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BALANCED VISCOSITY SOLUTIONS TO A RATE-INDEPENDENT
COUPLED ELASTO-PLASTIC DAMAGE SYSTEM\ast 

VITO CRISMALE\dagger AND RICCARDA ROSSI\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A rate-independent model coupling small-strain associative elasto-plasticity and
damage is studied via a vanishing-viscosity analysis with respect to all the variables describing the
system. This extends the analysis performed for the same system in [V. Crismale and G. Lazzaroni,
Calc. Var. Partial Differential Equations, 55 (2016), 17], where a vanishing-viscosity regularization
involving only the damage variable was set forth. In the present work, an additional approximation
featuring vanishing plastic hardening is introduced in order to deal with the vanishing viscosity in the
plastic variable. Different regimes are considered, leading to different notions of Balanced Viscosity
solutions for the perfectly plastic damage system, and for its version with hardening.
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damage, elasto-plasticity
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1. Introduction. In this paper we address the analysis of a rate-independent
system coupling small-strain associative elasto-plasticity and damage. We construct
weak solutions for the related initial-boundary value problem via a vanishing-viscosity
regularization that affects all the variables describing the system. Before entering into
the details of this procedure, let us briefly illustrate the rate-independent model we
are interested in.

In a time interval [0,T ], for a bounded open Lipschitz domain \Omega \subset \BbbR n, n \in \{ 2, 3\} ,
and time-dependent volume and surface forces f and g, we consider a PDE system
coupling the evolution of the displacement u : (0,T ) \times \Omega \rightarrow \BbbR n, of the elastic and
plastic strains e : (0,T ) \times \Omega \rightarrow \BbbM n\times n

sym and p : (0,T ) \times \Omega \rightarrow \BbbM n\times n
D , and of a damage

variable z : (0,T ) \times \Omega \rightarrow [0, 1] that assesses the soundness of the material: for
z(t,x) = 1 (z(t,x) = 0, respectively) the material is in the undamaged (fully damaged,
respectively) state, at the time t \in (0,T ) and ``locally"" around the point x \in \Omega . In
fact, the PDE system consists of

- the momentum balance

 - div \sigma = f in \Omega \times (0,T ) , \sigma n = g on \Gamma Neu \times (0,T )(1.1a)

(with \Gamma Neu the Neumann part of the boundary \partial \Omega ), where the stress tensor
is given by

(1.1b) \sigma = \BbbC (z)e in \Omega \times (0,T ),
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3421

and the kinematic admissibility condition for the strain E(u) = \nabla u+\nabla uT

2 reads

(1.1c) E(u) = e+ p in \Omega \times (0,T ) ;

- the flow rule for the damage variable z

\partial R( \.z) +Am(z) +W \prime (z) \ni  - 1
2\BbbC 

\prime (z)e : e in \Omega \times (0,T ),(1.1d)

where, above and in (1.1e), the symbol \partial denotes the convex analysis subdif-
ferential of the density of dissipation potential

R : \BbbR \rightarrow [0, +\infty ] defined by R(\eta ) :=

\biggl\{ 
| \eta | if \eta \leq 0,
+\infty otherwise,

encompassing the unidirectionality in the evolution of damage, Am is the m-
Laplacian operator, with m > n

2 , and W is a suitable nonlinear, possibly
nonsmooth, function;

- the flow rule for the plastic tensor

\partial \.pH(z, \.p) \ni \sigma D in \Omega \times (0,T ),(1.1e)

with \sigma D the deviatoric part of the stress tensor \sigma and H(z, \cdot ) the density of
plastic dissipation potential; H(z, \cdot ) is the support function of the constraint
set K(z). The PDE system is supplemented with initial conditions and the
boundary conditions

(1.1f) u = w on \Gamma Dir \times (0,T ), \partial nz = 0 on \partial \Omega \times (0,T ),

with \Gamma Dir the Dirichlet part of the boundary \partial \Omega .
Let us highlight that the damage variable z influences both the Hooke tensor \BbbC ,
which determines the elastic stiffness of the material, and the constraint set K for
the deviatoric part of the stress, which is such that the material undergoes plastic
deformations only if \sigma D reaches the boundary \partial K. By our choice of the dissipation
potential R, the variable z is forced to decrease in time: it is then usual to assume
that [0, 1] \ni z \mapsto \rightarrow \BbbC (z) is nonincreasing and that [0, 1] \ni z \mapsto \rightarrow K(z) is nondecreasing,
with respect to the natural ordering for positive definite tensors and to the inclusion
of sets (cf. section 2 for the precise assumptions).

The elasto-plastic damage model (1.1), which reduces to the Prandtl--Reuss model
for perfect plasticity (cf., e.g., [DMDM06, Sol09, FG12, Sol14]) if no dependence on
damage is assumed, was first proposed and studied in [AMV14, AMV15]. Subse-
quently, in [Cri16] (with refinements in [CO18]; see also [CO19]), the existence of
Energetic solutions \`a la Mielke and Theil (cf. [MT99, MT04]) was proved. We recall
that this weak solvability concept for rate-independent processes, also known as qua-
sistatic evolution (cf., e.g., [DMT02]), consists of (i) a global stability condition, which
prescribes that at each process time the current configuration minimizes the sum of
the total internal energy and the dissipation potential; (ii) an energy-dissipation bal-
ance featuring the variation of the internal energy between the current and the initial
times, the total dissipated energy, and the work of the external loadings. Thus, the
energetic formulation is derivative-free and hence very flexible and suitable for limit
passage procedures. In the framework of energetic-type solution concepts, the study
of models coupling damage and plasticity indeed seems to have attracted some atten-
tion in recent years: in this respect, we may, e.g., quote [Cri17] for a damage model
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3422 VITO CRISMALE AND RICCARDA ROSSI

coupled with strain-gradient plasticity, as well as [BMR12, BRRT16, RT17, RV17]
for plasticity with hardening, [RV16] accounting also for damage healing, [MSZ] for
finite-strain plasticity with damage, and [DRS19] for perfect plasticity and damage in
viscoelastic solids in a dynamical setting.

System (1.1), however, has been analyzed also from a perspective different from
that of Energetic solutions. Indeed, despite their manifold advantages, Energetic
solutions have a catch: when the energy functional driving the system is nonconvex,
Energetic solutions as functions of time may have ``too early"" and ``too long"" jumps
between energy wells (cf., e.g., [KMZ08, Example 6.3], [MRS09, Example 6.1]) and
the full characterization of Energetic solutions to one-dimensional rate-independent
systems from [RS13]. Essentially, this is due to the rigidity of the global stability
condition that involves the global, rather than the local, energy landscape. These
considerations have motivated the quest of alternative weak solvability notions for
rate-independent systems. In this paper, we focus on notions obtained by a vanishing-
viscosity approximation of the original rate-independent process.

The vanishing-viscosity approach stems from the idea that rate-independent pro-
cesses originate in the limit of systems governed by two time scales: the inner scale of
the system and the time scale of the external loadings. The latter scale is considerably
slower than the former, but it is dominant, and from its viewpoint viscous dissipation
is negligible. But viscosity is expected to reenter into the picture in the description of
the system behavior at jumps, which should indeed be considered as viscous transi-
tions between metastable states; cf. [EM06]. Thus, one selects those solutions to the
original rate-independent system that arise as limits of solutions to the viscously reg-
ularized system. What is more, following an idea from [EM06], in order to capture the
viscous transition path between two jump points one reparameterizes the viscous tra-
jectories and performs the vanishing-viscosity analysis for curves in an extended phase
space that also comprises the rescaling function. For this, it is crucial to control the
length (or a ``generalized length"") of the viscous curves, uniformly w.r.t. the viscosity
parameter. This limit procedure then leads to reparameterized solutions (functions of
an ``artificial"" time variable s \in [0,S]) of the original rate-independent system, such
that the reparameterized state variable(s) is (are) coupled with a rescaling function
\sanst : [0,S] \rightarrow [0,T ] that takes values in the original time interval. In this way, equations
for the paths connecting the left and right limits (stable states, themselves) of the
system at a jump point may be derived; the (possibly viscous) path followed by the
(reparameterized) limit solution at a jump point is also accounted for in a suitable
energy-dissipation balance. Furthermore, the solution concept obtained by vanishing
viscosity is supplemented by a first-order, local stability condition, which holds in the
``artificial"" time intervals corresponding to those in which the system does not jump
in the original (fast) timescale.

Moving from the pioneering [EM06], in [MRS09, MRS12a, MRS16a] (cf. also
[Neg14]) this idea has been formalized in an abstract setting, codifying the properties
of these ``vanishing-viscosity solutions"" in the notion of Balanced Viscosity (here-
after often shortened as BV) solution to a rate-independent system. In parallel,
the vanishing-viscosity technique has been developed and refined in various concrete
applications, ranging from plasticity (cf., e.g., [DDS11, BFM12, FS13]), to damage,
fracture, and fatigue (see, for instance, [KMZ08, LT11, KRZ13, Alm17, CL17, ACO19,
ALL19]).

For the present elasto-plastic damage system (1.1), the vanishing-viscosity ap-
proach was first addressed in [CL16]. There, BV solutions to system (1.1) were con-
structed by passing to the limit in the viscously regularized system featuring viscosity
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3423

only in the flow rule for the damage variable z. Namely, the momentum balance (1.1a)
(with (1.1b) and (1.1c)) and the plastic flow rule were coupled with the rate-dependent
subdifferential inclusion

\partial R( \.z) + \varepsilon \.z +Am(z) +W \prime (z) \ni  - 1
2\BbbC 

\prime (z)e : e in \Omega \times (0,T )

(with 0 < \varepsilon \ll 1), in place of (1.1d). Accordingly, the dissipation potential governing
(1.1) was augmented by a viscosity contribution featuring the L2-norm for the damage
rate \.z. Actually, in [CL16] the authors succeeded in deriving estimates (uniform w.r.t.
the viscosity parameter \varepsilon ) for the length of the viscous solutions (z\varepsilon )\varepsilon in theHm-norm,
even (Hm(\Omega ) being the reference space for the damage variable). Relying on these
bounds and on the reparameterization procedure described above, they obtained a
notion of BV solution such that only viscosity in z (possibly) enters in the description
of the transition path followed by the system at jumps. Accordingly, this is reflected
in the energy-dissipation balance satisfied by BV solutions.

Nonetheless, jumps in the other variables are not excluded during jumps for z,
and the ``reduced"" vanishing-viscosity approach carried out in [CL16] does not provide
information on the (possibly) viscous trajectories followed by those variables at jumps.

This has motivated us to develop a ``full"" vanishing-viscosity approach to system
(1.1). Namely, we have approximated (1.1) by a viscously regularized system fea-
turing a viscosity contribution for the plastic and the displacement variables, besides
the damage variable and, correspondingly, obtained a notion of Balanced Viscosity
solution for (1.1).

The ``full"" vanishing-viscosity approach. Upon viscously regularizing all
variables u, z, and p, the scenario turns out to be more complicated than the one
in [CL16] from an analytical point of view. The first challenge is related to the
derivation of (uniform, w.r.t. the viscosity parameter) estimates for the length (in a
suitable sense) of the viscous solutions. Quasistatic evolutions for perfect plasticity
without damage, which are known to be Lipschitz in time, can be approximated by
viscoplastic evolutions \`a la Perzyna [Per71] (where an L2-viscous regularization for
the plastic variable p is added), as detailed in [Sol14]. However, in the present case
with damage, a Perzyna-type viscous regularization for p does not lead to any a priori
length estimate for p with respect to the norm of its reference space, i.e., the space
Mb(\Omega ;\BbbM n\times n

D ) of bounded Radon measures with values in \BbbM n\times n
D .

On the one hand, this could be due to the fact that the usual techniques for prov-
ing a priori estimates in the vanishing-viscosity framework, based on testing the vis-
cously regularized equations with the time derivatives of the corresponding variables,
seem suitable to get good length estimates only in Hilbert spaces. Now, estimates
for p in Hilbert spaces contained in Mb(\Omega ;\BbbM n\times n

D ), such as L2(\Omega ;\BbbM n\times n
D ), would be

unnatural and incompatible with the concentration effects (in space) that one would
see in the limiting, perfectly plastic, evolution.

On the other hand, adding directly, to the plastic flow rule, a viscous regularization
that features the L2-norm, stronger than the one in the reference space Mb(\Omega ;\BbbM n\times n

D ),
does not seem to be the right procedure from a heuristic point of view when the evo-
lution may display jumps. Indeed, the idea associated with the vanishing-viscosity
approach is to let the system explore the energy landscape around the starting config-
uration and choose an arrival configuration that is preferable from an energetic view-
point, but close enough in terms of the viscosity norm (this becomes more evident on
the level of the time discretization of the viscous system; cf. (4.1)). When viscosity
vanishes, the evolution still keeps track of this procedure during jumps. Therefore,
in this respect it is reasonable to take, for the viscous regularization, a norm that is
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3424 VITO CRISMALE AND RICCARDA ROSSI

not stronger than the reference norm. In this way, the system is free to detect the
updated configuration in all the reference space. This is the case, for instance, of the
L2-viscous regularization for z, whose reference space is Hm(\Omega ), used for the damage
flow rule here and in [KRZ13, CL16, Neg19].

In order to mimic this approach also for the variable p (and, consequently, for u),
- we have introduced a further hardening regularizing term to the plastic flow
rule, tuned by a parameter \mu > 0, and in this way, the reference space for the
plastic strain p becomes L2(\Omega ;\BbbM n\times n

D );
- we have addressed a viscous regularization for p such that the viscosity pa-
rameter \varepsilon is modulated by an additional parameter \nu with \nu \leq \mu .

All in all, we consider the following rate-dependent system for damage coupled with
viscoplasticity, featuring the three parameters \varepsilon , \nu , \mu > 0:

- the viscous (albeit quasistatic, as inertial forces are neglected), momentum
balance

 - div(\varepsilon \nu \BbbD E( \.u) + \sigma ) = f in \Omega \times (0,T ), (\varepsilon \nu \BbbD E( \.u) + \sigma )n = g in \Gamma Neu \times (0,T )
(1.2a)

(with \BbbD a fixed positive-definite fourth-order tensor), coupled with the ex-
pression for \sigma from (1.1b) and the kinematic admissibility condition (1.1c);

- the rate-dependent damage flow rule for z

\partial R( \.z) + \varepsilon \.z +Am(z) +W \prime (z) \ni  - 1
2\BbbC 

\prime (z)e : e in \Omega \times (0,T );(1.2b)

- the viscous flow rule for the plastic tensor

\partial \.pH(z, \.p) + \varepsilon \nu \.p+ \mu p \ni \sigma D in \Omega \times (0,T ).(1.2c)

The system is supplemented with the boundary conditions (1.1f). We highlight that
viscosity for the u variable has been encompassed in the stress tensor (in accord with
Kelvin--Voigt rheology) through the term E( \.u). In fact, the other possible choice, \.e,
would not have preserved the gradient structure of the system, which is crucial for
our analysis.

Let us emphasize that, for the rate-dependent system with hardening (i.e., with
fixed \varepsilon , \nu ,\mu > 0) both the reference space and the viscosity space for p are L2(\Omega ;
\BbbM n\times n

D ). Furthermore, the choice \nu \leq \mu (one could take \nu \leq C\mu as well) guarantees
that we do not lose the desired ``order"" between viscosity and reference norm for p as
\nu , \mu vanish. This has enabled us to derive a priori estimates for the viscous solutions
that are uniform not only w.r.t. \varepsilon but also w.r.t. \mu (and \nu ). By the way, we observe
that the technique of [CL16] to derive length estimates does not work with \nu > 0.

We will refer to \nu as a rate parameter. Indeed, for fixed \nu > 0 and \varepsilon \downarrow 0,
the displacement and the plastic strain converge to equilibrium and rate-independent
evolution, respectively, at the same rate at which the damage parameter converges to
rate-independent evolution. When \varepsilon \downarrow 0 and \nu \downarrow 0 simultaneously, relaxation to equi-
librium and rate-independent behavior occurs at a faster rate for u and p than for z.
The vanishing-viscosity analysis then acquires a multirate character. Balanced Viscos-
ity to multirate systems have been explored in an abstract, albeit finite-dimensional
setting, in [MRS16b] (cf. the forthcoming [MR21] for the extension to the infinite-
dimensional setup).

Our results. In what follows, we will address three different problems.
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3425

First of all, we will carry out the vanishing-viscosity analysis of (1.2) as \varepsilon \downarrow 0 with
\mu > 0 fixed. This will lead to the existence of (two different types of) Balanced Viscos-
ity solutions to a rate-independent system for damage and plasticity with hardening,
consisting of (1.1a), (1.1b), (1.1d), (1.1c), (1.1f) coupled with

(1.3) \partial \.pH(z, \.p) + \mu p \ni \sigma D in \Omega \times (0,T ).

In fact, we will consider two cases in the vanishing-viscosity analysis as \varepsilon \downarrow 0 with
\mu > 0 fixed:

1. First, we will keep the rate parameter \nu > 0 fixed, so that (u, z, p) relax to
equilibrium (for u) and rate-independent evolution (for z and p) with the
same rate. In this way, we will prove the existence of BV solutions to the
rate-independent system with hardening (1.1a), (1.1b), (1.1d), (1.1c), (1.1f)
(1.3); see Definition 6.2 and Theorem 6.8.

2. Second, we will let \nu \downarrow 0 together with \varepsilon \downarrow 0, so that u and p relax to
equilibrium and rate-independent evolution faster than z, relaxing to rate-
independent evolution. In this way, we will obtain BV solutions to the multi-
rate system with hardening (1.1a), (1.1b), (1.1d), (1.1c), (1.1f) (1.3); see
Definition 6.10 and Theorem 6.13.

Balanced Viscosity solutions to the rate-independent system with hardening aris-
ing from the ``full"" vanishing-viscosity approach are parameterized curves (\sanst , \sansu , \sansz , \sansp )
defined on an ``artificial"" time interval (with \sanst the rescaling function) that satisfy a
suitable (scalar) energy-dissipation balance encoding all information on the evolution
of the system. This is in accord with the notion that has been codified, in an ab-
stract (finite-dimensional) setup, in [MRS16b]. More in general, this solution concept
stems from a variational approach to gradient flows and general gradient systems;
indeed, it is in the same spirit as the notion of curve of maximal slope [AGS08].
The energy-dissipation balance characterizing (parameterized) BV solutions features
a vanishing-viscosity contact potential, namely a functional M = M(\sanst , \sansq , \sanst \prime , \sansq \prime ) (here-
after, we will often use \sansq as a place-holder for the triple (\sansu , \sansz , \sansp )), whose expression
(and notation) depends on the different regimes considered.

In all cases, M encodes the possible onset of viscous behavior of the system at
jumps. Indeed, in the ``artificial"" time, jumps occur at instants at which the rescaled
slow time variable \sanst is frozen, i.e., \sanst \prime = 0. Now, (only) at the jump instants the system
may not satisfy (a weak version of the) first-order stability conditions in the variables
u, p, z, and for this it dissipates energy in a way that is described by the specific
expression of M for \sanst \prime = 0. In particular, we have as follows:

(i) For the BV solutions obtained via vanishing viscosity with \nu > 0 fixed, the
contact potential M(\sanst , \sansq , 0, \sansq \prime ) features a term with the (viscous) H1\times L2\times L2-
norm of the full triple (\sansu \prime , \sansp \prime , \sansz \prime ). While referring to section 6.1 for more
comments, here we highlight that the expression of M reflects the fact that,
at a jump, the system may be switched to a regime where viscous dissipation
in the three variables intervenes ``in the same way."" This mirrors the fact
that the variables u, z, p relax to static equilibrium and rate-independent
evolution with the same rate.

(ii) For the BV solutions obtained in the limit as \varepsilon , \nu \downarrow 0 jointly, in the expression
of M(\sanst , \sansq , 0, \sansq \prime ) two distinct terms account for the roles of the rates (\sansu \prime , \sansp \prime ) and
of \sansz \prime . A careful analysis, carried out in section 6.2, in particular shows that,
at a jump, \sansz is frozen until \sansu , \sansp have reached the elastic equilibrium/attained
the local stability condition, respectively. This reflects the fact that u, p relax
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3426 VITO CRISMALE AND RICCARDA ROSSI

to equilibrium/rate-independent behavior faster than z, hence the multirate
character of the evolution.

The above considerations can be easily inferred from the PDE characterization of
(parameterized) BV solutions that we provide in Propositions 6.4 and 6.11; we also
refer to Remarks 6.7 and 6.12 for further comments and for a comparison between
the two notions of solutions for the system with hardening.

After the discussion of plasticity with fixed hardening,
(3) we will consider the case when also \mu vanishes and thus address the asymp-

totic analysis of system (1.2) as the parameters \varepsilon , \nu , \mu \downarrow 0 simultaneously.
With our main result, Theorem 7.9, we will prove that, after a suitable repa-
rameterization, viscous solutions converge to Balanced Viscosity solutions for
the perfectly plastic system (1.1) that differ from the ones obtained in [CL16]
in this respect: the description of the trajectories during jumps may possibly
involve viscosity in all the variables u, p, z. Since \varepsilon and \nu vanish jointly, the
system has again a multirate character.

However, in the perfectly plastic case the situation is more complex than for the
case with hardening. Indeed, for perfect plasticity the reference function space for
(the rescaled plastic strain) \sansp is Mb(\Omega ;\BbbM n\times n

D ) instead of L2(\Omega ;\BbbM n\times n
D ), while the vis-

cous dissipation that (possibly) intervenes at jumps features the L2-norm of \.\sansp . In
particular, at jumps the expression of the contact potential M guarantees that \sansp is
in L2(\Omega ;\BbbM n\times n

D ) and \sansu is in H1(\Omega ;\BbbR n), which is reminiscent of the approximation
through plastic hardening. The change in the functional framework occurring at the
jump regime has important consequences for the analysis. On the one hand, we have
to exploit density arguments and equivalent characterizations of the stability con-
ditions to pass from the L2(\Omega ;\BbbM n\times n

D )-framework to the Mb(\Omega ;\BbbM n\times n
D )-setting. On

the other hand, a suitable reparameterization and abstract tools are needed to reveal
more spatial regularity for \sansu and \sansp along jumps, in the spirit of [MRS16a, subsec-
tion 7.1] (cf. section 7 for more details). Another interesting point is that the present
approximation through plasticity with hardening completely alleviates the need for a
classical Kohn--Temam duality between stress and plastic strain, so we can use only
the duality in [FG12] and therefore we do not have to impose more regularity on \Omega 
or more regularity on the external loading (cf. Remark 7.1).

Plan of the paper. In section 2 we fix all the standing assumptions on the
constitutive functions and on the problem data and prove some preliminary results.
Section 3 focuses on the gradient structure that underlies the rate-dependent system
(1.2) and that is at the core of its vanishing-viscosity analysis. Based on this structure,
we set out to prove the existence of solutions to (1.2) by passing to the limit in a
carefully devised time-discretization scheme. A series of a priori estimates on the time-
discrete solutions are proved in section 4. Such bounds serve as a basis both for the
existence proof for the viscous problem and for its vanishing-viscosity analysis. Indeed,
in Proposition 4.4 we obtain estimates for the total variation of the discrete solutions
that are uniform w.r.t. the viscosity parameter \varepsilon and w.r.t. \nu and, in some cases, \mu as
well. For this, the condition \nu \leq \mu plays a crucial role. Such bounds will lead to the
estimates on the lengths of the curves needed for the arclength repameterizations and
the vanishing-viscosity limit passages. We then derive the existence of solutions for
the viscous system (1.2) in section 5. This is the common ground for the subsequent
analysis as either some or all parameters vanish. The limit passages in (1.2) with \mu > 0
fixed are carried out in section 6: in particular, section 6.1 focuses on the analysis as
\varepsilon \downarrow 0 with fixed \nu > 0, while the limit as \varepsilon , \nu \downarrow 0 is discussed in section 6.2. The limit
passage as \varepsilon , \nu ,\mu \downarrow 0 is performed in section 7. Therein, we do not reparameterize the
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viscous solutions by their ``classical"" arclength but by an energy-dissipation arclength
that somehow encompasses the onset, for the limiting BV solutions, of rate-dependent
behavior and additional spatial regularity during jumps.

2. Setup for the rate-dependent and rate-independent systems. In this
section we establish the setup and the assumptions on the constitutive functions
and on the problem data, both for the rate-dependent system (1.2) and for its rate-
independent limits. Namely, we will propose a framework of conditions fitting

- both the rate-independent process with hardening, i.e., that obtained by tak-
ing the vanishing-viscosity limit of (1.2) as \varepsilon \downarrow 0 (and, possibly, \nu \downarrow 0 in the
multi-rate case), with \mu > 0 fixed, and

- the rate-independent process for perfect plasticity and damage (i.e., that ob-
tained in the further limit passage as \mu \downarrow 0).

Further definitions and auxiliary results for the perfectly plastic damage system will
be expounded in section 7.

First of all, let us fix some notation that will be used throughout the paper.

Notation 2.1 (general notation and preliminaries). Given a Banach space X, we
will denote by \langle \cdot , \cdot \rangle X the duality pairing between X\ast and X (and, for simplicity, also
between (Xn)\ast and Xn). We will just write \langle \cdot , \cdot \rangle for the inner Euclidean product in
\BbbR n. Analogously, we will indicate by \| \cdot \| X the norm in X and often use the same
symbol for the norm in Xn, as well, and just write | \cdot | for the Euclidean norm in
\BbbR m, m \geq 1. We will denote by Br(0) the open ball of radius r, centered at 0, in the
Euclidean space X = \BbbR m.

We will denote by\BbbM n\times n
sym the space of the symmetric (n\times n)-matrices and by\BbbM n\times n

D

the subspace of the deviatoric matrices with null trace. In fact, \BbbM n\times n
sym = \BbbM n\times n

D \oplus \BbbR I (I
denoting the identity matrix), since every \eta \in \BbbM n\times n

sym can be written as \eta = \eta D+ tr(\eta )
n I

with \eta D the orthogonal projection of \eta into\BbbM n\times n
D . We will refer to \eta D as the deviatoric

part of \eta . We write for Sym(\BbbM n\times n
D ;\BbbM n\times n

D ) the set of symmetric endomorphisms on
\BbbM n\times n

D .
We will often use the shorthand notation \| \cdot \| Lp , 1 \leq p < +\infty , for the Lp-norm

on the space Lp(O;\BbbR m), with O a measurable subset of \BbbR n, and analogously we will
write \| \cdot \| H1 . We will denote by Mb(O;\BbbR m) the space of bounded Radon measures
on O with values in \BbbR m.

As already mentioned in the introduction, as in [KRZ13, CL16] the mechanical
energy will encompass a gradient regularizing contribution for the damage variable,
featuring the bilinear form

am : Hm(\Omega )\times Hm(\Omega ) \rightarrow \BbbR ,

(2.1)

am(z1, z2)
(2.2)

:=

\int 
\Omega 

\int 
\Omega 

\bigl( 
\nabla z1(x) - \nabla z1(y)

\bigr) 
\cdot 
\bigl( 
\nabla z2(x) - \nabla z2(y)

\bigr) 
| x - y| n+2(m - 1)

dxdy with m \in 
\Bigl( n
2
, 2
\Bigr) 
.

We will denote by Am : Hm(\Omega ) \rightarrow Hm(\Omega )\ast the associated operator, viz.

\langle Am(z),w\rangle H\mathrm{m}(\Omega ) := am(z,w) for every z, w \in Hm(\Omega ).
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3428 VITO CRISMALE AND RICCARDA ROSSI

We recall that Hm(\Omega ) is a Hilbert space with the inner product \langle z1, z2\rangle H\mathrm{m}(\Omega ) :=\int 
\Omega 
z1z2dx+am(z1, z2). Since we assume thatm > n

2 , we have the compact embedding

Hm(\Omega ) \Subset C(\Omega ).
Whenever working with a real function v defined on a space-time cylinder \Omega \times 

(0,T ) and differentiable w.r.t. time a.e. on \Omega \times (0,T ), we will denote by \.v : \Omega \times 
(0,T ) \rightarrow \BbbR its (almost everywhere defined) partial time derivative. However, as
soon as we consider v as a (Bochner) function from (0,T ) with values in a suitable
Lebesgue/Sobolev space X (with the Radon--Nikod\'ym property) and v is in the space
AC([0,T ];X), we will denote by v\prime : (0,T ) \rightarrow X its (almost everywhere defined) time
derivative.

Finally, we will use the symbols c, c\prime , C, C \prime , etc., whose meaning may vary even
within the same line, to denote various positive constants depending only on known
quantities.

Let us recall some basic facts about the space BD(\Omega ) of functions of bounded
deformations, defined by

(2.3) BD(\Omega ) := \{ u \in L1(\Omega ;\BbbR n) : E(u) \in Mb(\Omega ;\BbbM n\times n
sym )\} ,

where Mb(\Omega ;\BbbM n\times n
sym ) is the space of bounded Radon measures on \Omega with values in

\BbbM n\times n
sym , with norm \| \lambda \| M\mathrm{b}(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} ) := | \lambda | (\Omega ) and | \lambda | the variation of the measure.

Recall that, by the Riesz representation theorem, Mb(\Omega ;\BbbM n\times n
sym ) can be identified

with the dual of the space C0(\Omega ;\BbbM n\times n
sym ). The space BD(\Omega ) is endowed with the

graph norm
\| u\| BD(\Omega ) := \| u\| L1(\Omega ;\BbbR n) + \| E(u)\| M\mathrm{b}(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} ),

which makes it a Banach space. It turns out that BD(\Omega ) is the dual of a normed
space; cf. [TS80].

In addition to the strong convergence induced by \| \cdot \| BD(\Omega ), the duality from
[TS80] defines a notion of weak\ast convergence on BD(\Omega ): a sequence (uk)k converges

weakly\ast to u in BD(\Omega ) if uk \rightharpoonup u in L1(\Omega ;\BbbR n) and E(uk)
\ast 
\rightharpoonup E(u) in Mb(\Omega ;\BbbM n\times n

sym ).

The space BD(\Omega ) is contained in Ln/(n - 1)(\Omega ;\BbbR n); every bounded sequence in BD(\Omega )
has a weakly\ast converging subsequence and, furthermore, a subsequence converging
weakly in Ln/(n - 1)(\Omega ;\BbbR n) and strongly in Lp(\Omega ;\BbbR n) for every 1 \leq p < n

n - 1 .
Finally, we recall that for every u \in BD(\Omega ) the trace u| \partial \Omega is well defined as an

element in L1(\partial \Omega ;\BbbR n) and that (cf. [Tem83, Proposition 2.4, Remark 2.5]) a Poincar\'e-
type inequality holds:
(2.4)

\exists C > 0 \forall u \in BD(\Omega ) : \| u\| L1(\Omega ;\BbbR n) \leq C
\Bigl( 
\| u\| L1(\Gamma \mathrm{D}\mathrm{i}\mathrm{r};\BbbR n) + \| E(u)\| M(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )

\Bigr) 
.

2.1. Assumptions and preliminary results.
The reference configuration. Let \Omega \subset \BbbR n, n \in \{ 2, 3\} , be a bounded Lipschitz

domain. The minimal assumption for our analysis is that \Omega is a geometrically admis-
sible multiphase domain in the sense of [FG12, subsection 1.2] with only one phase,
that is, i = 1 therein, where (\Omega i)i is a partition corresponding to the phases. Refer-
ring still to [FG12], this corresponds to assuming that the Dirichlet boundary \Gamma Dir is a
nonempty open set in the relative topology of \partial \Omega , with (relative) boundary \partial | \partial \Omega \Gamma Dir

admissible in the sense of [FG12, (6.20)]. As observed in [FG12, Theorem 6.5], a
sufficient condition for this is the so-called Kohn--Temam condition, which we recall
below and assume throughout the paper:
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3429

\partial \Omega = \Gamma Dir \cup \Gamma Neu \cup \Sigma with \Gamma Dir, \Gamma Neu, \Sigma pairwise disjoint,(2.\Omega )

\Gamma Dir and \Gamma Neu relatively open in \partial \Omega ,

with \partial \Gamma Dir = \partial \Gamma Neu = \Sigma their relative boundary in \partial \Omega ,
(2.5)

such that \Sigma is of class C2 with Hn - 1(\Sigma ) = 0,

and \partial \Omega is Lipschitz and of class C2 in a neighborhood of \Sigma .
(2.6)

We will work with the spaces

H1
Dir(\Omega ;\BbbR n) :=

\bigl\{ 
u \in H1(\Omega ;\BbbR n) : u = 0 on \Gamma Dir

\bigr\} 
,(2.7) \widetilde \Sigma (\Omega ) := \{ \sigma \in L2(\Omega ;\BbbM n\times n

sym ) : div(\sigma ) \in L2(\Omega ;\BbbR n)\} .(2.8)

For \sigma \in \widetilde \Sigma (\Omega ) one may define the distribution [\sigma n] on \partial \Omega by

(2.9) \langle [\sigma n],\psi \rangle \partial \Omega := \langle div(\sigma ),\psi \rangle L2 + \langle \sigma , E(\psi )\rangle L2

for \psi \in H1(\Omega ;\BbbR n). It is known (see, e.g., [KT83, Theorem 1.2] or [DMDM06, (2.24)])
that [\sigma n] \in H - 1/2(\partial \Omega ;\BbbR n) and that if \sigma \in C0(\Omega ;\BbbM n\times n

sym ) the distribution [\sigma n] coin-
cides with \sigma n, that is, the pointwise product matrix-normal vector in \partial \Omega . With each
\sigma \in \widetilde \Sigma (\Omega ) we associate an elliptic operator in H1

Dir(\Omega ;\BbbR n)\ast denoted by  - Div(\sigma ) and
defined by
(2.10)

\langle  - Div(\sigma ), v\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n) := \langle  - div(\sigma ), v\rangle L2(\Omega ;\BbbR n) + \langle [\sigma n], v\rangle H1/2(\partial \Omega ;\BbbR n) =

\int 
\Omega 

\sigma : E(v)dx

for all v \in H1
Dir(\Omega ;\BbbR n), where the equality above is an integration by parts formula

based on the divergence theorem.
The elasticity and viscosity tensors. We assume that the elastic tensor \BbbC :

[0, +\infty ) \rightarrow Lin(\BbbM n\times n
sym ;\BbbM n\times n

sym ) fulfills the following conditions:

\BbbC \in C1,1([0,+\infty ); Lin(\BbbM n\times n
sym ;\BbbM n\times n

sym )) ,

(2.11)

z \mapsto \rightarrow \BbbC (z)\xi : \xi is nondecreasing for every \xi \in \BbbM n\times n
sym ,

(2.12)

\exists \gamma 1, \gamma 2 > 0 \forall z \in [0, +\infty ) \forall \xi \in \BbbM n\times n
sym : \gamma 1| \xi | 2 \leq \BbbC (z)\xi : \xi \leq \gamma 2| \xi | 2 ,

(2.13)

\BbbC (z)\xi := \BbbC D(z)\xi D + \kappa (z)(tr \xi )I with

\Biggl\{ 
\BbbC D \in L\infty (0, 1; Sym(\BbbM n\times n

D ;\BbbM n\times n
D )) ,

\kappa \in L\infty (0, 1) .

(2.14)

Again, observe that (2.14) is relevant for the perfectly plastic damage system, only.
Even in that context, (2.14) is not needed for the analysis, but it is just assumed
for mechanical reasons, since purely volumetric deformations do not affect plastic
behavior.

We introduce the stored elastic energy Q : L2(\Omega ;\BbbM n\times n
sym )\times C0(\Omega ) \rightarrow \BbbR 

(2.15) Q(z, e) :=
1

2

\int 
\Omega 

\BbbC (z)e : edx .
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As for the viscosity tensor \BbbD , we require that

\BbbD \in C0(\Omega ; Sym(\BbbM n\times n
D ;\BbbM n\times n

D )) and(2.16)

\exists \delta 1, \delta 2 > 0 \forall x \in \Omega \forall A \in \BbbM d\times d
sym : \delta 1| A| 2 \leq \BbbD (x)A : A \leq \delta 2| A| 2.(2.17)

For later use, we introduce the dissipation potential

(2.18) V2,\nu (v) :=
\nu 

2

\int 
\Omega 

\BbbD E(v) : E(v)dx .

Throughout the paper, we will use that \BbbD induces an equivalent (by a Korn--Poincar\'e-
type inequality) Hilbert norm on H1

Dir(\Omega ;\BbbR n), namely

\| u\| H1,\BbbD :=

\biggl( \int 
\Omega 

\BbbD E(u) : E(u)dx
\biggr) 1/2

(2.19)

with \| u\| H1,\BbbD \leq K\BbbD \| E(u)\| L2 for u \in H1
Dir(\Omega ;\BbbR n),

and the ``dual norm""

\| \eta \| (H1,\BbbD )\ast :=

\biggl( \int 
\Omega 

\BbbD  - 1\xi : \xi 

\biggr) 1/2

\forall \eta \in H1
Dir(\Omega ;\BbbR n)\ast with(2.20)

\eta = Div(\xi ) for some \xi \in \widetilde \Sigma (\Omega ) .
The overall mechanical energy. Besides the elastic energy Q from (2.15) and

the regularizing, nonlocal gradient contribution featuring the bilinear form am, the
mechanical energy functional will feature a further term acting on the damage variable
z, with density W satisfying

W \in C2((0,+\infty );\BbbR +) \cap C0([0,+\infty );\BbbR +\cup \{ +\infty \} ) ,(2.21)

s2nW (s) \rightarrow +\infty as s\rightarrow 0+ ,(2.22)

whereW \in C([0,+\infty );\BbbR +\cup \{ +\infty \} ) means thatW (0) = \infty andW (z) \uparrow +\infty if z \downarrow 0 as
prescribed by (2.22). Clearly, these requirements on W force z to be strictly positive
(cf. also the upcoming Remark 3.2); consequently, the material never reaches the
most damaged state at any point. We also have the contribution of a time-dependent
loading F : [0,T ] \rightarrow H1(\Omega ;\BbbR n)\ast , specified in (2.39b) below, which subsumes the
volume and the surface forces f and g. All in all, the energy functional driving the rate-
dependent and rate-independent systems with hardening is E\mu : [0,T ]\times H1

Dir(\Omega ;\BbbR n)\times 
Hm(\Omega )\times L2(\Omega ;\BbbM n\times n

D ) \rightarrow \BbbR \cup \{ +\infty \} , defined for \mu > 0 by

(2.23)
E\mu (t,u, z, p) := Q(z, E(u+w(t)) - p) +

\int 
\Omega 

\Bigl( 
W (z)+

\mu 

2
| p| 2
\Bigr) 
dx

+
1

2
am(z, z) - \langle F (t),u+ w(t)\rangle H1(\Omega ;\BbbR n)

with w the time-dependent Dirichlet loading specified in (2.41) ahead.
The plastic dissipation potential and the overall plastic dissipation

functional. The plastic dissipation potential reflects the constraint that the ad-
missible stresses belong to given constraint sets. In turn, such sets depend on the
damage variable z: this, and the z-dependence of the matrix \BbbC (z) of elastic coef-
ficients, provides a strong coupling between the plastic and the damage flow rules.
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More precisely, in a softening framework, following the footsteps of [CL16] we require
that the constraint sets (K(z))z\in [0,+\infty ) fulfill

K(z) \subset \BbbM n\times n
D is closed and convex for all z \in [0, +\infty ),(2.24)

\exists 0 < \=r < \=R \forall 0 \leq z1 \leq z2 : B\=r(0) \subset K(z1) \subset K(z2) \subset B \=R(0),(2.25)

\exists CK > 0 \forall z1, z2 \in [0, +\infty ) : dH (K(z1),K(z2)) \leq CK | z1 - z2| ,(2.26)

with dH the Hausdorff distance between two subsets of \BbbM n\times n
D , defined by

dH (K1,K2) := max

\biggl( 
sup
x\in K1

dist(x,K2), sup
x\in K2

dist(x,K1)

\biggr) 
,

and dist(x,Ki) := miny\in Ki | x  - y| , i = 1, 2. We now introduce the support function
H : [0,+\infty )\times \BbbM n\times n

D \rightarrow [0, +\infty ) defined by

(2.27) H(z,\pi ) := sup
\sigma \in K(z)

\sigma : \pi \forall (z,\pi ) \in [0, +\infty )\times \BbbM n\times n
D .

It was shown in [CL16, Lemma 2.1] that, thanks to (2.24)--(2.26), H enjoys the fol-
lowing properties:

H is continuous,

(2.28a)

0 \leq H(z2,\pi ) - H(z1,\pi ) for all 0 \leq z1 \leq z2 and all \pi \in \BbbM n\times n
D with | \pi | = 1 ,

(2.28b)

\exists CK > 0 \forall z1, z2 \in [0, +\infty ) \forall \pi \in \BbbM n\times n
D | H(z2,\pi ) - H(z1,\pi )| \leq CK | \pi | | z2 - z1| ,

(2.28c)

\pi \mapsto \rightarrow H(z,\pi ) is convex and 1-positively homogeneous for all z \in [0, 1] ,
(2.28d)

\=r| \pi | \leq H(z,\pi ) \leq \=R| \pi | .
(2.28e)

As observed in [CL16], properties (2.24)--(2.26) are satisfied by constraint sets in the
``multiplicative form"" K(z) = V (z)K(1), with V \in C1,1([0,+\infty )) nondecreasing and
such that m \leq V (z) \leq M for all z \in [0, +\infty ) and some m, M > 0.

The plastic dissipation potential H : C0(\Omega ; [0,+\infty ))\times L1(\Omega ;\BbbM n\times n
D ) \rightarrow \BbbR is defined

by

(2.29) H(z,\pi ) :=

\int 
\Omega 

H(z(x),\pi (x))dx .

Clearly, it follows from (2.28a)--(2.28e) that

\pi \mapsto \rightarrow H(z,\pi ) is convex and positively one-homogeneous for every z \in C0(\Omega ; [0,+\infty )),

(2.30a)

\=r\| \pi \| 1 \leq H(z,\pi ) \leq \=R\| \pi \| 1 \forall z \in C0(\Omega ; [0,+\infty )) and \pi \in L1(\Omega ;\BbbM n\times n
D ),

(2.30b)

0 \leq H(z2,\pi ) - H(z1,\pi ) \forall z1 \leq z2 \in C0(\Omega ; [0,+\infty )) \forall \pi \in L1(\Omega ;\BbbM n\times n
D ) ,

(2.30c)

| H(z2,\pi ) - H(z1,\pi )| \leq CK\| z1 - z2\| L\infty (\Omega )\| \pi \| 1
\forall z1, z2 \in C0(\Omega ; [0,+\infty )), \pi \in L1(\Omega ;\BbbM n\times n

D ) .

(2.30d)
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Let us introduce the set

(2.31) \widetilde Kz(\Omega ) := \{ \sigma \in \widetilde \Sigma (\Omega ): \sigma D(x) \in K(z(x)) for a.e. x \in \Omega \} .

By standardly approximating (in the L1-norm) \pi by piecewise constant functions, we
show that if z \mapsto \rightarrow K(z) is constant, namely K(z) \equiv K \subset \BbbM n\times n

D , then

(2.32) H(z,\pi ) = sup
\sigma \in \widetilde Kz(\Omega )

\langle \sigma D,\pi \rangle L1 .

For a general map z \mapsto \rightarrow K(z) the argument in [Sol09, Theorem 3.6, Corollary 3.8]
shows that (2.32) still holds.

The convex analysis subdifferential \partial \pi H : C0(\Omega ; [0,+\infty ))\times L1(\Omega ;\BbbM n\times n
D ) \rightrightarrows L\infty (\Omega ;

\BbbM n\times n
D ), given by

\omega \in \partial \pi H(z,\pi ) if and only if H(z, \varrho ) - H(z,\pi ) \geq 
\int 
\Omega 

\omega (\varrho  - \pi )dx \forall \varrho \in L1(\Omega ;\BbbM n\times n
D )

fulfills

(2.33) \omega \in \partial \pi H(z,\pi ) if and only if \omega (x) \in \partial H(z(x),\pi (x)) for a.a.x \in \Omega ,

where, with slight abuse, \partial \pi H denotes the subdifferential of H w.r.t. the second
variable.

The rate-dependent system (1.2) with the viscously regularized plastic flow rule
(1.2c) features the dissipation potential Htot

\nu : C0(\Omega ; [0,+\infty )) \times L2(\Omega ;\BbbM n\times n
D ) \rightarrow 

[0, +\infty ) defined by

(2.34) Htot
\nu (z,\pi ) := H(z,\pi ) +H2,\nu (\pi ) with H2,\nu (\pi ) :=

\nu 

2
\| \pi \| 2L2(\Omega ) .

By the sum rule for convex analysis subdifferentials (cf., e.g., [AE84, Corollary IV.6]),
the subdifferential \partial \pi H : C0(\Omega ; [0,+\infty ))\times L2(\Omega ;\BbbM n\times n

D ) \rightrightarrows L2(\Omega ;\BbbM n\times n
D ) is given by

(2.35) \partial \pi H
tot
\nu (z,\pi ) = \partial \pi H(z,\pi )+\{ \nu \pi \} \forall \pi \in L2(\Omega ;\BbbM n\times n

D ), z \in C0(\Omega ; [0,+\infty )) .

The damage dissipation potential. We consider the damage dissipation den-
sity R : \BbbR \rightarrow [0, +\infty ] defined by

R(\zeta ) := P (\zeta ) + I( - \infty ,0](\zeta ) with

P (\zeta ) :=  - \kappa \zeta and I( - \infty ,0] the indicator function of ( - \infty , 0]

so that

R(\zeta ) :=

\Biggl\{ 
 - \zeta if \zeta \leq 0,

+\infty otherwise.

With R we associate the dissipation potential R : L1(\Omega ) \rightarrow [0, +\infty ] defined by R(\zeta ) :=\int 
\Omega 
R(\zeta (x)) dx. In fact, since the flow rule for the damage variable will be posed in

Hm(\Omega )\ast (cf. (3.3b) ahead), it will be convenient to consider the restriction of R to
the space Hm(\Omega ) which, with a slight abuse of notation, we will denote by the same
symbol, namely

R : Hm(\Omega ) \rightarrow [0, +\infty ],(2.36)

R(\zeta ) =

\int 
\Omega 

R(\zeta (x))dx = P(\zeta ) + I(\zeta ) with

\Biggl\{ 
P(\zeta ) :=

\int 
\Omega 
P (\zeta (x))dx,

I(\zeta ) :=
\int 
\Omega 
I( - \infty ,0](\zeta (x))dx.
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The viscously regularized damage flow rule (1.2b) in fact features the dissipation
potential
(2.37)

Rtot : Hm(\Omega ) \rightarrow [0, +\infty ], Rtot(\zeta ) = R(\zeta ) + R2(\zeta ) with R2(\zeta ) :=
1

2
\| \zeta \| 2L2(\Omega ) .

We will denote by \partial R : Hm(\Omega ) \rightrightarrows Hm(\Omega )\ast and \partial Rtot : Hm(\Omega ) \rightrightarrows Hm(\Omega )\ast the
subdifferentials of R and Rtot in the sense of convex analysis. Observe that dom(\partial R) =
dom(\partial Rtot) = Hm

 - (\Omega ). We will provide explicit formulae for both subdifferentials in
Lemma 2.4 at the end of this section.

The initial data, the body forces, and the Dirichlet loading. We will
consider initial data

(2.38)
u0 \in H1

Dir(\Omega ;\BbbR n), z0 \in Hm(\Omega ) with W (z0) \in L1(\Omega ) and z0 \leq 1 in \Omega ,

p0 \in L2(\Omega ;\BbbM n\times n
D ).

The assumptions that we require on the volume and surface forces depend on the type
of plasticity considered. In the analysis of systems with hardening we will require the
following conditions on the volume force f and the assigned traction g:

(2.39a) f \in H1(0,T ;L2(\Omega ;\BbbR n)), g \in H1(0,T ;H1/2(\Gamma Neu;\BbbR n)\ast ).

To shorten notation, we will often incorporate the forces f and g into the induced
total load, namely the function F : [0,T ] \rightarrow H1(\Omega ;\BbbR n)\ast defined at t \in (0,T ) by

(2.39b) \langle F (t), v\rangle H1(\Omega ;\BbbR n) := \langle f(t), v\rangle L2(\Omega ;\BbbR n) + \langle g(t), v\rangle H1/2(\Gamma \mathrm{N}\mathrm{e}\mathrm{u};\BbbR n)

for all v \in H1(\Omega ;\BbbR n).
In turn, for handling the perfectly plastic damage system of section 7 we will

require that

(2.39c) f \in H1(0,T ;Ln(\Omega ;\BbbR n)) , g \in H1(0,T ;L\infty (\Gamma Neu;\BbbR n)) ,

so that F turns out to take values in BD(\Omega )\ast , defining

\langle F (t), v\rangle BD(\Omega ) := \langle f(t), v\rangle Ln/(n - 1)(\Omega ;\BbbR n) + \langle g(t), v\rangle L1(\Gamma \mathrm{N}\mathrm{e}\mathrm{u};\BbbR n)

for all v \in BD(\Omega ). Both for the analysis of the system with hardening and of the
perfectly plastic one, we will assume a uniform safe load condition, namely that there
exists

(2.39d) \rho \in H1(0,T ;L2(\Omega ;\BbbM n\times n
sym )) with \rho D \in H1(0,T ;L\infty (\Omega ;\BbbM n\times n

D ))

and there exists \alpha > 0 such that for every t \in [0,T ] (recall (2.9))

(2.39e)  - div(\varrho (t)) = f(t) a.e. on \Omega , [\varrho (t)n] = g(t) on \Gamma Neu ,

(2.39f) \rho D(t,x) + \xi \in K for a.a. x \in \Omega and for every \xi \in \BbbM n\times n
sym s.t. | \xi | \leq \alpha .

Assumption (2.39c) will be crucial in the derivation of a priori estimates uniform with
respect to the parameter \mu in Proposition 4.3, while with (2.39a) the estimates would
depend on \mu > 0; cf. also Remark 4.6 ahead. Combining (2.39a) with (2.39d)--(2.39f)
gives  - Div(\varrho (t)) = F (t) in H1

Dir(\Omega ,\BbbR n)\ast , while if (2.39c) holds, then (2.39d)--(2.39f)
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3434 VITO CRISMALE AND RICCARDA ROSSI

yield  - \widehat Div(\varrho (t)) = F (t) for all t \in [0,T ] (where the operator  - \widehat Div will be introduced
in (7.5)). For later use, we notice that, thanks to (2.32), it is easy to deduce that for
all t \in [0,T ]

(2.40) H(z, p) - 
\int 
\Omega 

\rho D(t)pdx \geq \alpha \| p\| L1(\Omega ) .

As for the time-dependent Dirichlet loading w, we will require that

(2.41) w \in H1(0,T ;H1(\BbbR n;\BbbR n)).

Remark 2.2. In fact, the analysis of the rate-independent system for damage and
plasticity, with or without hardening, would just require w \in AC([0,T ];H1(\BbbR n;\BbbR n))
so that, upon taking the vanishing-viscosity limit as \varepsilon \downarrow 0 of system (1.2), we could ap-
proximate a loading w \in AC([0,T ];H1(\BbbR n;\BbbR n)) with a sequence (w\varepsilon )\varepsilon \subset H1(0,T ;H1

(\BbbR n;\BbbR n)). The same applies to the time regularity of the forces. However, to avoid
overburdening the exposition we have preferred not to pursue this path.

Generally, in what follows we will tacitly assume the validity of all the above con-
ditions and omit explicitly invoking them in the various results, with a few exceptions.

Remark 2.3 (rewriting the driving energy functional). By the safe load condition
(2.39e) and the integration by parts formula in (2.10) applied to u \in H1

Dir(\Omega ;\BbbR n), E\mu 

can be rewritten as

E\mu (t,u, z, p) = Q(z, e(t)) +

\int 
\Omega 

\Bigl( 
W (z)+

\mu 

2
| p| 2
\Bigr) 
dx

+
1

2
am(z, z) - 

\int 
\Omega 

\rho (t)E(u)dx - \langle F (t),w(t)\rangle H1(\Omega ;\BbbR n),

where we have highlighted the elastic part of the strain tensor E(u+w(t)),

(2.42) e(t) := E(u+w(t)) - p .

We now introduce the functional

(2.43)

F\mu (t,u, z, p) := Q(z, e(t)) +

\int 
\Omega 

\Bigl( 
W (z)+

\mu 

2
| p| 2
\Bigr) 
dx

+
1

2
am(z, z) - 

\int 
\Omega 

\rho (t)(e(t) - E(w(t))dx - \langle F (t),w(t)\rangle H1(\Omega ;\BbbR n) .

Then, taking into account that
\int 
\Omega 
(\rho  - \rho D)pdx = 0, we have

(2.44) E\mu (t,u, z, p) = F\mu (t,u, z, p) - 
\int 
\Omega 

\rho D(t)pdx .

In the following result we clarify the expression of the subdifferentials \partial R and
\partial Rtot; these basic facts will be useful, for instance, in the proof of Lemma 3.6.

Lemma 2.4. We have the following representation formula for the subdifferential
\partial I : Hm(\Omega ) \rightrightarrows Hm(\Omega )\ast of the functional I from (2.36): for all \zeta \in Hm

 - (\Omega ) := \{ v \in 
Hm(\Omega ) : v \leq 0 in \Omega \} 

(2.45) \chi \in \partial I(\zeta ) if and only if \langle \chi ,w  - \zeta \rangle H\mathrm{m}(\Omega ) \leq 0 \forall w \in Hm
 - (\Omega ) .
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Moreover, for all \zeta \in Hm
 - (\Omega ) there holds

\partial R(\zeta ) = \partial P(\zeta ) + \partial I(\zeta ) =  - \kappa + \partial I(\zeta ),(2.46)

\partial Rtot(\zeta ) = \partial R(\zeta ) + \{ \zeta \} ,(2.47)

where  - \kappa stands for the functional Hm(\Omega ) \ni \zeta \mapsto \rightarrow 
\int 
\Omega 
( - \kappa )\zeta (x) dx, and we simply

write \zeta , in place of J(\zeta ) (J : L1(\Omega ) \rightarrow Hm(\Omega )\ast denoting the Riesz mapping).

Proof. Formula (2.45) is in fact the definition of \partial I(\zeta ), whereas (2.46) and (2.47)
follow the sum rule for convex subdifferentials; cf., e.g., [AE84, Corollary IV.6].

3. The gradient structure of the viscous system. In this section we are
going to establish the functional setup in which the (Cauchy problem for the) rate-
dependent system with hardening (i.e., with \mu > 0) (1.2) is formulated and, accord-
ingly, specify the notion of solution we are interested in. This will enable us to unveil
the gradient structure underlying system (1.2), which will have a twofold outcome:

1. Exploiting this structure we will show that (1.2) can be equivalently reformu-
lated in terms of an energy-dissipation inequality, which is in turn equivalent
to an energy-dissipation balance. This observation will simplify the proof of
existence of viscous solutions, carried out in section 5.

2. The energy-dissipation balance will be at the core of the vanishing-viscosity
analysis (with \nu > 0 fixed) performed in section 6, as well as of the vanishing-
hardening analysis carried out in section 7.

System (1.2) involves the rescaled dissipation potentials V\varepsilon ,\nu : H1(\Omega ;\BbbR n) \rightarrow 
[0, +\infty ), H\varepsilon ,\nu : C0(\Omega ; [0,+\infty ))\times L2(\Omega ;\BbbM n\times n

D ) \rightarrow [0, +\infty ), and R\varepsilon : H
m(\Omega ) \rightarrow [0, +\infty ]

defined by

(3.1)
V\varepsilon ,\nu (v) :=

1

\varepsilon 
V2,\nu (\varepsilon v), H\varepsilon ,\nu (z,\pi ) :=

1

\varepsilon 
Htot

\nu (z, \varepsilon \pi ) = H(z,\pi ) +
1

\varepsilon 
H2,\nu (z, \varepsilon \pi ),

R\varepsilon (\zeta ) :=
1

\varepsilon 
Rtot(\varepsilon \zeta ) = R(\zeta ) +

1

\varepsilon 
R2(\varepsilon \zeta )

with V2,\nu , H2,\nu , and R2, from (2.18), (2.34), and (2.37), respectively. With H\varepsilon ,\nu we
will denote the density of the integral functional H\varepsilon ,\nu . We are now in a position to
provide the variational formulation of (the Cauchy problem for) system (1.2).

Problem 3.1. Find a triple (u, z, p) with
(3.2)
u \in H1(0,T ;H1

Dir(\Omega ;\BbbR n)), z \in H1(0,T ;Hm(\Omega )) with W (z) \in L\infty (0,T ;L1(\Omega )),

p \in H1(0,T ;L2(\Omega ;\BbbM n\times n
D )),

such that, with e(t) := E(u(t) + w(t)) - p(t) and \sigma (t) := \BbbC (z(t))e(t), there holds

 - Div
\bigl( 
\varepsilon \nu \BbbD E(u\prime (t))+\sigma (t)

\bigr) 
= F (t) in H1

Dir(\Omega ;\BbbR n)\ast ,(3.3a)

\partial R\varepsilon (z
\prime (t)) +Am(z(t)) +W \prime (z(t)) \ni  - 1

2
\BbbC \prime (z)e(t) : e(t) in Hm(\Omega )\ast ,(3.3b)

\partial \pi H\varepsilon ,\nu (z(t), p
\prime (t)) + \mu p(t) \ni 

\bigl( 
\sigma (t)

\bigr) 
D

a.e. in \Omega (3.3c)

for almost all t \in (0,T ), joint with the initial conditions

(3.4) u(0) = u0 in H1
Dir(\Omega ;\BbbR n), z(0) = z0 in Hm(\Omega ), p(0) = p0 in L2(\Omega ).
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Remark 3.2. A few observations on formulation (3.3) are in order:
1. As shown in [CL16, Lemma 3.3], from the requirement W (z) \in L\infty (0,T ;
L1(\Omega )) we deduce the strict positivity property

(3.5) \exists m0 > 0 \forall (x, t) \in \Omega \times [0,T ] : z(x, t) \geq m0.

2. In view of (3.5) and of (2.21), we have thatW \prime (z) \in C0(\Omega \times [0,T ]). The term
featuring in (3.3b) has to be understood as the image of W \prime (z(t)) \in C0(\Omega )
under the Riesz mapping with values in Hm(\Omega )\ast .

3. By the monotonicity of t \mapsto \rightarrow z(x, t) and the requirement that z0 \leq 1 in \Omega , we
immediately infer that z(x, t) \leq 1 for all (x, t) \in \Omega \times [0,T ] which, combined
with (3.5), is consistent with the physical meaning of the damage variable.

The requirementW (z) \in L\infty (0,T ;L1(\Omega )) which, as shown by Remark 3.2, has an
important impact on the properties of the solution component z is in turn consistent
with the gradient structure of system (3.3) with respect to the driving energy E\mu 

from (2.23). To reveal this structure, it will be convenient to introduce the following
notation for the triple (u, z, p) of state variables and the associated state space:

(3.6) q := (u, z, p) \in Q := H1
Dir(\Omega ;\BbbR n)\times Hm(\Omega )\times L2(\Omega ;\BbbM n\times n

D ) .

With slight abuse of notation, we will write both E\mu (t,u, z, p) and E\mu (t, q).

Lemma 3.3. For every \mu > 0 the proper domain of E\mu : [0,T ]\times Q \rightarrow \BbbR \cup \{ +\infty \} 
is

DT := [0,T ]\times D with D = \{ (u, z, p) \in Q : z > 0 in \Omega \} .
For all t \in [0,T ], the functional q \mapsto \rightarrow E\mu (t, q) is Fr\'echet differentiable on D, with
Fr\'echet differential
(3.7)

DqE\mu (t, q)

= (DuE\mu (t,u, z, p), DzE\mu (t,u, z, p), DpE\mu (t,u, z, p))

=
\bigl( 
 - Div(\sigma (t)) - F (t),Am(z) +W \prime (z) + 1

2\BbbC 
\prime (z)e(t) : e(t),\mu p - \sigma D(t))

\bigr) 
\in Q\ast .

Furthermore, for all q \in Q the function t \mapsto \rightarrow E\mu (t, q) is in H1(0,T ), with

(3.8) \partial tE\mu (t, q) =

\int 
\Omega 

\sigma (t) : E(w\prime (t))dx - \langle F \prime (t),u+w(t)\rangle H1(\Omega ;\BbbR n) - \langle F (t),w\prime (t)\rangle H1(\Omega )

for a.a. t \in (0,T ). Finally, the following chain-rule property holds: for all q \in H1(0,T ;
Q) with supt\in [0,T ] | E\mu (t, q(t))| < +\infty ,

(3.9)
the mapping t \mapsto \rightarrow E\mu (t, q(t)) is in AC([0,T ]), and

d

dt
E\mu (t, q(t)) = \langle DqE\mu (t, q(t)), q

\prime (t)\rangle \bfQ +\partial tE\mu (t, q(t)) for a.a. t \in (0,T ).

Proof. First of all, (3.7) gives the G\^ateaux differential of E\mu (t, \cdot ): we will just
check the formula for DuE\mu (t,u, z, p) by observing that, since E\mu (t, \cdot , z, p) is convex, we
have that \eta = DuE\mu (t,u, z, p) if and only if it holds that E\mu (t, v, z, p) - E\mu (t,u, z, p) \geq 
\langle \eta , v  - u\rangle H1

\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n) or, equivalently, that

(3.10)
1

2

\int 
\Omega 

\BbbC (z)(E(v+w(t)) - p) : (E(v+w(t)) - p)dx - 1

2

\int 
\Omega 

\sigma (t) : e(t)dx - \langle F (t), v - u\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}

\geq \langle \eta , v - u\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}
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for all v \in H1
Dir(\Omega ;\BbbR n) (using the shorthand notation \langle \cdot , \cdot \rangle H1

\mathrm{D}\mathrm{i}\mathrm{r}
). Ultimately, (3.10)

holds true if and only if

\langle \eta , \~v\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n) =

\int 
\Omega 

\sigma (t) : E(\~v)dx - \langle F (t), \~v\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n)

for all \~v \in H1
Dir(\Omega ;\BbbR n). In order to check the Fr\'echet differentiability, it is enough to

prove the continuity property
(3.11)

(qn = (un, zn, pn) \rightarrow q = (u, z, p) in Q) =\Rightarrow (DqE\mu (t, qn) \rightarrow DqE\mu (t, q) in Q\ast ) .

For this, we observe that zn \rightarrow z in Hm(\Omega ) implies zn \rightarrow z in C0(\Omega ) and, thus,
\BbbC (zn) \rightarrow \BbbC (z) and \BbbC \prime (zn) \rightarrow \BbbC \prime (z) in L\infty (\Omega ; Lin(\BbbM n\times n

sym ;\BbbM n\times n
sym )). Therefore, we have

\BbbC (zn)en(t) \rightarrow \BbbC (z)e(t) in L2(\Omega ;\BbbM n\times n
sym ), which gives DuE\mu (t,un, z, p) \rightarrow DuE\mu (t,u,

z, p). We also find that \BbbC \prime (zn)en(t):en(t) \rightarrow \BbbC \prime (z)e(t):e(t) in L1(\Omega ), hence we have
the convergence DzE\mu (t,un, zn, pn) \rightarrow DzE\mu (t,u, z, p) in Hm(\Omega )\ast . We easily have
DpE\mu (t,un, zn, pn) \rightarrow DpE\mu (t,u, z, p) in L2(\Omega ;\BbbM n\times n

D ), which concludes the proof of
(3.11).

By standard arguments we conclude (3.8) and (3.9). This finishes the proof.

Let us now introduce the overall dissipation potential \Psi \nu : Q\times Q \rightarrow [0, +\infty ]
(3.12)

\Psi \nu (q, q
\prime ) := V2,\nu (u

\prime ) + Rtot(z\prime ) +Htot
\nu (z, p\prime )

and its rescaled version \Psi \varepsilon ,\nu (q, q
\prime ) :=

1

\varepsilon 
\Psi \nu (q, \varepsilon q

\prime ) = V\varepsilon ,\nu (u
\prime ) + R\varepsilon (z

\prime ) +H\varepsilon ,\nu (z, p
\prime ) .

Taking into account (3.7), it is then a standard matter to reformulate Problem 3.1
in these terms: find q \in H1(0,T ;Q) with supt\in (0,T ) | E\mu (t, q(t))| < +\infty solving the
generalized gradient system

(3.13) \partial q\prime \Psi \varepsilon ,\nu (q(t), q
\prime (t)) + DqE\mu (t, q(t)) \ni 0 in Q\ast for a.a. t \in (0,T ).

This reformulation allows us to easily obtain the energy-dissipation balance un-
derlying system (3.3), which is in fact equivalent to (3.13). Indeed, arguing as in
[MRS13] (this observation is, however, at the core of the variational approach to gra-
dient flows; cf. [AGS08]), we observe that (3.13), namely  - DqE\mu (t, q) \in \partial q\prime \Psi \varepsilon ,\nu (q, q

\prime ),
is equivalent, by standard convex analysis results, to the identity

(3.14) \Psi \varepsilon ,\nu (q(t), q
\prime (t)) + \Psi \ast 

\varepsilon ,\nu (q(t), - DqE\mu (t, q(t))) = \langle  - DqE\mu (t, q(t)), q
\prime (t)\rangle \bfQ 

for a.a. t \in (0,T ), with \Psi \ast 
\varepsilon ,\nu : Q \times Q\ast \rightarrow [0, +\infty ], \Psi \ast 

\varepsilon ,\nu (q, \xi ) := supv\in \bfQ ( \langle \xi , v\rangle \bfQ  - 
\Psi \varepsilon ,\nu (q, v)) the Fenchel--Moreau conjugate of \Psi \varepsilon ,\nu (q, \cdot ). By the definition of \Psi \ast 

\varepsilon ,\nu , the
\geq estimate in (3.14) is automatically verified. Therefore, (3.14) is in fact equivalent
to the \leq estimate

(3.15)

\Psi \varepsilon ,\nu (q(t), q
\prime (t))+\Psi \ast 

\varepsilon ,\nu (q(t), - DqE\mu (t, q(t))) \leq \langle  - DqE\mu (t, q(t)), q
\prime (t)\rangle \bfQ 

=  - d

dt
E\mu (t, q(t)) + \partial tE\mu (t, q(t))

for a.a. t \in (0,T ), where the latter identity follows from the chain rule (3.9). In fact,
it is immediate to check that (3.13) is equivalent to the integrated versions of (3.14)
and of (3.15). The latter reads
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3438 VITO CRISMALE AND RICCARDA ROSSI

(3.16)

\int t

0

\bigl( 
\Psi \varepsilon ,\nu (q(r), q

\prime (r)) + \Psi \ast 
\varepsilon ,\nu (q(r), - DqE\mu (r, q(r)))

\bigr) 
dr + E\mu (t, q(t))

\leq E\mu (0, q(0)) +

\int t

0

\partial tE\mu (r, q(r))dr

for all t \in [0,T ]. Observe that for \xi = (\eta ,\chi ,\omega ) \in Q\ast we have
(3.17)

\Psi \ast 
\varepsilon ,\nu (q, \xi ) = V\ast 

\varepsilon ,\nu (\eta ) + R\ast 
\varepsilon (\chi ) +H\ast 

\varepsilon ,\nu (z,\omega )

with

\left\{                 

V\ast 
\varepsilon ,\nu (\eta ) =

1

2\varepsilon \nu 

\int 
\Omega 

\BbbD  - 1\tau : \tau dx for \eta =  - Div(\tau ) and \tau \in \widetilde \Sigma (\Omega ),
R\ast 

\varepsilon (\chi ) =
1

2\varepsilon 
\widetilde d2L2(\Omega )(\chi , \partial R(0)) :=

1

2\varepsilon 
min

\gamma \in \partial R(0)
f2(\chi  - \gamma ) ,

H\ast 
\varepsilon ,\nu (z,\omega ) =

1

2\varepsilon \nu 
d2L2(\omega , \partial \pi H(z, 0)) :=

1

2\varepsilon \nu 
min

\rho \in \partial \pi H(z,0)
\| \omega  - \rho \| 2L2(\Omega ) ,

where \widetilde \Sigma (\Omega ) is from (2.8),

f2 : Hm(\Omega )\ast \rightarrow [0, +\infty ] is defined by f2(\beta ) :=

\Biggl\{ 
\| \beta \| 2L2(\Omega ) if \beta \in L2(\Omega ) ,

+\infty if \beta \in Hm(\Omega )\ast \setminus L2(\Omega ) ,

and observe that the min in the definition of \widetilde dL2(\Omega )(\chi , \partial R(0)) is attained as soon as\widetilde dL2(\Omega ) is finite. Indeed, we have calculated

V\ast 
\varepsilon ,\nu ( - Div(\tau )) = sup

v\in H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n)

\bigl( 
\langle  - Div(\tau ), v\rangle H1(\Omega ;\BbbR n)  - V\varepsilon ,\nu (v)

\bigr) 
= sup

v\in H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n)

\biggl( \int 
\Omega 

\tau : E(v)dx - \varepsilon \nu 

2

\int 
\Omega 

\BbbD E(v) : E(v)dx
\biggr) 

=
1

2\varepsilon \nu 

\int 
\Omega 

\BbbD  - 1\tau : \tau dx,

whereas the formulae for R\ast 
\varepsilon and H\ast 

\varepsilon ,\nu follow from the inf-sup convolution formula;
cf., e.g., [IT79, Theorem 3.3.4.1]. Therefore, we may calculate explictly the second
contribution to the left-hand side of (3.16). Indeed, recalling that, by (2.39e), we have
F (t) =  - Div(\rho (t)), we find that

V\ast 
\varepsilon ,\nu ( - DuE\mu (r,u(r), z(r), p(r))) = V\ast 

\varepsilon ,\nu (Div(\sigma (r))+F (r)) = V\ast 
\varepsilon ,\nu (Div(\sigma (r) - \rho (r)))

=
1

2\varepsilon \nu 

\int 
\Omega 

\BbbD  - 1(\sigma (r) - \rho (r)) : (\sigma (r) - \rho (r))dx

(where \sigma (r) = \BbbC (z(r))e(r)). All in all, we arrive at the following result, which will
play a key role for the analysis of the rate-dependent system (1.2), since it provides a
characterization of solutions to the viscous Problem 3.1.

Proposition 3.4. The following properties are equivalent for a triple q =
(u, z, p) \in H1(0,T ;Q) fulfilling the initial conditions (3.4):
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1. q is a solution of Problem 3.1;
2. q fulfills the energy-dissipation upper estimate

(3.18)

E\mu (t, q(t)) +

\int t

0

(V\varepsilon ,\nu (u
\prime (r))+R\varepsilon (z

\prime (r))+H\varepsilon ,\nu (z(r), p
\prime (r))) dr

+

\int t

0

\Bigl[ 
V\ast 
\varepsilon ,\nu 

\Bigl( 
Div(\sigma (r))+F (r)

\Bigr) 
+R\ast 

\varepsilon 

\Bigl( 
 - Am(z(r)) - W \prime (z(r)) - 1

2\BbbC 
\prime (z(r))e(r) : e(r)

\Bigr) 
+H\ast 

\varepsilon ,\nu 

\Bigl( 
z(r), - \mu p(r) + \sigma D(r)

\Bigr) \Bigr] 
dr

\leq E\mu (0, q0) +

\int t

0

\partial tE\mu (r, q(r))dr;

3. q fulfills (3.18) as an energy-dissipation balance, integrated on any interval
[s, t] \subset [0,T ].

With the upcoming result we exhibit a further characterization of solutions to the
viscous system that will be useful for the vanishing-viscosity analyses carried out in
sections 6 and 7, borrowing an idea from [CL16]. Proposition 3.5 indeed shows that
the energy-dissipation balance (3.18) can be rewritten in terms of the functionals

(3.19)

N\mu 
\varepsilon ,\nu (t, q, q\prime ) := R(z\prime ) + H(z, p\prime ) + N\mu ,\mathrm{r}\mathrm{e}\mathrm{d}

\varepsilon ,\nu (t, q, q\prime ) , where

N\mu ,\mathrm{r}\mathrm{e}\mathrm{d}
\varepsilon ,\nu (t, q, q\prime ) := D\nu (q\prime )D\ast ,\mu 

\nu (t, q) with

D\nu (q\prime ) :=
\sqrt{} 

\nu \| u\prime (t)\| 2
H1,\BbbD +\| z\prime (t)\| 2

L2+\nu \| p\prime (t)\| 2
L2

D\ast ,\mu 
\nu (t, q)

:=

\sqrt{} 
1

\nu 
\|  - DuE\mu (t, q)\| 2

(H1,\BbbD )\ast + \widetilde dL2 ( - DzE\mu (t, q), \partial R(0))2 +
1

\nu 
dL2 ( - DpE\mu (t, q), \partial \pi H(z, 0))2.

Proposition 3.5. Along a solution q \in H1(0,T ;Q) there holds for a.a. r \in 
(0,T ),
(3.20)

V\varepsilon ,\nu (u
\prime (r))+R\varepsilon (z

\prime (r))+H\varepsilon ,\nu (z(r), p
\prime (r))+V\ast 

\varepsilon ,\nu 

\Bigl( 
Div(\sigma (r))+F (r)

\Bigr) 
+R\ast 

\varepsilon 

\Bigl( 
 - Am(z(r)) - W \prime (z(r)) - 1

2\BbbC 
\prime (z(r))e(r) : e(r)

\Bigr) 
+H\ast 

\varepsilon ,\nu 

\Bigl( 
z(r), - \mu p(r) + \sigma D(r)

\Bigr) 
= N\mu 

\varepsilon ,\nu (r, q(r), q
\prime (r))

= R(z\prime (r)) +H(z(r), p\prime (r)) + \varepsilon 
\Bigl( 
\nu \| u\prime (r)\| 2H1,\BbbD +\| z\prime (r)\| 2L2+\nu \| p\prime (r)\| 2L2

\Bigr) 
.

In particular, a curve q \in H1(0,T ;Q) is a solution to the Cauchy problem, Problem
3.1, if and only if it satisfies for every t \in [0,T ] the energy-dissipation balance

(3.21) E\mu (t, q(t)) +

\int t

0

N\mu 
\varepsilon ,\nu (r, q(r), q

\prime (r))dr = E\mu (0, q0) +

\int t

0

\partial tE\mu (r, q(r))dr .

Proof. First, we have that for a.e. r \in (0,T )

(3.22)

N\mu 
\varepsilon ,\nu (r, q(r), q

\prime (r)) = R(z\prime (r)) +H(z(r), p\prime (r)) +D\nu (q
\prime (r))D\ast ,\mu 

\nu (r, q(r))

\leq R(z\prime (r)) +H(z(r), p\prime (r)) +
\varepsilon 

2
D2

\nu (q
\prime (r)) +

1

2\varepsilon 
(D\ast ,\mu 

\nu (r, q(r)))2

\leq \langle  - DqE\mu (r, q(r)), q
\prime (r)\rangle \bfQ ,

by the Cauchy inequality and (3.14), which holds along the solutions.
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Let us now prove the converse inequality. Consider a measurable selection r \mapsto \rightarrow 
\gamma (r) \in \partial R(0) fulfilling\widetilde dL2(\Omega )( - DzE\mu (r, q(r)), \partial R(0)) = \|  - DzE\mu (r, q(r)) - \gamma (r)\| L2(\Omega )

(observe that the existence of \gamma is guaranteed by the fact that \widetilde dL2(\Omega )( - DzE\mu (r, q(r)),
\partial R(0)) < +\infty for almost all r \in (0,T ) and that r \mapsto \rightarrow DzE\mu (r, q(r)) is measurable).
Analogously, let r \mapsto \rightarrow \rho (r) \in \partial \pi H(z(r), 0) fulfill

dL2( - DpE\mu (r, q(r)), \partial \pi H(z(r), 0)) = \|  - DzE\mu (r, q(r)) - \rho (r)\| L2(\Omega ) .

Then, we have (using shorter notation for the duality pairings between H1
Dir(\Omega ;\BbbR n)

and H1
Dir(\Omega ;\BbbR n)\ast , Hm(\Omega ), and Hm(\Omega )\ast , and for the scalar product in L2(\Omega ;\BbbM n\times n

D ))
(3.23)
\langle  - DqE\mu (r, q(r)), q

\prime (r)\rangle \bfQ 
= \langle  - DuE\mu (r, q(r)),u

\prime (r)\rangle H1 + \langle  - DzE\mu (r, q(r)), z
\prime (r)\rangle H\mathrm{m} + \langle  - DpE\mu (r, q(r)), p

\prime (r)\rangle L2

\leq \| u\prime (r)\| H1,\BbbD \|  - DuE\mu (r, q(r))\| (H1,\BbbD )\ast + \langle  - DzE\mu (r, q(r)) - \gamma (r), z\prime (r)\rangle H\mathrm{m}

+ \langle \gamma (r), z\prime (r)\rangle H\mathrm{m} + \langle  - DpE\mu (r, q(r)) - \rho (r), p\prime (r)\rangle L2 + \langle \rho (r), p\prime (r)\rangle L2

(1)

\leq \| u\prime (r)\| H1,\BbbD \|  - DuE\mu (r, q(r))\| (H1,\BbbD )\ast + \| z\prime (r)\| L2 \widetilde dL2( - DzE\mu (r, q(r)), \partial R(0))

+ R(z\prime (r)) + \| p\prime (r)\| L2dL2( - DpE\mu (r, q(r)), \partial \pi H(z(r), 0)) +H(z(r), p\prime (r))

(2)

\leq R(z\prime (r)) +H(z(r), p\prime (r)) +D\nu (q
\prime (r))D\ast ,\mu 

\nu (r, q(r)) = N\mu 
\varepsilon ,\nu (r, q(r), q

\prime (r)),

where (1) follows from the very definition of \partial R(0) and \partial H(z(r), 0) combined with the
fact that R(0) = H(z(r), 0) = 0, and (2) follows from the Cauchy--Schwarz inequality.

Then, all inequalities in (3.22) are equalities whence, in particular, we conclude
that for a.a. r \in (0, t)
(3.24)
D\ast ,\mu 

\nu (r, q(r)) = \varepsilon D\nu (q
\prime (r)) and N\mu 

\varepsilon ,\nu (r, q(r), q
\prime (r)) = \langle  - DqE\mu (r, q(r)), q

\prime (r)\rangle \bfQ .

This shows (3.20) and concludes the proof.

We now study the semicontinuity properties of the distance-type functionals in-
troduced in (3.17) that also enter the definition of D\ast ,\mu 

\nu . We will make use of the
norms \| \cdot \| (H1,\BbbD ), \| \cdot \| (H1,\BbbD )\ast from (2.19), (2.20), and refer to the space Hm

 - (\Omega ) and
the functional \kappa : Hm(\Omega ) \rightarrow \BbbR introduced in Lemma 2.4.

Lemma 3.6. Let \mu > 0 be fixed. For any (t, q) = (t, (u, z, p)) \in [0,T ] \times Q there
holds

\| DuE\mu (t, q)\| (H1,\BbbD )\ast (3.25a)

= sup
\eta u\in H1

\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n)
\| \eta u\| (H1,\BbbD )\leq 1

\langle  - Div(\sigma (t)) - F (t), \eta u\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n) ,

\widetilde dL2( - DzE\mu (t, q), \partial R(0))
2(3.25b)

= sup
\eta z\in H\mathrm{m}

 - (\Omega )

\| \eta z\| L2\leq 1

\langle Am(z) +W \prime (z) + 1
2\BbbC 

\prime (z)e(t) : e(t) + \kappa , - \eta z\rangle H\mathrm{m}(\Omega ) ,

dL2( - DpE\mu (t, q), \partial \pi H(z, 0))(3.25c)

= sup
\eta p\in L2(\Omega ;\BbbM n\times n

\mathrm{D} )
\| \eta p\| L2\leq 1

\Bigl( 
\langle \sigma D(t) - \mu p, \eta p\rangle L2(\Omega ;\BbbM n\times n

\mathrm{D} )  - H(z, \eta p)
\Bigr) 
.
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Hence, for all (tk, qk)k, (t, q) \in [0,T ]\times Q with tk \rightarrow t and qk \rightharpoonup q in Q we have that

\| DuE\mu (t, q)\| (H1,\BbbD )\ast \leq lim inf
k\rightarrow 0

\| DuE\mu (tk, qk)\| (H1,\BbbD )\ast ,(3.26a)

\widetilde dL2( - DzE\mu (t, q), \partial R(0)) \leq lim inf
k\rightarrow 0

\widetilde dL2( - DzE\mu (tk, qk), \partial R(0)) ,(3.26b)

dL2( - DpE\mu (t, q), \partial \pi H(z, 0)) \leq lim inf
k\rightarrow 0

dL2( - DpE\mu (tk, qk), \partial \pi H(zk, 0)) .(3.26c)

Proof. (3.25): The well-known fact that \|  - \phi u\| (H1,\BbbD )\ast = sup\{ \langle  - \phi u, \eta u\rangle (H1,\BbbD ) :
\| \eta u\| (H1,\BbbD ) \leq 1\} yields (3.25a). As for (3.25b), one has

\widetilde dL2(\Omega )( - \phi z, \partial R(0)) = sup
\Bigl\{ 
\langle  - \phi z + \kappa , \eta z\rangle H\mathrm{m}(\Omega ) : \eta z \in Hm

 - (\Omega ) , \| \eta z\| L2(\Omega ) \leq 1
\Bigr\} 
.

This follows from [CL16, Remark 4.3, Lemma 4.4]; in fact, the set G from [CL16]
equals the set  - \partial I(\zeta ) =  - \partial R(\zeta ) - \kappa in the notation of the present paper (see Lemma
2.4). Finally, we have

sup
\Bigl\{ 
\langle  - \phi p, \eta p\rangle L2(\Omega ;\BbbM n\times n

\mathrm{D} )  - H(\sansz , \eta p) : \| \eta p\| L2(\Omega ;\BbbM n\times n
\mathrm{D} ) \leq 1

\Bigr\} 
= sup

\eta p\in L2(\Omega ;\BbbM n\times n
\mathrm{D} )

\Bigl\{ 
\langle  - \phi p, \eta p\rangle L2(\Omega ;\BbbM n\times n

\mathrm{D} )  - H(\sansz , \eta p) - IBL2 (\eta p)
\Bigr\} 

=
\bigl( 
H(\sansz , \cdot ) + IBL2

\bigr) \ast 
( - \phi p) = min

\eta p\in L2(\Omega ;\BbbM n\times n
\mathrm{D} )

\{ H(\sansz , \cdot )\ast (\eta p) + \|  - \phi p  - \eta p\| L2\} 

= min
\eta p\in L2(\Omega ;\BbbM n\times n

\mathrm{D} )

\bigl\{ 
\|  - \phi p  - \eta p\| L2 + I\partial \pi H(\sansz ,0)(\eta p)

\bigr\} 
= dL2( - \phi p, \partial \pi H(\sansz , 0)) ,

where IBL2 is the indicator function of the closed unit ball in L2(\Omega ;\BbbM n\times n
D ) (namely,

IBL2 (\eta p) = 0 if \| \eta p\| L2 \leq 1 and IBL2 (\eta p) = +\infty otherwise). Hence (3.26c) follows,
recalling (3.7).

(3.26): In order to show the lower semicontinuity properties (3.26), we notice
that, for fixed \eta u \in H1

Dir(\Omega ;\BbbR n) and \eta p \in L2(\Omega ;\BbbM n\times n
D ), the functions (t, q) \mapsto \rightarrow 

\langle  - Div(\sigma (t)) - F (t), \eta u\rangle and (t, q) \mapsto \rightarrow \langle \sigma D(t) - \mu p, \eta p\rangle  - H(z, \eta p) in (3.25a) and (3.25c)
(here we abbreviate the notation for the duality products) are continuous with re-
spect to the convergence of t and the weak convergence in Q. For this, we rely on
assumptions (2.\BbbC ), on (2.28c), and also on the fact that if qk \rightharpoonup q in Q, then zk \rightarrow z
in C0(\Omega ).

Moreover, for fixed \eta z \in Hm
 - (\Omega ) the function (t, q) \mapsto \rightarrow \langle Am(z)+W

\prime (z)+ 1
2\BbbC 

\prime (z)e :
e + \kappa , - \eta z\rangle is semicontinuous with respect to the convergence of t and the weak
convergence in Q: the contribution (t, q) \mapsto \rightarrow \langle Am(z) +W \prime (z) + \kappa , - \eta z\rangle is continuous,
recalling (2.1), (2.\BbbC ), (2.W ), while (t, q) \mapsto \rightarrow \langle \BbbC \prime (z)e : e, - \eta z\rangle is lower semicontinuous,
since  - \eta z \geq 0 (cf. also [CL16, (4.48) and (4.52)]).

Therefore we get (3.26) since, by (3.25), we are taking supremums of lower semi-
continuous functions.

4. Time discretization. In this section we discretize the rate-dependent system
(1.2) and, again exploiting its underlying gradient structure, we derive a series of
estimates on the discrete solutions that are uniform w.r.t. the discretization parameter
\tau , as well as the parameters \varepsilon , \nu , and \mu . Therefore,

- we will use these estimates to pass to the limit in the discretization scheme,
for \varepsilon , \nu , and \mu fixed, and construct a solution to Problem 3.1 in section 5;

- since the viscous solutions to system (1.2) thus obtained will enjoy estimates
uniform w.r.t. \varepsilon and \nu , we will resort to them in the vanishing-viscosity analy-
ses as \varepsilon \downarrow 0 and \varepsilon , \nu \downarrow 0, for \mu > 0 fixed, carried out in section 6;
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- the estimates that are also uniform w.r.t. \mu > 0 will be inherited by the viscous
solutions. Therefore, we will exploit them to perform the joint vanishing-
viscosity and vanishing-hardening analysis in section 7, as well.

We construct time-discrete solutions to the Cauchy problem for the rate-dependent
system for damage and plasticity (1.2) by solving the following time-incremental min-
imization problems: for fixed \varepsilon , \nu , \mu > 0, we consider a uniform partition \{ 0 =
t0\tau < \cdot \cdot \cdot < tN\tau = T\} of the time interval [0,T ] with fineness \tau = tk+1

\tau  - tk\tau = T/N .
We will use the notation \eta k\tau := \eta (tk\tau ) for \eta \in \{ w,F\} . The elements (qk\tau )0\leq k\leq N =
(uk\tau , z

k
\tau , p

k
\tau )0\leq k\leq N are determined by

u0\tau := u0, z0\tau := z0, p0\tau := p0

and, for k \in \{ 1, . . . ,N\} , by solving the time-incremental problems

qk\tau \in Argmin
\Bigl\{ 
\tau \Psi \varepsilon ,\nu 

\biggl( 
q,
q  - qk - 1

\tau 

\tau 

\biggr) 
+ E\mu (t

k
\tau , q) : q \in Q

\Bigr\} 
= Argmin

\Bigl\{ \varepsilon 

2\tau 

\biggl( \int 
\Omega 

\nu \BbbD (E(u) - E(uk - 1
\tau )) : (E(u) - E(uk - 1

\tau ))dx

+ \| z  - zk - 1
\tau \| 2L2 + \nu \| p - pk - 1

\tau \| 2L2

\biggr) 
+ R(z  - zk - 1

\tau ) +H(z, p - pk - 1
\tau )

+ E\mu (t
k
\tau ,u, p, z) : u \in H1

Dir(\Omega ;\BbbR n) , z \in Hm(\Omega ) , p \in L2(\Omega ;\BbbM n\times n
D )

\Bigr\} 
.

(4.1)

Notice that, to shorten notation, we omit writing the dependence of the minimizers
(qk\tau )

N
k=1 on the positive parameters \varepsilon , \nu , and \mu .

Remark 4.1. Taking into account that R(z - zk - 1
\tau ) = P(z - zk - 1

\tau )+I(z - zk - 1
\tau ) with

P and I from (2.36), it is immediate to check that the minimum problem (4.1) refor-
mulates as

qk\tau \in Argmin

\Biggl\{ 
\varepsilon 

2\tau 

\Biggl( \int 
\Omega 

\nu \BbbD (E(u) - E(uk - 1
\tau )) : (E(u) - E(uk - 1

\tau ))dx

+ \| z  - zk - 1
\tau \| 2L2 + \nu \| p - pk - 1

\tau \| 2L2

\Biggr) 

 - 
\int 
\Omega 

\kappa zdx+H(z, p - pk - 1
\tau )

+ E\mu (t
k
\tau ,u, p, z) : (u, z, p) \in Q, z \leq zk - 1

\tau in \Omega 

\Biggr\} 
.

Observe that, upon setting \nu = \mu = 0, the above problem does coincide with the time-
incremental minimization scheme used to construct solutions to the viscous system in
[CL16].

The existence of a minimizing triple for (4.1) relies on the coercivity properties
of the functional E\mu , specified in Lemma 4.2 below. Let us highlight that the coer-
civity estimates below are uniform w.r.t. the hardening parameter \mu \in [0, 1], and in
particular they are valid also for \mu = 0. This will have a key role in the derivation of
a priori estimates on the viscous solutions uniform w.r.t. \mu as well.
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Lemma 4.2. There exist constants cE , CE > 0 such that for all \mu \in [0, 1] and
(t,u, z, p) \in [0,T ]\times Q

(4.2)

E\mu (t,u, z, p) +H(z, p) + \| z\| L2(\Omega )

\geq cE

\Bigl( 
\| e(t)\| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )+\| z\| H\mathrm{m}(\Omega )+\mu 
1/2\| p\| L2(\Omega ;\BbbM n\times n

\mathrm{D} )

+\mu 1/2\| u\| H1(\Omega ;\BbbR n) + \| p\| L1(\Omega ;\BbbM n\times n
\mathrm{D} )

\Bigr) 
 - CE .

Proof. In the following lines, we will use that E\mu rewrites as E\mu (t,u, z, p) =
F\mu (t,u, z, p)  - 

\int 
\Omega 
\rho D(t)p dx; cf. (2.44). Now, taking into account (2.13) and the

positivity of W , we easily have that

(4.3)
F\mu (t,u, z, p) \geq 

\gamma 1
2
\| e(t)\| 2L2 +

\mu 

2
\| p\| 2L2 +

1

2
am(z, z) - 

1

2\gamma 1
\| \rho (t)\| 2L2

\geq \gamma 1
2
\| e(t)\| 2L2 +

\mu 

2
\| p\| 2L2 +

1

2
am(z, z) - C\rho .

By (2.40), we deduce that

E\mu (t,u, z, p) +H(z, p) \geq c
\bigl( 
\| e(t)\| 2L2+\mu \| p\| 2L2+am(z, z)+\| p\| L1

\bigr) 
 - C,

and (4.2) easily follows by a Korn--Poincar\'e inequality for u \in H1
Dir(\Omega ;\BbbR n).

By virtue of Lemma 4.2 and the direct method of calculus of variations, problem
(4.1) does admit a solution (qk\tau )0\leq k\leq N = (uk\tau , z

k
\tau , p

k
\tau )0\leq k\leq N . Moreover, we set

(4.4) ek\tau := E(uk\tau + wk
\tau ) - pk\tau and \sigma k

\tau := \BbbC (zk\tau )ek\tau .

For \eta \in \{ q,u, e, z, p,\sigma ,w,F\} , we will use the shorthand notation

(4.5) \.\eta k\tau :=
\eta k\tau  - \eta k - 1

\tau 

\tau 
for k \in \{ 0, . . . ,N\} .

In addition, the following piecewise constant and piecewise linear interpolation func-
tions will be used;

\eta \tau (t) := \eta k\tau for t \in (tk - 1
\tau , tk\tau ], \eta 

\tau 
(t) := \eta k - 1

\tau for t \in [tk - 1
\tau , tk\tau ),

\eta \tau (t) := \eta k - 1
\tau +

t - tk - 1
\tau 

\tau 
(\eta k\tau  - \eta k - 1

\tau ) for t \in [tk - 1
\tau , tk\tau ]

with \eta \tau (0) := \eta 0, \eta \tau (T ) := \eta k\tau . Furthermore, we will use the notation

t\tau (r) = tk\tau for r \in (tk - 1
\tau , tk\tau ],

t\tau (r) = tk - 1
\tau for r \in [tk - 1

\tau , tk\tau ).

Relying on the sum rule from [Mor06, Proposition 1.107], we see that the mini-
mizers (qk\tau )

N
k=1 for (4.1) satisfy the Euler--Lagrange equation

(4.6)

\partial q\prime \Psi \varepsilon ,\nu 

\biggl( 
qk\tau ,

qk\tau  - qk - 1
\tau 

\tau 

\biggr) 
+ \tau \partial q\Psi \varepsilon ,\nu 

\biggl( 
qk\tau ,

qk\tau  - qk - 1
\tau 

\tau 

\biggr) 
\ni  - DqE\mu (t

k
\tau , q

k
\tau ) in Q\ast 

for k = 1, . . . ,N , where, with a slight abuse of notation, we have denoted by \partial q\Psi \varepsilon ,\nu 

the Fr\'echet subdifferential of q \mapsto \rightarrow \Psi \varepsilon ,\nu (q, q
\prime ), i.e., the multivalued operator \partial q\Psi \varepsilon ,\nu :

Q\times Q \rightrightarrows Q\ast defined by

\xi \in \partial q\Psi \varepsilon ,\nu (q, q
\prime ) if and only if lim

w\rightarrow q

\Psi \varepsilon ,\nu (w, q
\prime ) - \Psi \varepsilon ,\nu (q, q

\prime ) - \langle \xi ,w  - q\rangle \bfQ 
\| w  - q\| \bfQ 

\geq 0 .
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3444 VITO CRISMALE AND RICCARDA ROSSI

Now, \partial q\Psi \varepsilon ,\nu in fact reduces to the Fr\'echet subdifferential \partial zH : C0(\Omega )\times L1(\Omega ;\BbbM n\times n
D )

\rightrightarrows M(\Omega ). Hence, the term \tau \partial q\Psi \varepsilon ,\nu (q
k
\tau , \.q

k
\tau ) in (4.6) leads to the contribution \tau \partial zH(zk\tau ,

\.\pi k
\tau ) \in M(\Omega ) \subset Hm(\Omega )\ast that features in the discrete flow rule for the damage variable;

cf. (4.7b) below. Taking into account Lemma 3.3, (4.6) in fact translates into the
system, for all k \in \{ 1, . . . ,N\} ,

 - Div
\bigl( 
\varepsilon \nu \BbbD E( \.uk\tau )+\sigma k

\tau 

\bigr) 
= F k

\tau in H1
Dir(\Omega ;\BbbR n)\ast ,

(4.7a)

\partial R\varepsilon ( \.z
k
\tau ) +Am(z

k
\tau ) +W \prime (zk\tau ) + \tau \partial zH\varepsilon ,\nu (z

k
\tau , \.p

k
\tau ) \ni  - 1

2
\BbbC \prime (zk\tau )e

k
\tau : ek\tau in Hm(\Omega )\ast ,

(4.7b)

\partial \pi H\varepsilon ,\nu (z
k
\tau , \.p

k
\tau ) + \mu pk\tau \ni 

\bigl( 
\sigma k
\tau )D a.e. in \Omega .

(4.7c)

For later use, let us rewrite system (4.7) in terms of the piecewise constant and linear
interpolants of the discrete solutions, also taking into account the structure formulae
(2.35) and (2.47): we have

 - Div
\bigl( 
\varepsilon \nu \BbbD E(u\prime \tau )+\sigma \tau 

\bigr) 
= F\tau in H1

Dir(\Omega ;\BbbR n)\ast ,(4.8a)

\chi \tau +\varepsilon z
\prime 
\tau +Am(z\tau )+W

\prime (z\tau )+\tau \lambda \tau =  - 1

2
\BbbC \prime (z\tau )e\tau : e\tau in Hm(\Omega )\ast 

with \chi \tau \in \partial R(z\prime \tau ), \lambda \tau \in \partial zH\varepsilon ,\nu (z\tau , p
\prime 
\tau ) ,

(4.8b)

\omega \tau + \varepsilon \nu p\prime \tau + \mu p\tau = (\sigma \tau )D a.e. in \Omega 

with \omega \tau \in \partial \pi H(z\tau , p
\prime 
\tau )

(4.8c)

almost everywhere in (0,T ).
Proposition 4.3 below collects the first set of a priori estimates for the discrete

solutions. Essentially, these estimates are obtained from the basic energy estimate
following from choosing the competitor q = qk - 1

\tau in the minimum problem (4.1),
which leads to

(4.9) E\mu (t
k
\tau , q

k
\tau ) + \tau \Psi \varepsilon ,\nu 

\biggl( 
qk\tau ,

qk\tau  - qk - 1
\tau 

\tau 

\biggr) 
\leq E\mu (t

k - 1
\tau , qk - 1

\tau ) +

\int tk\tau 

tk - 1
\tau 

\partial tE\mu (s, q
k - 1
\tau )ds .

Let us mention in advance that, in Proposition 4.8 ahead, we will derive a finer discrete
energy-dissipation inequality, which will be the starting point for the limit passage as
\tau \downarrow 0.

Proposition 4.3 (basic energy estimates). There exists a constant C1 > 0,
independent of \varepsilon , \mu , \nu , \tau > 0, such that the following estimates hold:

sup
t\in [0,T ]

\biggl( 
\| e\tau (t)\| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} ) + \| p\tau (t)\| L1(\Omega ;\BbbM n\times n
\mathrm{D} ) + \| u\tau (t)\| BD(\Omega ) + \| z\tau (t)\| H\mathrm{m}(\Omega )

+

\int 
\Omega 

W (z\tau (t)) dx+
\surd 
\mu \| p\tau (t)\| L2(\Omega ;\BbbM n\times n

\mathrm{D} ) +
\surd 
\mu \| u\tau (t)\| H1(\Omega ;\BbbR n)

\biggr) 
\leq C1 ,

(4.10a)

\int T

0

\Bigl( 
\| p\prime \tau (s)\| L1(\Omega ;\BbbM n\times n

\mathrm{D} ) + \| z\prime \tau (s)\| L1(\Omega )

\Bigr) 
ds \leq C1 ,

(4.10b)D
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\varepsilon 

\int T

0

\biggl( 
\nu \| u\prime \tau (s)\| 2H1(\Omega ;\BbbR n) + \nu \| p\prime \tau (s)\| 2L2(\Omega ;\BbbM n\times n

\mathrm{D} )
+ \| z\prime \tau (s)\| 2L2(\Omega )

\biggr) 
ds \leq C1 .

(4.10c)

Therefore, there exists m0 > 0, independent of \varepsilon , \nu , \mu , \tau > 0, such that

(4.11) z\tau (x, t) \geq m0 , z\tau (x, t) \geq m0 \forall (x, t) \in [0,T ]\times \Omega .

Proof. It is immediate to check that the time-incremental minimization problem
(4.1) is equivalent to

qk\tau \in Argmin

\biggl\{ 
\varepsilon 

2\tau 

\biggl( \int 
\Omega 

\nu \BbbD (E(u) - E(uk - 1
\tau )) : (E(u) - E(uk - 1

\tau ))dx

+ \| z  - zk - 1
\tau \| 2L2 + \nu \| p - pk - 1

\tau \| 2L2

\biggr) 
+ R(z  - zk - 1

\tau ) +H(zk\tau , p - pk - 1
\tau )

 - 
\int 
\Omega 

(\rho k\tau (t))D(p - pk - 1
\tau )dx+ F\mu (t

k
\tau ,u, p, z) : (u, z, p) \in Q

\biggr\} 

with F\mu from (2.43). Then, considering the analogue of estimate (4.9) and summing
it up with respect to the index k = 1, . . . , j, with j arbitrary in \{ 1, . . . ,N\} , we find

(4.12)

F\mu (t
j
\tau , q

j
\tau ) +

j\sum 
k=1

\biggl[ 
\tau \Psi \varepsilon ,\nu 

\biggl( 
qk\tau ,

qk\tau  - qk - 1
\tau 

\tau 

\biggr) 
 - 
\int 
\Omega 

(\rho k\tau (t))D(p
k
\tau  - pk - 1

\tau )dx

\biggr] 

\leq F\mu (0, q
0
\tau ) +

j\sum 
k=1

\int tk\tau 

tk - 1
\tau 

\partial tF\mu (s, q
k - 1
\tau )ds.

On the one hand, again thanks to (2.40) we have that

\tau \Psi \varepsilon ,\nu 

\biggl( 
qk\tau ,

qk\tau  - qk - 1
\tau 

\tau 

\biggr) 
 - 
\int 
\Omega 

(\rho k\tau (t))D(p
k
\tau  - pk - 1

\tau )dx \geq \tau \widetilde \Psi \varepsilon ,\nu 

\biggl( 
qk\tau  - qk - 1

\tau 

\tau 

\biggr) 

with \widetilde \Psi \varepsilon ,\nu (q
\prime ) := V\varepsilon ,\nu (u

\prime ) + R\varepsilon (z
\prime ) + \alpha \| p\prime \| L1 .

On the other hand, since \partial tF\mu (t, q) =
\int 
\Omega 
\sigma (t) : E(w\prime (t)) dx  - 

\int 
\Omega 
\rho \prime (t)(e(t)  - 

E(w(t)) dx  - \partial t(\langle F (t),w(t)\rangle H1), we easily find also in view of (2.13), of (2.39d)--
(2.39e), and of (2.41) that

| \partial tF\mu (t, q)| \leq L(t)\| e\| L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} ) +

\~L(t) with\Biggl\{ 
L(t) := C (\| w\prime (t)\| H1 + \| \varrho \prime (t)\| L2) \in L1(0,T ) ,
\~L(t) := C \prime \| F \prime (t)\| (H1)\ast \in L1(0,T ).
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3446 VITO CRISMALE AND RICCARDA ROSSI

From (4.12) we then gather that
(4.13)

F\mu (t
j
\tau , q

j
\tau ) +

j\sum 
k=1

\tau \widetilde \Psi \varepsilon ,\nu (q
k
\tau , \.q

k
\tau )

\leq F\mu (0, q
0
\tau ) +

j\sum 
k=1

\| ek - 1
\tau \| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )

\int tk\tau 

tk - 1
\tau 

L(s)ds+

\int T

0

\~L(t)dt

(1)

\leq F1(0, q
0
\tau ) + \| e0\tau \| \| L\| L1(0,T ) +

j\sum 
k=1

\biggl( 
F\mu (t

k - 1
\tau , qk - 1

\tau ) + C\rho +
1

2\gamma 1

\biggr) \int tk\tau 

tk - 1
\tau 

L(s)ds

+

\int T

0

\~L(t)dt

(2)

\leq C +
2

\gamma 1

j - 1\sum 
k=0

\bigl( 
F\mu (t

k
\tau , q

k
\tau )+C\rho 

\bigr) \int tk+1
\tau 

tk\tau 

L(s)ds+

\int T

0

\~L(t)dt,

where (1) and (2) follow from the fact that, by (2.38) and \mu \in [0, 1], it holds that
F\mu (0, q

0
\tau ) \leq F1(0, q

0
\tau ) \leq C uniformly in \mu and \tau > 0, as well as from estimate (4.3).

We are now in a position to apply a version of the discrete Gronwall lemma (cf., e.g.,
Lemma A.1 ahead) to conclude that

F\mu (t
j
\tau , q

j
\tau ) + C\rho \leq C \prime exp

\Biggl( 
2

\gamma 1

j - 1\sum 
k=0

\int tk+1
\tau 

tk\tau 

L(s)ds

\Biggr) 
\leq C,

where the latter estimate follows from (2.39d)--(2.39e) and (2.41). All in all, from
(4.13) we conclude that

\exists C > 0 \forall \varepsilon , \nu , \mu , \tau > 0 \forall j \in \{ 1, . . . ,N\} , | F\mu (t
j
\tau , q

j
\tau )| +

j\sum 
k=1

\tau \widetilde \Psi \varepsilon ,\nu (q
k
\tau , \.q

k
\tau ) \leq C.

In particular, we find that \| pj\tau \| L1(\Omega ) \leq C. Then, recalling that E\mu (t, q) = F\nu (t, q)  - \int 
\Omega 
\rho D(t)pdx and that \rho D \in L\infty (0,T ;L\infty (\Omega ;\BbbM n\times n

D )), and using (2.30b), it is immedi-
ate to check that

\exists C > 0 \forall \varepsilon , \nu , \mu , \tau > 0 : sup
t\in [0,T ]

\bigm| \bigm| E\mu (t\tau (t), q\tau (t))
\bigm| \bigm| +\int T

0

\Psi \varepsilon ,\nu (q\tau (s), q
\prime 
\tau (s))ds \leq C .

Then, estimates (4.10b) and (4.10c) immediately follow, while (4.10a) ensues due to
the coercivity property (4.2). Let us additionally mention that the estimates for e\tau 
and p\tau entail a bound for E(u\tau ) in L\infty (0,T ;L1(\Omega ;\BbbM n\times n

sym )), which yields the bound
for u\tau in L\infty (0,T ; BD(\Omega )) via the Poincar\'e-type inequality (2.4). Property (4.11)
can be deduced from supt\in [0,T ]

\int 
\Omega 
W (z\tau (t)) dx \leq C1 (cf. (4.10a)) arguing as in [CL16,

Lemma 3.3]; cf. also Remark 3.2.

The following step is the derivation of enhanced a priori estimates for the discrete
solutions (q\tau )\tau = (u\tau , z\tau , p\tau )\tau . With Proposition 4.3 we have obtained for (q\tau )\tau an a
priori estimate in H1(0,T ;Q) that blows up as \varepsilon , \nu \downarrow 0; it will be used to conclude
the existence of viscous solutions to system (1.2) for \varepsilon , \nu , and \mu > 0 fixed. Now, with
Proposition 4.4 below,
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3447

1. we prove a set of enhanced a priori estimates, uniform in \tau , \nu , \mu , and blowing
up as \varepsilon \downarrow 0, that will ensure the existence of solutions to the viscous system
with higher temporal regularity than that guaranteed by Proposition 4.3;

2. we obtain a set of a priori estimates, also uniform in \varepsilon , that will be at the
basis of the vanishing-viscosity analyses carried out in section 6, as well as of
the vanishing-hardening limit passage in section 7.

All of these estimates will hold under the further condition that \nu \leq \mu , which is
consistent

- both with the situation in which the hardening parameter \mu is kept fixed, the
viscosity parameter \varepsilon vanishes, and either \nu is kept fixed (cf. section 6.1), or
\nu vanishes along with \varepsilon (cf. section 6.2);

- and with the case where we perform joint vanishing-viscosity and vanishing-
hardening analysis for the viscous solutions (cf. section 7).

We prove Proposition 4.4 under the following additional conditions on the initial
data q0 = (u0, z0, p0):

(4.14)

DqE\mu (0, q0) = (DuE\mu (0,u0, z0, p0), DzE\mu (0,u0, z0, p0), DpE\mu (0,u0, z0, p0))

=
\bigl( 
 - Div(\sigma 0) - F (0),Am(z0) +W \prime (z0) +

1
2\BbbC 

\prime (z0)e0 : e0,\mu p0  - (\sigma 0)D
\bigr) 

\in L2(\Omega ;\BbbR n\times \BbbR \times \BbbM n\times n
D ).

Proposition 4.4 (enhanced a priori estimates). Under the assumptions of sec-
tion 2, suppose in addition that the initial data (u0, z0, p0) fulfill conditions (4.14).
Then, for \tau 

\varepsilon small enough, we have that
1. there exists a constant C\varepsilon 

2 > 0, independent of \tau , \nu , \mu > 0, with C\varepsilon 
2 \uparrow +\infty as

\varepsilon \downarrow 0, such that for all \tau , \nu , \mu > 0 with \nu \leq \mu there holds

(4.15a)

\surd 
\mu \| \.u\tau \| L\infty (0,T ;H1(\Omega ;\BbbR n)) + \| \.z\tau \| L\infty (0,T ;L2(\Omega ))

+
\surd 
\mu \| \.p\tau \| L\infty (0,T ;L2(\Omega ;\BbbM n\times n

\mathrm{D} )) \leq C\varepsilon 
2 ,

\| \.e\tau \| L2(0,T ;L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} )) + \| \.z\tau \| L2(0,T ;H\mathrm{m}(\Omega )) \leq C\varepsilon 

2 ;

2. there exists a constant C2 > 0, independent of \varepsilon , \tau , \nu , \mu > 0, such that for
all \tau , \varepsilon , \nu , \mu > 0 with \nu \leq \mu there holds
(4.15b)

\| \.e\tau \| L1(0,T ;L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} )) + \| \.z\tau \| L1(0,T ;H\mathrm{m}(\Omega )) +

\surd 
\mu \| \.p\tau \| L1(0,T ;L2(\Omega ;\BbbM n\times n

\mathrm{D} ))

+
\surd 
\mu \| \.u\tau \| L1(0,T ;H1(\Omega ;\BbbR n)) \leq C2 .

As we will see in Remark 4.6 later on, assuming only (2.39a) in place of (2.39c),
estimates (4.15) hold for two constants C\varepsilon ,\mu 

2 and C\mu 
2 depending also on \mu > 0.

Outline of the proof. Our argument will be split into the following steps:
1. The first step basically corresponds to ``differentiating w.r.t. time"" the discrete

Euler--Lagrange equations/subdifferential inclusions satisfied by the discrete
solutions and testing them by \.uk\tau , \.zk\tau , \.pk\tau , respectively. In practice, we will do
so with the discrete equations for uk\tau and pk\tau (i.e., (4.7a) and (4.7c)), while,
instead of working with the discrete flow rule (4.7b) for z (and dealing with
the Fr\'echet subdifferential term therein), we will resort to (4.16) and (4.17)
below, which are a key consequence of the minimum problem (4.1). We will
add up the resulting relations and perform suitable calculations.

2. Next, we perform a suitable estimate of \| \.pk\tau \| L1(\Omega ;\BbbM n\times n
\mathrm{D} ). The key role of this

calculation is commented upon in Remark 4.7 ahead.
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3. We will rearrange the estimate obtained in steps 1--2.
4. The tasks in steps 1--3 are addressed by working with the discrete Euler--

Lagrange system (4.7) for k \in \{ 2, . . . ,N\tau \} . In this step, we will separately
treat the case k = 1.

5. We will apply the Gronwall lemma, Lemma A.2, to get estimates (4.15a),
blowing up as \varepsilon \downarrow 0.

6. We will apply the Gronwall-type Lemma A.3 to get estimates (4.15b), uniform
w.r.t. \varepsilon , \nu , \mu > 0.

We will also use the following result.

Lemma 4.5 (see [CL16, Lemma 3.4]). The minimizers (qk\tau )
N\tau 

k=1 of (4.1) satisfy
for all k \in \{ 1, . . . ,N\tau \} and \zeta \in Hm(\Omega )

R(\zeta ) + \varepsilon 

\int 
\Omega 

\.zk\tau \zeta dx+ am(z
k
\tau , \zeta ) +

\int 
\Omega 

\biggl( 
W \prime (zk\tau )+

1

2
\BbbC \prime (zk\tau )e

k
\tau e

k
\tau 

\biggr) 
\zeta \geq 0,

(4.16)

R( \.zk\tau ) + \varepsilon \| \.zk\tau \| 2L2 + am(z
k
\tau , \.z

k
\tau ) +

\int 
\Omega 

\biggl( 
W \prime (zk\tau )+

1

2
\BbbC \prime (zk\tau )e

k
\tau e

k
\tau 

\biggr) 
\.zk\tau \leq CK\tau \| \.zk\tau \| L\infty \| \.pk\tau \| L1

(4.17)

with CK from (2.28c).

Proof of Proposition 4.4.
Step 1: For k \in \{ 2, . . . ,N\tau \} , let us subtract (4.7a) at step k  - 1 from (4.7a) at

step k. Testing the resulting relation by \.uk\tau , we obtain

(4.18)

\int 
\Omega 

\varepsilon \nu \BbbD E( \.uk\tau  - \.uk - 1
\tau ) : E( \.uk\tau )dx\underbrace{}  \underbrace{}  

.
= I1

+

\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau ) : E( \.uk\tau )dx\underbrace{}  \underbrace{}  
.
= I2

= \langle F k
\tau  - F k - 1

\tau , \.uk\tau \rangle H1(\Omega ;\BbbR n)\underbrace{}  \underbrace{}  
.
= I3

.

Since
\int 
\Omega 
\BbbD E(u1) : (E(u1) - E(u2)) dx \geq \| u1\| H1,\BbbD (\| u1\| H1,\BbbD  - \| u2\| H1,\BbbD ) \geq 1

2\| u1\| 
2
H1,\BbbD  - 

1
2\| u2\| 

2
H1,\BbbD , we have

I1 \geq \varepsilon \nu \| \.uk\tau \| H1,\BbbD (\| \.uk\tau \| H1,\BbbD  - \| \.uk - 1
\tau \| H1,\BbbD ).

As for I2, we use that E( \.uk\tau ) = \.ek\tau + \.pk\tau  - E( \.wk
\tau ) and that \sigma k

\tau = \BbbC (zk\tau )ek\tau (cf. (4.4)), so
that

(4.19) \sigma k
\tau  - \sigma k - 1

\tau = \BbbC (zk\tau )(ek\tau  - ek - 1
\tau ) +

\bigl( 
\BbbC (zk\tau ) - \BbbC (zk - 1

\tau )
\bigr) 
ek - 1
\tau .

Therefore,

I2 =

\int 
\Omega 

\BbbC (zk\tau )(ek\tau  - ek - 1
\tau ) : \.ek\tau dx\underbrace{}  \underbrace{}  

.
= I2,1

+

\int 
\Omega 

\bigl( 
\BbbC (zk\tau ) - \BbbC (zk - 1

\tau )
\bigr) 
ek - 1
\tau : \.ek\tau dx\underbrace{}  \underbrace{}  

.
= I2,2

+

\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau ) \.pk\tau dx\underbrace{}  \underbrace{}  
.
= I2,3

 - 
\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau )E( \.wk
\tau )dx\underbrace{}  \underbrace{}  

.
= I2,4
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Now, we have that

I2,1 = \tau 

\int 
\Omega 

\BbbC (zk\tau ) \.ek\tau : \.ek\tau dx \geq \gamma 1\tau \| \.ek\tau \| 2L2

by (2.13), whereas, since the mapping z \mapsto \rightarrow \BbbC (z) is Lipschitz continuous,

| I2,2| \leq C\tau \| \.zk\tau \| L\infty \| ek - 1
\tau \| L2\| \.ek\tau \| L2 \leq C\tau \| \.zk\tau \| L\infty \| \.ek\tau \| L2 ,

where the last estimate follows from the previously obtained (4.10a). While the term
I2,3 will be canceled in the next lines, again relying on (4.19) and the Lipschitz con-
tinuity of \BbbC , we estimate

| I2,4| \leq \tau \| \BbbC (zk\tau )\| L\infty \| \.ek\tau \| L2\| E( \.wk
\tau )\| L2 + C\tau \| \.zk\tau \| L\infty \| ek - 1

\tau \| L2\| E( \.wk
\tau )\| L2

\leq C\tau 
\bigl( 
\| \.ek\tau \| L2\| E( \.wk

\tau )\| L2+\| \.zk\tau \| L\infty \| E( \.wk
\tau )\| L2

\bigr) 
,

where the latter estimate again follows from (4.10a). Finally, recalling that F \in 
H1(0,T ; BD(\Omega )\ast ), we may estimate

(4.20)
| I3| \leq \tau \| \.F k

\tau \| BD(\Omega )\ast \| \.uk\tau \| BD(\Omega ) \leq C\tau \| \.F k
\tau \| BD(\Omega )\ast \| E( \.uk\tau )\| L1

\leq C\tau \| \.F k
\tau \| BD(\Omega )\ast 

\bigl( 
\| E( \.wk

\tau )\| L1+\| \.ek\tau \| L1+\| \.pk\tau \| L1

\bigr) 
,

where the second estimate follows from Poincar\'e's inequality for BD(\Omega ) (cf. (2.4)),
and the very last one follows from the fact that E( \.uk\tau ) = \.ek\tau + \.pk\tau  - E( \.wk

\tau ). All in all,
combining the above calculations with (4.18), we conclude that
(4.21)

\varepsilon \nu \| \.uk\tau \| H1,\BbbD (\| \.uk\tau \| H1,\BbbD  - \| \.uk - 1
\tau \| H1,\BbbD ) + \gamma 1\tau \| \.ek\tau \| 2L2 +

\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau )D \.pk\tau dx

\leq C\tau 
\Bigl( 
\| \.zk\tau \| L\infty \| \.ek\tau \| L2+\| \.ek\tau \| L2\| E( \.wk

\tau )\| L2+\| \.zk\tau \| L\infty \| E( \.wk
\tau )\| L2+\| \.F k

\tau \| BD\ast \| E( \.wk
\tau )\| L1

+\| \.F k
\tau \| BD\ast \| \.ek\tau \| L1+\| \.F k

\tau \| BD\ast \| \.pk\tau \| L1

\Bigr) 
.

Let us now consider estimate (4.17) at step k and subtract from it (4.16) at step
k  - 1 (recall that k \in \{ 2, . . . ,N\tau \} ), with the test function \beta := \.zk\tau . We thus obtain
(4.22)

R( \.zk\tau ) - R( \.zk\tau )\underbrace{}  \underbrace{}  
= 0

+ \varepsilon 

\int 
\Omega 

( \.zk\tau  - \.zk - 1
\tau ) \.zk\tau dx+ am(z

k
\tau  - zk - 1

\tau , \.zk\tau )

\leq 
\int 
\Omega 

\bigl[ 
W \prime (zk - 1

\tau ) - W \prime (zk\tau )
\bigr] 
\.zk\tau dx\underbrace{}  \underbrace{}  

.
= I4

+
1

2

\int 
\Omega 

\bigl[ 
\BbbC \prime (zk - 1

\tau ) - \BbbC \prime (zk\tau )
\bigr] 
ek\tau : ek\tau \.zk\tau dx\underbrace{}  \underbrace{}  

.
= I5

 - 1

2

\int 
\Omega 

\bigl( 
\BbbC \prime (zk - 1

\tau )ek\tau : ek\tau  - \BbbC \prime (zk - 1
\tau )ek - 1

\tau : ek - 1
\tau 

\bigr) 
\.zk\tau dx\underbrace{}  \underbrace{}  

.
= I6

+ CK\tau \| \.zk\tau \| L\infty \| \.pk\tau \| L1 .

Now, recall that, by (4.11), 0 < m0 \leq \.zk\tau \leq 1 for all k \in \{ 0, . . . ,N\tau \} . Since the
restriction of W \prime to [m0, 1] is Lipschitz continuous, we conclude that

| I4| \leq C

\int 
\Omega 

| zk\tau  - zk - 1
\tau | | \.zk\tau | dx \leq C\tau \| \.zk\tau \| 2L2 ;
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by the Lipschitz continuity of \BbbC \prime we have that

| I5| \leq C

\int 
\Omega 

| zk\tau  - zk - 1
\tau | | ek\tau | 2| \.zk\tau | dx \leq C\tau \| \.zk\tau \| 2L\infty \| ek\tau \| 2L2 \leq C\tau \| \.zk\tau \| 2L\infty ,

the latter estimate due to (4.10a); finally,

| I6| \leq C

\int 
\Omega 

| ek\tau +ek - 1
\tau | | ek\tau  - ek - 1

\tau | \.zk\tau | dx \leq C\tau \| \.ek\tau \| L2\| \.zk\tau \| L\infty ,

where we have used that \| \BbbC (zk\tau )\| L\infty \leq C, and again the previously proved (4.10a).
Inserting the above estimates into (4.22) leads to
(4.23)

\varepsilon \| \.zk\tau \| L2

\Bigl( 
\| \.zk\tau \| L2 - \| \.zk - 1

\tau \| L2

\Bigr) 
+ \tau a\mathrm{m}( \.zk\tau , \.z

k
\tau ) \leq C\tau \| \.zk\tau \| L\infty 

\Bigl( 
\| \.zk\tau \| L\infty +\| \.ek\tau \| L2 + \| \.pk\tau \| L1

\Bigr) 
.

Prior to working with (4.7c), let us specify that it reformulates as

(4.24) \omega k
\tau + \varepsilon \nu \.pk\tau + \mu pk\tau =

\bigl( 
\sigma k
\tau )D for some \omega k

\tau \in \partial \pi H(zk\tau , \.p
k
\tau ) a.e. in \Omega 

(cf. (4.8c)). We subtract (4.24), written at step k - 1, from (4.24) at step k, and test
the resulting relation by \.pk\tau . This leads to

(4.25)

\int 
\Omega 

(\omega k
\tau  - \omega k - 1

\tau ) \.pk\tau dx\underbrace{}  \underbrace{}  
.
= I7

+ \varepsilon \nu 

\int 
\Omega 

( \.pk\tau  - \.pk - 1
\tau ) \.pk\tau dx+ \mu 

\int 
\Omega 

(pk\tau  - pk - 1
\tau ) \.pk\tau dx

=

\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau )D \.pk\tau dx .

From the 1-homogeneity of H and the fact that \omega k
\tau \in \partial \pi H(zk\tau , \.p

k
\tau ) and \omega k - 1

\tau \in 
\partial \pi H(zk - 1

\tau , \.pk - 1
\tau ) a.e. in \Omega , it follows that\int 

\Omega 

\omega k
\tau \.pk\tau dx = H(zk\tau , \.p

k
\tau ),

\int 
\Omega 

\omega k - 1
\tau \.pk\tau dx \leq H(zk - 1

\tau , \.pk\tau ) .

Therefore, by (2.30c) we conclude that

| I7| \leq 
\bigm| \bigm| H(zk\tau , \.p

k
\tau ) - H(zk - 1

\tau , \.pk\tau )
\bigm| \bigm| \leq C \prime 

K\tau \| \.zk\tau \| L\infty \| \.pk - 1
\tau \| L1 .

All in all, from (4.25) we infer that

(4.26)

\varepsilon \nu \| \.pk\tau \| L2

\bigl( 
\| \.pk\tau \| L2 - \| \.pk - 1

\tau \| L2

\bigr) 
+ \mu \tau \| \.pk\tau \| 2L2

\leq 
\int 
\Omega 

(\sigma k
\tau  - \sigma k - 1

\tau )D \.pk\tau dx+ C\tau \| \.zk\tau \| L\infty \| \.pk - 1
\tau \| L1 .

Summing up (4.21), (4.23), and (4.26), adding \tau \| \.zk\tau \| 2L2 to both sides of the in-
equality, and observing the cancellation of one term, we conclude that
(4.27)
\varepsilon \nu \| \.uk\tau \| H1,\BbbD 

\bigl( 
\| \.uk\tau \| H1,\BbbD  - \| \.uk - 1

\tau \| H1,\BbbD 
\bigr) 
+ \varepsilon \| \.zk\tau \| L2

\bigl( 
\| \.zk\tau \| L2 - \| \.zk - 1

\tau \| L2

\bigr) 
+ \varepsilon \nu \| \.pk\tau \| L2

\bigl( 
\| \.pk\tau \| L2 - \| \.pk - 1

\tau \| L2

\bigr) 
+ \=\zeta \tau 

\bigl( 
\| \.ek\tau \| 2L2+\| \.zk\tau \| 2H\mathrm{m}+\mu \| \.pk\tau \| 2L2

\bigr) 
\leq C\tau 

\Bigl( 
\| \.zk\tau \| L\infty \| \.ek\tau \| L2+\| \.ek\tau \| L2\| E( \.wk

\tau )\| L2+\| \.zk\tau \| L\infty \| E( \.wk
\tau )\| L2+\| \.F k

\tau \| BD\ast \| E( \.wk
\tau )\| L1

+\| \.F k
\tau \| BD\ast \| \.ek\tau \| L1+\| \.F k

\tau \| BD\ast \| \.pk\tau \| L1+\| \.zk\tau \| 2L\infty + \| \.zk\tau \| L\infty \| \.pk\tau \| L1

\Bigr) 
with \=\zeta = min\{ \gamma 1, 1\} .
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Step 2: Let us now estimate \| \.pk\tau \| L1 for k \in \{ 2, . . . ,N\tau \} . We observe that
(4.28)

\alpha \| \.pk\tau \| L1

(1)

\leq H(zk\tau , \.p
k
\tau ) - 

\int 
\Omega 

(\rho k\tau )D \.pk\tau dx

(2)
= H(zk\tau , \.p

k
\tau ) +

\int 
\Omega 

\rho k\tau : ( \.ek\tau  - E( \.wk
\tau ))dx - 

\int 
\Omega 

\rho k\tau : E( \.uk\tau )dx

(3)
= H(zk\tau , \.p

k
\tau ) +

\int 
\Omega 

\rho k\tau : ( \.ek\tau  - E( \.wk
\tau ))dx - \langle F k

\tau , \.u
k
\tau \rangle BD(\Omega )

(4)
=  - \varepsilon \nu \| \.pk\tau \| 2L2  - \mu 

\int 
\Omega 

pk\tau \.p
k
\tau dx+

\int 
\Omega 

(\sigma k
\tau )D \.pk\tau dx+

\int 
\Omega 

\rho k\tau : ( \.ek\tau  - E( \.wk
\tau ))dx

 - 
\int 
\Omega 

\sigma k
\tau : E( \.uk\tau )dx - \varepsilon \nu 

\int 
\Omega 

\BbbD E( \.uk\tau ) : E( \.uk\tau )dx

(5)

\leq  - \mu 
\int 
\Omega 

pk\tau \.p
k
\tau dx+

\int 
\Omega 

(\rho k\tau  - \sigma k
\tau ) : ( \.e

k
\tau  - E( \.wk

\tau ))dx

\leq \surd 
\mu \| pk\tau \| L2

\surd 
\mu \| \.pk\tau \| L2 + \| \rho k\tau  - \sigma k

\tau \| L2\| \.ek\tau  - E( \.wk
\tau )\| L2

(6)

\leq C
\bigl( 
\| \.ek\tau \| L2+\| E( \.wk

\tau )\| L2 +
\surd 
\mu \| \.pk\tau \| L2

\bigr) 
,

where (1) follows from (2.40), (2) is due to the fact that \.pk\tau = E( \.uk\tau + \.wk
\tau )  - \.ek\tau , (3)

follows from the integration by parts formula (2.10) observing that \.uk\tau \in H1
Dir(\Omega ;\BbbR n)

and that F k
\tau =  - Div(\varrho k\tau ) by (2.39e), (4) ensues from testing (4.7a) by \.uk\tau and (4.7c)

by \.pk\tau , (5) from the fact that  - \varepsilon \nu \| \.pk\tau \| 2L2 \leq 0 and  - \varepsilon \nu 
\int 
\Omega 
\BbbD E( \.uk\tau ) : E( \.uk\tau )dx \leq 0, and

again from E( \.uk\tau ) = \.ek\tau + \.pk\tau  - E( \.wk
\tau ), and (6) is due to the fact that \rho \in L\infty (0,T ;\BbbM n\times n

sym )
and to the previously obtained estimates for \sigma \tau and

\surd 
\mu p\tau in L\infty (0,T ;L2(\Omega ;\BbbM n\times n

sym ));
cf. (4.10a).

In view of (4.28), estimate (4.27) is rewriten as

(4.29)

\varepsilon \nu \| \.uk\tau \| H1,\BbbD (\| \.uk\tau \| H1,\BbbD  - \| \.uk - 1
\tau \| H1,\BbbD ) + \varepsilon \| \.zk\tau \| L2

\bigl( 
\| \.zk\tau \| L2 - \| \.zk - 1

\tau \| L2

\bigr) 
+ \varepsilon \nu \| \.pk\tau \| L2

\bigl( 
\| \.pk\tau \| L2 - \| \.pk - 1

\tau \| L2

\bigr) 
+ \=\zeta \tau 

\bigl( 
\| \.ek\tau \| 2L2+\| \.zk\tau \| 2H\mathrm{m}+\mu \| \.pk\tau \| 2L2

\bigr) 
\leq C\tau \| \.ek\tau \| L2\| E( \.wk

\tau )\| L2 + C\tau \| \.zk\tau \| L\infty (\| \.ek\tau \| L2+\| E( \.wk
\tau )\| L2+\| \.zk\tau \| L\infty )

+ C\tau (\| \.F k
\tau \| BD\ast +\| \.zk\tau \| L\infty )

\bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+
\surd 
\mu \| \.pk\tau \| L2

\bigr) 
.

Step 3: Let us introduce the vector

vk := (
\surd 
\nu \| \.uk\tau \| H1,\BbbD , \| \.zk\tau \| L2 ,

\surd 
\nu \| \.pk\tau \| L2).

Then, observe that the first three terms on the left-hand side of (4.29) rewrite as
\varepsilon \langle vk, vk - vk - 1\rangle . For the fourth term we have the estimate

\=\zeta \tau 
\bigl( 
\| \.ek\tau \| 2L2+\| \.zk\tau \| 2H\mathrm{m}+\mu \| \.pk\tau \| 2L2

\bigr) 
(1)

\geq c\tau 
\bigl( 
\| \.ek\tau \| 2L2+\| \.zk\tau \| 2H\mathrm{m}+\mu \| \.pk\tau \| 2L2+\mu \| E( \.uk\tau )\| 2L2

\bigr) 
 - C\tau \| E( \.wk

\tau )\| 2L2

(2)

\geq \~\zeta \tau 
\bigl( 
\| \.ek\tau \| 2L2+\| \.zk\tau \| 2H\mathrm{m}+\mu \| \.pk\tau \| 2L2+\nu \| \.uk\tau \| 2H1,\BbbD 

\bigr) 
 - C\tau \| E( \.wk

\tau )\| 2L2 ,

where for (1) we have used that \mu \| E( \.uk\tau )\| 2L2 \leq 3\mu \| \.ek\tau \| 2L2 + 3\mu \| \.pk\tau \| 2L2 + 3\mu \| E( \.wk
\tau )\| 2L2 ,

while (2) ensues from (2.19) and from the fact that \mu \| E( \.uk\tau )\| 2L2 \geq \nu \| E( \.uk\tau )\| 2L2 (since,

by assumption, \nu \leq \mu ), with the constant \~\zeta fulfilling \~\zeta (3K2
\BbbD + 1) \leq \=\zeta with K\BbbD from

(2.19).
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As for the right-hand side of (4.29), we will crucially use the compact embedding
of Hm(\Omega ) into L\infty (\Omega ), which ensures that

(4.30) \forall \delta > 0 \exists C\delta > 0 \forall \zeta \in Hm(\Omega ) : \| \zeta \| 2L\infty \leq \delta \| \zeta \| 2H\mathrm{m} + C\delta \| \zeta \| 2L1 .

Therefore, also by Young's inequality we have the estimate

\| \.zk\tau \| L\infty 
\bigl( 
\| \.ek\tau \| L2+\| E( \.wk

\tau )\| L2+\| \.zk\tau \| L\infty 
\bigr) 

\leq \delta (\| \.zk\tau \| 2H\mathrm{m} + \| \.ek\tau \| 2L2) + C\delta (\| E( \.wk
\tau )\| 2L2+\| \.zk\tau \| 2L1)

for some suitable constant \delta > 0 to be specified later on.
All in all, from (4.29) we deduce

(4.31)

\varepsilon Ak(Ak - Ak - 1) + \~\zeta \tau B2
k \leq C\tau 

\bigl( 
1+C2

k

\bigr) 
+ C\tau \| \.zk\tau \| 2L1

+ C\tau \| \.zk\tau \| L\infty 
\bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+
\surd 
\mu \| \.pk\tau \| L2

\bigr) 
+ C\delta \tau B2

k,

where we have used the place-holders Ak, Bk, and Ck defined by

A2
k := | vk| 2 = \nu \| \.uk\tau \| 2H1,\BbbD + \| \.zk\tau \| 2L2 + \nu \| \.pk\tau \| 2L2 ,

B2
k := \| \.ek\tau \| 2L2 + \| \.zk\tau \| 2H\mathrm{m} + \mu \| \.pk\tau \| 2L2 + \mu \| \.uk\tau \| 2H1,\BbbD , C2

k := \| E( \.wk
\tau )\| 2L2+\| \.F k

\tau \| 2BD\ast 

and estimated
(4.32)

C\tau \| \.ek\tau \| L2\| E( \.wk
\tau )\| L2 \leq \delta \tau B2

k + C\tau \| E( \.wk
\tau )\| 2L2 ,

C\tau \| \.F k
\tau \| \mathrm{B}\mathrm{D}\ast 

\Bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+
\surd 
\mu \| \.pk\tau \| L2

\Bigr) 
\leq \delta \tau B2

k + C\tau \| \.F k
\tau \| 2\mathrm{B}\mathrm{D}\ast + C\tau \| E( \.wk

\tau )\| 2L2

via Young's inequality. Therefore, choosing \delta > 0 in (4.31) small enough in such a
way as to absorb the term C\delta \tau B2

k on the left-hand side, we arrive at

(4.33)
\varepsilon Ak(Ak - Ak - 1) +

\~\zeta 

2
\tau B2

k

\leq C\tau (1 + C2
k) + C\tau \| \.zk\tau \| 2L1 + C\tau \| \.zk\tau \| L\infty 

\bigl( 
\| \.ek\tau \| L2+

\surd 
\mu \| \.pk\tau \| L2

\bigr) 
.

Again relying on (4.30) we estimate the last term on the right-hand side of (4.33) by

C\tau \| \.zk\tau \| L\infty 
\bigl( 
\| \.ek\tau \| L2+

\surd 
\mu \| \.pk\tau \| L2

\bigr) 
\leq C\tau \delta \| \.zk\tau \| H\mathrm{m}Bk + C\delta \tau \| \.zk\tau \| L1Bk \leq C\tau \delta B2

k + C\tau \delta \prime B2
k + C\tau \| \.zk\tau \| 2L1 .

Choosing the constants \delta and \delta \prime such that C\tau (\delta +\delta \prime ) \leq \~\mu 
4 \tau and using that \| \.zk\tau \| L1 \leq 

Ak, we obtain that, for every k \in \{ 2, . . . ,N\tau \} ,
(4.34)

\varepsilon Ak(Ak - Ak - 1) +
\~\zeta 

4
\tau B2

k \leq C\tau (1 + C2
k) + C\tau \| \.zk\tau \| 2L1 \leq C\tau (1 + C2

k) + C\tau Ak\| \.zk\tau \| L1 .

Step 4: Let us now address the case k = 1. To start with, let us set u - 1
\tau := u0,

z - 1
\tau := z0, and p

 - 1
\tau := p0, so that

(4.35) \.u0\tau =
u0
\tau  - u - 1

\tau 

\tau = 0 and, analogously, \.z0\tau = 0 and \.p0\tau = 0.
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We test (4.7a), with k = 1, by \.u1\tau . With an easy algrebraic manipulation we obtain

(4.36)

\int 
\Omega 

\varepsilon \nu \BbbD E( \.u1\tau )E( \.u1\tau )dx+

\int 
\Omega 

(\sigma 1
\tau  - \sigma 0

\tau ) : E( \.u
1
\tau )dx

= \langle F 1
\tau  - F 0

\tau , \.u
1
\tau \rangle H1  - 

\int 
\Omega 

\sigma 0
\tau : E( \.u1\tau )dx+ \langle F 0

\tau , \.u
1
\tau \rangle H1 .

Repeating the very same calculations as throughout (4.19) and the subsequent for-
mulae, we arrive at (cf. (4.21))
(4.37)

\varepsilon \nu \| \.u1\tau \| H1,\BbbD (\| \.u1\tau \| H1,\BbbD  - \| \.u0\tau \| H1,\BbbD ) + \gamma 1\tau \| \.e1\tau \| 2L2 +

\int 
\Omega 

(\sigma 1
\tau  - \sigma 0

\tau )D \.p1\tau dx

\leq C\tau 
\Bigl( 
\| \.z1\tau \| L\infty \| \.e1\tau \| L2+\| \.e1\tau \| L2\| E( \.w1

\tau )\| L2+\| \.z1\tau \| L\infty \| E( \.w1
\tau )\| L2+\| \.F 1

\tau \| BD\ast \| E( \.w1
\tau )\| L1

+\| \.F 1
\tau \| BD\ast \| \.e1\tau \| L1+\| \.F 1

\tau \| BD\ast \| \.p1\tau \| L1

\Bigr) 
+

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

(F (0) + Div(\sigma 0)) \.u
1
\tau dx

\bigm| \bigm| \bigm| \bigm| ,
where we have used that, by definition, \.u0\tau , and exploited the fact that F (0) +
Div(\sigma 0) \in L2(\Omega ;\BbbR n) by (4.14) to rewrite the last two terms on the right-hand side of
(4.36).

We now write (4.17) for k = 1. With algebraic manipulations, also taking into
account that \.z0\tau = 0 and using (4.14), we arrive at

(4.38)

R( \.z1\tau ) + \varepsilon 

\int 
\Omega 

( \.z1\tau  - \.z0\tau ) \.z
1
\tau dx+ am(z

1
\tau  - z0\tau , \.z

1
\tau )

\leq 
\int 
\Omega 

\bigl[ 
W \prime (z1\tau ) - W \prime (z0\tau )

\bigr] 
\.z1\tau dx+

1

2

\int 
\Omega 

\bigl[ 
\BbbC \prime (z0\tau ) - \BbbC \prime (z1\tau )

\bigr] 
e1\tau : e1\tau \.z1\tau dx

 - 1

2

\int 
\Omega 

\bigl( 
\BbbC \prime (z0\tau )e

1
\tau : e1\tau  - \BbbC \prime (z0\tau )e

0
\tau : e0\tau 

\bigr) 
\.z1\tau dx

+ CK\tau \| \.z1\tau \| L\infty \| \.p1\tau \| L1 +

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bigl( 
Amz

0
\tau +W

\prime (z0\tau )+
1
2\BbbC 

\prime (z0\tau )e
0
\tau : e0\tau 

\bigr) 
\.z1\tau dx

\bigm| \bigm| \bigm| \bigm| .
With the same calculations as throughout (4.22)--(4.23) we conclude that

(4.39)

\varepsilon \| \.z1\tau \| L2

\bigl( 
\| \.z1\tau \| L2 - \| \.z0\tau \| L2

\bigr) 
+ \tau am( \.z

1
\tau , \.z

1
\tau )

\leq C\tau \| \.z1\tau \| L\infty 
\bigl( 
\| \.z1\tau \| L\infty +\| \.e1\tau \| L2 + \| \.p1\tau \| L1

\bigr) 
+

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\bigl( 
Amz

0
\tau +W

\prime (z0\tau )+
1
2\BbbC 

\prime (z0\tau )e
0
\tau : e0\tau 

\bigr) 
\.z1\tau dx

\bigm| \bigm| \bigm| \bigm| .
Finally, we test (4.24), written for k = 1, with \.p1\tau . Taking into account that, by

construction, \.p0\tau = 0, this leads to\int 
\Omega 

\omega 1
\tau \.p

1
\tau dx+ \varepsilon \nu 

\int 
\Omega 

( \.p1\tau  - \.p0\tau ) \.p
1
\tau dx+ \mu 

\int 
\Omega 

(p1\tau  - p0\tau ) \.p1\tau dx

=

\int 
\Omega 

(\sigma 1
\tau  - \sigma 0

\tau )D \.p1\tau dx+

\int 
\Omega 

(\sigma 0
\tau  - \mu p0\tau ) \.p1\tau dx .

With the same computations as for (4.26), we obtain

(4.40)

H( \.z1\tau , \.p
1
\tau ) + \varepsilon \nu \| \.p1\tau \| L2

\bigl( 
\| \.p1\tau \| L2 - \| \.p0\tau \| L2

\bigr) 
+ \mu \tau \| \.p1\tau \| 2L2

\leq 
\int 
\Omega 

(\sigma 1
\tau  - \sigma 0

\tau )D \.p1\tau dx+

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

(\sigma 0
\tau  - \mu p0\tau ) \.p1\tau dx

\bigm| \bigm| \bigm| \bigm| .
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3454 VITO CRISMALE AND RICCARDA ROSSI

We add up (4.37), (4.39), and (4.40). The very same calculations as throughout
Steps 2 and 3 lead to

\varepsilon A1(A1 - A0) +
\~\zeta 

4
\tau B2

1 \leq C\tau (1 + C2
1 ) + C\tau A1\| \.z1\tau \| L1 + F1 .

Here, the term F1 subsumes the very last contributions on the right-hand sides of
(4.37), (4.39), and (4.40): in fact, for later use we introduce the place-holder

Fk : =

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

DuE\mu (0,u0, z0, p0) \.u
1
\tau dx

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 
\Omega 

DzE\mu (0,u0, z0, p0) \.z
1
\tau dx

\bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

DpE\nu (0,u0, z0, p0) \.p
1
\tau dx

\bigm| \bigm| \bigm| \bigm| .
Then, (4.34) extends to the index k = 1, and we ultimately get the relation, for all
k \in \{ 1, . . . ,N\tau \} ,
(4.41)

\varepsilon Ak(Ak - Ak - 1) +
\~\zeta 

4
\tau B2

k \leq C\tau + C\tau \| \.zk\tau \| 2L1 \leq C\tau (1 + C2
k) + C\tau Ak\| \.zk\tau \| L1 + \delta 1,kF1 .

Step 5: From (4.41) we infer

1

2
A2

k  - 1

2
A2

k - 1 +
\~\zeta 

4\varepsilon 
\tau B2

k \leq C

\varepsilon 
\tau 
\bigl( 
1+A2

k+C
2
k

\bigr) 
+
\delta 1,k
\varepsilon 
F1 \forall k \in \{ 1, . . . ,N\tau \} .

so that adding up the above relations we obtain (recall A0 = 0 by (4.35))

(4.42) A2
k +

k\sum 
j=1

\~\zeta 

\varepsilon 
\tau B2

j \leq 1

\varepsilon 
F1 +

2CT

\varepsilon 
+

2C

\varepsilon 

k\sum 
j=1

\tau C2
j +

2C

\varepsilon 

k\sum 
j=1

\tau A2
j .

We are now in a position to apply Lemma A.2 in Appendix A, with the choices
ak := A2

k, \Lambda := 2CT
\varepsilon + 2C

\varepsilon 

\sum k
j=1 \tau C

2
j + 1

\varepsilon F1, and b =
2C\tau 
\varepsilon : hence we need to assume,

e.g., \tau /\varepsilon < 1/(4C), so that b < 1. Then, (A.2) gives (notice that
\sum k

j=1 \tau C
2
j \leq C \prime in

view of (2.39c) and (2.41))

(4.43)

sup
k=1,...,N\tau 

A2
k \leq 1

1 - \tau 

\left(  A2
0 +

2CT

\varepsilon 
+
F1

\varepsilon 
+

2C

\varepsilon 

k\sum 
j=1

\tau C2
j

\right)  exp

\biggl( 
b

1 - b
k

\biggr) 
(\ast )
\leq 2

\left(  A2
0 +

2CT

\varepsilon 
+

2C

\varepsilon 

k\sum 
j=1

\tau C2
j +

1

\varepsilon 
F1

\right)  exp
\bigl( 
4CT
\varepsilon 

\bigr) .
= S1

\varepsilon ,

so that S1
\varepsilon \uparrow +\infty as \varepsilon \downarrow 0, where estimate (\ast ) is true for, say, \tau \in [0, 1/2]. Plugging

the above estimate into (4.42) we obtain

(4.44)

N\tau \sum 
k=1

\tau B2
k \leq S2

\varepsilon with S2
\varepsilon \uparrow +\infty as \varepsilon \downarrow 0.

Clearly, (4.43) and (4.44) give estimates (4.15a).
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Step 6: Using that Bk \geq Ak, from (4.41) we deduce

(4.45) Ak(Ak - Ak - 1) +
\~\zeta \tau 

4\varepsilon 
A2

k +
\~\zeta \tau 

4\varepsilon 
B2

k \leq C
\tau 

\varepsilon 
(1 + C2

k) +
\delta 1,k
\varepsilon 
F1 + C

\tau 

\varepsilon 
Ak\| \.zk\tau \| L1

for all k \in \{ 1, . . . ,N\tau \} . Hence, we are in position to apply the forthcoming Lemma

A.3 with the choices ak := Ak,Mk := Bk, \gamma :=
\~\zeta \tau 
4\varepsilon , ck := Ck, and Rk := 4C

\~\zeta 
\| \.zk\tau \| L1 and

suitable choices for the constants c and \rho (notice that A0 = 0 by construction, Rk \leq 
cAk, and we now have to take \tau /\varepsilon < 1/(2c)). From (A.4), along with

\sum N\tau 

k=1 \tau C
2
k \leq C \prime 

(by (2.39c) and (2.41)) and (4.10b), we infer

(4.46) \exists S2 > 0 \forall \tau , \varepsilon , \nu > 0 :

N\tau \sum 
k=1

\tau Bk \leq S2 .

Then, estimate (4.15b) ensues. This concludes the proof.

Remark 4.6. In the case in which only (2.39a) holds in place of (2.39c), we have
only F \in H1(0,T ; (H1(\Omega ;\BbbR n)\ast ), so that in place of (4.20) we may infer only (with
shorter notation for the norms)

| I3| \leq C\tau \| \.F k
\tau \| (H1)\ast 

\bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+\| \.pk\tau \| L2

\bigr) 
.

This affects the second inequality in (4.32), which is now replaced by

C\tau \| \.F k
\tau \| (H1)\ast 

\bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+\| \.pk\tau \| L2

\bigr) 
\leq \delta \tau 

\bigl( 
\| E( \.wk

\tau )\| 2L2+\| \.ek\tau \| 2L2+\| \.pk\tau \| 2L2

\bigr) 
+ C\tau \| \.F k

\tau \| 2(H1)\ast 

Now, since
\bigl( 
\| E( \.wk

\tau )\| 2L2+\| \.ek\tau \| 2L2+\| \.pk\tau \| 2L2

\bigr) 
equals

\surd 
\mu  - 1B2

k, we may only control

C\tau \| \.F k
\tau \| (H1)\ast 

\bigl( 
\| E( \.wk

\tau )\| L2+\| \.ek\tau \| L2+\| \.pk\tau \| L2

\bigr) 
\leq \delta \tau B2

k + C\mu \tau \| \.F k
\tau \| 2(H1)\ast ,

where C\mu depends on \mu , too, and blows up as \mu \downarrow 0. We could argue in the very same
way for the rest of the proof, but the constant affect also the other estimates such
as (4.33), that now have to contain constants depending also on \mu on the right-hand
side. Thus, we end up proving (4.15) with a constant depending also on \mu .

Remark 4.7. Estimate (4.28), giving

(4.47) \| \.pk\tau \| L1(\Omega ;\BbbM n\times n
\mathrm{D} ) \leq C

\bigl( 
\| \.ek\tau \| L2+\| E( \.wk

\tau )\| L2 +
\surd 
\mu \| \.pk\tau \| L2

\bigr) 
,

is fundamental since it allows us to estimate \| \.pk\tau \| L1 by means of the term Bk and of
\| E( \.wk

\tau )\| L2 In this way, the terms containing \| \.pk\tau \| L1 can be partly absorbed into the
left-hand side. If we did not resort to estimate (4.28), we would have to deal with the
term C\tau \| \.pk\tau \| 2L1 on the right-hand side of (4.41), which would be controlled only by
considering constants depending on \mu , as explained in Remark 4.6 above.

The last result of this section provides a discrete version of the energy-dissipation
upper estimate (3.18).
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3456 VITO CRISMALE AND RICCARDA ROSSI

Proposition 4.8 (discrete energy-dissipation upper estimate). The piecewise
constant and linear interpolants of the discrete solutions (uk\tau , z

k
\tau , p

k
\tau )

N
k=1 fulfill

(4.48)

E\mu (t,u\tau (t), z\tau (t), p\tau (t)) +

\int t\tau (t)

t\tau (s)

(V\varepsilon ,\nu (u
\prime 
\tau (r))+R\varepsilon (z

\prime 
\tau (r))+H\varepsilon ,\nu (z\tau (r), p

\prime 
\tau (r))) dr

+

\int t\tau (t)

t\tau (s)

\Bigl( 
V\ast 
\varepsilon ,\nu (Div(\sigma \tau (r))+F\tau (r))+R\ast 

\varepsilon ( - Am(z\tau (r))

 - W \prime (z\tau (r)) - 1
2\BbbC 

\prime (z\tau (r))e\tau (r) : e\tau (r) - \tau \lambda \tau (r)
\bigr) 

+H\ast 
\varepsilon ,\nu (z\tau (r), - \mu p\tau (r) + (\sigma \tau (r))D)

\Bigr) 
dr

\leq E\mu (s,u\tau (s), z\tau (s), p\tau (s))

+

\int t\tau (t)

t\tau (s)

\int 
\Omega 

\BbbC (z\tau (r))(E(u\tau (r)+w(r)) - p\tau (r)) : E(w\prime (r))dxdr

 - 
\int t\tau (t)

t\tau (s)

\langle F \prime (r),u\tau (r)+w(r)\rangle H1(\Omega ;\BbbR n)dr  - 
\int t\tau (t)

t\tau (s)

\langle F (r),w\prime (r)\rangle H1(\Omega ;\BbbR n)dr +R\tau (s, t),

where \lambda \tau is a selection in \partial zH\varepsilon ,\nu (z\tau , p
\prime 
\tau ) fulfiling the Euler--Lagrange equation (4.8b),

the remainder term is
(4.49)

R\tau (s, t) := C3

\int t\tau (t)

t\tau (s)

\bigl( 
\| u\tau  - u\tau \| H1(\Omega )+\| z\tau  - z\tau \| H\mathrm{m}(\Omega )+\| p\tau  - p\tau \| L2(\Omega )+\| w\tau  - w\| H1(\Omega )

\bigr) 
\times 
\bigl( 
\| u\prime \tau \| H1(\Omega )+\| z\prime \tau \| H\mathrm{m}(\Omega )+\| p\prime \tau \| L2(\Omega )

\bigr) 
dr

and the constant C3, uniform w.r.t. \varepsilon , \nu , \mu , \tau , only depends on the constant C1 from
(4.10).

Proof. With the very same calculations as in the proof of [KRZ15, Lemma 6.1],
also based on the convex analysis arguments leading to (3.14), from the Euler--
Lagrange equation (4.6) we deduce that the interpolants q\tau , q\tau , and q\tau fulfill

(4.50)

E\mu (t, q\tau (t)) +

\int t\tau (t)

t\tau (s)

\bigl( 
\Psi \varepsilon ,\nu (q\tau (r), q

\prime 
\tau (r))+\Psi \ast 

\varepsilon ,\nu (q\tau (r), - DqE\mu (t\tau (r), q\tau (r)))

 - \tau \partial q\Psi \varepsilon ,\nu (q\tau (r), q
\prime 
\tau (r))) dr

= E\mu (s, q\tau (s)) +

\int t\tau (t)

t\tau (s)

\partial tE\mu (r, q\tau (r))dr

 - 
\int t\tau (t)

t\tau (s)

\langle DqE\mu (t\tau (r), q\tau (r)) - DqE\mu (r, q\tau (r)), q
\prime 
\tau (r)\rangle \bfQ dr\underbrace{}  \underbrace{}  

.
= R\tau (s, t)

.

Then, taking into account (4.8), it is immediate to check that the left-hand side of
(4.50) translates into the left-hand side of (4.48). Analogously, taking into account
the explicit calculation (3.8) of \partial tE\mu , we see that the first two terms on the right-hand
side of (4.50) correspond to the first four terms on the right-hand side of (4.48). We
now estimate the remainder term R\tau (s, t) as follows. First of all, we observe that

| R\tau (s, t)| \leq | R1
\tau (s, t)| + | R2

\tau (s, t)| + | R3
\tau (s, t)| .
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Then,
(4.51)

| R1
\tau (s, t)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t\tau (t)

t\tau (s)

\langle Div(\BbbC (z\tau )e\tau ) - Div(\BbbC (z\tau )(E(u\tau + w) - p\tau ),u
\prime 
\tau \rangle H1(\Omega )

\bigm| \bigm| \bigm| \bigm| \bigm| dr
\leq 

\int t\tau (t)

t\tau (s)

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

(\BbbC (z\tau ) - \BbbC (z\tau ))e\tau : E(u\prime 
\tau )dx

\bigm| \bigm| \bigm| \bigm| dr
+

\int t\tau (t)

t\tau (s)

\bigm| \bigm| \bigm| \bigm| \int 
\Omega 

\BbbC (z\tau )(e\tau  - (E(u\tau + w) - p\tau )) : E(u
\prime 
\tau )dx

\bigm| \bigm| \bigm| \bigm| dr
(1)

\leq C

\int t\tau (t)

t\tau (s)

\bigl( 
\| z\tau  - z\tau \| \infty \| e\tau \| L2\| E(u\prime 

\tau )\| L2+\| z\tau \| L\infty \| e\tau  - (E(u\tau + w) - p\tau )\| L2\| E(u\prime 
\tau )\| L2

\bigr) 
dr

(2)

\leq C

\int t\tau (t)

t\tau (s)

\bigl( 
\| u\tau  - u\tau \| H1+\| z\tau  - z\tau \| H\mathrm{m})+\| p\tau  - p\tau \| L2+\| w\tau  - w\| H1

\bigr) 
\| E(u\prime 

\tau )\| L2 dr ,

where (1) ensues from (2.11), estimate (4.10a) and the continuous embeddingHm(\Omega ) \subset 
C(\Omega ). For (2) we have again used the latter embedding along with the identity
e\tau = E(u\tau +w\tau ) - p\tau . Second,
(4.52)
| R2

\tau (s, t)| 

=
\bigm| \bigm| \bigm| \int t\tau (t)

t\tau (s)

\Bigl( 
am(z\tau  - z\tau , z\prime \tau )+

\int 
\Omega 

(W \prime (z\tau ) - W \prime (z\tau ))z
\prime 
\tau dx

+
1

2

\int 
\Omega 

\Bigl( 
\BbbC \prime (z\tau )e\tau : e\tau  - \BbbC \prime (z\tau )(E(u\tau + w) - p\tau ) : (E(u\tau + w) - p\tau )

\Bigr) 
z\prime \tau dx

\Bigr) 
dr
\bigm| \bigm| \bigm| 

(3)

\leq C

\int t\tau (t)

t\tau (s)

\Bigl( 
\| z\tau  - z\tau \| H\mathrm{m}\| z\prime \tau \| H\mathrm{m}+\| z\tau  - z\tau \| 2\| z\prime \tau \| L2

+\| u\tau  - u\tau \| H1\| z\prime \tau \| H\mathrm{m}+\| p\tau  - p\tau \| L2\| z\prime \tau \| H\mathrm{m}+\| w\tau  - w\| H1\| z\prime \tau \| H\mathrm{m}

\Bigr) 
dr ,

where for (3) we have used that, since z\tau , z\tau \in [m0, 1] by property (3.5) and W is of
class C2 on [m0, 1], it is possible to estimate \| W \prime (z\tau ) - W \prime (z\tau )\| L2 \leq C\| z\tau  - z\tau \| 2. We
have also estimated

\| (\BbbC \prime (z\tau )e\tau : e\tau  - \BbbC \prime (z\tau )(E(u\tau + w) - p\tau ) : (E(u\tau + w) - p\tau )) z\prime \tau \| L1

\leq C\| z\tau  - z\tau \| L\infty \| e\tau \| 2L2\| z\prime \tau \| L\infty 

+ \| z\tau \| \infty \| e\tau +(E(u\tau + w) - p\tau )\| L2\| e\tau  - (E(u\tau + w) - p\tau )\| L2\| z\prime \tau \| L\infty 

\leq C\| z\tau  - z\tau \| \infty \| z\prime \tau \| L\infty + \| e\tau  - (E(u\tau + w) - p\tau ) \| L2\| z\prime \tau \| L\infty 

thanks to (2.11) and estimate (4.10a); subsequently, we have estimated \| e\tau  - (E(u\tau +
w) - p\tau )\| L2 as we did for (4.51). All in all, this leads to (4.52). Third, we see that
(4.53)
| R3

\tau (s, t)| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t\tau (t)

t\tau (s)

\int 
\Omega 

(\mu p\tau  - \mu p\tau +(\BbbC (z\tau )(E(u\tau + w) - p\tau ))D - (\sigma \tau )D) p
\prime 
\tau dxdr

\bigm| \bigm| \bigm| \bigm| \bigm| 
(4)

\leq C

\int t\tau (t)

t\tau (s)

\bigl( 
\| u\tau  - u\tau \| H1(\Omega )+\| z\tau  - z\tau \| H\mathrm{m}(\Omega )+\| p\tau  - p\tau \| L2+\| w\tau  - w\| H1

\bigr) 
\| p\prime \tau \| L2 dr .
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Here, (4) is due to (2.11) and the previously obtained estimates (4.10a), which also
enter into the estimate

\| (\BbbC (z\tau )(E(u\tau + w) - p\tau ) - \BbbC (z\tau )e\tau )Dp\prime \tau \| 1
\leq \| \BbbC (z\tau ) - \BbbC (z\tau )\| \infty \| e\tau \| L2\| p\prime \tau \| L2 + \| \BbbC (z\tau )\| \infty \| e\tau  - (E(u\tau + w) - p\tau )\| L2\| p\prime \tau \| L2

\leq C
\bigl( 
\| z\tau  - z\tau \| \infty +\| u\tau  - u\tau \| H1(\Omega )+\| p\tau  - p\tau \| L2+\| w\tau  - w\| H1

\bigr) 
\| p\prime \tau \| L2 .

Combining (4.51)--(4.53) with (4.50), we conclude the proof.

5. Existence of solutions to the viscous problem. This section focuses on
the existence of solutions to Problem 3.1 for fixed \varepsilon > 0, \nu > 0, and \mu > 0. Besides
the standing assumptions from section 2.1, our existence result, Theorem 5.1 below,
will require conditions (4.14) on the initial data (u0, z0, p0). In fact, to prove the
sole existence of solutions for Problem 3.1 (and for the vanishing-viscosity analysis
in section 6), it would be enough to assume (2.39a) in place of (2.39c) since, for
\mu > 0 fixed, estimates (4.15), with constants depending on \mu (cf. also Remark 4.6)
would be sufficient. However, condition (2.39c) ensures that the solutions we exhibit
in Theorem 5.1 enjoy the upcoming estimates (5.3) uniformly w.r.t. \varepsilon , \nu , and \mu . This
will be at the basis of the vanishing-hardening analysis in section 7.

Theorem 5.1. Under the assumptions in section 2, and (4.14) as well, Problem
3.1 admits a solution triple (u, z, p) enjoying the additional regularity and summability
properties

(5.1)
u\in W 1,\infty (0,T ;H1

Dir(\Omega ;\BbbR n)), z \in H1,(0,T ;Hm(\Omega ))\cap W 1,\infty (0,T ;L2(\Omega )),

p\in W 1,\infty (0,T ;L2(\Omega ;\BbbM n\times n
D )).

Moreover, the triple (u, z, p) fulfills

(5.2)

\int T

0

N\mu 
\varepsilon ,\nu (r, q(r), q

\prime (r))dr \leq C4

for a constant C4 > 0 independent of \varepsilon , \mu , \nu > 0. Additionally, we have the following
bounds uniformly w.r.t. all parameters \varepsilon , \nu , and \mu provided that \nu \leq \mu (recall that
e := E(u+w) - p):

(5.3)
\| e\| W 1,1(0,T ;L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )) + \| z\| W 1,1(0,T ;H\mathrm{m}(\Omega )) +
\surd 
\mu \| p\| W 1,1(0,T ;L2(\Omega ;\BbbM n\times n

\mathrm{D} ))

+
\surd 
\mu \| u\| W 1,1(0,T ;H1(\Omega ;\BbbR n)) + \| p\| W 1,1(0,T ;L1(\Omega ;\BbbM n\times n

\mathrm{D} )) \leq C5 .

Proof. By virtue of Proposition 3.4, it is sufficient to show that the piecewise con-
stant and linear interpolants of the discrete solutions constructed in section 4 converge
to a triple (u, z, p) fulfiling the initial conditions (3.4) and the energy-dissipation up-
per estimate (3.18). For this, we will take the limit of the discrete energy-dissipation
inequality (4.48), using that, thanks to (2.39c) and (2.41),

(5.4) F\tau k \rightarrow F in H1(0,T ; BD(\Omega )\ast ) , w\tau k \rightarrow w in H1(0,T ;H1(\Omega ;\BbbR n)) .

Estimates (5.3) will be inherited by (u, z, p) and e from the analogous bounds for the
approximate solutions via lower semicontinuity arguments. Accordingly, the proof is
split into three steps.

Step 1: Compactness. Let us consider a null sequence \tau k \downarrow 0 and, accordingly,
the discrete solutions (u\tau k ,u\tau k , z\tau k , z\tau k , p\tau k , p\tau k)k, along with (e\tau k , e\tau k)k. It follows from
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estimates (4.10) and (4.15a), combined with standard weak compactness arguments
and Aubin--Lions-type compactness results (cf., e.g., [Sim87]), that there exists a triple
(u, z, p) fulfiling (5.1), such that the following convergences hold:

u\tau k
\ast 
\rightharpoonup u in W 1,\infty (0,T ;H1(\Omega ;\BbbR n)), u\tau k \rightarrow u in C0([0,T ];Y ),(5.5a)

z\tau k
\ast 
\rightharpoonup z in H1(0,T ;Hm(\Omega )), z\tau k \rightarrow z in C0([0,T ];Z),(5.5b)

p\tau k
\ast 
\rightharpoonup p in W 1,\infty (0,T ;L2(\Omega ;\BbbM n\times n

D )), p\tau k \rightarrow p in C0([0,T ];W )(5.5c)

for any Banach spaces Y , Z, and W such that H1
Dir(\Omega ;\BbbR n) \Subset Y , Hm(\Omega ) \Subset Z (in

particular, for Z = C0(\Omega )), and L2(\Omega ;\BbbM n\times n
D ) \Subset W . Hence, we have that

(5.6)
u\tau k(t)\rightharpoonup u(t) in H1(\Omega ;\BbbR n), z\tau k(t)\rightharpoonup z(t) in Hm(\Omega ), p\tau k(t)\rightharpoonup p(t) in L2(\Omega ;\BbbM n\times n

D )

for all t \in [0,T ]. Furthermore, it follows from estimates (4.15a) that
(5.7a)

\| u\tau k - u\tau k\| L\infty (0,T ;H1(\Omega ;\BbbR n)) \leq \tau k\| u\prime \tau k\| L\infty (0,T ;H1(\Omega ;\BbbR n)) \rightarrow 0 as k \rightarrow +\infty ,

\| z\tau k - z\tau k\| L\infty (0,T ;H\mathrm{m}(\Omega )) \leq \tau k\| z\prime \tau k\| L2(0,T ;H\mathrm{m}(\Omega )) \rightarrow 0 as k \rightarrow +\infty ,

\| p\tau k - p\tau k\| L\infty (0,T ;L2(\Omega ;\BbbM n\times n
\mathrm{D} )) \leq \tau k\| p\prime \tau k\| L\infty (0,T ;L2(\Omega ;\BbbM n\times n

\mathrm{D} )) \rightarrow 0 as k \rightarrow +\infty ,

and we have the very same estimates for u\tau k , z\tau k , and p\tau k
. Therefore, the pointwise

convergences (5.6) hold for the sequences u\tau k , u\tau k , z\tau k , z\tau k p\tau k , and p\tau k
, as well. Since

w \in W 1,\infty (0,T ;H1(\Omega ;\BbbR n)), it is not difficult to check that, likewise,

(5.7b) \| w\tau k - w\tau k\| L\infty (0,T ;H1(\Omega ;\BbbR n)) \leq \tau k\| w\prime \| L\infty (0,T ;H1(\Omega ;\BbbR n)) \rightarrow 0 as k \rightarrow +\infty .

As a consequence of (5.4), (5.5), and (5.7a), we also have that
(5.8)

e\tau k = E(u\tau k+w\tau k) - p\tau k
\ast 
\rightharpoonup e := E(u+w) - p in L\infty (0,T ;L2(\Omega ;\BbbM n\times n

sym )) ,

e\tau k(t)\rightharpoonup e(t) in L2(\Omega ;\BbbM n\times n
sym ) \forall t \in [0,T ] .

Then, it turns out that \sigma \tau k
\ast 
\rightharpoonup \sigma in L\infty (0,T ;L2(\Omega ;\BbbM n\times n

sym )), since

(5.9) (\sigma \tau k - \sigma ) = (\BbbC (z\tau k) - \BbbC (z))e\tau k + \BbbC (z)(e\tau k - e)
\ast 
\rightharpoonup 0 in L\infty (0,T ;L2(\Omega ;\BbbM n\times n

sym )),

since \| \BbbC (z\tau k) - \BbbC (z)\| L\infty (0,T ;L\infty (\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} )) \rightarrow 0 by the Lipschitz continuity of \BbbC , com-

bined with convergences (5.5b) and (5.7a). Finally, let us observe that, by the Lip-
schitz continuity of the functional z \mapsto \rightarrow H(z,\pi ) (cf. (2.30d)), and [Mor06, Proposition
1.85], the function \lambda \tau featuring in the argument of R\ast 

\varepsilon on the left-hand side of (4.48)
fulfills

\| \lambda \tau \| L\infty (0,T ;M(\Omega )) \leq CK\| p\prime \tau \| L\infty (0,T ;L1(\Omega ;\BbbM n\times n
\mathrm{D} )),

so that, by virtue of estimate (4.15a),

(5.10) \tau k\lambda \tau k \rightarrow 0 in L\infty (0,T ;Hm(\Omega )\ast ) as k \rightarrow +\infty .

Since \eta \tau k(0) = \eta 0 for \eta \in \{ u, z, p\} , it follows from convergences (5.6) that the
triple (u, z, p) complies with the initial conditions (3.4).

Step 2: Limit passage in (4.48). Since we aim at (3.18), it is sufficient to take the
limit of (4.48) written for s = 0 and t = T . We start by discussing the limit passage
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on the left-hand side of (4.48). Relying on the convergences from Step 1, easily check
that

lim inf
k\rightarrow +\infty 

E\mu (t\tau k(T ),u\tau k(T ), z\tau k(T ), p\tau k(T )) \geq E\mu (T ,u(T ), z(T ), p(T )) .

In view of convergences (5.5), we immediately have

lim inf
k\rightarrow +\infty 

\int T

0

\bigl( 
V\varepsilon ,\nu (u

\prime 
\tau k
(r))+R\varepsilon (z

\prime 
\tau k
(r))

\bigr) 
dr \geq 

\int T

0

(V\varepsilon ,\nu (u
\prime (r))+R\varepsilon (z

\prime (r))) dr.

It follows from (2.30d) that\int T

0

\bigm| \bigm| H(z\tau k(t), p
\prime 
\tau k
(t)) - H(z(t), p\prime \tau k(t))

\bigm| \bigm| dt
\leq \| z\tau k - z\| L\infty (0,T ;L\infty (\Omega ))\| p\prime \tau k\| L1(0,T ;L1(\Omega ;\BbbM n\times n

\mathrm{D} )) \rightarrow 0

as k \rightarrow +\infty , since z\tau k \rightarrow z in L\infty (0,T ;L\infty (\Omega )) by (5.5b) and (5.7). On the other
hand, by (5.5c) we have

lim inf
k\rightarrow +\infty 

\int T

0

H(z(t), p\prime \tau k(t))dt \geq 
\int T

0

H(z(t), p\prime (t))dt .

Therefore,

lim inf
k\rightarrow +\infty 

\int T

0

H\varepsilon ,\nu (z\tau k(t), p
\prime 
\tau k
(t))dt

\geq lim inf
k\rightarrow +\infty 

\int T

0

H(z\tau k(t), p
\prime 
\tau k
(t))dt+ lim inf

k\rightarrow +\infty 

\varepsilon \nu 

2

\int T

0

\| p\prime \tau k(t)\| 
2
L2(\Omega ;\BbbM n\times n

\mathrm{D} )
dt

\geq 
\int T

0

H(z(t), p\prime (t))dt+
\varepsilon \nu 

2

\int T

0

\| p\prime (t)\| 2
L2(\Omega ;\BbbM n\times n

\mathrm{D} )
dt =

\int T

0

H\varepsilon ,\nu (z(t), p
\prime (t))dt .

By (5.9), Div(\BbbC (z\tau k)e\tau k) = Div(\sigma \tau k)
\ast 
\rightharpoonup Div(\sigma ) = Div(\BbbC (z)e) in L\infty (0,T ;H1(\Omega ;\BbbR n)\ast ).

Therefore, also in view of (5.4) and by the convexity of V\ast 
\varepsilon ,\nu , we find that

lim inf
k\rightarrow +\infty 

\int T

0

V\ast 
\varepsilon ,\nu (Div(\BbbC (z\tau k(r))e\tau k(r))+F\tau k(r))dr

\geq 
\int T

0

V\ast 
\varepsilon ,\nu (Div(\BbbC (z(r))e(r))+F (r))dr .

We now observe that

lim inf
k\rightarrow +\infty 

\int T

0

R\ast 
\varepsilon ( - Am(z\tau k(r)) - W \prime (z\tau k(r)) - 1

2\BbbC 
\prime (z\tau k(r))e\tau k(r) : e\tau k(r) - \tau k\lambda \tau k(r))dr

(1)

\geq 
\int T

0

lim inf
k\rightarrow +\infty 

R\ast 
\varepsilon ( - Am(z\tau k(r)) - W \prime (z\tau k(r)) - 1

2\BbbC 
\prime (z\tau k(r))e\tau k(r) : e\tau k(r) - \tau k\lambda \tau k(r))dr

(2)

\geq 
\int T

0

R\ast 
\varepsilon ( - Am(z(r)) - W \prime (z(r)) - 1

2\BbbC 
\prime (z(r))e(r) : e(r))dr,
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where (1) follows from the Fatou lemma and (2) from the fact that

lim inf
k\rightarrow +\infty 

R\ast 
\varepsilon ( - A\mathrm{m}(z\tau k (r)) - W \prime (z\tau k (r)) - 1

2
\BbbC \prime (z\tau k (r))e\tau k (r) : e\tau k (r) - \tau k\lambda \tau k (r))

\geq sup
\zeta \in H\mathrm{m}

 - (\Omega )

\Bigl( 
lim inf
k\rightarrow +\infty 

\langle A\mathrm{m}(z\tau k (r))+W \prime (z\tau k (r)) + 1
2
\BbbC \prime (z\tau k (r))e\tau k (r) : e\tau k (r) + \tau k\lambda \tau k (r), - \zeta \rangle 

H\mathrm{m}(\Omega )

 - R\varepsilon (\zeta )
\Bigr) 

\geq sup
\zeta \in H\mathrm{m}

 - (\Omega )

\Bigl( 
\langle A\mathrm{m}(z(r))+W \prime (z(r))+ 1

2
\BbbC \prime (z(r))e(r) : e(r), - \zeta \rangle 

H\mathrm{m}(\Omega )
 - R\varepsilon (\zeta )

\Bigr) 
for all r \in [0,T ] by (5.6), (5.8), and (5.10). In the end, we have that

lim inf
k\rightarrow +\infty 

\int T

0

H\ast 
\varepsilon ,\nu (z\tau k(r), - \mu p\tau k(r)+(\sigma \tau k(r))D)dr \geq 

\int T

0

H\ast 
\varepsilon ,\nu (z(r), - \mu p(r)+(\sigma (r))D)dr

by convergences (5.5) and (5.9), and a version of the Ioffe theorem; cf., e.g. [Val90,
Theorem 21]. The latter result applies since

1. the mapping Hm(\Omega ) \ni z \mapsto \rightarrow H\ast (z,\omega ) is lower semicontinuous for all \omega \in 
L2(\Omega ;\BbbM n\times n

D ) (as H\ast (z,\omega ) = sup\pi \in L2(\Omega ;\BbbM n\times n
\mathrm{D} )(

\int 
\Omega 
\omega \pi dx  - H(z,\pi )) and the

maps z \mapsto \rightarrow  - H(z,\pi ) are continuous by (2.30d)), and thus z \in Hm(\Omega ) \mapsto \rightarrow 
H\ast 

\varepsilon ,\nu (z,\omega ) is also lower semicontinuous;

2. the mapping L2(\Omega ;\BbbM n\times n
D ) \ni \pi \mapsto \rightarrow H\ast 

\varepsilon ,\nu (z,\pi ) is convex.
As for the right-hand side of (4.48), clearly we have E\mu (0,u\tau k(0), z\tau k(0), p\tau k(0)) =

E\mu (0,u0, z0, p0) for all k \in \BbbN . The power terms converge, too, as we have\int T

0

\int 
\Omega 

\BbbC (z\tau k(r))(E(u\tau k(r)+w(r)) - p\tau k(r)) : E(w\prime (r))dxdr

(1)\rightarrow 
\int T

0

\int 
\Omega 

\BbbC (z(r))e(r) : E(w\prime (r))dxdr,

 - 
\int T

0

\langle F \prime (r),u\tau k(r)+w(r)\rangle H1(\Omega ;\BbbR n) dr
(2)\rightarrow  - 

\int T

0

\langle F \prime (r),u(r)+w(r)\rangle H1(\Omega ;\BbbR n) dr

with (1) due to convergences (5.5) and to the fact that, by the Lipschitz continuity
of \BbbC , \BbbC (z\tau k) \rightarrow \BbbC (z) in L\infty (0,T ;L\infty (\Omega )), and (2) again due to (5.5). In a completely
analogous way the last-but-one term on the right-hand side of (4.48) passes to the
limit. Finally, we estimate the remainder term R\tau (0,T ) from (4.49) via

(5.11)

R\tau (0,T )

\leq C3

\bigl( 
\| u\tau k - u\tau \| L\infty (0,T ;H1(\Omega ))+\| z\tau  - z\tau \| L\infty (0,T ;H\mathrm{m}(\Omega ))

+ \| p\tau  - p\tau \| L\infty (0,T ;L2(\Omega ))+\| w\tau  - w\| L\infty (0,T ;H1(\Omega ))

\bigr) 
\times 
\int T

0

\bigl( 
\| u\prime \tau k\| H1(\Omega )+\| z\prime \tau k\| H\mathrm{m}(\Omega )+\| p\prime \tau k\| L2(\Omega )

\bigr) 
dr

(3)

\leq C\tau k \rightarrow 0 as k \rightarrow +\infty 

with (3) due to (5.7) and the fact that w \in W 1,\infty (0,T ;H1(\Omega ;\BbbR n)), and estimates
(4.15). This concludes the proof of the energy-dissipation upper estimate (3.18).

Step 3: Proof of (5.3). Estimates (5.3) follow from the analogous bounds (4.10)
and (4.15b) for the discrete solutions via convergences (5.5) and (5.8) and lower semi-
continuity arguments. We conclude observing that (5.2) follows from the reformula-

tion (3.21) of the energy-dissipation balance, and the fact that
\int t

0
\partial tE\mu is uniformly
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3462 VITO CRISMALE AND RICCARDA ROSSI

bounded w.r.t. \varepsilon , \nu ,\mu , thanks to the assumptions on F and w and the previously
proven (5.3).

6. The vanishing-viscosity limit with fixed hardening parameter. This
section focuses on the limit passage in the viscous system (1.2) as \varepsilon \downarrow 0 and, possibly,
\nu \downarrow 0, while the hardening parameter \mu > 0 is kept fixed. In fact we will distinguish
the two cases:

1. \varepsilon \downarrow 0 and \nu > 0 is kept fixed, addressed in section 6.1, in which the vanishing-
viscosity analysis will lead to the existence of Balanced Viscosity solutions
to the rate-independent system for damage and plasticity with hardening (cf.
Theorem 6.8 ahead);

2. \varepsilon , \nu \downarrow 0, addressed in section 6.2, in which we will obtain Balanced Viscosity
solutions to the multirate system for damage and plasticity with hardening
(cf. Theorem 6.13 later on).

Notation 6.1. We will denote by (q\varepsilon ,\nu )\varepsilon ,\nu = (u\varepsilon ,\nu , z\varepsilon ,\nu , p\varepsilon ,\nu )\varepsilon ,\nu a family of solutions
to Problem 3.1 for \mu > 0 fixed, with initial and external data independent of \varepsilon and \nu 
and satisfying the conditions listed in section 2.

Prior to distinguishing the case in which \nu > 0 is fixed from that in which \nu \downarrow 0,
let us establish the common ground for the vanishing-viscosity analysis. Following
the well-established reparameterization technique pioneered in [EM06], we will suit-
ably reparameterize the viscous solutions (q\varepsilon ,\nu )\varepsilon ,\nu , observe that the rescaled functions
(\sansq \varepsilon ,\nu )\varepsilon ,\nu comply with a reparameterized version of the energy-dissipation balance cor-
responding to (3.18), and pass to the limit in it as \varepsilon \downarrow 0 and \nu > 0 is fixed (see
section 6.1), and as \varepsilon , \nu \downarrow 0 (see section 6.2).

Rescaling. We introduce the arclength function s\varepsilon ,\nu : [0,T ] \rightarrow [0,S\varepsilon ,\nu ] (with
S\varepsilon := s\varepsilon ,\nu (T )) defined by
(6.1)

s\varepsilon ,\nu (t) : =

\int t

0

\bigl( 
1 + \| q\prime \varepsilon ,\nu (\tau )\| \bfQ 

\bigr) 
d\tau 

=

\int t

0

\Bigl( 
1+\| u\prime \varepsilon ,\nu (\tau )\| H1(\Omega ;\BbbR n)+\| z\prime \varepsilon ,\nu (\tau )\| H\mathrm{m}(\Omega )+\| p\prime \varepsilon ,\nu (\tau )\| L2(\Omega ;\BbbM n\times n

\mathrm{D} )

\Bigr) 
d\tau .

It follows from estimate (5.3) that sup\varepsilon ,\nu S\varepsilon ,\nu < +\infty . We now define

(6.2a)

\sanst \varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow [0,T ], \sanst \varepsilon ,\nu := s - 1
\varepsilon ,\nu ,

\sansu \varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow H1(\Omega ;\BbbR n), \sansu \varepsilon ,\nu := u\varepsilon ,\nu \circ \sanst \varepsilon ,\nu 
\sansz \varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow Hm(\Omega ), \sansz \varepsilon ,\nu := z\varepsilon ,\nu \circ \sanst \varepsilon ,\nu ,
\sansp \varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow L2(\Omega ;\BbbM n\times n

D ), \sansp \varepsilon ,\nu := p\varepsilon ,\nu \circ \sanst \varepsilon ,\nu ,

and set \sansq \varepsilon ,\nu := (\sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu ). In what follows, with slight abuse of notation we will
often write E(t, q) in place of E(t,u, z, p). We also introduce

(6.2b)
\sanse \varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow L2(\Omega ;\BbbM n\times n

sym ), \sanse \varepsilon ,\nu := e\varepsilon ,\nu \circ \sanst \varepsilon ,\nu = E(\sansu \varepsilon ,\nu +(w\circ \sanst \varepsilon ,\nu )) - \sansp \varepsilon ,\nu ,

σ\varepsilon ,\nu : [0,S\varepsilon ,\nu ] \rightarrow L2(\Omega ;\BbbM n\times n
sym ), σ\varepsilon ,\nu := \sigma \varepsilon ,\nu \circ \sanst \varepsilon ,\nu = \BbbC (\sansz \varepsilon ,\nu )\sanse \varepsilon ,\nu .

The parameterized energy-dissipation balance. A straightforward calcula-
tion on the energy-dissipation balance corresponding to (3.18) yields that the
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reparameterized viscous solutions (\sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu ), along with the rescaling functions
\sanst \varepsilon ,\nu , fulfill
(6.3)

E(\sanst \varepsilon ,\nu (s2), \sansq \varepsilon ,\nu (s2)) +

\int s2

s1

\sanst \prime \varepsilon ,\nu 

\biggl[ 
V\varepsilon ,\nu 

\biggl( 
\sansu \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) 
+R\varepsilon ,\nu 

\biggl( 
\sansz \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) 
+H\varepsilon ,\nu 

\biggl( 
\sansz \varepsilon ,\nu ,

\sansp \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) \biggr] 
d\tau 

+

\int s2

s1

\sanst \prime \varepsilon ,\nu 

\Bigl[ 
V
\ast 
\varepsilon ,\nu 

\Bigl( 
Div

\bigl( 
σ\varepsilon ,\nu +\rho (\sanst \varepsilon ,\nu )

\bigr) \Bigr) 
+R

\ast 
\varepsilon 

\Bigl( 
 - A\mathrm{m}(\sansz \varepsilon ,\nu ) - W \prime (\sansz \varepsilon ,\nu ) - 1

2
\BbbC \prime (\sansz \varepsilon ,\nu )\sanse \varepsilon ,\nu : \sanse \varepsilon ,\nu 

\Bigr) 
+H

\ast 
\varepsilon ,\nu 

\Bigl( 
\sansz \varepsilon ,\nu , - \nu \sansp \varepsilon ,\nu + (σ\varepsilon ,\nu )\mathrm{D}

\Bigr) \Bigr] 
d\tau 

= E(\sanst \varepsilon ,\nu (s1), \sansq \varepsilon ,\nu (s1) +

\int s2

s1

\partial tE(\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu ) \sanst 
\prime 
\varepsilon ,\nu d\tau 

for all 0 \leq s1 \leq s2 \leq S\varepsilon ,\nu , where we have used that F \circ \sanst \varepsilon ,\nu =  - Div(\rho \circ \sanst \varepsilon ,\nu ) by
condition (2.39e).

Let us now introduce a functional M\mu 
\varepsilon ,\nu = M\mu 

\varepsilon ,\nu (t, q, t
\prime , q\prime ) subsuming the terms

featuring in the integrals on the left-hand side of (6.3). In order to motivate our
definition of M\mu 

\varepsilon ,\nu (cf. (6.5) below), we recall the definitions (3.1) of the functionals
V\varepsilon ,\nu , R\varepsilon , and H\varepsilon ,\nu , so that

V\varepsilon ,\nu 

\biggl( 
\sansu \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) 
=

\varepsilon \nu 

2(\sanst \prime \varepsilon ,\nu )
2
\| \sansu \prime \varepsilon ,\nu \| 2H1,\BbbD ,

R\varepsilon 

\biggl( 
\sansz \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) 
=

1

\sanst \prime \varepsilon ,\nu 
R(\sansz \prime \varepsilon ,\nu ) +

\varepsilon 

2(\sanst \prime \varepsilon ,\nu )
2
\| \sansz \prime \varepsilon ,\nu \| 2L2 ,

H\varepsilon ,\nu 

\biggl( 
\sansz \varepsilon ,\nu ,

\sansp \prime \varepsilon ,\nu 
\sanst \prime \varepsilon ,\nu 

\biggr) 
=

1

\sanst \prime \varepsilon ,\nu 
H(\sansz \varepsilon ,\nu , \sansp 

\prime 
\varepsilon ,\nu ) +

\varepsilon \nu 

2(\sanst \prime \varepsilon ,\nu )
2
\| \sansp \prime \varepsilon ,\nu \| 2L2 .

Moreover, we take into account the expressions (3.17) of the conjugates and the
fact that the arguments of V\ast 

\varepsilon ,\nu , R\ast 
\varepsilon , and H\ast 

\varepsilon ,\nu in (6.3) involve the derivatives
 - DxE(\sanst \varepsilon ,\nu , \sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu ) for x = u, x = z, and x = p, respectively. In particular, in
view of (2.20) we have

V\ast 
\varepsilon ,\nu (Div(σ\varepsilon ,\nu +\rho (\sanst \varepsilon ,\nu ))) =

1

2\varepsilon \nu 
\|  - DuE(\sanst \varepsilon ,\nu , \sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu )\| 2(H1,\BbbD )\ast .(6.4)

All in all, the functional M\mu 
\varepsilon ,\nu : [0,T ]\times Q\times (0,+\infty )\times Q \rightarrow [0, +\infty ] encompassing the

integrands on the left-hand side of (6.3) reads
(6.5)
M\mu 

\varepsilon ,\nu (t, q, t
\prime , q\prime ) := R(z\prime ) +H(z, p\prime ) +M\mu ,red

\varepsilon ,\nu (t, q, t\prime , q\prime ) with M\mu ,red
\varepsilon ,\nu defined by

M\mu ,red
\varepsilon ,\nu (t, q, t\prime , q\prime ) :=

\varepsilon 

2t\prime 
D\nu (q

\prime )2 +
t\prime 

2\varepsilon 
(D\ast ,\mu 

\nu (t, q))2 ,

with the functionals D\nu and D\ast ,\mu 
\nu from (3.19), namely

(6.6)

D\nu (q\prime ) :=
\sqrt{} 

\nu \| u\prime (t)\| 2
H1,\BbbD +\| z\prime (t)\| 2

L2+\nu \| p\prime (t)\| 2
L2 ..

D\ast ,\mu 
\nu (t, q)

:=

\sqrt{} 
1

\nu 
\|  - DuE\mu (t, q)\| 2

(H1,\BbbD )\ast + \widetilde dL2 ( - DzE\mu (t, q), \partial R(0))2 +
1

\nu 
dL2 ( - DpE\mu (t, q), \partial \pi H(z, 0))2 .

Therefore, the rescaled solutions (\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu )\varepsilon ,\nu satisfy
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3464 VITO CRISMALE AND RICCARDA ROSSI

- the parameterized energy-dissipation balance for every s1, s2 \in [0,S\varepsilon ,\nu ],

(6.7)

E(\sanst \varepsilon ,\nu (s2), \sansq \varepsilon ,\nu (s2)) +

\int s2

s1

M\mu 
\varepsilon ,\nu (\sanst \varepsilon ,\nu (\tau ), \sansq \varepsilon ,\nu (\tau ), \sanst 

\prime 
\varepsilon ,\nu (\tau ), \sansq 

\prime 
\varepsilon ,\nu (\tau ))d\tau 

= E(\sanst \varepsilon ,\nu (s1), \sansq \varepsilon ,\nu (s1)) +

\int s2

s1

\partial tE(\sanst \varepsilon ,\nu (\tau ), \sansq \varepsilon ,\nu (\tau )) \sanst 
\prime 
\varepsilon ,\nu (\tau )d\tau 

(which rephrases (6.3));
- the normalization condition, for a.a. s \in (0,S\varepsilon ,\nu ).
(6.8)
\sanst \prime \varepsilon ,\nu (s) + \| \sansq \prime \varepsilon ,\nu (\tau )\| \bfQ = \sanst \prime \varepsilon ,\nu (s) + \| \sansu \prime \varepsilon ,\nu (s)\| H1 + \| \sansz \prime \varepsilon ,\nu (s)\| H\mathrm{m} + \| \sansp \prime \varepsilon ,\nu (s)\| L2 \equiv 1 .

Finally, it follows from (3.21) that the reparameterized viscous solutions
(\sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu ) fulfill for all 0 \leq s1 \leq s2 \leq S\varepsilon ,\nu 

(6.9)

E\mu (\sanst \varepsilon ,\nu (s2), \sansq \varepsilon ,\nu (s2)) +

\int s2

s1

N\mu 
\varepsilon ,\nu (\sanst \varepsilon ,\nu (\tau ), \sansq \varepsilon ,\nu (\tau ), \sansq 

\prime 
\varepsilon ,\nu (\tau ))d\tau 

= E\mu (\sanst \varepsilon ,\nu (s1), \sansq \varepsilon ,\nu (s1) +

\int s2

s1

\partial tE(\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu ) \sanst 
\prime 
\varepsilon ,\nu d\tau .

Indeed, it will be in (6.9) that we will perform the vanishing-viscosity limit passages.
With the very same arguments as in the proof of Theorem 5.1 (cf. (5.2)), it is imme-
diate to deduce from (6.9) that

(6.10) \exists C > 0 \forall \varepsilon , \nu > 0 :

\int S

0

N\mu 
\varepsilon ,\nu (\sanst \varepsilon ,\nu (\tau ), \sansq \varepsilon ,\nu (\tau ), \sansq 

\prime 
\varepsilon ,\nu (\tau ))d\tau \leq C.

6.1. The vanishing-viscosity analysis as \bfitvarepsilon \downarrow 0 and \bfitnu > 0 is fixed.
Throughout this section we will keep the rate parameter \nu > 0 fixed. In order to
signify this and simplify notation, we will drop the dependence on \nu of the viscous
solutions and simply write

(\sanst \varepsilon , \sansu \varepsilon , \sansz \varepsilon , \sansp \varepsilon ) in place of (\sanst \varepsilon ,\nu , \sansu \varepsilon ,\nu , \sansz \varepsilon ,\nu , \sansp \varepsilon ,\nu ).

Since the variables u and p relax to equilibrium and rate-independent evolution with
the same rate with which z relaxes to rate-independent behavior, a \Gamma -convergence
argument and the comparison with the general results from [MRS16b, MR21] lead us
to expect that any parameterized curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) arising as a limit point of
the family (\sanst \varepsilon , \sansq \varepsilon )\varepsilon as \varepsilon \downarrow 0 will satisfy the energy-dissipation (upper) estimate

(6.11)

E\mu (\sanst (S), \sansq (S)) +

\int S

0

M
\mu 
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau ))d\tau 

\leq E\mu (\sanst (0), \sansq (0)) +

\int S

0

\partial tE\nu (\sanst (\tau ), \sansq (\tau )) \sanst 
\prime (\tau )d\tau 

with S = lim\varepsilon \downarrow 0 S\varepsilon and the functional M\mu 
0,\nu : [0,T ] \times Q \times [0, +\infty ) \times Q \rightarrow [0, +\infty ]

defined by (as usual, here q = (u, z, p))
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M
\mu 
0,\nu (t, q, t

\prime , q\prime ) := R(z\prime ) +H(z, p\prime ) +M
\mu ,red
0,\nu (t, q, t\prime , q\prime ) , where

if t\prime > 0 , M
\mu ,red
0,\nu (t, q, t\prime , q\prime ) :=

\left\{         
0 if

\left\{     
 - DuE\mu (t, q) = 0 ,

 - DzE\mu (t, q) \in \partial R(0) , and

 - DpE\mu (t, q) \in \partial \pi H(z, 0) ,

+\infty otherwise,

(6.12a)

if t\prime = 0 , M
\mu ,red
0,\nu (t, q, 0, q\prime ) := D\nu (q

\prime )D\ast ,\mu 
\nu (t, q)

(6.12b)

(recall (6.6) for the definition of the functionals D\nu and D\ast ,\mu 
\nu ). Observe that the

product D\nu (q
\prime )D\ast ,\mu 

\nu (t, q) contains the term \widetilde dL2(\Omega )( - DzE(t, q), \partial R(0)) which, in prin-
ciple, need not be finite at all (t, q) \in [0,T ] \times Q since, in general, we only have
DzE(t, q), \partial R(0) \subset Hm(\Omega )\ast . Let us then clarify that
(6.13)
if D\ast ,\mu 

\nu (t, q) = +\infty and D\nu (q
\prime ) = 0, in (6.12b) we mean D\nu (q

\prime )D\ast ,\mu 
\nu (t, q) := +\infty .

Following [MRS16b, MR21], we will refer to the functional M\mu 
0,\nu from (6.12) as

vanishing-viscosity contact potential. Observe that we keep on highlighting the de-
pendence of M\mu 

0,\nu on the (fixed) parameters \nu and \mu for later use in section 7.
Our definition of Balanced Viscosity solution to the rate-independent system with

hardening (1.1a), (1.1b), (1.1d), (1.1f), (1.3) features (6.11) as a balance, satisfied
along any subinterval of a given interval [0,S]. Along the lines of [MRS16b] we give
the following.

Definition 6.2. We say that a parameterized curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp )\in AC([0,S];
[0,T ]\times Q) is a (parameterized) BV solution to the rate-independent system with hard-
ening (1.1a), (1.1b), (1.1d), (1.1f), (1.3) if \sanst : [0,S] \rightarrow [0,T ] is nondecreasing and (\sanst , \sansq )
fulfills the energy-dissipation balance

(6.14)

E\mu (\sanst (s), \sansq (s)) +

\int s

0

M
\mu 
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau ))d\tau 

= E\mu (\sanst (0), \sansq (0)) +

\int s

0

\partial tE\mu (\sanst (\tau ), \sansq (\tau )) \sanst 
\prime (\tau )d\tau 

for all 0 \leq s \leq S. We call a BV solution (\sanst , \sansq ) nondegenerate if, in addition, there
holds for almost all s \in (0,S)
(6.15)
\sanst \prime (s) + \| \sansq \prime (s)\| \bfQ = \sanst \prime (s) + \| \sansu \prime (s)\| H1(\Omega ;\BbbR n) + \| \sansz \prime (s)\| H\mathrm{m}(\Omega ) + \| \sansp \prime (s)\| L2(\Omega ;\BbbM n\times n

\mathrm{D} ) > 0 .

Remark 6.3. We have defined BV solutions following the general setting where
they are only required to be absolutely continuous in the reparametrized variable s.
Nonetheless, up to a further reparametrization by arclength, one obtains curves that
are Lipschitz in s. In fact, notice that in Theorem 6.8 below we obtain the existence
of a BV solution (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in W 1,\infty ([0,S]; [0,T ]\times Q). The Lipschitz regularity
here is a consequence of the normalization condition (6.8) used in the approximation.

We postpone a discussion of the nondegeneracy condition (6.15) to the upcoming
Remark 6.9.

As we will see, the energy-dissipation balance (6.14) encodes all the information
on the evolution of the parameterized curve (\sanst , \sansq ) and, in particular, on the onset of
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3466 VITO CRISMALE AND RICCARDA ROSSI

rate-dependent behavior in the jump regime (i.e., when \sanst \prime = 0). While postponing
further comments to Remark 6.7, let us only record here the fact that the expression
of M\mu ,red

0,\nu (t, q, 0, q\prime ) shows that, at a jump, viscous behavior for the variables u, z, and
p emerges ``in the same way,"" since the viscous terms related to each variable equally
contribute to M

\mu ,red
0,\nu (t, q, 0, q\prime ). This aspect will be further explored in Remark 6.7.

The main result of this subsection, Theorem 6.8 ahead, shows that the parame-
terized solutions (\sanst \varepsilon , \sansq \varepsilon )\varepsilon of the viscous system (1.2) converge to a BV solution to the
rate-independent system with hardening (1.1a), (1.1b), (1.1d), (1.3). Our proof will
crucially rely on the following characterization of BV solutions that is in the same
spirit as [MRS12a, Proposition 5.3], [MRS16a, Corollary 4.5].

Proposition 6.4. For a parameterized curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in AC([0,S];
[0,T ]\times Q) with \sanst : [0,S] \rightarrow [0,T ] nondecreasing the following properties are equivalent:

1. (\sanst , \sansq ) is a BV solution to the rate-independent system with hardening;
2. (\sanst , \sansq ) fulfills the energy-dissipation upper estimate (6.11);
3. (\sanst , \sansq ) fulfills the contact condition for a.a. s \in (0,S)

(6.16) M
\mu 
0,\nu (\sanst (s), \sansq (s), \sanst 

\prime (s), \sansq \prime (s)) = \langle  - DqE\mu (\sanst (s), \sansq (s)), \sansq 
\prime (s)\rangle \bfQ .

The proof is based on the following key chain-rule estimate

Lemma 6.5. Along any parameterized curve
(6.17)
(\sanst , \sansq ) \in AC([0,S]; [0,T ]\times Q) s.t. M

\mu 
0,\nu (\sanst , \sansq , \sanst 

\prime , \sansq \prime ) < +\infty a.e. in (0,S), there holds

 - d

ds
E\mu (\sanst (s), \sansq (s)) + \partial tE\mu (\sanst (s), \sansq (s)) = \langle  - DqE\mu (\sanst (s), \sansq (s)), \sansq 

\prime (s)\rangle \bfQ 
\leq M

\mu 
0,\nu (\sanst (s), \sansq (s), \sanst 

\prime (s), \sansq \prime (s)) for a.a. s \in (0,S) .

Proof. The first equality in (6.17) directly follows from the chain rule (3.9). To
deduce the second estimate, we start by observing that, from M

\mu 
0,\nu (\sanst (s), \sansq (s), \sanst 

\prime (s),
\sansq \prime (s)) < +\infty , we gather that

if \sanst \prime (s) = 0 then

\left\{     
 - DuE\mu (\sanst (s), \sansq (s)) = 0 ,

 - DzE\mu (\sanst (s), \sansq (s)) \in \partial R(0) ,

 - DpE\mu (\sanst (s), \sansq (s)) \in \partial \pi H(z, 0) ,

while if \sanst \prime (s) > 0, then

\| \sansz \prime (s)\| L2 \widetilde dL2(\Omega )( - DzE\mu (\sanst (s), \sansq (s)), \partial R(0)) \leq D\nu (\sansq 
\prime (s))D\ast ,\mu 

\nu (\sanst (s), \sansq (s)) .

In each case, we have

\| \sansz \prime (s)\| L2 \widetilde dL2(\Omega )( - DzE\mu (\sanst (s), \sansq (s)), \partial R(0)) < +\infty 

whence \widetilde dL2(\Omega )( - DzE\mu (\sanst (s), \sansq (s)), \partial R(0)) < +\infty if \sansz \prime (s) \not = 0. If \sansz \prime (s) = 0, taking into
account our convention (6.13) and the fact that M\mu 

0,\nu (\sanst (s), \sansq (s), \sanst 
\prime (s), \sansq \prime (s)) < +\infty we

again get \widetilde dL2(\Omega )( - DzE\mu (\sanst (s), \sansq (s)), \partial R(0)) < +\infty .
After this preliminary discussion, it is sufficient to observe that

\langle  - DqE\mu (\sanst (s), \sansq (s)), \sansq 
\prime (s)\rangle \bfQ 

\leq \| \sansu \prime (s)\| H1,\BbbD \|  - DuE\mu (\sanst (s), \sansq (s))\| (H1,\BbbD )\ast +\| \sansz \prime (s)\| L2 \widetilde dL2( - DzE\mu (\sanst (s), \sansq (s)), \partial R(0))

+ R(\sansz \prime (s)) + \| \sansp \prime (s)\| L2dL2( - DpE\mu (\sanst (s), \sansq (s)), \partial \pi H(\sansz (s), 0)) +H(\sansz (s), \sansp \prime (s))

(cf. (3.23)) in order to conclude (6.17).
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We are now in a position to carry out the proof of Proposition 6.4.

Proof of Proposition 6.4. Let us suppose that (\sanst , \sansq ) complies with (6.11). Inte-
grating (6.17) in time gives the converse inequality and thus the desired balance
(6.14).

Clearly, combining the contact condition (6.16) with the chain rule (3.9) leads
to (6.14). The converse implication is also true thanks to inequality (6.17). This
concludes the proof.

Adapting the arguments for [MRS16b, Theorem 5.3] to the present context, we
may now obtain a characterization of BV solutions in terms of a system of subdiffer-
ential inclusions that has the same structure as the viscous system (1.2), but where
the viscous terms in the single equations can be ``activated"" only at jumps.

Proposition 6.6. If (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in AC([0,S]; [0,T ]\times Q) is a BV solution to
the rate-independent system with hardening (1.1a), (1.1b), (1.1d), (1.1f), (1.3), then
there exists a measurable function \lambda : [0,S] \rightarrow [0, 1] such that

(6.18) \sanst \prime (s)\lambda (s) = 0 for a.a. s \in (0,S)

and (\sanst , \sansq ) satisfies for a.a. s \in (0,S) the system of subdifferential inclusions

\lambda (s)DV2,\nu (\sansu 
\prime (s)) + (1 - \lambda (s))DuE\mu (\sanst (s), \sansq (s)) = 0 in H1

Dir(\Omega ;\BbbR n)\ast ,

(6.19a)

(1 - \lambda (s)) \partial R(\sansz \prime (s)) + \lambda (s)DR2(\sansz 
\prime (s)) + (1 - \lambda (s))DzE\mu (\sanst (s), \sansq (s)) \ni 0 in Hm(\Omega )\ast ,

(6.19b)

(1 - \lambda (s)) \partial \pi H(\sansz (s), \sansp \prime (s)) + \lambda (s)DH2,\nu (\sansp 
\prime (s))

+ (1 - \lambda (s))DpE\mu (\sanst (s), \sansq (s)) \ni 0 in L2(\Omega ;\BbbM n\times n
D ) ,

(6.19c)

which is equivalent to

 - \lambda (s)Div
\bigl( 
\nu \BbbD E(\sansu \prime (s))

\bigr) 
 - (1 - \lambda (s))

\bigl( 
Div(σ(s)) + F (\sanst (s))

\bigr) 
= 0 in H1

Dir(\Omega ;\BbbR n)\ast ,

(1 - \lambda (s)) \partial R(\sansz \prime (s)) + \lambda (s) \sansz \prime (s)

+ (1 - \lambda (s))
\biggl( 
Am(\sansz (s)) +W \prime (\sansz (s)) +

1

2
\BbbC \prime (\sansz (s))\sanse (s) : \sanse (s)

\biggr) 
\ni 0 in Hm(\Omega )\ast ,

(1 - \lambda (s)) \partial \pi H(\sansz (s), \sansp \prime (s)) + \lambda (s) \nu \sansp \prime (s) + (1 - \lambda (s))
\bigl( 
\nu \sansp (s) - 

\bigl( 
σ(s)

\bigr) 
D

\bigr) 
\ni 0 a.e. in \Omega .

Conversely, if (\sanst , \sansq ) satisfies (6.19), with \lambda as in (6.18), and the map s \mapsto \rightarrow 
E\mu (\sanst (s), \sansq (s)) is absolutely continuous on [0,S], then (\sanst , \sansq ) is a BV solution.

Remark 6.7. A few comments on the mechanical interpretation of system (6.19)
are in order. Due to the switching condition (6.18), the coefficient \lambda can be nonnull
only if \sanst \prime (s) = 0, namely the system is jumping in the (slow) external time scale. When
the system does not jump, the evolution of the variables \sansz and \sansp is rate-independent,
and \sansu ``follows them"" staying at elastic equilibrium. At a jump, the system may switch
to a viscous regime where viscous dissipation intervenes in the evolution of the three
variables u, z, p modulated by the same coefficient \lambda . This reflects the fact that, in
the vanishing-viscosity approximation u, z, p relax to their limiting evolution with
the same rate. We notice that if \lambda = 1 in an interval of (0,S), then the system does
not evolve in that interval. This cannot be the case for nondegenerate BV solutions
(cf. (6.15)); such a nondegeneracy condition can be guaranteed by a further time
reparameterization (see Remark 6.9).
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Proof. The proof is a straightforward adaptation of the argument for [MRS16b,
Theorem 5.1]. Thus, we will only recapitulate it here, referring to [MRS16b] for all
details. The key point is to use that, by Proposition 6.4, a parameterized curve (\sanst , \sansq )
is a BV solution if and only if it fulfills (6.16), namely for almost all s \in (0,S)
(6.20)

(\sanst (s), \sansq (s), \sanst \prime (s), \sansq \prime (s)) \in \Sigma := \{ (t, q, t\prime , q\prime ) \in [0,T ]\times Q\times [0, +\infty )\times Q :

M
\mu 
0,\nu (t, q, t

\prime , q\prime ) = \langle  - DqE\mu (t, q), q
\prime \rangle \bfQ \} .

Then, [MRS16b, Proposition 5.1] provides a characterization of the contact set \Sigma .
Such a characterization holds in our infinite-dimensional context as well, and it allows
us to describe \Sigma as the union of two sets that encompass elastic equilibrium for u and
rate-independent evolution for (z, p) on the one hand and viscous evolution for all
three variables on the other hand. Namely,

(6.21) \Sigma = \sansE \sansu \sansR \sansz ,\sansp \cup \sansV \sansu ,\sansz ,\sansp 

with the sets

\sansE \sansu \sansR \sansz ,\sansp :=
\bigl\{ 
(t, q, t\prime , q\prime ) : t\prime > 0, DuE\mu (t, q) = 0,

\partial R(z\prime ) + DzE\mu (t, q)\ni 0, \partial H(z, p\prime ) + DpE\mu (t, q)\ni 0
\bigr\} 
,

\sansV \sansu ,\sansz ,\sansp := \{ (t, q, t\prime , q\prime ) : t\prime = 0 and

\exists \lambda \in [0, 1] :

\left\{   \lambda DV2,\nu (u
\prime ) + (1 - \lambda )DuE\mu (t, q) = 0,

(1 - \lambda )\partial R(z\prime ) + \lambda DR2(z
\prime ) + (1 - \lambda )DzE\mu (t, q) \ni 0,

(1 - \lambda )\partial H(z, p\prime ) + \lambda DH2,\nu (p
\prime ) + (1 - \lambda )DpE\mu (t, q) \ni 0

\right\}   .

Combining (6.20) and (6.21) leads to (6.19).

We conclude this section with our existence result for BV solutions, obtained as
limits of a family (\sanst \varepsilon , \sansq \varepsilon )\varepsilon = (\sanst \varepsilon , \sansu \varepsilon , \sansz \varepsilon , \sansp \varepsilon )\varepsilon of (reparameterized) viscous solutions to
Problem 3.1.

In order to properly state our convergence result, we recall that, for s\varepsilon : [0,T ] \rightarrow 
[0,S\varepsilon ] as in (6.1), the sequence (S\varepsilon )\varepsilon is bounded thanks to (4.15b). Moreover, S\varepsilon \geq T
for every \varepsilon > 0. Hence,

(6.22) there is a sequence \varepsilon k \downarrow 0 and S > 0 such that S\varepsilon k \rightarrow S.

If S\varepsilon < S, we extend (\sanst \varepsilon , \sansq \varepsilon ) to [0,S] by setting (\sanst \varepsilon (s), \sansq \varepsilon (s)) = (\sanst \varepsilon (S\varepsilon )+s - S\varepsilon , \sansq \varepsilon (S\varepsilon ))
for s \in (S\varepsilon ,S].

We are now in a position to show the existence of a BV solution to the rate-
independent system with hardening (1.1a), (1.1b), (1.1d), (1.1f), (1.3). The proof is
based on approximation by means of solutions to Problem 3.1. The general scheme
follows the steps of [MRS16b, MR21]. Some technical points, arising when dealing
with the coupled plastic-damage system, are treated as in [CL16, Theorem 5.4], which
features the viscosity only in the damage variable and not in the plastic variable.

Theorem 6.8. Under the assumptions of section 2 and (4.14), let (\varepsilon k)k be as in
(6.22). Then, there exist a (not relabeled) subsequence (\sanst \varepsilon k , \sansq \varepsilon k)k = (\sanst \varepsilon k , \sansu \varepsilon k , \sansz \varepsilon k) and
a Lipschitz curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in W 1,\infty ([0,S]; [0,T ]\times Q) such that

1. for all s \in [0,S] the following convergences hold as k \rightarrow +\infty :

(6.23)
\sanst \varepsilon k(s) \rightarrow \sanst (s), \sansu \varepsilon k(s)\rightharpoonup \sansu (s) in H1(\Omega ;\BbbR n),

\sansz \varepsilon k(s)\rightharpoonup \sansz (s) in Hm(\Omega ), \sansp \varepsilon k(s)\rightharpoonup \sansp (s) in L2(\Omega ;\BbbM n\times n
D );
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2. (\sanst , \sansq ) is a BV solution to the rate-independent system with hardening accord-
ing to Definition 6.2.

Arguments that are, by now, standard (detailed in, e.g., [MRS12a, MRS16a,
MRS16b]) would also allow us to prove, a posteriori, the convergence of the energy
terms and of the energy-dissipation integrals in (6.7) to their analogues in (6.14); the
same is true for the other forthcoming convergence results, i.e., Theorems 6.13 and
7.9. However, to avoid overburdening the exposition we have preferred to overlook
this point.

Proof. The proof is divided into three steps. First, we find a limiting parameter-
ized curve by compactness arguments, then we deduce the finiteness of the vanishing-
viscosity contact potential when \sanst \prime > 0, namely when there are no jumps in the fast
time scale, and eventually we prove the energy-dissipation upper estimate (6.11).

Step 1: Compactness. Let (q\varepsilon )\varepsilon = (u\varepsilon , z\varepsilon , p\varepsilon )\varepsilon be a family of solutions to Problem
3.1. Let s\varepsilon : [0,T ] \rightarrow [0,S\varepsilon ] be as in (6.1) and (\sanst \varepsilon , \sansq \varepsilon ) = (\sanst \varepsilon , \sansu \varepsilon , \sansz \varepsilon , \sansp \varepsilon ) be as in (6.2).
By (4.15b), S\varepsilon is uniformly bounded in \varepsilon ; moreover, S\varepsilon \geq T for every \varepsilon . Therefore,
there is a sequence \varepsilon k \rightarrow 0+ and S > 0 such that S\varepsilon k \rightarrow S. Henceforth, we will write
(\sanst k, \sansq k) in place of (\sanst \varepsilon k , \sansq \varepsilon k), and we will not relabel subsequences.

By (6.8), the sequence (\sanst k, \sansq k)k is equibounded in W 1,\infty (0,S; [0,T ]\times Q). There-
fore, arguing as in Step 1 of the proof of Theorem 5.1 above (and in particular resorting
to the compactness results from [Sim87]), we obtain a limit curve (\sanst , \sansq ) such that (up
to a subsequence, not relabeled) the following convergences hold as k \rightarrow +\infty :

\sanst k
\ast 
\rightharpoonup \sanst in W 1,\infty (0,S; [0,T ]) , \sansu k

\ast 
\rightharpoonup \sansu in W 1,\infty (0,S;H1(\Omega ;\BbbR n)) ,(6.24a)

\sansz k
\ast 
\rightharpoonup \sansz in W 1,\infty (0,S;Hm(\Omega )) , \sansz k \rightarrow \sansz in C0([0,S]; C0(\Omega )) ,

(6.24b)

\sansp k
\ast 
\rightharpoonup \sansp in W 1,\infty (0,S;L2(\Omega ;\BbbM n\times n

D ));

(6.24c)

the pointwise convergences in (6.23) hold as well.
We now define

s - (t) := sup\{ s \in [0,S] : \sanst (s) < t\} for t \in (0,T ] ,(6.25a)

s+(t) := inf\{ s \in [0,S] : \sanst (s) > t\} for t \in [0,T ) ,(6.25b)

and s - (0) := 0, s+(T ) := S. Then we have

s - (t) \leq lim inf
k\rightarrow +\infty 

sk(t) \leq lim sup
k\rightarrow +\infty 

sk(t)

\leq s+(t) and \sanst (s - (t)) = t = \sanst (s+(t)) for every t \in [0,T ] ,

s - (\sanst (s)) \leq s \leq s+(\sanst (s)) for every s \in [0,S] .

Moreover the set

(6.25c) S := \{ t \in [0,T ] : s - (t) < s+(t)\} 

is at most countable. Set

(6.25d) U := \{ s \in [0,S] : \sanst is constant in a neighborhood of s\} ,
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then

U =
\bigcup 
t\in S

(s - (t), s+(t)) .

For future convenience (see Step 3 below) we remark that the original functions
(uk, zk, pk) satisfy, for every t \in [0,T ] \setminus S,

uk(t)\rightharpoonup \sansu (s - (t)) = \sansu (s+(t)) in H
1(\Omega ;\BbbR n) ,(6.26a)

zk(t)\rightharpoonup \sansz (s - (t)) = \sansz (s+(t)) in H
m(\Omega ) ,(6.26b)

pk(t)\rightharpoonup \sansp (s - (t)) = \sansp (s+(t)) in L
2(\Omega ;\BbbM n\times n

D ) .(6.26c)

Step 2: Finiteness of M\mu ,red
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau )) when \sanst \prime (\tau ) > 0. We prove that

(6.27)\left\{     
 - DuE\mu (\sanst (\tau ), \sansq (\tau )) = 0 ,

 - DzE\mu (\sanst (\tau ), \sansq (\tau )) \in \partial R(0)

 - DpE\mu (\sanst (\tau ), \sansq (\tau )) \in \partial \pi H(z, 0),

for a.a. \tau \in A := \{ \tau \in (0,S) : \sanst \prime (\tau ) > 0\} ,

i.e., the configuration is stable where \sanst grows. This is equivalent to showing that
M

\mu 
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau )) is finite for a.a. \tau \in A.
Preliminarily, we observe that

(6.28) lim sup
k\rightarrow +\infty 

\sanst \prime k(\tau ) > 0 for a.a. \tau \in A.

This can be shown with the very same arguments as for the proof of [CL16, (5.18)].
By (3.26) and convergences (6.23) we have that

(6.29) 0 \leq D\ast ,\mu 
\nu (\sanst (\tau ), \sansq (\tau )) \leq lim inf

k\rightarrow +\infty 
D\ast ,\mu 

\nu (\sanst k(\tau ), \sansq k(\tau )) \forall \tau \in [0,S].

Moreover, by (3.24), written for t = \sanst k(\tau ) we obtain

(6.30)

D\ast ,\mu 
\nu (\sanst k(\tau ), \sansq k(\tau )) = D\ast ,\mu 

\nu (\sanst k(\tau ), qk(\sanst k(\tau )))

= \varepsilon kD\nu (q
\prime 
k(\sanst k(\tau )))

= \varepsilon k

\sqrt{} 
\nu \| u\prime k(\sanst k(\tau ))\| 2H1,\BbbD +\| z\prime k(\sanst k(\tau ))\| 2L2+\nu \| p\prime k(\sanst k(\tau ))\| 2L2

=
\varepsilon k

\sanst \prime k(\tau )

\sqrt{} 
\nu \| \sansu \prime k(\tau )\| 2H1,\BbbD +\| \sansz \prime k(\tau )\| 2L2+\nu \| \sansp \prime k(\tau )\| 2L2

\leq \varepsilon k
\sanst \prime k(\tau )

for a.a. \tau \in (0,S),

where the last estimate follows from the normalization condition (6.8) and since \nu \leq 1.
Combining (6.28), (6.29), and (6.30), we ultimately find

0 \leq D\ast ,\mu 
\nu (\sanst (\tau ), \sansq (\tau )) \leq lim inf

k\rightarrow +\infty 
D\ast ,\mu 

\nu (\sanst k(\tau ), \sansq k(\tau )) = 0 for a.a. \tau \in A,

which implies (6.27).
In particular, we obtain that M

\mu 
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau )) is finite, and equals
R(\sansz \prime (\tau )) +H(\sansz (\tau ), \sansp \prime (\tau )), for a.a. \tau \in A. Let us remark also that

(6.31) [0,S] \ni \tau \mapsto \rightarrow D\ast ,\mu 
\nu (\sanst (\tau ), \sansq (\tau )) is lower semicontinuous
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by (3.26) and the fact that (\sanst , \sansq ) \in W 1,\infty (0,S; [0,T ]\times Q). In particular, the set

(6.32) A\circ := \{ \tau \in [0,S] : D\ast ,\mu 
\nu (\sanst (\tau ), \sansq (\tau )) > 0\} is open and included in [0,S] \setminus A .

Step 3: The energy-dissipation upper estimate. By (6.9) we have

(6.33)

E\mu (\sanst k(S), \sansq k(S)) +

\int S

0

N\mu 
\varepsilon ,\nu (\sanst k(\tau ), \sansq k(\tau ), \sansq 

\prime 
k(\tau ))d\tau 

= E\mu (\sanst k(0), \sansq k(0)) +

\int S

0

\partial tE\mu (\sanst k(\tau ), \sansq k(\tau )) \sanst 
\prime 
k(\tau )d\tau .

In order to obtain (6.11), we will pass to the lim inf in (6.33), using the lower semi-
continuity of E\mu and the previously proved (6.29).

We first prove the lower semicontinuity estimate
(6.34)\int 

A\circ 
M

\mu ,red
0,\nu (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau \leq lim inf

k\rightarrow +\infty 

\int 
A\circ 

N\mu ,red
\varepsilon k,\nu 

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau ,

where the set A\circ has been introduced in (6.32). By (3.19)

(6.35) N\mu ,red
\varepsilon k,\nu 

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau )) = D\nu (\sansq 

\prime 
k(s))D

\ast ,\mu 
\nu (\sanst k(\tau ), \sansq k(\tau )) .

Then, estimate (6.34) follows from Lemma B.1 in Appendix B. Indeed, we apply it
combining (6.29) with convergences (6.24), which imply that

(
\surd 
\nu \sansu \varepsilon , \sansz \varepsilon ,

\surd 
\nu \sansp \varepsilon )\rightharpoonup (

\surd 
\nu \sansu , \sansz ,

\surd 
\nu \sansp ) in W 1,\infty (0,S; Q)

(recall that \nu > 0 is fixed). Hence, on the one hand we have that

mk(\tau ) := D\nu (\sansq 
\prime 
k(\tau )) =

\sqrt{} 
\nu \| \sansu \prime k(\tau )\| 2H1,\BbbD +\| \sansz \prime k(\tau )\| 2L2+\nu \| \sansp \prime k(\tau )\| 2L2

\ast 
\rightharpoonup m(\tau ) in L\infty (0,S)

and

m(\tau ) \geq 
\sqrt{} 
\nu \| \sansu \prime (\tau )\| 2H1,D + \| \sansz \prime (\tau )\| 2L2 + \nu \| \sansp \prime (\tau )\| 2L2 = D\nu (\sansq 

\prime (\tau )) for a.a. \tau \in (0,S).

On the other hand, the sequence hk(\tau ) := D\ast ,\mu 
\nu (\sanst k(\tau ), \sansq k(\tau )) satisfies the first condi-

tion in (B.1). Therefore, by Lemma B.1 we have the desired estimate (6.34).
Moreover, by (6.24) and Ioffe theorem (cf. [Val90, Theorem 21]) it is not difficult

to see that

(6.36)

\int S

0

R(\sansz \prime (\tau )) +H(\sansz (\tau ), \sansp \prime (\tau ))d\tau \leq lim inf
k\rightarrow +\infty 

\int S

0

R(\sansz \prime \varepsilon (\tau )) +H(\sansz \varepsilon (\tau ), \sansp 
\prime 
k(\tau ))d\tau .

As for the right-hand side, notice that

(6.37)

\int S

0

\partial tE\mu (\sanst k(\tau ), \sansq k(\tau )) \sanst 
\prime 
k(\tau )d\tau =

\int T

0

\partial tE\mu (\tau , qk(\tau ))d\tau .

By (6.26),

\partial tE\mu (\tau , qk(\tau ))

=

\int 
\Omega 

\BbbC (z) ek(\tau ) : E(w\prime (\tau ))dx - \langle F \prime (\tau ),uk(\tau )+w(\tau )\rangle H1(\Omega ;\BbbR n)  - \langle F (\tau ),w\prime (\tau )\rangle H1(\Omega ;\BbbR n)

 - \rightarrow \partial tE\mu (\tau , \sansq (s - (\tau ))) for every \tau \in [0,T ] \setminus S .
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3472 VITO CRISMALE AND RICCARDA ROSSI

Hence by dominated convergence
(6.38)\int T

0

\partial tE\mu (\tau , qk(\tau ))d\tau \rightarrow 
\int T

0

\partial tE\mu (\tau , \sansq (s - (\tau )))d\tau =

\int S

0

\partial tE\mu (\sanst (\tau ), \sansq (\tau )) \sanst 
\prime (\tau )d\tau ,

where we have used the fact that \sanst \prime (s) = 0 for a.e. s \in U and s - (\sanst (s)) = s for a.e.
s \in [0,S] \setminus U (see Step 1 above).

We now collect (6.27) and (6.32)--(6.38) to conclude the energy-dissipation upper
estimate (6.11). By the characterization provided by Proposition 6.4, we deduce that
the curve (\sanst , \sansq ) is a BV solution. This concludes the proof.

Remark 6.9. It is an open problem to prove that the reparameterized viscous so-
lutions converge to a nondegenerate (in the sense of (6.15)) BV solution. Nonetheless,
following [MRS09, Remark 2] any degenerate BV solution (\sanst , \sansq ) can be reparameter-
ized to a nondegenerate one (\~\sanst , \~\sansq ) = (\~\sanst , \~\sansu , \~\sansz , \~\sansp ) by setting

(6.39)

m : [0,S] \rightarrow [0,+\infty ), m(s) :=

\int s

0

(\sanst \prime (\tau )+\| \sansq \prime (\tau )\| \bfQ )d\tau , \~S := m(S),

r : [0, \~S] \rightarrow [0,S], r(\mu ) := inf\{ s \geq 0 : m(s) = \mu \} ,
\~\sanst : [0, \~S] \rightarrow [0,T ], \~\sanst (\mu ) := \sanst (r(\mu )), \~\sansq : [0, \~S] \rightarrow \bfQ \~\sansq (\mu ) := \sansq (r(\mu )) .

With the very same calculations as in [MRS09, Remark 2] (cf. also [KRZ13, Remark
5.2]), one sees that

(\~\sanst , \~\sansq ) \in W 1,\infty (0, \~S; [0,T ]\times Q) with \~\sanst \prime (\mu ) + \| \~\sansq \prime (\mu )\| \bfQ \equiv 1 a.e. in (0, \~S)

and that (\~\sanst , \~\sansq ) is still a BV solution in the sense of Definition 6.2.

6.2. The vanishing-viscosity analysis as \bfitvarepsilon , \bfitnu \downarrow 0. We now address the
asymptotic analysis of Problem 3.1 as both the viscosity parameter \varepsilon and the rate
parameter \nu tend to zero. Accordingly, throughout this section we will revert to the
notation (\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu )\varepsilon ,\nu for a family of reparameterized viscous solutions.

Again, it is to be expected that any limit curve (\sanst , \sansq ) of the family (\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu )\varepsilon ,\nu as
\varepsilon , \nu \downarrow 0 will satisfy the analogue of the energy-dissipation inequality (6.11), however
featuring, in the present context, a different vanishing-viscosity contact potential that
reflects the multirate character of the problem, and in particular the fact that u and
p relax to equilibrium and rate-independent evolution, respectively, at a faster rate
than z relaxing to rate-independent evolution. For consistency of notation, we will
denote this new contact potential M\mu 

0,0. It will turn out (in analogy with the results
from [MRS16b, MR21]) that M\mu 

0,0 : [0,T ]\times Q\times [0, +\infty )\times Q \rightarrow [0, +\infty ] is given by

M
\mu 
0,0(t, q, t

\prime , q\prime ) = M
\mu 
0,0(t,u, z, p, t

\prime ,u\prime , z\prime , p\prime ) := R(z\prime ) +H(z, p\prime )

+M
\mu ,red
0,0 (t,u, z, p, t\prime ,u\prime , z\prime , p\prime )

with M
\mu ,red
0,0 given by (6.12a) if t\prime > 0. Instead, in place of (6.12b) we have, if t\prime = 0,

(6.40a)

M
\mu ,red
0,\nu (t, q, 0, q\prime ) :=

\left\{     
D(u\prime , p\prime )D\ast ,\mu (t, q) if z\prime = 0,

\| z\prime \| L2 \widetilde dL2(\Omega )( - DzE\mu (t, q), \partial R(0)) if D\ast ,\mu (t, q) = 0,

+\infty if \| z\prime \| L2D\ast ,\mu (t, q) > 0,

where we have used the notation

(6.40b)
D(u\prime , p\prime ) :=

\sqrt{} 
\| u\prime \| 2H1,\BbbD +\| p\prime \| 2

L2(\Omega ;\BbbM n\times n
\mathrm{D} )

,

D\ast ,\mu (t, q) :=
\sqrt{} 

\|  - DuE\mu (t, q)\| 2(H1,\BbbD )\ast +dL2( - DpE\mu (t, q), \partial \pi H(z, 0))2 .
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Again, in the case in which z\prime = 0 and \widetilde dL2(\Omega )( - DzE\mu (t, q), \partial R(0)) = +\infty , in (6.40a)
we set

\| z\prime \| L2 \widetilde dL2(\Omega )( - DzE\mu (t, q), \partial R(0)) := +\infty .

The multirate character of the vanishing-viscosity approximation addressed in
this case is already apparent in the expression for M\mu ,red

0,0 (t, q, t\prime , q\prime ) at t\prime = 0. Indeed,

M
\mu ,red
0,0 (t, q, 0, q\prime ) is finite only either if z\prime = 0 (i.e., z is frozen) or if D\ast ,\mu (t, q) =

0, which entails that u is at equilibrium and p fulfills the local stability condition
 - DpE\mu (t, q) \in \partial \pi H(z, 0); cf. Remark 6.12 later on for further comments.

Accordingly, we give the following.

Definition 6.10. We call a parameterized curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in AC([0,S];
[0,T ]\times Q) a (parameterized) Balanced Viscosity solution to the multirate system with
hardening (1.1a), (1.1b), (1.1d), (1.1f), (1.3) if \sanst : [0,S] \rightarrow [0,T ] is nondecreasing and
(\sanst , \sansq ) fulfills for all 0 \leq s \leq S the energy-dissipation balance

(6.41)

E\mu (\sanst (s), \sansq (s)) +

\int s

0

M
\mu 
0,0(\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau ))d\tau 

= E\mu (\sanst (0), \sansq (0)) +

\int s

0

\partial tE\mu (\sanst (\tau ), \sansq (\tau )) \sanst 
\prime (\tau )d\tau .

We say that (\sanst , \sansq ) is nondegenerate if it fulfills (6.15).

The very analogue of Proposition 6.4 holds for BV solutions to the multirate
system as well, based on the chain-rule estimate

 - d

ds
E\mu (\sanst (s), \sansq (s)) + \partial tE\mu (\sanst (s), \sansq (s))

= \langle  - DqE\mu (\sanst (s), \sansq (s)), \sansq 
\prime (s)\rangle \bfQ \leq M

\mu 
0,0(\sanst (s), \sansq (s), \sanst 

\prime (s), \sansq \prime (s)) for a.a. s \in (0,S),

which can be shown along any parameterized curve (\sanst , \sansq ) \in AC([0,S]; [0,T ]\times Q) such
that M

\mu 
0,0(\sanst (s, \sansq (s), \sanst 

\prime (s), \sansq \prime (s)) < \infty for almost all s \in (0,S) by adapting the argu-
ments for Lemma 6.5; see also Proposition 3.4.

Likewise, we have a differential characterization for BV solutions in the sense
of Definition 6.10 analogous to the characterization from Proposition 6.6. In system
(6.43) below, we have used the shorthand H2 for the plastic dissipation potential H2,1

(cf. (2.34)).

Proposition 6.11. A parameterized curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in AC([0,S]; [0,T ]
\times Q) is a BV solution to the multirate system with hardening if and only if there exist
two functions \lambda \sansu ,\sansp \lambda \sansz : [0;S] \rightarrow [0; 1] such that

\sanst \prime (s)\lambda \sansu ,\sansp (s) = \sanst \prime (s)\lambda \sansz (s) = 0 for a.a. s \in (0,S),(6.42a)

\lambda \sansu ,\sansp (s)(1 - \lambda \sansz (s)) = 0 for a.a. s \in (0,S),(6.42b)

and (\sanst , \sansq ) satisfies for a.a. s \in (0,S) the system of subdifferential inclusions

\lambda \sansu ,\sansp (s)DV2(\sansu 
\prime (s)) + (1 - \lambda \sansu ,\sansp (s))DuE\mu (\sanst (s), \sansq (s)) = 0 in H1

Dir(\Omega ;\BbbR n)\ast ,

(6.43a)

(1 - \lambda \sansz (s)) \partial R(\sansz \prime (s)) + \lambda \sansz (s)DR2(\sansz 
\prime (s)) + (1 - \lambda \sansz (s))DzE\mu (\sanst (s), \sansq (s)) \ni 0 in Hm(\Omega )\ast ,

(6.43b)

(1 - \lambda \sansu ,\sansp (s)) \partial \pi H(\sansz (s), \sansp \prime (s)) + \lambda \sansu ,\sansp (s)DH2(\sansp 
\prime (s))

+ (1 - \lambda \sansu ,\sansp (s))DpE\mu (\sanst (s), \sansq (s)) \ni 0 in L2(\Omega ;\BbbM n\times n
D ) .

(6.43c)
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3474 VITO CRISMALE AND RICCARDA ROSSI

Like the argument for Proposition 6.6, the proof is again based on the analysis of
the structure of the contact set associated with M

\mu 
0,0 (cf. (6.20)), which in turn can

be characterized by adapting the arguments from the proof of [MRS16b, Proposition
5.1].

Remark 6.12. Along the lines of [MRS16b, Remark 5.4], we observe that system
(6.43) reflects the fact that \sansu and \sansp relax to equilibrium and rate-independent evolu-
tion, respectively, faster than \sansz . Indeed, at a jump (corresponding to \sanst \prime = 0, hence the
coefficients \lambda \sansu ,\sansp and \lambda \sansz can be nonzero), due to (6.42b) either \lambda \sansz = 1, and then \sansz \prime = 0,
or \lambda \sansu ,\sansp = 0, which gives that \sansu is at equilibrium and \sansp satisfies the local stability
condition  - DpE\mu (t, q) \in \partial \pi H(z, 0). Namely, at a jump \sansz cannot change until \sansu has
reached the equilibrium and \sansp attained the stable set \partial \pi H(z, 0). After that, \sansz may
evolve either rate-independently (if \lambda \sansz = 0) or governed by viscosity (if \lambda \sansz \in (0, 1)).

With our final result we prove the convergence of the reparameterized viscous
solutions (\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu )\varepsilon ,\nu to a BV solution of the multirate system as both \varepsilon and \nu tend
to zero. As observed right before the statement of Theorem 6.8, we may suppose that
the curves (\sanst \varepsilon ,\nu , \sansq \varepsilon ,\nu ) are defined in a fixed interval (0,S).

Theorem 6.13. Under the assumptions of section 2 and (4.14), for all vanishing
sequences (\varepsilon k)k and (\nu k)k such that S\varepsilon k,\nu k

\rightarrow S there exist a (not relabeled) subse-
quence (\sanst \varepsilon k,\nu k

, \sansq \varepsilon k,\nu k
)k and a Lipschitz curve (\sanst , \sansq ) \in W 1,\infty ([0,S]; [0,T ]\times Q) such that

convergences (6.23) hold as k \rightarrow +\infty and (\sanst , \sansq ) is a BV solution to the multirate
system with hardening according to Definition 6.10.

Proof. In the proof of this result, we will mainly highlight the differences with re-
spect to the argument for Theorem 6.8, without repeating the analogous passages.
Hereafter, we will consider sequences \varepsilon k, \nu k \rightarrow 0 and write (\sanst k, \sansq k)k in place of
(\sanst \varepsilon k,\nu k

, \sansq \varepsilon k,\nu k
)\varepsilon k,\nu k

, and we will not relabel subsequences.
Step 1: Compactness. As in the proof of Theorem 6.8, we conclude that there

exist a subsequence and (\sanst , \sansq ) \in W 1,\infty ([0,S]; [0,T ]\times Q) such that the analogues of
(6.24)--(6.26) hold.

Step 2: Finiteness of M\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau )) when \sanst \prime (\tau ) > 0. As in Step 2

of Theorem 6.8, we introduce the set A := \{ \tau \in [0,S] : \sanst \prime (\tau ) > 0\} and show that

M
\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau )) < +\infty for a.a. t \in A,

which yields the (local) stability condition (6.27) for a.a. t \in A. To do so, as in (6.28)
we observe that lim supk\rightarrow +\infty \sanst \prime k(\tau ) > 0. We now use equality (3.24) at r = \sanst k(\tau ) and
q(r) = \sansq k(\tau ), and thus we get

(6.44)

D\ast ,\mu 
\nu k

(\sanst k(\tau ), \sansq k(\tau )) = D\ast ,\mu 
\nu k

(\sanst k(\tau ), qk(\sanst k(\tau )))

= \varepsilon k

\sqrt{} 
\nu k\| u\prime k(\sanst k(\tau ))\| 2H1,\BbbD +\| z\prime k(\sanst k(\tau ))\| 2L2+\nu k\| p\prime k(\sanst k(\tau ))\| 2L2

=
\varepsilon k

\sanst \prime k(\tau )

\sqrt{} 
\nu k\| \sansu \prime k(\tau )\| 2H1,\BbbD +\| \sansz \prime k(\tau )\| 2L2+\nu k\| \sansp \prime k(\tau )\| 2L2

\leq \varepsilon k
\sanst \prime k(\tau )

for a.a. \tau \in (0,S),

where, again, the last estimate follows from the normalization conditions (6.8) and
since \nu \leq 1. We observe that the right-hand side of (6.44) goes to 0 as k \rightarrow +\infty .

We now deduce the local stability (6.27) at almost all s \in (0,S). Indeed, if,
say, there holds \| DuE\mu (\sanst (\tau ), \sansq (\tau ))\| (H1,\BbbD )\ast > 0, then we get by the semicontinuity
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inequality (3.26a) that lim infk\rightarrow +\infty \| DuE\mu (\sanst k(\tau ), \sansq k(\tau ))\| (H1,\BbbD )\ast > 0. Recalling the
definition of D\ast ,\mu 

\nu k
from (3.19), and since \nu k \rightarrow 0, this would give that lim infk\rightarrow +\infty 

D\ast ,\mu 
\nu k

(\sanst k(\tau ), \sansq k(\tau )) = +\infty , which contradicts (6.44). Thus DuE\mu (\sanst (\tau ), \sansq (\tau )) = 0. In
the same way we get  - DpE\mu (\sanst (\tau ), \sansq (\tau )) \in \partial \pi H(z, 0), while, if  - DzE\mu (\sanst (\tau ), \sansq (\tau )) /\in 
\partial R(0), we would get lim infk\rightarrow +\infty D\ast ,\mu 

\nu k
(\sanst k(\tau ), \sansq k(\tau )) > 0, which still would contradict

(6.44).
Moreover, in view of (3.26) and of the regularity of (\sanst , \sansq ), we have that the sets

(6.45)
B\circ 

\mu := \{ \tau \in [0,S] : D\ast ,\mu (\sanst (\tau ), \sansq (\tau )) > 0\} and

C\circ 
\mu := \{ \tau \in [0,S] : \widetilde dL2(\Omega )( - DzE\mu (\sanst (\tau ), \sansq (\tau )), \partial R(0)) > 0\} 

are open and included in [0,S] \setminus A.
Step 3: The energy-dissipation upper estimate ( 6.41). By the analogue of Propo-

sition 6.4, in order to conclude that (\sanst , \sansq ) is a BV solution to the multirate system
with hardening it is sufficient to obtain (6.41) as an upper estimate \leq . With this aim,
as in Step 3 of Theorem 6.8, we start from the analogues of (6.33) and (6.35). First
of all, it holds that for a.e. \tau \in (0,S)

(6.46) N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau )) \geq 

1
\surd 
\nu k

\| \sansz \prime k(\tau )\| L2 D\ast ,\mu (\sanst k(\tau ), \sansq k(\tau )) ,

recalling (3.19) and (6.35). Now, we may apply Lemma B.1 with the choices I := B\circ ,

mk = \| \sansz \prime k\| L2 such that mk
\ast 
\rightharpoonup m in L\infty (0,S) and m \geq \| \sansz \prime \| L2 a.e. in (0,S), and with

hk := D\ast ,\mu (\sanst k, \sansq k), h := D\ast ,\mu (\sanst , \sansq ). Indeed, observe that

(6.47) lim inf
k\rightarrow +\infty 

D\ast ,\mu (\sanst k(\tau ), \sansq k(\tau )) \geq D\ast ,\mu (\sanst (\tau ), \sansq (\tau )) \forall \tau \in [0,S],

thanks to (6.24b) and the lower semicontinuity properties (3.26). We thus obtain that
(6.48)\int 

B\circ 
\mu 

\| \sansz \prime (\tau )\| L2 D\ast ,\mu (\sanst (\tau ), \sansq (\tau ))d\tau \leq lim inf
k\rightarrow \infty 

\int 
B\circ 

\mu 

\| \sansz \prime k(\tau )\| L2 D\ast ,\mu (\sanst k(\tau ), \sansq k(\tau ))d\tau .

Since \nu k \rightarrow 0, from (6.46) and (6.48) we deduce that \sansz \prime (\tau ) = 0 for a.e. \tau \in B\circ , that
is,

(6.49) \sansz \prime (\tau )D\ast ,\mu (\sanst (\tau ), \sansq (\tau )) = 0 for a.a. \tau \in (0,S) .

In view of the definition (6.40a) of M\mu ,red
0,0 , (6.49) yields that

(6.50)

M
\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau )) = D(\sansu \prime (\tau ), \sansp \prime (\tau ))D\ast ,\mu (\sanst (\tau ), \sansq (\tau )) a.e. in B\circ .

By (3.19), (6.35), and an easy algebraic calculation we obtain that

(6.51) N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau )) \geq D(\sansu \prime k(\tau ), \sansp 

\prime 
k(\tau ))D

\ast ,\mu (\sanst k(\tau ), \sansq k(\tau )) .

Then, again by Lemma B.1, applied thanks to (6.24) and (3.26), we deduce

\int 
B\circ 

M
\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau =

\int 
B\circ 

D(\sansu \prime (\tau ), \sansp \prime (\tau ))D\ast ,\mu (\sanst (\tau ), \sansq (\tau ))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
B\circ 

N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau .

(6.52)
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Let us now consider the set C\circ 
\mu \setminus B\circ 

\mu , where
\widetilde dL2(\Omega )( - DzE\mu (\sanst (\tau ), \sansq (\tau )), \partial R(0)) > 0

with D\ast ,\mu (\sanst (\tau ), \sansq (\tau )) = 0; cf. (6.32). Starting from (3.19) and (6.35), we estimate

(6.53) N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau )) \geq \| \sansz \prime k(\tau )\| L2 \widetilde dL2(\Omega )( - DzE\mu (\sanst k(\tau ), \sansq k(\tau )), \partial R(0)) .

We then employ Lemma B.1 with I := C\circ 
\mu \setminus B\circ 

\mu , mk := \| \sansz \prime k\| L2 such that mk
\ast 
\rightharpoonup m \geq 

\| \sansz \prime \| L2 in L\infty (0,S), hk := \widetilde dL2(\Omega )( - DzE\mu (\sanst k(\tau ), \sansq k(\tau )), \partial R(0)), h := \widetilde dL2(\Omega )( - DzE\mu 

(\sanst (\tau ), \sansq (\tau )), \partial R(0)). Again, we obtain that lim infk\rightarrow +\infty hk(\tau ) \geq h(\tau ) for all \tau \in [0,S]
by (6.24) and (3.26b). Thus, with Lemma B.1 we get

(6.54)

\int 
(0,S)\setminus B\circ 

\mu 

M
\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau 

=

\int 
C\circ 

\mu \setminus B\circ 
\mu 

\| \sansz \prime (\tau )\| L2 \widetilde dL2(\Omega )( - DzE\mu (\sanst (\tau ), \sansq (\tau )), \partial R(0))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
C\circ 

\mu \setminus B\circ 
\mu 

\| \sansz \prime k(\tau )\| L2 \widetilde dL2(\Omega )( - DzE\mu (\sanst k(\tau ), \sansq k(\tau )), \partial R(0))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
C\circ 

\mu \setminus B\circ 
\mu 

N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau .

All in all, collecting (6.52) and (6.54) we conclude\int S

0

M
\mu ,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau \leq lim inf

k\rightarrow +\infty 

\int S

0

N\mu ,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau .

The remainder of the proof (namely the semicontinuity of the other terms in M
\mu 
0,0 and

of the driving energy E\mu , and the continuity of the power term) follows as in Step 3
of Theorem 6.8. In this way, we conclude the limit passage in the energy-dissipation
balance (6.33), obtaining the desired (6.41) as an upper estimate \leq . The proof is then
completed.

7. The vanishing-hardening limit. We now address the limit passage in the
viscous system (1.2) as the three parameters \varepsilon , \nu , \mu vanish simultaneously. For this, we
will combine the techniques from section 6, with the functional-analytic tools related
to the passage from plasticity with hardening to perfect plasticity. In what follows,

- we will establish the setup for the perfectly plastic model, recalling results
from [DMDM06, FG12];

- we will introduce a suitable ``energy-dissipation"" arclength reparameteriza-
tion of viscous solutions; in combination with the energy-dissipation balance
(6.7), the thus reparameterized solutions will satisfy a normalization condi-
tion, whence the key estimates will stem, as well as the specific temporal and
spatial regularity properties of the limiting admissible parameterized curves
(cf. Definition 7.2);

- we will properly define the vanishing-viscosity contact potential relevant for
BV solutions (cf. Definition 7.3) to the perfectly plastic system, taking care
of the technicalities related to the new functional setup;

- we will address the properties of BV solutions and in particular characterize
them in terms of an energy-dissipation upper estimate in Proposition 7.7.
Such characterization will play a key role in the proof of our existence result,
Theorem 7.9 ahead.
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3477

Let us now first fix the setup for the perfectly plastic system. We mention in
advance that the space for the displacements will be BD(\Omega ) and the space for the
plastic strains will be Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ), i.e., the space of bounded Radon measures
on \Omega \cup \Gamma Dir with values in \BbbM n\times n

D ; this reflects the fact that, now, the plastic strain p
is a measure that can concentrate on Lebesgue-negligible sets.

Setup adapted for perfect plasticity: The state space. The state space
for the perfectly plastic system with damage is

(7.1)
QPP := \{ q = (u, z, p) \in BD(\Omega )\times Hm(\Omega )\times Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) :

e := E(u) - p \in L2(\Omega ;\BbbM n\times n
sym ), u\odot nH n - 1 + p = 0 on \Gamma Dir\} ,

where n is the normal vector to \partial \Omega and \odot the symmetrized tensorial product. Observe
that the condition u\odot nH n - 1 + p = 0 relaxes the homogeneous Dirichlet condition
u = 0 on \Gamma Dir.

Setup adapted for perfect plasticity: The plastic dissipation potential.
We extend the plastic dissipation potential H(z, \cdot ) to the reference space Mb(\Omega \cup \Gamma Dir;
\BbbM n\times n

D ). We define HPP : C
0(\Omega ; [0, 1])\times Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) \rightarrow \BbbR by

(7.2) HPP(z,\pi ) :=

\int 
\Omega \cup \Gamma \mathrm{D}\mathrm{i}\mathrm{r}

H

\biggl( 
z(x),

d\pi 

d\mu 
(x)

\biggr) 
d\mu (x) ,

where H is defined in (2.27), \mu \in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n
D ) is a positive measure such

that \pi \ll \mu , and d\pi 
d\mu is the Radon--Nikod\'ym derivative of \pi with respect to \mu ; since

H(z(x), \cdot ) is one-homogeneous, the definition is actually independent of \mu . We refer to
[GS64] for the theory of convex functions of measures. By [AFP05, Proposition 2.37],
the functional p \mapsto \rightarrow HPP(z, p) is convex and positively one-homogeneous for every
z \in C0(\Omega ; [0, 1]). In particular, HPP(z, p1 + p2) \leq HPP(z, p1) +HPP(z, p2) for every
z \in C0(\Omega ; [0, 1]) and p1, p2 \in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ). Since | dp
d| p| (x)| = 1 for | p| -a.e.

x \in \Omega \cup \Gamma Dir, by (2.28) we have

r\| p\| 1 \leq HPP(z, p) \leq R\| p\| 1 ,

where we denote by \| \cdot \| 1 the total variation of a measure (in the case of p on \Omega \cup \Gamma Dir),
and

0 \leq HPP(z2, p) - HPP(z1, p) \leq C \prime 
K\| z1  - z2\| L\infty \| p\| 1 for 0 \leq z1 \leq z2 \leq 1 .

Therefore, by Reshetnyak's lower semicontinuity theorem, if (zk)k and (pk)k are se-
quences in C0(\Omega ; [0, 1]) and Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) such that zk \rightarrow z in C0(\Omega ) and
pk \rightharpoonup p weakly\ast in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ), then

HPP(z, p) \leq lim inf
k\rightarrow +\infty 

HPP(zk, pk) .

Stress-strain duality. Let us recall the notion of stress-strain duality, relying on
[KT83], [DMDM06], and the more recent extension to Lipschitz boundaries [FG12], to
which we refer for the properties mentioned below. First of all, we recall the definition
(in the sense of [DMDM06]) of admissible displacement and strains A(w) associated
with a function w \in H1(\BbbR n;\BbbR n), i.e.,

A(w) := \{ (u, e, p) \in BD(\Omega )\times L2(\Omega ;\BbbM n\times n
sym )\times Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) :

E(u) = e+ p in \Omega , p = (w  - u)\odot nH n - 1 on \Gamma Dir\} .
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3478 VITO CRISMALE AND RICCARDA ROSSI

We also recall the space of admissible plastic strains

\Pi (\Omega ) := \{ p \in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n
D ) : \exists (u,w, e)\in BD(\Omega )\times H1(\BbbR n;\BbbR n)\times L2(\Omega ;\BbbM n\times n

sym )

s.t. (u, e, p) \in A(w)\} .

We then define

\Sigma (\Omega ) := \{ \sigma \in L2(\Omega ;\BbbM n\times n
sym ) : div(\sigma ) \in Ln(\Omega ;\BbbR n) , \sigma D \in L\infty (\Omega ;\BbbM n\times n

D )\} 

and, for \sigma \in \Sigma (\Omega ) and p \in \Pi (\Omega ), we set
(7.3)

\langle [\sigma D : p],\varphi \rangle :=  - 
\int 
\Omega 

\varphi \sigma \cdot (e - E(w)) dx - 
\int 
\Omega 

\sigma \cdot [(u - w)\odot \nabla \varphi ] dx - 
\int 
\Omega 

\varphi (div(\sigma ))\cdot (u - w) dx

for every \varphi \in C\infty 
c (\BbbR n), where u and e are such that (u, e, p) \in A(w); the definition

is indeed independent of u and e. If \sigma \in \Sigma (\Omega ) and p \in \Pi (\Omega ), then \sigma \in Lr(\Omega ;\BbbM n\times n
sym )

for every r < \infty , and [\sigma D : p] is a bounded Radon measure such that \| [\sigma D : p]\| 1 \leq 
\| \sigma D\| L\infty \| p\| 1 in \BbbR n. Considering the restriction of this measure to \Omega \cup \Gamma Dir, we also
define

\langle \sigma D | p\rangle := [\sigma D : p](\Omega \cup \Gamma Dir) .

By (7.3) and taking into account that u \in BD(\Omega ) \subset L
n

n - 1 (\Omega ;\BbbR n), if [\sigma n] \in L\infty (\Gamma Neu;
\BbbR n) (recall (2.9)) and (2.\Omega ) holds, then we have the integration by parts formula
(7.4)
\langle \sigma D | p\rangle =  - \langle \sigma , e - E(w)\rangle L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )+\langle  - div \sigma ,u - w\rangle 
L

n
n - 1 (\Omega ;\BbbR n)

+\langle [\sigma n],u - w\rangle L1(\Gamma \mathrm{N}\mathrm{e}\mathrm{u};\BbbR n)

for every \sigma \in \Sigma (\Omega ) and (u, e, p) \in A(w). Thus, defining for \sigma \in \Sigma (\Omega ) the functional

 - \widehat Div(\sigma ) \in BD(\Omega )\ast via

(7.5) \langle  - \widehat Div(\sigma ), v\rangle BD(\Omega ) := \langle  - div(\sigma ), v\rangle 
L

n
n - 1 (\Omega ;\BbbR n)

+ \langle [\sigma n], v\rangle L1(\Gamma \mathrm{N}\mathrm{e}\mathrm{u};\BbbR n)

for all v \in BD(\Omega ), we have that (7.4) reads as

(7.6) \langle \sigma D | p\rangle =  - \langle \sigma , e - E(w)\rangle L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} ) + \langle  - \widehat Div(\sigma ),u - w\rangle BD(\Omega ).

For z \in C0(\Omega ) let

(7.7) Kz(\Omega ) := \{ \sigma \in \Sigma (\Omega ): \sigma D(x) \in K(z(x)) for a.e. x \in \Omega \} .

Since the multifunction z \in [0, 1] \mapsto \rightarrow K(z) is continuous, from [FG12, Proposition 3.9]
(which holds also if div(\sigma ) is not identically 0) it follows that for every \sigma \in Kz(\Omega )

(7.8) H

\biggl( 
z,

dp

d| p| 

\biggr) 
| p| \geq [\sigma D : p] as measures on \Omega \cup \Gamma Dir .

In particular, we have

(7.9) HPP(z, p) \geq sup
\sigma \in Kz(\Omega )

\langle \sigma D | p\rangle for every p \in \Pi (\Omega ).

Remark 7.1. In [FG12, Remark 2.9] the authors explain that in the presence
of external forces one has to resort to the classic (deviatoric) stress-(plastic) strain
duality, provided by [KT83] and employed in several papers, e.g., [DMDM06], to put
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3479

in duality \varrho D(t) and p \in \Pi (\Omega ). Such a duality requires one of the two following
conditions, alternatively: either (1) \varrho \in AC(0,T ; C0(\Omega ;\BbbM n\times n

D )) or (2) \Omega globally of
class C2. The use of the Kohn--Temam duality seems to be needed to infer that (7.9)
holds as an equality, which in turn implies the analogue of (2.40) for HPP, Kz(\Omega ),

p \in Mb in place of H, \widetilde Kz(\Omega ), p \in L1. However, by our approximation procedure via
plasticity with hardening, we just need to use the coercivity condition (2.40) in the
a priori estimates for the solutions of the system with plastic hardening (cf. (4.28)),
together with (7.9) to pass to the limit. For this reason we do not assume any further
regularity on either \varrho or on \Omega .

The energy functional. The energy functional E0 driving the perfectly plastic
system has an expression analogous to the functional E\mu (2.23) for the system with
hardening where \mu is formally set equal to 0. Indeed, it consists of the contributions
of the elastic energy, of the potential energy for the damage variable, and of the time-
dependent volume and surface forces. Then E0 : [0,T ]\times QPP \rightarrow \BbbR \cup \{ +\infty \} is defined
by

E0(t,u, z, p) := Q(z, e(t)) +

\int 
\Omega 

W (z) dx+
1

2
am(z, z) - \langle F (t),u+ w(t)\rangle BD(\Omega ) ,

where we have highlighted the elastic part e(t) = E(u+w(t)) - p of the strain tensor.

Since \varrho (t) from (2.39d) is in \Sigma (\Omega ) and F (t) =  - \widehat Div(\varrho (t)) for all t \in [0,T ] by (2.39e),
we may employ (7.6) to rewrite E0 as (cf. (2.44))
(7.10)

E0(t,u, z, p) = F0(t, z, e(t)) - \langle \rho D(t) | p\rangle with

F0(t, z, e) := Q(z, e) +

\int 
\Omega 

W (z) dx

+
1

2
am(z, z) - 

\int 
\Omega 

\rho (t)(e - E(w(t)))dx - \langle F (t),w(t)\rangle BD(\Omega ) .

Energy-dissipation arclength reparameterization. As already mentioned,
we will obtain Balanced Viscosity solutions to the perfectly plastic system by taking
the joint vanishing-viscosity and hardening limit of (reparameterized) viscous solu-
tions to Problem 3.1. Thus, let (q\mu \varepsilon ,\nu )\varepsilon ,\nu ,\mu = (u\mu \varepsilon ,\nu , z

\mu 
\varepsilon ,\nu , p

\mu 
\varepsilon ,\nu )\varepsilon ,\nu ,\mu be a family of solu-

tions to Problem 3.1. We are going to reparameterize them by the energy-dissipation
arclength \widetilde s\mu \varepsilon ,\nu : [0,T ] \rightarrow [0, \widetilde S\mu 

\varepsilon ,\nu ] (with
\widetilde S\mu 
\varepsilon ,\nu := \widetilde s\mu \varepsilon ,\nu (T )) defined by

\widetilde s\mu \varepsilon ,\nu (t) := \int t

0

\Bigl( 
1+

\surd 
\mu \| u\mu \varepsilon ,\nu 

\prime (\tau )\| H1(\Omega ;\BbbR n)

+\| z\mu \varepsilon ,\nu 
\prime (\tau )\| H\mathrm{m}(\Omega )+\| p\mu \varepsilon ,\nu 

\prime (\tau )\| L1(\Omega ;\BbbM n\times n
\mathrm{D} )+

\surd 
\mu \| p\mu \varepsilon ,\nu 

\prime (\tau )\| L2(\Omega ;\BbbM n\times n
\mathrm{D} )

+\| e\mu \varepsilon ,\nu 
\prime (\tau )\| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )+D\nu (u
\mu 
\varepsilon ,\nu 

\prime (\tau ), p\mu \varepsilon ,\nu 
\prime (\tau ))D\ast ,\mu 

\nu (\tau , q\mu \varepsilon ,\nu (\tau ))
\Bigr) 
d\tau 

(7.11)

with D\nu and D\ast ,\mu 
\nu from (6.6). We will comment on the choice of the arclength function\widetilde s\mu \varepsilon ,\nu below. By estimates (5.3) and (6.10) we have that sup\varepsilon ,\nu ,\mu \widetilde S\mu 

\varepsilon ,\nu \leq C. As in (6.2),
we set

\sanst \mu \varepsilon ,\nu := (\widetilde s\mu \varepsilon ,\nu ) - 1, \sansq \mu \varepsilon ,\nu := q\mu \varepsilon ,\nu \circ \sanst \mu \varepsilon ,\nu = (\sansu \mu \varepsilon ,\nu , \sansz 
\mu 
\varepsilon ,\nu , \sansp 

\mu 
\varepsilon ,\nu ), \sanse \mu \varepsilon ,\nu := e\mu \varepsilon ,\nu \circ \sanst \mu \varepsilon ,\nu ,

σ\mu 
\varepsilon ,\nu := \sigma \mu 

\varepsilon ,\nu \circ \sanst \mu \varepsilon ,\nu 
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3480 VITO CRISMALE AND RICCARDA ROSSI

that we may assume defined on a fixed interval [0,S], with S := lim\varepsilon ,\nu ,\mu \downarrow 0 \widetilde S\mu 
\varepsilon ,\nu (the

limit is intended along a suitable subsequence).
The very same calculations as in section 6 show that the rescaled solutions

(\sanst \mu \varepsilon ,\nu , \sansq 
\mu 
\varepsilon ,\nu )\varepsilon ,\nu ,\mu and the curves (\sanse \mu \varepsilon ,\nu )\varepsilon ,\nu ,\mu satisfy the parameterized energy-dissipation

balance (6.7) as well as the normalization condition for almost all s \in (0,S\mu 
\varepsilon ,\nu ),

\sanst \mu \varepsilon ,\nu 
\prime (s)+

\surd 
\mu \| \sansu \mu \varepsilon ,\nu 

\prime (s)\| H1(\Omega ;\BbbR n)

+\| \sansz \mu \varepsilon ,\nu 
\prime (s)\| H\mathrm{m}(\Omega )+

\surd 
\mu \| \sansp \mu \varepsilon ,\nu 

\prime (s)\| L2(\Omega ;\BbbM n\times n
\mathrm{D} ) + \| \sansp \mu \varepsilon ,\nu 

\prime (s)\| L1(\Omega ;\BbbM n\times n
\mathrm{D} )

+\| \sanse \mu \varepsilon ,\nu 
\prime (s)\| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} )+D\nu (u
\mu 
\varepsilon ,\nu 

\prime (s), \sansp \mu \varepsilon ,\nu 
\prime (s))D\ast ,\mu 

\nu (\sanst \mu \varepsilon ,\nu (s), \sansq 
\mu 
\varepsilon ,\nu (s)) = 1 .

(7.12)

The choice of \widetilde s\mu \varepsilon ,\nu is precisely motivated by the need to ensure the validity of (7.12);
in the lines below we are going to hint at the role of the term D\nu D

\ast ,\mu 
\nu , while that

of the contributions modulated by
\surd 
\mu will be evident in the proof of the upcoming

Theorem 7.9. Let us also mention in advance that, in analogy with section 6, we will
pass to the limit as \varepsilon , \nu , \mu \downarrow 0 in the energy balance

E\mu (\sanst 
\mu 
\varepsilon ,\nu (S), \sansq 

\mu 
\varepsilon ,\nu (S)) +

\int S

0

N\mu 
\varepsilon ,\nu (\sanst 

\mu 
\varepsilon ,\nu (\tau ), \sansq 

\mu 
\varepsilon ,\nu (\tau ), \sansq 

\mu 
\varepsilon ,\nu 

\prime (\tau ))d\tau 

= E\mu (0, \sansq 0) +

\int S

0

\partial tE\mu (\sanst 
\mu 
\varepsilon ,\nu (\tau ), \sansq 

\mu 
\varepsilon ,\nu (\tau )) \sanst 

\mu 
\varepsilon ,\nu 

\prime (\tau )d\tau .

(7.13)

The vanishing-viscosity contact potential for the perfectly plastic sys-
tem. Clearly, upon taking the limit of the viscous system as the parameters \varepsilon , \nu , \mu \downarrow 
0, we are in particular addressing the case in which the viscosity in the momentum
equation and in the plastic flow rule tends to zero with a higher rate than the vis-
cosity in the damage flow rule. Therefore, the analysis carried out in section 6.2
would lead us to expect, for the limiting system, a notion of BV solution featuring
a vanishing-viscosity potential (that will be denoted by M0

0,0 for consistency of nota-
tion), with the same structure as that from (6.40), but associated with the driving
energy E0 for the perfectly plastic system. Specifically, one would envisage to deal
with the quantity D\ast (t, q) := D\ast ,0(t, q) encompassing the (H1)\ast -norm of DuE0, and
the L2-distance of DpE0 from the stable set; cf. (6.40b). However, such quantities
are no longer well defined for the functional E0, defined on [0,T ] \times QPP (while the
L2-distance of DzE0 from the stable set still makes sense). Therefore, in order to
introduce the vanishing-viscosity potential M0

0,0 for the perfectly plastic system, we
first introduce suitable ``surrogates"" of the (H1)\ast -norm of DuE0, and the L2-distance
from the stable set of DpE0. In accord with the representation formulae from Lemma
3.6, we set, for (t, q) \in [0,T ]\times D and \sigma (t) = \BbbC (z)e(t) = \BbbC (z)(E(u+ w(t)) - p),

SuE0(t, q) := sup
\eta u\in H1

\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n)
\| \eta u\| (H1,\BbbD )\leq 1

\langle  - Div(\sigma (t)) - F (t), \eta u\rangle H1
\mathrm{D}\mathrm{i}\mathrm{r}(\Omega ;\BbbR n) ,(7.14a)

WpE0(t, q) := sup
\eta p\in L2(\Omega ;\BbbM n\times n

\mathrm{D} )
\| \eta p\| L2\leq 1

\Bigl( 
\langle \sigma D(t), \eta p\rangle L2(\Omega ;\BbbM n\times n

\mathrm{D} )  - H(z, \eta p)
\Bigr) 
.(7.14b)

We then set

(7.14c) D\ast (t, q) :=
\sqrt{} 
(SuE0(t, q))2 + (WpE0(t, q))2 .
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BV SOLUTIONS TO A SYSTEM FOR DAMAGE AND PLASTICITY 3481

Notice that the above expressions are well-defined since, by the definition of QPP,
e(t) and, a fortiori, \sigma (t) are elements in L2(\Omega ;\BbbM n\times n

sym ).
Thus, we are in a position to define the vanishing-viscosity contact potential

M0
0,0 : [0,T ]\times QPP \times [0, +\infty )\times QPP \rightarrow [0, +\infty ] via

(7.15a) M0
0,0(t, q, t

\prime , q\prime ) := R(z\prime ) +HPP(z, p
\prime ) +M

0,red
0,0 (t, q, t\prime , q\prime ),

where for q = (u, z, p) and q\prime = (u\prime , z\prime , p\prime ) we have
(7.15b)

if t\prime > 0 , M
0,red
0,0 (t, q, t\prime , q\prime ) :=

\left\{         
0 if

\left\{     
SuE0(t, q) = 0 ,\widetilde dL2( - DzE0(t, q), \partial R(0)) = 0 , and

WpE0(t, q) = 0 ,

+\infty otherwise,

(7.15c)

M
0,red
0,0 (t, q, 0, q\prime ) :=

\left\{     
D(u\prime , p\prime )D\ast (t, q) if z\prime = 0,

\| z\prime \| L2 \widetilde dL2(\Omega )( - DzE0(t, q), \partial R(0)) if D\ast (t, q) = 0,

+\infty if \| z\prime \| L2D\ast (t, q) > 0 .

In particular, observe that, once again, the expression of M0,red
0,0 (t, q, t\prime , q\prime ) for t\prime > 0

enforces a ``relaxed"" form of equilibrium for u with the condition SuE0(t, q) = 0, the

local stability condition \widetilde dL2( - DzE0(t, q), \partial R(0)) = 0 for z, and a ``relaxed"" form of
local stability for p via WpE0(t, q) = 0; cf. Lemma 7.4 and Remark 7.5 ahead. Recall-

ing that D(u\prime , p\prime ) :=
\sqrt{} 

\| u\prime \| 2H1+\| p\prime \| 2L2 (cf. (6.40b)), the product D(u\prime , p\prime )D\ast (t, q) is

well defined as soon as u\prime \in H1(\Omega ;\BbbR n) and p\prime \in L2(\Omega ;\BbbM n\times n
D ); otherwise, we intend

D(u\prime , p\prime )D\ast (t, q) := +\infty .
Admissible parameterized curves. We are now in a position to introduce

the class of parameterized curves enjoying the temporal and spatial integrability/
``regularity"" properties of the curves that are limits of reparameterized viscous solu-
tions as \varepsilon , \nu , \mu \downarrow 0. Basically, such properties are motivated by the a priori estimates
that the rescaled viscous solutions inherit from the normalization condition (7.12).
In particular, let us highlight that (7.12) provides a (uniform-in-time) bound for the
quantity D\nu (u

\mu 
\varepsilon ,\nu 

\prime , \sansp \mu \varepsilon ,\nu 
\prime )D\ast ,\mu 

\nu (\sanst \mu \varepsilon ,\nu , \sansq 
\mu 
\varepsilon ,\nu ). Recall that D\nu (u

\mu 
\varepsilon ,\nu 

\prime , \sansp \mu \varepsilon ,\nu 
\prime ) controls the H1-

norm of u\mu \varepsilon ,\nu 
\prime and the L2-norm of p\mu \varepsilon ,\nu 

\prime . Therefore, for the limiting parameterized
curves (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ), from such a bound one expects to infer, ``away"" from the
set where \{ D\ast ,\mu 

\nu (\sanst , \sansq ) = 0\} , additional spatial regularity for \sansu \prime and \sansp \prime in addition to
that provided by the estimate for \| \sansu \mu \varepsilon ,\nu \prime \| BD+\| \sansp \mu \varepsilon ,\nu \prime \| L1 . All of this is reflected in the
following definition, where we introduce the notion of admissibile parameterized curve
for the perfectly plastic system, in the spirit of [MRS16a, Definition 4.1].

Definition 7.2. A curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) : [0,S] \rightarrow [0,T ] \times QPP is an ad-
missibile parameterized curve for the perfectly plastic system if \sanst : [0,S] \rightarrow [0,T ] is
nondecreasing and

(\sanst , \sansu , \sansz , \sansp ) \in AC
\bigl( 
[0,S]; [0,T ]\times BD(\Omega )\times Hm(\Omega )\times Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D )
\bigr) 
,(7.16a)

\sanse = E(\sansu + w(\sanst )) - \sansp \in AC([0,S];L2(\Omega ;\BbbM n\times n
sym )) ,(7.16b)

(\sansu , \sansp ) \in ACloc(B
\circ ;H1(\Omega ;\BbbR n)\times L2(\Omega ;\BbbM n\times n

D )) ,(7.16c)
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3482 VITO CRISMALE AND RICCARDA ROSSI

where B\circ := \{ s \in (0,S) : D\ast (\sanst (s), \sansq (s)) > 0\} ,

\sanst is constant in every connected component of B\circ .(7.16d)

We will write (\sanst , \sansq ) \in A ([0,S]; [0,T ]\times QPP).

Let us point out that along an admissible curve s \mapsto \rightarrow (\sanst (s), \sansq (s)) we always have

D(\sansu \prime (s), \sansp \prime (s))D\ast (\sanst (s), \sansq (s)) <\infty for a.a. s \in B\circ .

Balanced Viscosity solutions arising in the joint vanishing-viscosity and
hardening limit and their properties. We are now in a position to give the
following definition.

Definition 7.3. A curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) : [0,S] \rightarrow [0,T ]\times QPP is a (parame-
terized) Balanced Viscosity (BV, for short) solution to the multirate system for perfect
plasticity and damage (1.1) if

- (\sanst , \sansq ) is an admissible parameterized curve in the sense of Definition 7.2;
- (\sanst , \sansq ) fulfills the energy-dissipation balance

(7.17)

E0(\sanst (s), \sansq (s)) +

\int s

0

M0
0,0(\sanst (\tau ), \sansq (\tau ), \sanst 

\prime (\tau ), \sansq \prime (\tau ))d\tau 

= E0(\sanst (0), \sansq (0)) +

\int s

0

\partial tE0(\sanst (\tau ), \sansq (\tau )) \sanst 
\prime (\tau )d\tau 

for all 0 \leq s \leq S.
We say that (\sanst , \sansq ) is nondegenerate if it fulfills

\sanst \prime + \| \sansz \prime \| H\mathrm{m}(\Omega ) + \| \sansp \prime \| L1(\Omega ;\BbbM n\times n
\mathrm{D} ) + \| \sanse \prime \| L2(\Omega ;\BbbM n\times n

\mathrm{s}\mathrm{y}\mathrm{m} ) > 0 a.e. in (0,S) .

As for BV solutions to the system with hardening, we have a characterization
of BV solutions in terms of the upper energy-dissipation estimate \leq in (7.17); cf.
Proposition 7.7 ahead. Such characterization will rely on the chain-rule estimate in
the forthcoming Lemma 7.6 that, in turn, hinges on the following technical result that
mimics [DMDM06, Proposition 3.5].

Lemma 7.4. Suppose that SuE0(t, q) = WpE0(t, q) = 0 at some (t, q) \in [0,T ] \times 
QPP. Then, for \sigma (t) = \BbbC (z)e(t), we have that
(7.18)
\sigma (t) \in Kz(\Omega ) ,  - div \sigma (t) = f(t) a.e. in \Omega , [\sigma (t)n] = g(t) H n - 1-a.e. on \Gamma Neu .

Proof. Since SuE0(t, q) = 0, we have that  - Div(\sigma (t)) = F (t) in H1
Dir(\Omega ;\BbbR n)\ast .

Recalling the form (2.39b) of F , we get that  - div(\sigma (t)) = f \in Ln(\Omega ;\BbbR n) a.e. in \Omega 
and [\sigma (t)n] = g(t) \in L\infty (\Gamma Neu;\BbbR n).

Moreover, since WpE0(t, q) = 0 and H(z, \cdot ) is positively 1-homogeneous, we get
that for every \eta p \in L2(\Omega ;\BbbM n\times n

D )

(7.19)  - H(z, - \eta p) \leq \langle \sigma D(t), \eta p\rangle L2 \leq H(z, \eta p)

(where \langle \cdot , \cdot \rangle L2 is shorthand for the duality in L2(\Omega ;\BbbM n\times n
D )). Then we may argue as

in the proof of [DMDM06, Proposition 3.5]: in (7.19) we choose the test function
\eta (x) := 1B(x)\xi , with B \subset \Omega an arbitrary Borel set and an arbitrary \xi \in \BbbM n\times n

D . In
this way, we get

 - H(z(x), - \xi ) \leq \sigma D(t,x) \cdot \xi \leq H(z(x), \xi ) for a.a. x in \Omega .

Then \sigma D(t,x) \in \partial pH(z(x), 0) = K(z(x)) for a.a. x \in \Omega , so that \sigma (t) \in Kz(\Omega ) and the
proof is concluded.
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Remark 7.5. Conditions (7.18), expressed along BV solutions, correspond to the
stability conditions in u and p (ev1) and (ev2) in the definition of the so-called
rescaled quasistatic viscosity evolutions in [CL16, Definition 5.1]. Moreover, the iden-

tity \widetilde dL2( - DzE0(t, q), \partial R(0)) = 0 corresponds to the Kuhn--Tucker inequality (ev3)
therein. Notice that these three conditions hold in the set \{ s \in (0,S) : \sanst \prime (s) > 0\} ; cf.
(7.15b).

We are now in a position to prove the chain-rule estimate involving M
0,red
0,0 .

Lemma 7.6. Along any admissible parameterized curve
(7.20)

(\sanst , \sansq ) \in A ([0,S]; [0,T ]\times QPP) such that M0
0,0(\sanst , \sansq , \sanst 

\prime , \sansq \prime )) < +\infty a.e. in (0,S),

we have that s \mapsto \rightarrow E0(\sanst (s), \sansq (s)) is absolutely continuous on [0,S]

and there holds for a.a.s \in (0,S)

 - d

ds
E0(\sanst (s), \sansq (s)) + \partial tE0(\sanst (s), \sansq (s)) \sanst 

\prime (s) \leq M0
0,0(\sanst (s), \sansq (s), \sanst 

\prime (s), \sansq \prime (s)) .

Proof. By the regularity of admissible parameterized curves we easily deduce that
the function s \mapsto \rightarrow E0(\sanst (s), \sansq (s)) is absolutely continuous on [0,S]. Its derivative is given
by (cf. Lemma 3.3)

d

ds
E0(\sanst (s), \sansq (s)) = \partial tE0(\sanst (s), \sansq (s)) \sanst 

\prime (s)+\langle DzE0(\sanst (s), \sansq (s)), \sansz 
\prime (s)\rangle Hm

 - \langle σD(s) | \sansp \prime (s)\rangle  - \langle \widehat Div(σ(s))+F (\sanst (s)), \sansu \prime (s)\rangle BD

for \partial tE0(\sanst (s), \sansq (s)) = \langle σ(s), E(w\prime (\sanst (s)))\rangle L2  - \langle F \prime (\sanst (s)), \sansu (s) + w(\sanst (s))\rangle BD  - \langle F (\sanst (s)),
w\prime (\sanst (s))\rangle BD. Therefore, (7.20) follows if we prove that
(7.21)

 - \langle DzE0(\sanst (s), \sansq (s)), \sansz 
\prime (s)\rangle H\mathrm{m} + \langle σD(s) | \sansp \prime (s)\rangle + \langle \widehat Div(σ(s))+F (\sanst (s)), \sansu \prime (s)\rangle BD

\leq M0
0,0(\sanst (s), \sansq (s), \sanst 

\prime (s), \sansq \prime (s)).

Let us then show (7.21). For a.e. s \in (0,S) it holds that
(7.22)

 - \langle DzE0(\sanst (s), \sansq (s)), \sansz 
\prime (s)\rangle H\mathrm{m} \leq R(\sansz \prime (s)) + \| \sansz \prime (s)\| L2 \widetilde dL2(\Omega )( - DzE0(\sanst (s), \sansq (s)), \partial R(0))

(cf. the calculations in the proof of Lemma 6.5). Let us estimate the two remaining
terms, distinguishing the two cases of \sanst \prime (s) = 0 and \sanst \prime (s) > 0.

If \sanst \prime (s) = 0 and s \in B\circ , since \sansu \prime (s) \in H1(\Omega ;\BbbR n) and \sansp \prime (s) \in L2(\Omega ;\BbbM n\times n
D ) a.e. in

B\circ we have that

 - \langle \widehat Div(σ(s)) + F (\sanst (s)), \sansu \prime (s)\rangle BD =  - \langle Div(σ(s)) + F (\sanst (s)), \sansu \prime (s)\rangle H1

\leq SuE0(\sanst (s), \sansq (s)) \| \sansu \prime (s)\| H1 ,
(7.23)

\langle σD(s) | \sansp \prime (s)\rangle  - HPP(\sansz (s), \sansp 
\prime (s)) \leq WpE0(\sanst (s), \sansq (s)) \| \sansp \prime (s)\| L2 .(7.24)

If \sanst \prime (s) = 0 and s /\in B\circ , then SuE0(\sanst (s), \sansq (s)) = WpE0(\sanst (s), \sansq (s)) = 0, so that
Lemma 7.4 together with (7.9) imply that

(7.25)  - \widehat Div(σ(s)) = F (\sanst (s)) in BD(\Omega )\ast , \langle σD(s) | \sansp \prime (s)\rangle \leq HPP(\sansz (s), \sansp 
\prime (s)) .

If \sanst \prime (s) > 0, again we have (7.25).
Collecting (7.22), (7.23), (7.24), (7.25), recalling the definition of M0

0,0 (7.15), and
employing the Cauchy--Schwarz inequality, we deduce (7.21) and then conclude the
proof.
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As a straightforward corollary of Lemma 6.17, we have the desired characteriza-
tion of BV solutions.

Proposition 7.7. For an admissible parameterized curve (\sanst , \sansq ) \in A ([0,S]; [0,T ]
\times QPP) (in the sense of Definition 7.2) the following properties are equivalent:

1. (\sanst , \sansq ) is a BV solution to the multirate system for perfect plasticity;
2. (\sanst , \sansq ) fulfills the upper estimate \leq in (7.17).

We now give a lower semicontinuity result that will be useful in the proof of
Theorem 7.9.

Lemma 7.8. Let tk \rightarrow t in [0,T ], \mu k \rightarrow 0, (qk)k = (uk, zk, pk)k \subset QPP such that
the following convergences hold as k \rightarrow +\infty : qk \rightharpoonup q = (u, z, p) in QPP, e(tk) =
E(uk + w(tk))  - pk \rightarrow e(t) = E(u + w(t))  - p in L2(\Omega ;\BbbM n\times n

sym ), and \mu k pk \rightarrow 0 in

L2(\Omega ;\BbbM n\times n
D ). Then

SuE0(t, q) \leq lim inf
k\rightarrow +\infty 

\| DuE\mu k
(tk, qk)\| (H1,\BbbD )\ast ,(7.26a)

\widetilde dL2( - DzE0(t, q), \partial R(0)) \leq lim inf
k\rightarrow +\infty 

\widetilde dL2( - DzE\mu k
(tk, qk), \partial R(0)) ,(7.26b)

WpE0(t, q) \leq lim inf
k\rightarrow +\infty 

dL2( - DpE\mu k
(tk, qk), \partial \pi H(zk, 0)) .(7.26c)

Proof. It is immediate to see that, under the assumed convergences, setting
\sigma (tk) = \BbbC (zk)e(tk) and \sigma (t) = \BbbC (z)e(t), for fixed \eta u \in H1(\Omega ;\BbbR n) we have that

\langle  - Div(\sigma (tk)) - F (tk), \eta u\rangle H1(\Omega ;\BbbR n) \rightarrow \langle  - Div(\sigma (t)) - F (t), \eta u\rangle H1(\Omega ;\BbbR n) .

Furthermore, for fixed \eta p \in L2(\Omega ;\BbbM n\times n
D ) there holds

\langle \sigma D(tk) - \mu k pk, \eta p\rangle L2(\Omega ;\BbbM n\times n
\mathrm{D} )  - H(zk, \eta p) \rightarrow \langle \sigma D(t), \eta p\rangle L2(\Omega ;\BbbM n\times n

\mathrm{D} )  - H(z, \eta p) .

Passing to the supremums, we obtain (7.26a) and (7.26c). As for (7.26b), this follows
as in (3.26b) since one only employs the convergence zk \rightharpoonup z in Hm(\Omega ), encompassed
in the hypothesis qk \rightharpoonup q in QPP.

Existence of BV solutions to the multirate system for perfect plasticity.
We are now ready to state and prove our existence result for BV solutions in the sense
of Definition 7.3. In order to simplify notation, we fix vanishing sequences (\varepsilon k)k, (\nu k)k,
(\mu k)k with \nu k \leq \mu k and denote by (\sanst k)k, (\sansq k)k, (\sanse k)k, (σk)k the sequences (\sanst \mu k

\varepsilon k,\nu k
)k,

(\sansq \mu k
\varepsilon k,\nu k

)k, (\sanse 
\mu k
\varepsilon k,\nu k

)k, (σ
\mu k
\varepsilon k,\nu k

)k, respectively.

Theorem 7.9. Under the assumptions of section 2 and (4.14) for all vanishing
sequences (\varepsilon k)k, (\nu k)k, (\mu k)k with \nu k \leq \mu k for every k \in \BbbN there exist a (not relabeled)
subsequence (\sanst k, \sansq k) and a curve (\sanst , \sansq ) = (\sanst , \sansu , \sansz , \sansp ) \in A ([0,S]; [0,T ]\times QPP) such that

1. for all s \in [0,S] the following convergences hold as k \rightarrow +\infty :

\sanst k(s) \rightarrow \sanst (s) , \sansu k(s)
\ast 
\rightharpoonup \sansu (s) in BD(\Omega ) , \sansz k(s)\rightharpoonup \sansz (s) in Hm(\Omega ) ,

\sanse k(s)\rightharpoonup \sanse (s) in L2(\Omega ;\BbbM n\times n
sym ) , \sansp k(s)\rightharpoonup \sansp (s) in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) ;

(7.27)

2. there exists C > 0 such that for a.e. s \in (0,S) there holds

(7.28)
\sanst \prime (s) + \| \sansu \prime (s)\| BD(\Omega )+\| \sansz \prime (s)\| H\mathrm{m}(\Omega )+\| \sansp \prime (s)\| M\mathrm{b}(\Omega \cup \Gamma \mathrm{D}\mathrm{i}\mathrm{r};\BbbM n\times n

\mathrm{D} )

+ \| \sanse \prime (s)\| L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} )+D(\sansu \prime (s), \sansp \prime (s))D\ast (\sanst (s), \sansq (s)) \leq C ;
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3. (\sanst , \sansq ) is a Balanced Viscosity solution to the multirate system for perfect plas-
ticity (1.1) in the sense of Definition 7.3.

Proof. As done for Theorems 6.8 and 6.13, we divide the proof into three steps.
Step 1: Compactness. Let (\sanst k, \sansq k)k be a sequence as in the statement. It

follows from the normalization condition (7.12) that there exists C > 0 such that for
a.a. s \in (0,S)

(7.29)
\sanst \prime k(s) + \| \sansu \prime k(s)\| W 1,1(\Omega ;\BbbR n)+\| \sansz \prime k(s)\| H\mathrm{m}(\Omega )+\| \sansp \prime k(s)\| L1(\Omega ;\BbbM n\times n

\mathrm{D} )

+
\surd 
\mu k \| \sansp \prime k(s)\| L2(\Omega ;\BbbM n\times n

\mathrm{D} )+\| \sanse \prime k(s)\| L2(\Omega ;\BbbM n\times n
\mathrm{s}\mathrm{y}\mathrm{m} ) \leq C ,

where the estimate for \| \sansu \prime k\| W 1,1 (recall that \sansu \prime k \in H1(\Omega ;\BbbR n)) ensues from the fact
that E(\sansu \prime k) = \sanse \prime k + \sansp \prime k is bounded in L1(\Omega ;\BbbM n\times n

sym ) combined with Korn's inequality.
Clearly, in the estimates for \sansu k and \sansp k we may pass from W 1,1(\Omega ;\BbbR n) and

L1(\Omega ;\BbbM n\times n
D ) to the (duals of separable spaces) BD(\Omega ) and Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ).
Therefore, we are in a position to apply the compactness results from [Sim87] to get
that there exists (\sanst , \sansq ) \in W 1,\infty ([0,S]; [0,T ]\times BD(\Omega )\times Hm(\Omega )\times Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D )),
and \sanse \in W 1,\infty (0,S;L2(\Omega ;\BbbM n\times n

sym )), such that, along a not relabeled subsequence,

\sanst k
\ast 
\rightharpoonup \sanst in W 1,\infty (0,S; [0,T ]) , \sansu k

\ast 
\rightharpoonup \sansu in W 1,\infty (0,S; BD(\Omega )) ,

(7.30a)

\sansz k
\ast 
\rightharpoonup \sansz in W 1,\infty (0,S;Hm(\Omega )) , \sansz k \rightarrow \sansz in C0([0,S]; C0(\Omega )) ,

(7.30b)

\sanse k
\ast 
\rightharpoonup \sanse in W 1,\infty (0,S;L2(\Omega ;\BbbM n\times n

sym )) ,

(7.30c)

\sansp k
\ast 
\rightharpoonup \sansp in W 1,\infty (0,S;Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D )) .

(7.30d)

It can be checked that \sanse = E(\sansu +w(\sanst )) - \sansp . In particular, the pointwise convergences
(7.27) hold. Notice also that

(7.30e)
\surd 
\mu k \sansp k

\ast 
\rightharpoonup 0 in W 1,\infty (0,S;L2(\Omega ;\BbbM n\times n

D )) ,

so that for every s \in [0,S]

(7.30f)
\surd 
\mu k \sansp k(t)\rightharpoonup 0 in L2(\Omega ;\BbbM n\times n

D ) .

Next, we introduce the functions s - and s+ and the sets S, U in the same way
as in Step 1 in Theorem 6.8 (cf. (6.25)); we readily deduce the following convergences
for all t \in [0,T ] :

u\mu k
\varepsilon k,\nu k

(t)
\ast 
\rightharpoonup \sansu (s - (t)) = \sansu (s+(t)) in BD(\Omega ) ,(7.31a)

z\mu k
\varepsilon k,\nu k

(t)\rightharpoonup \sansz (s - (t)) = \sansz (s+(t)) in H
m(\Omega ) ,(7.31b)

p\mu k
\varepsilon k,\nu k

(t)
\ast 
\rightharpoonup \sansp (s - (t)) = \sansp (s+(t)) in Mb(\Omega \cup \Gamma Dir;\BbbM n\times n

D ) .(7.31c)

Step 2: Finiteness of M
\bfzero ,\bfr \bfe \bfd 
\bfzero ,\bfzero (\bfsanst (\bfittau ), \bfsansq (\bfittau ), \bfsanst \prime (\bfittau ), \bfsansq \prime (\bfittau )) when \bfsanst \prime (\bfittau ) > 0. In

view of the definition (7.15) of M0,red
0,0 , the function \tau \mapsto \rightarrow M

0,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))

is finite in the set A := \{ s \in [0,S] : \sanst \prime (s) > 0\} if and only if
(7.32)

SuE0(\sanst (\tau ), \sansq (\tau )) = 0 ,  - DzE0(\sanst (\tau ), \sansq (\tau )) \in \partial R(0) , WpE0(\sanst (\tau ), \sansq (\tau )) = 0 for a.a. \tau \in A .
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By (3.24) we obtain
(7.33)

D\ast ,\mu k
\nu k

(\sanst k(\tau ), \sansq k(\tau )) = D\ast ,\mu k
\nu k

(\sanst k(\tau ), qk(\sanst k(\tau )))

= \varepsilon k

\sqrt{} 
\nu k\| u\prime k(\sanst k(\tau ))\| 2H1,\BbbD +\| z\prime k(\sanst k(\tau ))\| 2L2+\nu k\| p\prime k(\sanst k(\tau ))\| 2L2

=
\varepsilon k

\sanst \prime k(\tau )

\sqrt{} 
\nu k\| \sansu \prime k(\tau )\| 2H1,\BbbD +\| \sansz \prime k(\tau )\| 2L2+\nu k\| \sansp \prime k(\tau )\| 2L2

\leq \varepsilon k
\sanst \prime k(\tau )

for a.a. \tau \in (0,S),

where in the last estimate we exploited the normalization condition (7.12) and the
fact that \nu k \leq \mu k. Moreover, one sees as in (6.28) that lim supk\rightarrow +\infty \sanst \prime k(\tau ) > 0 for
a.e. \tau \in A. Since \varepsilon k, \nu k \downarrow 0, by Lemma 7.8 (notice that its assumptions are satisfied
by the convergences (7.27) and (7.30f), also recalling that \mu k \rightarrow 0) and an argument
analogous to that in Step 2 of Theorem 6.13 we deduce (7.32).

Step 3: The energy-dissipation upper estimate (7.17). In view of the
characterization provided by Proposition 7.7, to conclude that (\sanst , \sansq ) is a BV solution
in the sense of Definition 7.3 it is sufficient to show that (\sanst , \sansq ) is an admissible pa-
rameterized curve as in Definition 7.2 and that it fulfills (7.17) as an upper estimate.
First of all, we show that

(7.34) \sansz \prime (\tau )D\ast (\sanst (\tau ), \sansq (\tau )) = 0 for a.a. \tau \in (0,S) .

This follows arguing similarly to what was done in Step 2 of Theorem 6.13. We start
from (6.46) and then observe that (cf. (6.47))

(7.35) lim inf
k\rightarrow +\infty 

D\ast ,\mu k(\sanst k(\tau ), \sansq k(\tau )) \geq D\ast (\sanst (\tau ), \sansq (\tau )) \forall \tau \in [0,S],

due to (7.27), (7.30f), (7.26a), and (7.26c). Then, applying Lemma B.1 with the
analogous choices and arguments as in the proofs of Theorems 6.8 and 6.13, also
relying on Lemma 7.8 we conclude that
(7.36)\int 

B\circ 
\| \sansz \prime (\tau )\| L2 D\ast (\sanst (\tau ), \sansq (\tau ))d\tau \leq lim inf

k\rightarrow \infty 

\int 
B\circ 

\| \sansz \prime k(\tau )\| L2 D\ast ,\mu k(\sanst k(\tau ), \sansq k(\tau ))d\tau 

\leq 
\surd 
\nu k lim inf

k\rightarrow \infty 
N\mu ,red

\varepsilon k,\nu k
(\sanst k(\tau ), \sansq k(\tau ), \sansq 

\prime 
k(\tau ))d\tau = 0

with B\circ from (7.16c). Then, (7.34) ensues.
In analogy with (6.45), we also introduce the set

C\circ := \{ \tau \in [0,S] : \widetilde dL2(\Omega )( - DzE0(\sanst (\tau ), \sansq (\tau )), \partial R(0)) > 0\} .(7.37)

By Lemma B.2 applied with the choices X := [0, 1]\times [0,T ]\times QPP, I := [0,S], B := B\circ ,
vk(\tau ) := (\mu k, \sanst k(\tau ), \sansq k(\tau )), v(\tau ) := (\mu , \sanst (\tau ), \sansq (\tau )), and with the function f : X \rightarrow 
[0, +\infty ] defined by

f(\mu , t, q) :=

\Biggl\{ 
D\ast 

\mu (t, q) if \mu > 0,

D\ast (t, q) if \mu = 0;

indeed, thanks to Lemma 7.8 the function f is weakly\ast lower semicontinuous on
X := [0, 1]\times [0,T ]\times QPP. Thus, we obtain that for any compact subset K\circ of B\circ 

there exist c > 0 and k \in \BbbN such that

D\ast ,\mu k(\sanst k(\tau ), \sansq k(\tau )) \geq c for every k \geq k , \tau \in K\circ .
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By the normalization condition (7.12) (recall the notation for \sanst k, \sansq k) we obtain that
for k \geq k

D(\sansu \prime k(\tau ), \sansp 
\prime 
k(\tau )) \leq 

1

c
for a.a. \tau \in K\circ ,

so that \sansu k and \sansp k are equi-Lipschitz inK\circ with values in H1(\Omega ;\BbbR n) and L2(\Omega ;\BbbM n\times n
D ),

respectively. Therefore, we deduce that \sansu \in W 1,\infty (K\circ ;H1(\Omega ;\BbbR n)) and that \sansp \in 
W 1,\infty (K\circ ;L2(\Omega ;\BbbM n\times n

D )). By the arbitrariness of K\circ we conclude that (\sansu , \sansp ) \in 
W 1,\infty 

loc (B\circ ;H1(\Omega ;\BbbR n)\times L2(\Omega ;\BbbM n\times n
D )), and then (\sanst , \sansq ) is an admissible parameterized

curve in the sense of Definition 7.2. Moreover, again for every K\circ \Subset B\circ we have that
the sequence (D(\sansu \prime k, \sansp 

\prime 
k))k converges weakly to some d in L\infty (K\circ ), with d \geq D(\sansu \prime , \sansp \prime )

a.e. in K\circ . Then, we are again in a position to apply Lemma B.1, deducing (in view
of the arbitrariness of K\circ \subset B\circ )

(7.38)

\int 
B\circ 

D(\sansu \prime (\tau ), \sansp \prime (\tau ))D\ast (\sanst (\tau ), \sansq (\tau ))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
B\circ 

D(\sansu \prime k(\tau ), \sansp 
\prime 
k(\tau ))D

\ast ,\mu k(\sanst k(\tau ), \sansq k(\tau ))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
B\circ 

N\mu k,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sanst 
\prime 
k(\tau ), \sansq 

\prime 
k(\tau ))d\tau ,

the last estimate due to (6.51). Then, estimate (7.28) follows by lower semicontinuity
arguments.

Finally, we repeat the arguments for (6.54), obtaining that\int 
(0,S)\setminus B\circ 

M
0,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau 

=

\int 
C\circ \setminus B\circ 

\| \sansz \prime (\tau )\| L2 \widetilde dL2(\Omega )( - DzE0(\sanst (\tau ), \sansq (\tau )), \partial R(0))d\tau 

(1)

\leq lim inf
k\rightarrow \infty 

\int 
C\circ \setminus B\circ 

\| \sansz \prime k(\tau )\| L2 \widetilde dL2(\Omega )( - DzE\mu k
(\sanst k(\tau ), \sansq k(\tau )), \partial R(0))d\tau 

\leq lim inf
k\rightarrow +\infty 

\int 
C\circ \setminus B\circ 

N\mu k,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau .

(7.39)

Observe that (1) follows from the very same argument as in the proof of Theorem 6.13,
now employing (7.26b) in place of (3.26b).

It follows from (7.38) and (7.39), also recalling the definition of B\circ , that\int S

0

M
0,red
0,0 (\sanst (\tau ), \sansq (\tau ), \sanst \prime (\tau ), \sansq \prime (\tau ))d\tau \leq lim inf

k\rightarrow +\infty 

\int S

0

N\mu k,red
\varepsilon k,\nu k

(\sanst k(\tau ), \sansq k(\tau ), \sansq 
\prime 
k(\tau ))d\tau .

Combining the above lower semicontinuity estimate with the limit passage in the
terms with driving energy and in the power term (which is standard and goes as in
section 6), we succeed in taking the limit in the energy-dissipation inequality (6.9)
to conclude the desired validity of the energy-dissipation upper estimate \leq in (7.17).
This finishes the proof of Theorem 7.9.

Appendix A. Discrete Gronwall-type lemmas. Here we collect, for the
reader's convenience, the discrete Gronwall-type results that have been exploited in
the proof of the a priori estimates from Proposition 4.3.
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Lemma A.1. Let B, \tau > 0, N\tau \in \BbbN , (ak)N\tau 

k=1, (bk)
N\tau 

k=1 \subset [0, +\infty ) fulfill

ak \leq B +

k - 1\sum 
j=0

ajbj \forall k \in \{ 1, . . . ,N\tau \} .

Then, there holds

(A.1) ak \leq B exp

\left(  k - 1\sum 
j=0

bj

\right)  \forall k \in \{ 1, . . . ,N\tau \} .

Lemma A.2 (see [RS06, Lemma 4.5]). Let N\tau \in \BbbN and b, \lambda , \Lambda \in (0,+\infty ) fulfill
1 - b \geq 1

\lambda > 0; let (ak)
N\tau 

k=1 \subset [0, +\infty ) satisfy

ak \leq \Lambda + b
k\sum 

j=1

aj \forall k \in \{ 1, . . . ,N\tau \} .

Then, there holds

(A.2) ak \leq \lambda \Lambda exp(\lambda bk) \forall k \in \{ 1, . . . ,N\tau \} .

The following lemma generalizes [KRZ13, Lemma 4.1], and its proof is based on
the calculations developed in for [CL16, Proposition 3.8] (see also [ACO19, Proposi-
tion 3.5]); that it is why we will only partially carry out the argument, and we will
refer to [CL16] for more details.

Lemma A.3. Let \{ ak\} N\tau 

k=0, \{ Mk\} N\tau 

k=1, \{ rk\} N\tau 

k=1, \{ ck\} N\tau 

k=0 \rho and \eta be nonnegative
numbers, \varepsilon , \tau > 0 with \gamma := \kappa 1\tau /\varepsilon \leq 1 for some \kappa 1 > 0 and N\tau \in \BbbN , N\tau \tau = T .
Assume that a0 = 0, rk \leq \kappa 2ak for some \kappa 2 > 1 and that for 1 \leq k \leq N\tau it holds that

ak(ak  - ak - 1) + \gamma a2k + \gamma M2
k \leq \eta 2\gamma 

\Bigl( 
1+c2k+

\delta 1,k
\tau \varepsilon \rho 

2
\Bigr) 
+ \gamma akrk.(A.3)

Then, if \gamma = \kappa 1\tau /\varepsilon \leq 1/(2\kappa 2), there exists a constant C = C(\eta ,T ) > 0 not depending
on any of the other above quantities such that

N\tau \sum 
k=1

\tau Mk \leq C

\Biggl( 
T + \rho +

N\tau \sum 
k=1

\tau c2k +

N\tau \sum 
k=1

\tau rk

\Biggr) 
.(A.4)

Proof. For 2 \leq k \leq N\tau , we can recast (A.3) in the same form as [CL16, inequality
between (3.35) and (3.36)], namely

2a\prime k(a
\prime 
k  - ak - 1\prime ) + 2\zeta (a\prime k)

2 + (b\prime k)
2 \leq (c\prime k)

2 + 2a\prime kd
\prime 
k .

For this, it is sufficient to replace ak, \gamma , \gamma M
2
k , \eta 

2\gamma (1 + c2k), and rk in (A.3) (observe
that \delta 1,k = 0 for k \in \{ 2, . . . ,N\tau \} ), by, respectively, a\prime k/

\surd 
2, \zeta = C\tau /\varepsilon , (b\prime k)

2, (c\prime k)
2,

and d\prime k/
\surd 
2, with a universal constant C. Following exactly the argument in [CL16,

Proposition 3.8] and then rewriting [CL16, (3.41)] in the present setup, we get that

(A.5)

N\tau \sum 
k=2

\tau Mk \leq C

\Biggl( 
T + \varepsilon a1 +

N\tau \sum 
k=2

\tau c2k +

N\tau \sum 
k=2

\tau rk

\Biggr) 
.
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Let us now estimate \tau M1 and \varepsilon a1 by (A.3) for k = 1. Notice that, since a0 = 0 and

using the cauchy inequality 2a1r1 \leq a21 + r21, we derive that M2
1 \leq \eta 2(1+c21+

\rho 2

\tau \varepsilon ) + r21.
Multiplying by \tau 2, recalling \tau < \varepsilon , and taking the square root we obtain, for a suitable
C, that

(A.6) \tau M1 \leq C\tau (1 + c1 + r1) + \varrho \leq C\tau (2 + c21 + r1) + \varrho .

We are then left to estimate \varepsilon a1. We again start from (A.3) for k = 1: recalling that
a0 = 0, we then have

(A.7) a21 + \gamma a21 + \gamma M2
1 \leq \eta 2\gamma 

\biggl( 
1 + c21 +

1

\tau \varepsilon 
\rho 2
\biggr) 
+ \gamma a1r1 .

Then, we use the conditions rk \leq \kappa 2ak and k1\tau /\varepsilon < 1/(2k2) to get \gamma a1 r1 \leq a2
1

2 ,
which can be absorbed into the left-hand side of (A.7). Multiplying by \varepsilon 2 we get
\varepsilon 2a21 \leq c2\tau \varepsilon (1 + c21) + c2\varrho 2 for some c > 0, so that

(A.8) \varepsilon a1 \leq C

\biggl( 
1 +

\sqrt{} 
\varepsilon \tau c21 + \varrho 

\biggr) 
\leq C(2 + \varepsilon \tau c21 + \varrho ) .

Collecting (A.5), (A.6), and (A.8), up to modifying C we conclude (A.4).

Appendix B. Two abstract results. We first recall an abstract lemma from
[MRS16a] and [MRS12b] (to which we refer for the proof).

Lemma B.1. Let I be a measurable subset of \BbbR and let hn, h, mn, m : I \rightarrow [0, +\infty ]
be measurable functions for n \in \BbbN that satisfy

(B.1) h(x) \leq lim inf
n\rightarrow +\infty 

hn(x) for L1-a.e. x \in I, mn \rightharpoonup m in L1(I) .

Then \int 
I

h(x)m(x)dx \leq lim inf
n\rightarrow +\infty 

\int 
I

hn(x)mn(x)dx .

Let us now consider a result that is applied in the proof of Theorem 7.9.

Lemma B.2. Let X = Y \ast , for Y a separable Banach space, I = [a, b] \subset \BbbR ,
f : X \rightarrow [0, +\infty ] be weakly\ast lower semicontinuous, and let (vk)k be a sequence of
functions vk : I \rightarrow X satisfying

(B.2)
\exists C > 0 \forall t, s \in I : \| vk(t) - vk(s)\| X \leq C| t - s| ,

vk(t)
\ast 
\rightharpoonup v(t) in X \forall t \in I .

Then, for every compact subset K \subset B := \{ t \in I : f(v(t)) > 0\} there exist c > 0 and
k \in \BbbN such that

(B.3) f(vk(t)) \geq c for every k \geq \=k, t \in K .

Proof. By (B.2) and the pointwise weak\ast convergence to v, we deduce that

(B.4) \| v(t) - v(s)\| X \leq C| t - s| for every t, s \in I,

that the set V :=
\bigcup 

k vk(I) \cup v(I) is bounded in X and that

(B.5) lim
k\rightarrow +\infty 

sup
t\in I

dw\ast (vk(t), v(t)) = 0
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with dw\ast the metric inducing the weak\ast topology on the bounded set V (here we use
the separability of Y and refer to the compactness arguments by [Sim87]).

Now let K be as in the statement. By (B.4) we get that v(K) is compact in X,
and since K \subset B we have that v(K) \subset \{ f > 0\} .

= \{ f > 0\} the set \{ x \in X : f(x) > 0\} .
Then we can find an open set A such that v(K) \subset A \subset A \subset \{ f > 0\} . We deduce,
employing the lower semicontinuity of f , that

(B.6) f(A) \subset [c, +\infty ]

for a suitable constant c > 0. Thanks to (B.5) and the fact that dw\ast (v1, v2) \leq 
C\ast \| v1 - v2\| X , for a suitable C\ast and every v1 and v2 \in V , choosing \varepsilon small enough we
get that vk(K) \subset A for k \geq k. Therefore, by (B.6) we conclude (B.3).

Acknowledgment. The authors are very grateful to Giuliano Lazzaroni for
several interesting discussions and suggestions.
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