
considering a template of 51 × 51 pixels with an oversampling factor of
10 in the horizontal and vertical directions. At the end of the procedure,
we re-projected the final positions of the points of interest (time 𝑡𝑖) from
the deformed to the reference image and we computed the distance (in
pixels) in the horizontal direction of each pair of the points of interest
on the left and right sides of the crack. The difference between the
initial distances (𝑡0) and the distances (𝑡𝑖) computed after re-projecting
the points on the reference image provided the crack aperture over
time. The computation of the crack aperture in the reference image
after point re-projection solved the problem related to the different
spatial resolutions of each camera position. In this way, only the pixel
dimension of the reference image 𝐼(𝑡0) was required.

To compute the results of the fixed camera, we projected the au-
tomatically selected points from the reference image of the moving
camera to the reference image of the fixed one through the homography
transformation between the two images (Fig. 16). Again, we adopted
the RANSAC method with a threshold of 0.8.

Fig. 16. Projection of the selected points from the moving reference image (a) to the
fixed reference image (b).

Then, we processed the images of the fixed camera with the local
2D DIC approach implemented in Py2DIC, an open-source and cross-
platform Python software developed at the Geodesy and Geomatics
Division of Sapienza University of Rome [14,85,86]. Based on the well-
known template matching method, it computes 2D displacements and
strains of a sample by comparing one or more image pairs of its surface
acquired at different steps of the deformation process using a camera
with a fixed position over time. Specifically, we used the points of
interest (projected from the reference image of the moving camera
to the reference of the fixed one) as centres of the templates in the
template matching procedure performed through Py2DIC. Again, we
computed the displacements using the corresponding six image pairs
collected with the fixed camera using a template of 51 × 51 pixels and
an oversampling factor of 10 in the horizontal and vertical directions.
Starting from the displacements, we calculated the crack aperture for
each pair of points on the left and right sides of the crack as the
variation of the point distance in the horizontal direction, as done
for the moving images. The comparisons between the crack aperture
computed with the fixed and the moving cameras for each pair of points
are shown in Figs. 17 and 18.
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Fig. 17. Crack width comparison between CMfM and DIC (𝑡0 − 𝑡1 , 𝑡0 − 𝑡2 , 𝑡0 − 𝑡3 , 𝑡0 − 𝑡4).



Automation in Construction 156 (2023) 105072V. Belloni et al.
Fig. 18. Crack width comparison between CMfM and DIC (𝑡0 − 𝑡5 , 𝑡0 − 𝑡6).
Table 1 shows the mean, median, standard deviation and Nor-
malized Median Absolute Deviation (NMAD) values of the differences
between CMfM and Py2DIC for each step.

Table 1
Comparison between CMfM and DIC.
Step Mean Median Std Dev NMAD

[px] [px] [px] [px]

𝑡0 − 𝑡1 0.06 0.22 0.64 0.62
𝑡0 − 𝑡2 −0.00 −0.16 0.50 0.40
𝑡0 − 𝑡3 0.12 0.12 0.59 0.42
𝑡0 − 𝑡4 −0.67 −0.82 0.55 0.65
𝑡0 − 𝑡5 −1.38 −1.32 0.36 0.41
𝑡0 − 𝑡6 −1.67 −1.76 0.52 0.73

The results highlight how the crack width computed using the
moving camera and the CMfM approach well follows the reference
trend of the fixed camera, at the level of one pixel which is equal
to 0.026 mm in the reference image of the iPhone XS. It is worth
mentioning that the optical axes of the first images of the moving
and fixed cameras should be kept, in theory, perpendicular to the test
surface. In the performed test we acquired the reference images as
much as possible parallel to the sample surface and we neglected the
effect related to small deviations to the perpendicularity condition.
It is also worth noticing that the comparison is slightly worse in the
last two steps (see Fig. 18). This is probably due to the fact that the
images were not simultaneously acquired with the fixed and moving
cameras; small differences in the comparisons are probably caused by
displacement variations that can arise during each load step. This effect
usually increases with the evolution of the crack.
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On side B, we adopted the same methodology to process the images
acquired using the moving Canon EOS 5D Mark 2 camera and we com-
pared the crack aperture computed using CMfM with the data recorded
by the LVDT. In this case, the CMfM results and the device recordings
were not directly comparable since it was not possible to compute the
displacement of the surface corresponding to the LVDT position due to
the occlusion of the sensor. To solve this problem, we computed the
crack width in the areas above and below the device and we applied
a linear interpolation to obtain the crack aperture corresponding to
the area covered by the LVDT (Fig. 19(a)). Then, we performed the
pixel-to-millimetre conversion for a direct comparison with the LVDT
measurements. To estimate the pixel dimension, we measured in the
reference image a few elements with known dimensions on the surface
to monitor. According to the computation, the averaged pixel dimen-
sion is equal to 0.064 mm. We carried out the procedure considering
the same time intervals adopted in the comparison between the fixed
and the moving cameras on side A. The comparisons between the LVDT
measurements and the crack aperture computed using CMfM are shown
in Fig. 19.

Also, in this case, the results show a good agreement with the
reference: the accuracy of the moving camera in estimating the crack
width is of the order of a few hundredths of a millimetre and it is
always below the pixel dimension. It is also worth noting that the
LVDT returns the measurement only along a specific direction but it
covers an extended portion of the image. The exact position of the LVDT
measurement is, indeed, difficult to retrieve. Therefore, the comparison
can be partially affected by small misalignments between the device
and the camera measurement points.
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Fig. 19. Crack width comparison between CMfM and the LVDT.
4.2. Experimental test 2

The aim of the second case study was to measure the crack propaga-
tion in a cracked concrete beam using images acquired with a non-fixed
camera at a larger distance from the beam. The setup consisted of an
800 × 150 × 150 mm (length × width × height) cracked concrete beam
subjected to three-point bending (Fig. 20).

Fig. 20. Laboratory setup for the three-point bending test.

In this test, we employed a fixed Canon EOS 5D Mark 2 camera
and a moving iPhone SE - 2022 (12 Megapixels). For each step, we
maintained a constant loading and we captured images with the Canon
camera at a distance of around 60 cm and with the iPhone SE from
different camera poses at a distance of about 35 cm. To show the
potential of CMfM, we processed the images with CMfM and the
standard 2D DIC implemented in Py2DIC. For the sake of brevity, we
show here only the results of one step in which the propagation of a
new crack is evident. We considered three different poses of the iPhone
SE and the corresponding images captured with the fixed camera. The
results are presented in Fig. 21 and Table 2.

Again, the results highlight how the crack width computed using the
moving camera and CMfM well follows the reference trend of the fixed
12
camera and the DIC technique. Indeed, all the statistic values are below
the pixel level (Table 2) which is equal to 0.9 mm in the reference
image of the iPhone SE.

Table 2
Comparison between CMfM and DIC in one selected step
considering three different image pairs.
Image Mean Median Std Dev NMAD
pair [px] [px] [px] [px]

1 −0.35 −0.45 0.63 0.66
2 −0.66 −0.60 0.42 0.24
3 0.35 0.39 0.72 0.81

5. Conclusions and prospects

This paper proposed a novel methodology, named Crack Monitoring
from Motion (CMfM), for the automatic detection of cracks and the
monitoring of their in-plane evolution using cameras with non-fixed
positions over time. Our main goal was to develop and test an inno-
vative procedure able to overcome the limitations of standard sensors
and well-established image-based techniques (e.g. DIC). Indeed, the
proposed methodology does not require a fixed camera for image col-
lection as well as targets or un-deformed regions inside the images. The
unique additional required information is the presence of a reference
scale (e.g. a ruler or an object with at least one known dimension) in the
crack plane during the first epoch of measurement (𝑡0); the reference
scale enables, indeed, the length conversion between pixel and metric
units. Also, it is worth noticing that the accuracy of the results can
be ensured by following best practices during data acquisition and
processing:

• a condition of parallelism between the first image and the planar
surface to monitor since this plane image implicitly defines the
plane where the crack is detected and monitored over time;

• correction of geometric distortions using camera calibration mod-
els if needed;



Automation in Construction 156 (2023) 105072V. Belloni et al.
Fig. 21. Crack width comparison between CMfM and DIC - pair 1 (a, b), 2 (c, d), and 3 (e, f).
• use of cameras with a better resolution to achieve more accurate
and detailed detection and measurements of cracks.

The potentialities of the CMfM methodology were evaluated by
processing images acquired in two different laboratory tests and by
comparing the results with those obtained employing the standard 2D
DIC technique, i.e. analysing the images collected by fixed cameras,
and an LVDT sensor. The results pointed out an accuracy of CMfM at
the level of the pixel size compared to standard DIC and of a few hun-
dredths of a millimetre compared to the LVDT reference measurements.
It is worth mentioning that the images analysed in the experimental
tests were captured using a standard smartphone camera, which makes
the approach also suitable for low-cost effective inspections. This re-
search has, therefore, the potential to contribute to the improvement
of infrastructure monitoring efficiency and objectivity.

In the future, we plan to further test the implemented methodology
in detecting and measuring crack propagation using images collected
outside the controlled laboratory conditions. In particular, we intend
to apply the methodology to multiple cracks visible in images collected
using mobile mapping systems and also combine the methodology with
Light Detection And Ranging (LiDAR) data to easily include the scale
of the images.
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Appendix. Experiments with synthetic data

Further validation of the proposed methodology involved the use of
synthetic data to simulate different cracks and camera poses for assess-
ing CMfM under ideal conditions. We generated regular planar points

https://github.com/Geod-Geom/CMfM
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representing a surface subjected to cracking and we projected them to
image planes corresponding to different camera poses. According to
a simplified scheme, we generated the first image parallel to the 𝑋𝑌
plane with a camera centre 𝑂0 at a distance 𝑑 from the planar surface
(Fig. 22).

Fig. 22. Geometry of the simulations.

This means that the rotation matrix 𝑅0 of the first image is equal
to the identity matrix and the translation vector is 𝑇0 = (0, 0, 𝑑). Then,
to simulate the 𝑂𝑖 (𝑖 = 1,… , 𝑛) camera centres of the 𝑛 images, we
generated random positions inside a sphere centred in 𝑂0 with radius
𝑟.

To measure a deformation process, we simulated a crack with
random orientation in the 𝑋𝑌 plane and we added the corresponding
displacement patterns to the original points of the planar surface. To
generate the crack, we randomly selected two points on the edges of
the planar surface and we joined them to define the crack path. Then,
we rotated the points on one side of the crack considering one of the
two points on the edges as the rotation centre.

We retrieved the translation vectors 𝑇𝑖 = (𝑋𝑜𝑖, 𝑌 𝑜𝑖, 𝑍𝑜𝑖) and the
rotation matrices 𝑅𝑖(𝜑𝑖, 𝜆𝑖, 𝑘𝑖) of each 𝑖th camera configuration using
the camera centres. We calculated the translations as the difference of
the camera positions in the 𝑋, 𝑌 and 𝑍 directions and we obtained the
rotation angles (𝜑𝑖, 𝜆𝑖, 𝑘𝑖) from the directional cosines of the straight
line joining each 𝑂𝑖 camera centre to a random point defined in the
𝑋𝑌 surface. Once the crack and the camera poses were defined, we
projected all the points of the planar surface to each of the 𝑛 image
planes according to the following equation (Eq. (2)):

𝑥𝑖 = 𝐾 |

|

|

𝑅𝑖|𝑇𝑖
|

|

|

𝑋𝑖 (2)

where:

• 𝑥𝑖 is the vector containing the 2D point homogeneous coordinates
of the 𝑖th image;

• 𝐾 is the calibration matrix of the camera;
• 𝑅 is the rotation matrix of the 𝑖th image;
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𝑖

• 𝑇𝑖 is the translation vector of the 𝑖th image;
• 𝑋𝑖 is the vector containing the 3D point coordinates of the grid

points on the planar surface (𝑋, 𝑌 , 0) corresponding to each sim-
ulated crack at time 𝑡𝑖.

For the first reference image 𝐼(𝑡0), we projected the points of the
planar surface to the image plane without considering any deformation
pattern. For all the other 𝑖 images (𝐼(𝑡𝑖) with 𝑖 = 1,… , 𝑛), we pro-
jected the points from the planar surface to each image after adding
the displacement patterns due to cracking. We performed different
simulations to investigate the robustness of the proposed model, also
considering Gaussian errors to simulate the matching error in detecting
the homologous points.

Simulations without Gaussian errors

We simulated cracks with random orientations on a planar surface
considering different deformations. Then, we applied CMfM to estimate
the crack propagation in the synthetic image planes. In this case, we
generated the grids of points in the reference and in the deformed
images directly during the simulation. For this reason, we did not adopt
the SIFT algorithm to detect corresponding points on the image planes
and we estimated the homography using all the generated points. After
homography estimation, we projected the points of the 𝑖th image planes
to the first one using the inverse of the estimated homography matrix.
Then, we calculated the differences between the positions of the back-
projected points (𝑡𝑖) and their initial positions (𝑡0) in the first image,
separately in the 𝑋 and 𝑌 directions. We computed the crack aperture
as the difference of the point position selected on the left and right sides
of the crack.

During the simulation, we generated 100 cracks with different
orientations. For each crack, we considered three steps of aperture (step
1, step 2, step 3) with increasing rotation angles (1◦, 2◦, 3◦) and three
different camera poses to simulate real acquisitions during the crack
propagation. For each simulation, we computed the signed differences
between the generated and estimated crack aperture to define the error
of the methodology. In terms of geometry, we defined the simulation
parameters using real conditions of laboratory tests (camera focal
length 𝑐 = 55 mm, reference image distance from crack plane 𝑑 =
450 mm, crack plane extension 201 mm × 201 mm). We used increasing
radius 𝑟 of the sphere centred in 𝑂0 (𝑟 = 10 mm, 𝑟 = 20 mm, 𝑟 = 30 mm).
We calculated the standard statistics (mean, median, standard deviation
and NMAD) of the cumulative errors for all the cracks and geometries
of the simulation globally and separately for each step. For the sake
of brevity, we present in Table 3 only the results related to the most
challenging configuration (radius 𝑟 = 30 mm).

Table 3
Statistics of the errors obtained with 100 randomly simulated cracks
and radius 𝑟 = 30 mm.

Mean Median Std Dev NMAD
[mm] [mm] [mm] [mm]

Overall 2.9e−10 4.1e−10 8.8e−09 6.5e−09
Step 1 3.4e−11 1.7e−10 4.6e−09 4.2e−09
Step 2 1.9e−10 2.5e−10 8.3e−09 7.5e−09
Step 3 −5.5e−11 3.1e−10 1.2e−08 1.1e−08

The quite similar mean and median values, one order of magnitude
lower than similar standard deviation and NMAD values highlight the
absence of biases and the overall implemented procedure accuracy at
10−9 millimetre level.

Finally, we computed the cumulative errors along the crack length
for a detailed analysis of the results. We normalized each crack length
of the simulation in the range 0 − 1 and we computed the cumulative
errors corresponding to six sections along the normalized crack lengths.
We aggregated the errors of all the generated cracks by computing the
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medians and 95% confidence intervals for each section. We performed
the computation separately for each step of deformation. Fig. 23 shows
the results related to step 3 (rotation of 3◦). Again, the low medians
and 95% confidence intervals indicate the robustness of the approach.

Fig. 23. Results of the simulations obtained with 100 randomly simulated cracks, 3◦

of crack aperture and radius 𝑟 = 30 mm.

Simulations with Gaussian errors

We performed a second simulation to investigate the impact of
errors that can arise during the matching procedure. We generated
random errors using the Gaussian distributions and we added them to
the horizontal and vertical displacement fields, separately. We adopted
Gaussian distributions with mean and standard deviation equal to 𝜇𝑑𝑖𝑠𝑝
= 0 mm and 𝜎𝑑𝑖𝑠𝑝𝑙 = 0.05 mm, respectively. We set the value of the
standard deviation equal to 𝜎𝑑𝑖𝑠𝑝𝑙 = 0.05 mm to consider an error due
to the matching procedure that is twice the pixel dimension of a real
laboratory test. Fig. 24 shows an example of crack displacement fields
with Gaussian errors.

Fig. 24. Horizontal (a) and vertical (b) displacement fields [mm] with random
Gaussian errors.

We computed the errors of the simulations as described in the
previous simulation. We present in Table 4 only the results related to
radius 𝑟 = 30 mm.

Table 4
Statistics of the errors obtained with 100 randomly simulated
cracks, gaussian errors and radius 𝑟 = 30 mm.

Mean Median Std Dev NMAD
[mm] [mm] [mm] [mm]

Overall 0.001 0.000 0.071 0.071
Step 1 0.001 −0.000 0.070 0.071
Step 2 0.000 0.000 0.071 0.071
Step 3 0.001 0.001 0.071 0.071
15
Fig. 25. Results of the simulations obtained with 100 randomly simulated cracks and
random Gaussian errors, 3◦ of crack aperture and radius 𝑟 = 30 mm.

Again, the quite similar mean and median values, one/two orders
of magnitudes lower than quite similar standard deviation and NMAD
values highlight the absence of biases and the overall accuracy at the
level of

√

2𝜎𝑑𝑖𝑠𝑝𝑙, as expected in case of independent added errors.
Finally, Fig. 25 shows the medians and 95% confidence intervals of the
errors computed over six sections along the normalized crack length
(step 3).
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