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We study energy minimization of a continuum Landau-de 
Gennes energy functional for nematic liquid crystals, in a 
three-dimensional axisymmetric domain and in a restricted 
class of S1-equivariant (i.e., axially symmetric) configurations. 
We assume smooth and nonvanishing S1-equivariant (e.g. 
homeotropic) Dirichlet boundary condition and a physically 
relevant norm constraint (the Lyuksyutov constraint) in the 
interior. Relying on our previous results in the nonsymmetric 
setting [16], we prove partial regularity of minimizers away 
from a possible finite set of interior singularities located 
on the symmetry axis. For a suitable class of domains and 
boundary data, we show that for smooth minimizers (torus 
solutions) the level sets of the signed biaxiality are generically 
finite unions of tori of revolution. Concerning nonsmooth 
minimizers (split solutions), we characterize their asymptotic 
behavior around any singular point in terms of explicit S1-
equivariant harmonic maps into S4, whence the generic level 
sets of the signed biaxiality contains invariant topological 
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spheres. Finally, in the model case of a nematic droplet, 
we provide existence of torus solutions, at least when the 
boundary data are suitable uniaxial deformations of the radial 
anchoring, and existence of split solutions for boundary data 
which are suitable linearly full harmonic spheres.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

In this second part of our series [16,17], we focus on the regularity and topological prop-
erties of minimizers of the Landau-de Gennes (LdG) energy under the norm constraint 
considered in [16] and a further symmetry constraint. We consider minimizers of the en-
ergy functional over a restricted class of axisymmetric (more precisely, S1-equivariant) 
configurations which are subject to a smooth axisymmetric Dirichlet boundary condition. 
Before entering into a detailed discussion, let us briefly review for convenience the math-
ematical aspects of the LdG model under investigation, notations, and basic terminology 
from our first part [16].

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The Landau-de Gennes theory is a continuum theory aimed to describe macroscopic 
configurations of nematic liquid crystals. The order parameter used to represent a given 
configuration is a family of second order tensors usually called Q-tensors. Denoting by 
M3×3(R) the vector space made of 3 × 3-matrices with real entries, Q-tensors are the 
elements of the 5-dimensional subspace

S0 :=
{
Q = (Qij) ∈ M3×3(R) : Q = Qt , tr(Q) = 0

}
,

where Qt denotes the transpose of Q, and tr(Q) the trace of Q. The space S0 is en-
dowed with the Hilbertian structure given by the usual (Frobenius) inner product. By 
symmetry of the admissible matrices, the inner product and the induced norm reduce 
to P : Q :=

∑3
i,j=1 PijQij = tr(PQ) and |Q|2 = tr(Q2). Choosing an orthonormal ba-

sis, S0 is identified with the Euclidean R5, and then 
{
Q ∈ S0 : |Q| = 1

}
= S4 is the 

4-dimensional sphere.
Within the configuration space S0, one can distinguish three mutually distinct phases: 

(i) the isotropic phase, Q = 0; (ii) the uniaxial phase, Q has exactly one double eigen-
value; (iii) the biaxial phase, Q has three distinct eigenvalues. Following [16], we shall 
measure biaxiality through the signed biaxiality parameter β̃ defined for Q ∈ S0 \ {0} by

β̃(Q) :=
√

6 tr(Q3)
|Q|3 ∈ [−1, 1] . (1.1)

If Q ∈ S0 has spectrum σ(Q) = {λ1, λ2, λ3} ⊆ R with eigenvalues in increasing order, 
then β̃(Q) = ±1 iff the minimal/maximal eigenvalue is double (purely positive/negative 
uniaxial phase), β̃(Q) = 0 iff λ2 = 0 and λ1 = −λ3 &= 0 (maximally biaxial phase), 
and Q = 0 iff λ1 = λ2 = λ3 (isotropic phase). Given a continuous configuration map 
Q : Ω → S0 defined on a closed domain Ω ⊆ R3, we have shown in [16] how the topology 
and the geometry of Q can be studied by means of β̃, or more precisely through the 
biaxiality regions, i.e., the closed subsets of Ω of the form

{β ! t} :=
{
x ∈ Ω : β̃ ◦Q(x) ! t

}
and {β " t} :=

{
x ∈ Ω : β̃ ◦Q(x) " t

}
, t ∈ [−1, 1] ,

(1.2)
and the corresponding biaxial surfaces {β = t} :=

{
x ∈ Ω : β̃ ◦ Q(x) = t

}
.

For a bounded open set Ω ⊆ R3 with smooth boundary, the Landau-de Gennes energy 
of a configuration Q ∈ W 1,2(Ω; S0) we consider is of the form

FLG(Q) =
∫

Ω

L

2 |∇Q|2 + FB(Q) dx , (1.3)

i.e., with the one-constant approximation for the elastic energy density and parameter 
L > 0. The bulk potential FB is the quartic polynomial

FB(Q) := −a2

2 tr(Q2) − b2

3 tr(Q3) + c2

4
(
tr(Q2)

)2
, (1.4)
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where a, b and c are non zero material-dependent constants. As usual, we can subtract-off 
an additive constant and introduce the modified bulk potential

F̃B(Q) := FB(Q) − min
S0

FB , (1.5)

which is nonnegative and has 0 as minimum value. The minimum is achieved when 
the signed biaxiality is maximal and F̃B(Q) = 0 iff Q ∈ Qmin, i.e., Q belongs to the 
vacuum-manifold of positive uniaxial matrices

Qmin =
{
Q ∈ S0 : Q = s+

(
n⊗ n− 1

3I
)

, n ∈ S2
}

, (1.6)

where

s+ := b2 +
√
b4 + 24a2c2

4c2

is the positive root of the equation 2c2t2 − b2t − 3a2 = 0. The new energy functional 
corresponding to the modified bulk potential (1.5) is

F̃LG(Q) :=
∫

Ω

L

2 |∇Q|2 + F̃B(Q) dx ,

so that it is the sum of two nonnegative terms penalizing both spatial variations and 

deviations from the vacuum manifold Qmin ⊆
√

2
3s+S4. Observe that Qmin + RP 2 =

S2/{±1}, where RP 2 is the real projective plane, and as a consequence, Qmin has non-
trivial topology. Both the homotopy groups π2(Qmin) = Z and π1(Qmin) = Z2 play a 
role in the presence of defects, especially when minimizing the energy in the restricted 
class of axisymmetric configurations introduced below.

In continuation to [16], we still assume in this article that the norm of admissible 
configurations is prescribed to be the constant value proper of the vacuum manifold [44]
(see also [16] and the references therein), i.e.,

|Q(x)| ≡
√

2
3 s+ (Lyuksyutov constraint) . (1.7)

Following [16], we rescale any configuration as Q = s+

√
2
3Q, and under the Lyuksyutov 

constraint the energy functional takes the form

F̃LG(Q) = 2
3s

2
+LEλ(Q)

where now Q ∈ W 1,2(Ω; S4),
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Eλ(Q) :=
∫

Ω

1
2 |∇Q|2 + λW (Q) dx , (1.8)

and λ :=
√

2
3
b2

L s+ > 0. In turn, the reduced potential W : S4 → R is given by

W (Q) = 1
3
√

6

(
1 − β̃(Q)

)
∀Q ∈ S4 . (1.9)

By (1.1), W is nonnegative and it vanishes precisely on RP 2, i.e., Qmin ={W = 0}+
RP 2.

A critical point Qλ ∈ W 1,2(Ω; S4) of Eλ among S4-valued maps is a weak solution of 
the Euler-Lagrange equation

∆Qλ + |∇Qλ|2Qλ = −λ∇tanW (Qλ) in Ω . (1.10)

The tangential gradient of W along S4 ⊆ S0 is given by

∇tanW (Qλ) = −
(
Q2

λ − 1
3I − tr(Q3

λ)Qλ

)
,

and the left hand side in (1.10) is the tension field of the S4-valued map Qλ as in the 
theory of harmonic maps. In fact, when λ = 0, the energy E0 is the Dirichlet energy

E0(Q) =
∫

Ω

1
2 |∇Q|2 dx ,

and (1.10) is exactly the harmonic map equation for maps from Ω into S4.
In this article, we are interested in S4-valued maps minimizing the energy functional 

Eλ over a class of S1-equivariant configurations. Our interest arises from the fact that 
the symmetry of configurations yields symmetry properties of their biaxiality sets, and 
this allows us to describe such sets in an even more details than in [16]. Symmetry 
ansätze have been considered in several recent papers, e.g. [31,32,1,33,59,2], in two and 
three dimensional Landau-de Gennes models. Here S1-equivariance is meant in a sense 
of axial symmetry. To be more precise, let us define the action of S1 on the space S0 we 
are considering. First, we identify the group S1 with the subgroup of SO(3) made of all 
rotations around the vertical axis of R3. A matrix R ∈ M3×3(R) represents a rotation 
of angle α around the vertical axis if it writes

R =
(
R̃ 0
0 1

)
with R̃ :=

(
cosα − sinα
sinα cosα

)
. (1.11)

A rotation of angle α around the vertical axis is uniquely determined by eiα ∈ S1 and 
we will often employ the notation Rα ∈ S1 to specify its rotation angle α. The S1-action 
by rotations on R3 yields an induced isometric action on S0 given by
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S0 . A /→ R ·A := RARt ∈ S0 . (1.12)

Assuming that the domain Ω ⊆ R3 is axially symmetric (S1-invariant), i.e., R · Ω = Ω
for every R ∈ S1, we shall say that a map Q : Ω → S0 is S1-equivariant if

Q(Rx) = R ·Q(x) = RQ(x)Rt a.e. x ∈ Ω , ∀R ∈ S1 , (1.13)

with the obvious analogue definition for maps defined on the boundary. This notion 
of S1-equivariance is well-defined in the continuous, Lipschitz, or W 1,2-regularity class. 
Here we are interested in the space of S1-equivariant Sobolev maps

W 1,2
sym(Ω;S4) :=

{
Q ∈ W 1,2(Ω;S4) : Q is S1-equivariant

}
. (1.14)

Note that the action (1.12) being isometric, S4 ⊆ S0 is invariant and this space is well-
defined.

Given a smooth boundary data Qb : ∂Ω → S4 which is S1-equivariant, we set

Asym
Qb

(Ω) :=
{
Q ∈ W 1,2

sym(Ω;S4) : Q|∂Ω = Qb
}
, (1.15)

and we aim to minimize the energy Eλ over Asym
Qb

(Ω). As shown in Proposition 6.1, the set 
Asym

Qb
(Ω) is always not empty whenever Qb is a Lipschitz map, so that the minimization 

problem is well-defined. The symmetry constraint (1.14) and the boundary condition in 
(1.15) being W 1,2-weakly closed, the direct method in the Calculus of Variations easily 
yields existence of minimizers. Concerning regularity, and in contrast with [16], we do not 
expect full regularity, but only partial regularity. Indeed, Qb could have no S4-valued 
continuous extension to Ω since S1-equivariance implies that Q(0, 0, x3) = ±e0 along 
Ω ∩ {x3-axis}, with

e0 := 1√
6

(−1 0 0
0 −1 0
0 0 2

)
, (1.16)

±e0 being the unique unit norm elements of S0 which are fixed by the S1-action. In 
particular, if Ω is the unit ball and Qb(0, 0, ±1) = ±e0, then the class Asym

Qb
(Ω) contains 

no map continuous in Ω, and thus minimizers must have singularities.
Our first main result provides the partial regularity of minimizers of Eλ in the S1-

equivariant class with a general Dirichlet boundary condition.

Theorem 1.1. Let Ω ⊆ R3 be a bounded and axisymmetric open set with boundary of 
class C3, and let Qb ∈ C1,1(∂Ω; S4) be an S1-equivariant map. If Qλ is a minimizer of 
Eλ in the class Asym

Qb
(Ω), then Qλ ∈ Cω(Ω \ Σ) ∩ C1,δ(Ω \ Σ) for every δ ∈ (0, 1), where 

Σ is a finite subset of Ω ∩ {x3-axis} (possibly empty). Moreover,

(1) if Qb ∈ C2,δ(∂Ω) for some δ > 0, then Qλ ∈ C2,δ(Ω \ Σ);
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(2) if ∂Ω is analytic and Qb ∈ Cω(∂Ω), then Qλ ∈ Cω(Ω \ Σ).

In addition, for each singular point x̄ ∈ Σ, there exist a map Q∗ ∈ {±Q(α)}α∈R and 
ν > 0 such that

‖Qx̄,r
λ −Q∗‖C2(B2\B1) = O(rν) as r → 0 , (1.17)

where Qx̄,r
λ (x) := Qλ(x̄+rx) and for a given rotation Rα ∈ S1 acting on S0 as in (1.12),

Q(α)(x) := Rα · 1√
6

1
|x|




−x3 0

√
3x1

0 −x3
√

3x2√
3x1

√
3x2 2x3



 , x = (x1, x2, x3) ∈ R3 \ {0} .

(1.18)

In establishing Theorem 1.1, the starting point is to realize that minimizers of Eλ
over the symmetric class Asym

Qb
(Ω) essentially satisfy Palais’ Symmetric Criticality Prin-

ciple (although neither the functional is C1-differentiable, nor the space W 1,2(Ω; S4)
has a Banach manifold structure), see Proposition 6.2. They are therefore true critical 
points of Eλ, and hence weak solutions of (1.10). As a consequence, the regularity re-
sults from our first part [16] apply, and we prove that the smallness of the scaled energy 
1
rEλ(Qλ, Ω ∩ Br(x)) implies the regularity of Qλ in a neighborhood of x ∈ Ω. Hence, 
to obtain partial regularity, we employ the strategy introduced in the pioneering papers 
[48–50] and already adopted in [16]. It is based on three main ingredients: 1) monotonic-
ity formulas; 2) strong compactness of blow-ups; 3) constancy of blow-up limits (Liouville 
property). Compared to the classical case, energy minimality only holds in the restricted 
class Asym

Qb
(Ω) of equivariant configurations, and these three fundamental ingredients 

have to be reworked out carefully, as we comment in more detail at the beginning of 
Section 6. The crucial difference with [16] is that singularities can not be excluded here 
(as already noticed), which means that the Liouville property does not hold. However, 
constancy of blow-ups holds at the boundary as in [16], it still holds away from the sym-
metry axis, and it can only fail at finitely many interior points on the axis (the singular 
points) by a classical argument. In Section 4, we identify all possible nonconstant blow-up 
limits and prove that they form a one-parameter family of nonconstant 0-homogeneous 
S1-equivariant harmonic (tangent) maps {±Q(α)}α∈R. Those tangent maps are smooth 
away from the origin and minimize the Dirichlet energy among all compactly supported 
S1-equivariant perturbations. In Theorem 1.1, (1.17) completely characterizes the asymp-
totic behavior of a minimizer near a singular point, and it shows in particular uniqueness 
of the blow-up limit. To prove (1.17), we make use of the Simon-Łojasiewicz inequality 
(see [52]) for the Dirichlet energy on C3(S2; S4), adapting the simplified argument in 
[54] to our perturbed Dirichlet energy (1.8). As detailed in Section 6.5, the set of all 
possible tangent maps is contained in a smooth manifold, so that the Simon-Łojasiewicz 
inequality holds with optimal exponent, which implies the power-type decay in (1.17).
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The family {±Q(α)}α∈R is determined through a stability/minimality analysis of 
0-homogeneous equivariant harmonic maps. To this purpose, we first classify all S1-
equivariant harmonic spheres ω ∈ C∞(S2; S4), see Theorem 3.19. Identifying S0 with 
R ⊕C⊕C, the S1-action on S0 rewrites in terms of complex numbers as Rα · (t, ζ1, ζ2) =
(t, eiαζ1, ei2αζ2). In this way, and by a classical result due to E. Calabi [11], S4-valued 
equivariant harmonic spheres are either S2-valued maps (linearly degenerate) of the form

ω(1)(x) = (ω0(x),ω1(x), 0) , or ω(2)(x) = (ω0(x), 0,ω2(x)) ,

or linearly full (the image spans the whole space S0).
In the linearly degenerate case, we show that, up to the application of the antipodal 

map S4 . a /→ −a ∈ S4,

ω(k)(x) = σ−1
2

(
µk (σ2(x))k

)
, µk ∈ C∗ , k = 1, 2 , (1.19)

where σ2 : S2 → C ∪ {∞} is the stereographic projection from the south pole.
To describe linearly full harmonic spheres into S4, we follow [11] (see also [9,38,58,4], 

and Section 3). Identifying S2 with CP 1, the complex projective line, we study their 
canonical lift to CP 3, the twistor space2 of S4. Up to the application of the antipodal 
map and up to the postcomposition with the twistor fibration τ : CP 3 → S4, one has 
a one-to-one correspondence between harmonic spheres into S4 and horizontal algebraic 
curves ω̃ : CP 1 → CP 3 corresponding to their twistor lift.3 The commutative diagram

CP 3

τ
!!

S2 = CP 1 ω ""

ω̃

##!!!!!!!!!!

S4

(1.20)

reflects the fact that ω = τ ◦ ω̃. Lifting the S1-action to CP 3 and specializing to the 
equivariant maps allows to classify all the possible canonical lifts that can be written in 
homogeneous coordinates [z0, z1] ∈ CP 1 as

ω̃([z0, z1]) =
[
z3
0 , µ1z

2
0z1, µ2z0z

2
1 ,−

µ1µ2
3 z3

1

]
∈ CP 3 , (µ1, µ2) ∈ C∗ ×C∗ . (1.21)

Any 0-homogeneous harmonic map into S4 is of the form Q(x) = ω (x/|x|) for some 
harmonic sphere ω. A tricky but elementary argument shows that such a map is unstable 
within the equivariant class as soon as the last component ωωω2 does not vanish identically. 
Therefore, both ω(2) (x/|x|) and all 0-homogeneous extensions of linearly full harmonic 
spheres ω = τ ◦ ω̃ corresponding to (1.21) are unstable. On the other hand, minimality 

2 As detailed, for instance, in [4, Chapter 7], the twistor space of S4 is SO(5)/ U(2); however, it is ele-
mentary but not obvious to identify it with CP 3 (see e.g. [18] for details on this identification).
3 For a precise definition of the twistor lift, we refer to Proposition 3.15, Remark 3.18, and Theorem 3.19.
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holds for ω(1) (x/|x|) if and only if |µ1| = 1 in (1.19). Setting µ1 = eiα with α ∈ R, we 
obtain the family {Q(α)}α∈R defined in (1.18), and we prove that each Q(α) is in fact 
locally minimizing the Dirichlet energy among all equivariant configurations.

Given a minimizer Qλ of the energy Eλ in the equivariant class, existence or nonex-
istence of singularities turns out to be a subtle issue, depending on the nature of the 
boundary data Qb, as well as on the topology and the geometry of the domain Ω. Our 
third part [17] is dedicated to a detailed analysis on this problem. In this article, we 
want to emphasize that both cases can occur, providing some natural and topologically 
nontrivial data Qb leading to either smoothness or singularities in the case where Ω is a 
nematic droplet (i.e., Ω = B1 the unit ball). Beyond the question of existence of singular-
ities, we are also interested in the topological properties of the biaxial surfaces {β = t}, 
t ∈ (−1, 1), as they encode the topology and the geometry of a configuration. Natural 
boundary data to consider are smooth maps with values in RP 2 exploiting the nontrivial 
topology of RP 2. Boundary data with low regularity, namely maps in W 1/2,2(∂Ω; RP 2)
with point singularities representing the nontrivial element in π1(RP 2) = Z2, are also of 
interest as they lead, at least in nonsymmetric settings, to topological defects touching 
the boundary, see [12,13]. They are not considered here, and Qb is always assumed to 
be smooth.

As recalled in [16], if the domain Ω is simply connected, then the same holds for each 
connected component of ∂Ω, and any map Qb ∈ C1(∂Ω; RP 2) can be written in the form

Qb(x) =
√

3
2

(
v(x) ⊗ v(x) − 1

3I
)

for all x ∈ ∂Ω , v ∈ C1(∂Ω;S2) . (1.22)

If ∂Ω is of class C2 and v(x) in (1.22) is the outer unit normal →n(x), we obtain the 
so-called homeotropic boundary condition (or radial anchoring). When Ω is axially sym-
metric, such Qb is S1-equivariant if and only if v is S1-equivariant (with respect to the 
obvious action of S1 on S2 ⊆ R3 by rotations around the vertical axis). In particular, if 
Ω is axially symmetric and v(x) = →

n(x), then Qb as in (1.22) is S1-equivariant.
To motivate and illustrate our discussion, we now consider the important case where 

Ω is a nematic droplet, that is Ω = B1 the unit ball, and v(x) = →
n(x) = x

|x| in (1.22). 
Then Qb(x) = H(x) for x ∈ ∂B1, where H is the constant-norm hedgehog

H(x) =
√

3
2

(
x

|x| ⊗
x

|x| −
1
3I

)
. (1.23)

Notice that H is equivariant with respect to the full orthogonal group O(3), and it turns 
out that H is the unique O(3)-equivariant critical point of Eλ with homeotropic boundary 
condition. We have shown in [16] that H is unstable with respect to S1-equivariant 
perturbations, so that it is not a minimizer of Eλ, neither globally nor among the S1-
equivariant class. Therefore, O(3)-symmetry breaking occurs. Concerning minimizers 
Qλ of Eλ in the class Asym

H
(B1), we expect them to be smooth, although this remains a 
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major open problem. In addition to smoothness, and as already discussed in [16] in the 
nonsymmetric context, the corresponding biaxiality regions {β < t} at regular values 
t ∈ (−1, 1) (see (1.2)) should form an increasing family of axially symmetric solid tori. 
In turn, their complements {β " t} should be kind of distance neighborhoods from the 
boundary ∂B1 with cylindrical neighborhoods of the vertical axis added. When t = −1, 
the set {β = −1} should be a disclination line, i.e., a horizontal circle Γ where exchange of 
the two smallest eigenvalues of Qλ occurs. Finally, the set {β = 1} should be the union of 
∂B1 with the vertical diameter I. In this picture, sub- and superlevel sets of the biaxiality 
function are mutually linked in the sense of [16] (i.e., each set is not contractible in the 
complement of the other) because the subsets Γ and ∂Ω ∪I are. There is a wide numerical 
evidence for these symmetry properties to hold. Indeed, this conjectural description has 
been already investigated, first in [51,47,34], and then in [55,36,19,35], where authors 
refer to such an equilibrium configuration as the “torus solution” of the Landau-de 
Gennes model (see also [14,37,28] for further numerical results in this direction).

In the attempt to validate partially this aforementioned picture, we provide in the next 
theorem the first existence result of torus solutions to (1.10) in the case of a nematic 
droplet and suitable deformations of the radial anchoring H as boundary data.

Theorem 1.2. Assume that Ω = B1, and let →n be the outer unit normal field on ∂B1. 
There exists a sequence of S1-equivariant maps {vj} ⊆ C∞(∂B1; S2) which are equivari-
antly homotopic to 

→
n and satisfying 

→
n · vj > 0 on ∂B1 for all j, such that the following 

holds. For each j, let Qj
b ∈ C∞

sym(∂B1; RP 2) be as in (1.22) with v ≡ vj, and Qj any 
minimizer of Eλ over Asym

Qj
b

(B1). Then,

(1) the sequence {Qj
b} is bounded in W 1/2,2(∂B1; S4);

(2) Qj ⇀ e0 weakly in W 1,2(Ω; S4) as j → ∞;
(3) up to a subsequence, |∇Qj|2dx ∗⇀ c H1 C weakly-∗ as measures on B1 as j → ∞, 

where C = ∂Ω ∩ {x3 = 0} and c > 0 is a constant.

As a consequence, for j large enough and setting βj := β ◦Qj,

(4) Qj is smooth in Ω;
(5) the negative uniaxial set {βj = −1} is not empty and contains an S1-invariant circle 

Γj ⊆ B1\I with I := B1∩{x3-axis}, while the positive uniaxial set {βj = 1}contains 
∂Ω ∪ I, and in particular {βj = 1} and {βj = −1} are mutually linked;

(6) for every 0 < ρ < 1 and t ∈ [−1, 1), we have {βj ! t} ⊆
{
x ∈ Ω : dist(C, x) < ρ

}
for 

j large enough (depending on ρ and t);
(7) any regular biaxial surface {βj = t}, t ∈ (−1, 1), is a finite union of axially symmet-

ric tori.

The proof of the theorem will be presented in Section 7, and here we outline its main 
ideas in order to illustrate how suitable topologically nontrivial boundary data yields the 
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emergence of disclination lines and in turn of biaxial tori. In view of (1.22), the boundary 
data Qj

b is uniaxial with simple eigenvalue λ3 ≡ 2√
6 . In addition, the map vj orients the 

corresponding eigenspace map V j
max, which can actually be identified with Qj

b because of 
(1.22). Setting Oρ :=

{
x ∈ Ω : dist(C, x) < ρ

}
, we construct vj as a deformation of →n in 

such a way that Qj
b ≡ e0 in ∂Ω \ Oρ for j large enough. Extending V j

max to the segment 
I as e0, for each vertical open half-disc D+ with ∂D+ ⊆ ∂Ω ∪ I, we have a well-defined 
continuous map

γj : ∂D+ → RP 2 , γj(x) := V j
max(x) . (1.24)

Then [γj ] &= 0 in π1(RP 2) since vj and 
→
n are (equivariantly) homotopic. Hence, the 

boundary data Qj
b is topologically nontrivial. By construction, the sequence {Qj} con-

verges weakly to the constant map e0 (i.e., claim (1) holds), exhibiting on each meridian 
a W 1/2,2-bubbling of the nontrivial element of π1(RP 2) (see Remark 7.3). By the com-
pactness property of minimizers, we show that the weak convergence of {Qj} improves 
to strong convergence away from the set C toward a limiting minimizing map. This lim-
iting map is constant because of its constant trace, which proves claim (2). Applying 
the ε-regularity theorem from [16] near the vertical axis for j large enough, we infer that 
each map Qj must be smooth up to the boundary, and W 1,2-boundedness easily yields 
claim (3). Since [γj ] &= 0 in π1(RP 2) and Qj is smooth, the set {βj = −1} ∩ D+ con-
tains at least one point (otherwise the loop γj would be contractible). Thus {βj = −1}
contains an invariant circle Γj ⊆ Ω \ I, and ∂Ω ∪ I ⊆ {βj = 1} by regularity. As a 
consequence, any pair of biaxial sets {βj ! t1} and {βj " t2} with −1 ! t1 < t2 ! 1 are 
mutually linked (for j large enough), and any regular surface {βj = t} ⊆ Ω, t ∈ (−1, 1), 
is a finite union of axially symmetric tori, in agreement with the discussion above. At 
this stage, we do not know whether or not the “disclination line” Γj is unique, or if the 
biaxial surfaces {βj = t} are connected and provide a regular foliation of Ω \ (I ∪Γj) by 
tori as t runs from −1 to 1. These questions seem to be quite difficult and remain open 
problems.

Still in the case of a nematic droplet, we provide in our next result examples of 
boundary data leading to singular minimizers with an even number of singularities (split 
minimizers, according to Definition 7.11).

Theorem 1.3. Assume that Ω = B1 and set Q∗
b := Q(0) where Q(0) is given by 

(1.18) (with α = 0). There exists a sequence of S1-equivariant boundary conditions 
{Qj

b} ⊆ C1,1(∂B1; S4) such that, for any minimizer Qj of Eλ over Asym
Qj

b
(B1), the follow-

ing properties hold:

(1) for each j, the maximal eigenvalue λj
max(x) of Qj

b is simple for every x ∈ ∂B1, and 
the corresponding eigenspace map V j

max : ∂B1 → RP 2 is equivariantly homotopic to 
the radial anchoring H in (1.23);

(2) Qj
b ⇀ Q∗

b weakly in W 1,2(∂B1; S4) as j → ∞;
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(3) up to a subsequence, Qj → Q∗ strongly in W 1,2(B1; S4) as j → ∞, where Q∗ is a 
singular energy minimizer of Eλ over Asym

Q∗
b

(B1).

As a consequence, for j large enough, Qj is a (singular) split minimizer of Eλ in the 
sense of Definition 7.11.

The proof is based on an argument similar to the one used for torus-like minimizers 
in Theorem 1.2. It still relies on the compactness and regularity properties of minimizers 
combined with a suitable choice of linearly full harmonic spheres as boundary data, i.e., 
Qb = τ ◦ ω̃ for well-chosen values of the parameters (µ1, µ2) ∈ C∗ × C∗ in (1.21). An 
important point is that, in connection with Remark 7.10, such boundary data could in 
principle allow for smooth minimizers but they actually do not. In particular, this proves 
that singularities may show up for energetic reasons, in analogy with the gap phenomenon 
for S2-valued harmonic maps (see [3,22], and also [24,23] for similar results in a related 
axially symmetric context). Finally, as an interesting consequence of the existence of 
singular minimizers in the class Asym

Qb
(Ω) and the regularity of global minimizers in [16], 

we conclude symmetry breaking results for global minimizers under equivariant boundary 
conditions with or without norm constraint (see Corollaries 7.15 and 7.16 for precise 
statements). As already announced in [16], such phenomena are already known from [3]
for minimizers of the Frank-Oseen energy. Our results are the natural counterpart for 
minimizers of the Landau-de Gennes energy, in agreement with the numerical simulations 
in [14] in the case of cylindrical domains and radial anchoring.

The final part of the paper is dedicated to topological properties of equivariant min-
imizers under more general assumptions on the domains and the boundary data, in 
analogy with the results obtained in [16, Theorem 1.6] where no symmetry constraint 
is considered. As it will be apparent in Sec. 7.1, the conclusions actually do not depend 
on energy minimality but just on the few properties below. Besides axial symmetry, we 
follow [16] and we assume that Ω and a configuration Q satisfy

(HP0) Q ∈ C1(Ω; S4) ∩ Cω(Ω; S4);
(HP1) β̄ := minx∈∂Ω β̃ ◦Q(x) > −1;
(HP2) Ω is simply connected (i.e., it is path-connected and every loop is contractible);
(HP3) deg(v, ∂Ω) =

∑M
i=1 deg(v, Si) is odd, where v is the lifting of the map Vmax

defined below and the Si’s denote the connected components of ∂Ω.

In view of (HP0) and (HP1), the maximal eigenvalue λmax(x) of Q(x) is simple and 
smooth on the boundary ∂Ω, so there is a well-defined and smooth eigenspace map 
Vmax : ∂Ω → RP 2. Since the boundary ∂Ω is a finite union of topological spheres due to 
(HP2), the map Vmax has a (nonunique) smooth lifting v : ∂Ω → S2 which is required 
to satisfy (HP3). Because of assumption (HP2), any axisymmetric (smooth) domain is 
topologically an axially symmetric ball with finitely many disjoint closed balls removed 
from its interior and having centers on the symmetry axis. If the trace of Q at the 
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boundary is the radial anchoring, then (HP3) implies that an even number of balls are 
removed (possibly none).

For smooth minimizers Qλ ∈ Asym
Qb

(Ω) like those constructed in Theorem 1.2, we have 
the following topological result. We point out that, as in [16], the unit norm constraint in 
assumption (HP0) could be relaxed to Q(x) &= 0 in Ω without affecting the conclusions 
below.

Theorem 1.4. Let Ω ⊆ R3 be a bounded and axisymmetric open set with boundary of 
class C3, and let Qb ∈ C1,1(∂Ω; S4) be an S1-equivariant map. Assume that Q := Qλ is 
a smooth minimizer of Eλ in the class Asym

Qb
(Ω) and that (HP1)-(HP3) hold. Then the 

biaxiality regions associated with Q are nonempty S1-invariant closed subset of Ω, and 
setting β := β̃ ◦Q, the following holds.

(1) The set of singular values of β in [−1, β̄] is at most countable, possibly accumulating 
only at β̄. Moreover, for any regular value t ∈ (−1, β̄), the set {β = t} is the disjoint 
union of finitely many (at least one) revolution tori contained in Ω. For any regular 
value t ∈ [β̄, 1), the set {β = t} is the disjoint union of finitely many connected sets 
which are either revolution tori, S1-invariant strips touching the boundary, or circles 
lying on the boundary.

(2) The set {β = −1} contains an invariant circle Γ ⊆ Ω \ I and the set {β " β̄}
contains ∂Ω ∪ I, where I = Ω ∩ {x3-axis } is a finite union of open segments. As 
a consequence, Γ and ∂Ω ∪ I are nonempty, compact, non simply connected and 
mutually linked. Given −1 ! t1 < t2 ! β̄, the same hold for the sets {β ! t1} and 
{β " t2}.

The proof of this result is somehow similar to the proof of [16, Theorem 1.6]. However, 
thanks to the symmetry constraint, we can use here a more direct argument leading to 
more precise conclusions. Concerning claim (1), all the smooth biaxial surfaces contained 
in Ω must have genus one and must be tori of revolution by axial symmetry. In this 
simplified setting, we can even discuss biaxial surfaces for regular values t ∈ [β̄, +1). 
Since I ⊆ {β = 1}, such values of the biaxiality are all attained on the boundary by 
continuity. The corresponding biaxial surfaces, which are of course S1-invariant, thus 
have connected components with boundary on ∂Ω.

Another very interesting feature appears in connection with claim 2), as a far-reaching 
extension of what we already observed in Theorem 1.2. As discussed in Section 2.2, we 
can consider the half slice D+

Ω := Ω ∩ {x2 = 0 , x1 > 0}, and reconstruct Ω from it by 
axial symmetry. More precisely, inside the plane {x2 = 0} the set D+

Ω is open, connected, 
simply connected and with piecewise smooth boundary. Regarding the boundary and 
the closure of D+

Ω relative to {x2 = 0}, we have

Ω \ I = S1 · D+
Ω , ∂Ω ∪ I = S1 · ∂D+

Ω , Ω = S1 · D+
Ω . (1.25)
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In view of (HP1), the eigenspace map Vmax : ∂Ω → RP 2 is well-defined and smooth. 
Extending Vmax by continuity and invariance to be e0 ∈ RP 2 ⊆ S4 on I, and then 
restricting it to ∂D+

Ω , we obtain a well-defined continuous map γ : ∂D+
Ω → RP 2 as 

defined in (1.24). A simple argument based essentially on (HP3) shows that [γ] &= 0 in 
π1(RP 2), which leads to the existence of an invariant circle Γ ⊆ {β = −1} ⊆ Ω \ I

(see Proposition 7.1 for more details). Then the linking properties claimed in (2) are 
straightforward consequences of the linking properties between the “disclination line” 
Γ and ∂D+

Ω inside Ω. Even in the more general context of Theorem 1.4, we refer to 
the solutions to (1.10) coming from smooth minimizers Qλ of Eλ over Asym

Qb
(Ω) as torus 

solutions of the Landau-de Gennes model (with Lyuksyutov constraint).
Finally we discuss the topology of biaxial regions corresponding to singular configura-

tions which are assumed to satisfy conditions (HP1)-(HP3) and (HP0), the latter except 
on a finite set Sing Q ⊆ Ω ∩{x3-axis}. For simplicity we consider only energy minimizers 
and the model examples are those constructed in Theorem 1.3, for which (HP1)-(HP3)
hold because of Theorem 1.1 and properties iv) and v) in the proof of Theorem 1.3. Due 
to (HP1) and axial symmetry, Qb(x) = e0 for any x ∈ ∂Ω ∩ {x3-axis} and Qλ(x) = ±e0
for x ∈ Ω ∩{x3-axis} \Sing Qλ, therefore singularities come in finitely many pairs which 
are the endpoints of the vertical segments in Ω ∩ {x3-axis} where Qλ(x) = −e0. In addi-
tion each singularity carries a sign in the obvious way. We will refer to the solutions to 
(1.10) coming from these axially symmetric singular minimizers as the split solutions of 
the Landau-de Gennes model (with Lyuksyutov constraint).

Theorem 1.5. Let Ω ⊆ R3 be a bounded and axisymmetric open set with boundary of 
class C3, and let Qb ∈ C1,1(∂Ω; S4) be an S1-equivariant map. Assume that Q := Qλ

is a singular minimizer of Eλ in the class Asym
Qb

(Ω) and that (HP1)-(HP3) hold. Then 
the biaxiality regions associated with Q, as subsets of Ω \ SingQ, are nonempty and 
S1-invariant. Setting | SingQ| =: 2N > 0 and β := β̃ ◦Q, the following holds.

(1) The set of singular values of β in [−1, β̄] is at most countable, and it can accumulate 
only at β̄ or −1. For any regular value t ∈ (−1, β̄), the closure of {β = t} ⊆ Ω in Ω
contains N mutually disjoint topological spheres St

j (smooth if t = 0, and smooth with 
corners on the x3-axis otherwise), each of them obtained by adding to a component 
of {β = t} the corresponding pair of singular points. The set {β = t} \ ∪N

j=1S
t
j is 

either a finite union of disjoint revolution tori or empty.
(2) For any regular value t ∈ (β̄, 1), besides possible disjoint tori and at most N axisym-

metric spheres as above, the set {β = t} ⊆ Ω \ SingQ may contain finitely many 
strips touching the boundary, finitely many topological discs touching the boundary 
with puncture at the singularities, and finitely many circles lying on the boundary.

(3) For any pair of regular values t1, t2 in (−1, β̄) with t1 < t2, the closure of {β "
t2} ⊆ Ω in Ω is not contractible in the complement of {β ! t1} in Ω.
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From this theorem, the topological structure of the biaxial regions in the smooth and 
the singular case appears to be quite different. For singular minimizers, the emergence 
of topological spheres inside {β = t} (at least for any regular value t below β̄) can be 
understood by looking at their intersection with the vertical slice D+

Ω , first very close 
to the symmetry axis and then far away from it. Far away from the singularities of Qλ, 
such surfaces cannot touch the axis, where indeed Qλ(x) ∈ {±e0}, i.e., it is uniaxial. In 
view of the asymptotic expansion in Theorem 1.1, the biaxial surfaces of Qλ touch the 
x3-axis precisely at each singular point with a cone-like behavior. Indeed, these surfaces 
are exactly cones for the tangent maps Q(α) with opening angle depending on t (see 
Proposition 7.17). Moreover, they can be extended away from SingQλ, but they are 
trapped inside the domain, at least for −1 < t < β̄. On the other hand, two leaves of 
{β = t} corresponding to different singularities cannot intersect transversally if t is a 
regular value. Hence each leaf has to end into another singularity, giving a topological 
sphere. Of course such spheres are compatible with the presence of extra tori (but also 
with other subsets, as in claim (2)). The first appearance of split solutions in numerical 
studies seems to be in [19]. They were lately found in other numerical papers, such as 
[28] (in particular, Fig. 8 in [28] contains a schematic picture of split solutions that can 
be helpful to visualize the first conclusion of Theorem 1.5).

In the last article of our series [17], we further analyse existence and even coexistence 
of torus and split S1-equivariant minimizers under radial anchoring at the boundary. The 
results obtained in [17] are perturbative in nature and depend in a subtle way on the 
geometry of the domain Ω. Unfortunately, they do not cover the case of a nematic droplet 
with radial anchoring. In the recent paper [59], results somehow related to ours, both here 
and in [17], are presented in the case of a nematic droplet with homeotropic boundary 
data. In [59], the coexistence property is shown by a clever minimization argument for 
the energy functional in a class of O(2) × Z2-equivariant constant-norm configurations 
(the extra Z2-action being induced by reflection across the plane {x3 = 0}). Since the 
class considered in [59] is strictly smaller than the class Asym

Qb
(B1) (see the discussion 

in Section 7.3), it is not known (at present) whether the minimizers of Eλ in the class 
Asym

Qb
(B1) with homeotropic boundary values are smooth, singular, or if smooth and 

singular minimizers may coexist. Numerical simulations from [19,28] in some range of 
parameters for the LdG theory without norm constraint suggest that the torus solution 
should be energetically more convenient. However, at present no rigorous result in this 
direction is available.
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F.D. F.D. would like to express his deepest gratitude to his supervisor A.P. and to V.M. 
for continuous support during these years and for having involved him into this project.
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2. Auxiliary results for axially symmetric configurations

2.1. Decomposition of S0 into invariant subspaces

In this subsection, we provide a decomposition of S0 into a direct sum of (linear) 
subspaces which are invariant under the action of S1. This decomposition will allow 
identifications with the complex plane (see Lemma 2.2) and in turn the use of methods 
from complex geometry in the classification of the harmonic spheres contained in the 
next section.

Lemma 2.1 (Decomposition of S0 into invariant subspaces). There is a distinguished 
orthonormal basis 

{
e0, e(1)

1 , e(1)
2 , e(2)

1 , e(2)
2

}
of S0 given by

e0 := 1√
6

(−1 0 0
0 −1 0
0 0 2

)
, e(1)

1 := 1√
2

(0 0 1
0 0 0
1 0 0

)
, e(1)

2 := 1√
2

(0 0 0
0 0 1
0 1 0

)
,

e(2)
1 := 1√

2

(1 0 0
0 −1 0
0 0 0

)
, e(2)

2 := 1√
2

(0 1 0
1 0 0
0 0 0

)
, (2.1)

such that the subspaces

L0 := Re0 , L1 := Re(1)
1 ⊕Re(1)

2 , L2 := Re(2)
1 ⊕Re(2)

2 ,

are invariant under the action of S1 defined in (1.12), and

S0 = L0 ⊕ L1 ⊕ L2 . (2.2)

Proof. For elements in S0, let us use the notation

A =:
(
Ã− a0

2 I a
at a0

)
,

where a0 ∈ R, a ∈ M2×1(R) + R2, and Ã ∈ M2×2(R) has zero trace. In this way, for a 
rotation around the x3-axis R ∈ S1, and R̃ ∈ SO(2) the corresponding rotation in the 
(x1, x2)-plane, we have

RARt =
(
R̃ÃR̃t − a0

2 I R̃a
(R̃a)t a0

)
. (2.3)

The key observation is that each block is invariant under the S1-action. Therefore, to 
determine the desired basis, it is enough to determine an orthonormal basis of symmetric 
traceless matrices for each block. Clearly, {e0}, {e(1)

1 , e(1)
2 }, and {e(2)

1 , e(2)
2 } provide such 

basis. !
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In the next result we explain in which sense the S1-action is diagonalized by our 
decomposition of the space S0.

Lemma 2.2. We have the following isometric isomorphisms:

(0) L0 + R via ι0 : A ∈ L0 /→ (A : e0) ∈ R;
(1) L1 + C via ι1 : A ∈ L1 /→ (A : e(1)

1 ) + i(A : e(1)
2 ) ∈ C;

(2) L2 + C via ι2 : A ∈ L2 /→ (A : e(2)
1 ) + i(A : e(2)

2 ) ∈ C.

Moreover, the S1-action on S0 corresponds on each Lk to an S1-action by rotations of 
degree k. In other words, we have for k = 0, 1, 2,

ιk(RαARt
α) = eikαιk(A) ∀A ∈ Lk , ∀Rα ∈ S1 . (2.4)

Proof. The statements (0), (1), and (2) are elementary. Identity (2.4) for k = 0 is obvious, 
while it follows from (2.3) for k = 1 in view of the simple identities

Rαe(1)
1 Rt

α = cosα e(1)
1 + sinα e(1)

2 , Rαe(1)
2 Rt

α = − sinα e(1)
1 + cosα e(1)

2 .

It then remains to check (2.4) for k = 2. For this purpose, let us consider the 2 × 2
diagonal matrix J := diag(1, −1). Using the notation in (2.3), we observe that for A ∈ L2
and Rα ∈ S1,

R̃αÃR̃t
α = R̃αJ

2ÃR̃−α = R̃αJR̃−αJÃ = R̃αR̃αÃ = R̃2αÃ ,

so that

Rαe(2)
1 Rt

α = cos 2α e(2)
1 + sin 2α e(2)

2 , Rαe(2)
2 Rt

α = − sin 2α e(2)
1 + cos 2α e(2)

2 .

Thus, writing A = c e(2)
1 + d e(2)

2 we have z := c + id = ι2(A) and ι2(RαARt
α) = e2iαz, 

hence the conclusion follows. !

Remark 2.3. By Lemma 2.2, S0 = L0⊕L1⊕L2 is isometrically isomorphic to R ⊕C⊕C
through the mapping ι∗ : S0 → R ⊕C ⊕C defined by

ι∗(A) :=
(
ι0(A), ι1(A), ι2(A)

)
. (2.5)

In addition, when considering on R ⊕C ⊕C the S1-action

Rα · (t, ζ1, ζ2) := (t, eiαζ1, e2iαζ2) ∀Rα ∈ S1 , (2.6)

the map ι∗ is S1-equivariant. In the next two sections we will rely on this identification 
of S0 with R ⊕ C ⊕ C and we will always consider on the latter the diagonal action 
given by (2.6). Clearly, since this action is isometric, S1 also acts on the unit sphere of 
R ⊕C ⊕C.
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Remark 2.4. In view of the previous remark it is obvious that the only 1d vector subspace 
fixed by the action is L0. In addition, the only 3-dimensional invariant linear subspaces 
V < S0 are V = L0 ⊕ L1 and V = L0 ⊕ L2. To see this, first note that any invariant 
odd-dimensional subspace must contain a vector v s.t. Rv = v for all R ∈ S1. This 
implies L0 is a linear subspace of any such invariant subspace of S0. Thus, if V < S0 is 
invariant, then V = L0 ⊕ (L⊥

0 ∩ V ). Let W = L⊥
0 ∩ V . Therefore, W < L1 ⊕L2 and it is 

invariant. Moreover, if dimV = 3, then dimW = 2. Notice that vectors in W cannot have 
components both along L1 and along L2, otherwise W would be equivariantly isomorphic 
both to L1 and to L2 under the projection maps, which is impossible because S1 acts 
with different degrees on L1 and L2. Hence, W must be either L1 or L2.

2.2. Structure of axisymmetric domains

The purpose of this subsection is to collect some geometric properties of axisymmetric 
domains of R3 that we shall use in the next sections. We start recalling the following 
auxiliary result characterizing the simple connectivity of a bounded domain Ω ⊆ R3 with 
smooth boundary. We will always suppose Ω to be C1-smooth in this section, although 
to be able to prove boundary regularity as in [16], we will require ∂Ω of class C3 when 
necessary in the paper.

Lemma 2.5. [5, Theorem 3.2 and Corollary 3.5] Let Ω ⊆ R3 be a bounded and connected 
open set with C1-boundary. Then Ω is simply connected if and only if ∂Ω = ∪M

i=0Si and 
each surface Si is diffeomorphic to the standard sphere S2 ⊆ R3.

Let us now recall that we identify S1 with the subgroup of SO(3) made of all rotations 
around the vertical x3-axis (see (1.11)), and that we define axisymmetry accordingly.

Definition 2.6. A set Ω ⊆ R3 is said to be axisymmetric (or S1-invariant, or rotationally 
symmetric) if it is invariant under the action of S1, i.e., R · Ω = Ω for every R ∈ S1. 
Equivalently, Ω is axisymmetric if

Ω =
⋃

R∈S1

R · DΩ where DΩ := Ω ∩ {x2 = 0} .

In case of an axisymmetric domain, the geometric description in Lemma 2.5 can be 
made more precise. Starting from this lemma and the structure of bounded multiply 
connected smooth domain in the plane we have the following Corollary 2.7, the proof of 
which is elementary and left to the reader.

Corollary 2.7. Let Ω ⊆ R3 be a bounded and connected open set with boundary of class 
C1. If Ω is axisymmetric and simply connected, then the following holds.
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(i) DΩ is a bounded and connected (relatively) open subset with C1-boundary of the 
vertical plane {x2 = 0}, and RπDΩ = DΩ (i.e., DΩ is symmetric with respect to the 
x3-axis).

(ii) There is a simply connected (relatively) open subset T of the vertical plane {x2 = 0}
satisfying RπT = T such that either DΩ = T , or DΩ = T \

⋃M
i=1 Hi where the Hi’s 

are simply connected (relatively) closed subset of {x2 = 0}. In addition, the “holes” 
Hi ⊆ T are mutually disjoint, RπHi = Hi and ∂DΩ = ∂T ∪

(
∪M
i=1∂Hi

)
.

(iii) The (relatively) open subsets D+
Ω := DΩ ∩ {x1 > 0} and D−

Ω := DΩ ∩ {x1 < 0} of 
the vertical plane {x2 = 0} are simply connected, and RπD±

Ω = D∓
Ω . Moreover, if 

I = Ω ∩ {x3-axis} then identities (1.25) hold.

When discussing topological properties of minimizers we will suppose Ω satisfies the 
hypotheses of Lemma 2.5. Thus, unless otherwise stated, from now on Ω will be a bounded 
open connected simply connected axisymmetric set in R3 with C1-smooth boundary that 
can be reconstructed from its vertical slices DΩ and D+

Ω according to Corollary 2.7.
Observe that any such Ω is obtained as follows: fix arbitrarily a vertical plane Π

through the x3-axis and let T be a bounded region in Π, symmetric with respect to 
the x3-axis, whose boundary ∂T is a simple closed curve, so that T is simply connected. 
Create in T a finite number M " 0 of symmetric disjoint hollows Hi ⊆ T (we set H0 = ∅
for convenience), each one diffeomorphic to the closed unit disc, whose boundaries ∂Hi

are simple closed curves. Let

D = T \ ∪M
i=0Hi. (2.7)

Note that, unless M = 0, D is not simply connected. Rotating D of an angle π around 
the x3-axis, we obtain a domain Ω with the desired properties. Conversely, given Ω as in 
the above, Ω ∩Π is a planar domain D as in the above. Notice that I := Ω ∩ {x3-axis} =
D ∩ {x3-axis}, hence we can write

D = D+ ∪ I ∪D−, (2.8)

where D+ = D∩{x1 > 0} and D− = D∩{x1 < 0} (of course, D+ and D− are congruent 
by symmetry). In contrast to D, D± are simply connected. Clearly, one can also re-obtain 
Ω by rotating, say, D+∪I around the x3-axis of an angle 2π. Notice that ∂D+ is given by 
a unique simple piecewise smooth closed curve that can be thought of as a parametrized 
curve embedding S1 into Ω. For instance, if Ω = B1, then D is a disc, D+ a semidisc and 
∂D+ the boundary of such semidisc in the vertical plane Π with flat part on the x3-axis.

From the above it follows that the x3-axis intersects ∂Ω exactly (2M + 2)-times and 
that I = Ω ∩ {x3-axis} is the union of M + 1 segments /k:

I = Ω ∩ {x3-axis} = ∪M+1
k=1 /k. (2.9)
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Of course, ∪M+1
k=1 /k is also the flat part of ∂D+ on the x3-axis in the plane Π. We also 

denote

B := ∂I = ∂Ω ∩ {x3-axis} = {b1, b2, . . . , b2M+2}, (2.10)

where the boundary is taken in the x3-axis. We label such points increasingly with their 
x3-coordinate. Thus, b1 is the lowest point of Ω along the x3-axis and b2M+2 the highest. 
Finally, notice that the validity of (2.9) and (2.10) actually relies only on the smoothness 
of ∂Ω, hence they hold true for every S1-invariant bounded open set Ω with Lipschitz 
boundary, independently of its connectedness properties.

Remark 2.8. We observe that if Ω is S1-invariant then the same holds for the function d̃
giving the signed distance from its boundary, hence its gradient is S1-equivariant and in 
particular the outer normal field 

→
n(x) along ∂Ω is equivariant. As a consequence we see 

that the corresponding radial anchoring Qb(x) given by (1.22) is equivariant. In addition, 
as →n(bj) = (0, 0, (−1)j) for j = 1, . . . , 2M + 2, for such data we obtain Qb(bj) = e0 for 
each x ∈ B.

Remark 2.9. More generally, for any boundary map Qb ∈ Lipsym(∂Ω; S4) the equivari-
ance property (1.13) together with Remark 2.4 yield Qb(bj) = ±e0 for any x ∈ B = ∂I. 
Analogous property holds for an admissible configuration Q ∈ Asym

Qb
(Ω) at each point 

x ∈ I whenever the restriction to the x3-axis makes sense.

2.3. Stereographic projections, projective spaces, and the twistor fibration

In the following sections, we shall consider S1-equivariant maps from the standard 
2-sphere S2 ⊆ R3 into S4, the unit sphere of S0. To describe those maps, it will be useful 
to make use of stereographic projections. Although these notions are elementary, to fix 
the notations and for the reader’s convenience we collect them in this subsection.

The stereographic projection of S2. Let S(2) := (0, 0, −1) be the south pole of S2 ⊆
R3. We write x = (x1, x2, x3) for a point in S2, and y = (y1, y2) a point in R2. The 
stereographic projection of S2 from the south pole is the map σ2 : S2 \ {S(2)} → R2

given by

σ2(x) :=
(

x1
1 + x3

,
x2

1 + x3

)
,

which is a diffeomorphism whose inverse map is given by

σ−1
2 (y) =

(
2y1

1 + |y|2
,

2y2

1 + |y|2
,
1 − |y|2

1 + |y|2

)
.

Identifying R2 with C, σ2 can be seen as a map from S2 \ {S(2)} into C, and
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σ2(x) = x1 + ix2
1 + x3

.

It then follows that

σ2(Rαx) = eiασ2(x) ∀Rα ∈ S1 . (2.11)

In terms of spherical coordinates on S2, i.e.,

x =
(
cosφ sin θ, sinφ sin θ, cos θ

)
(2.12)

with θ ∈ [0, π] (the colatitude) and φ ∈ [0, 2π) (the longitude), we have

σ2(x) = tan
(
θ/2

)
eiφ and |σ2(x)| = tan(θ/2) . (2.13)

Writing z = y1 + iy2, the complex version of the formula for the inverse map σ−1
2 reads

σ−1
2 (z) =

(
2z

1 + |z|2
,
1 − |z|2

1 + |z|2

)
. (2.14)

Let us now recall that the projective complex line CP 1 is the smooth manifold made of 
all complex lines through the origin in C2, i.e., CP 1 = (C×C\{(0, 0)})/C∗. We denote by 
[z0, z1], (z0, z1) &= (0, 0), the homogeneous coordinates for a point in CP 1. In other words, 
if z0 ∈ C∗, then [z0, z1] is the complex line 

{
(ζ0, ζ1) ∈ C2 : ζ1−(z−1

0 z1)ζ0 = 0
}
, while [0, 1]

is the line (at infinity) {(0, ζ1) ∈ C2, ζ1 ∈ C}. We refer to as an inhomogeneous coordinate
on CP 1 the complex number z = z−1

0 z1, and the mapping [z0, z1] /→ z allows to identify 
CP 1 with C ∪ {∞}, agreeing that [0, 1] ∈ CP 1 is mapped to ∞ (the point at infinity). 
With the convention that σ2 maps the south pole S(2) to ∞, the stereographic projection 
σ2 can be then seen as a bijective map from S2 into C ∪ {∞} and in turn to CP 1. This 
map turns out to be a diffeomorphism. In terms of the inverse map σ−1

2 : CP 1 → S2, 
we have

σ−1
2

(
[z0, z1]

)
= σ−1

2 (z−1
0 z1) .

In view of (2.11), considering the following S1-action on CP 1:

eiα · [z0, z1] := [z0, e
iαz1] , (2.15)

the map σ2 : S2 → CP 1 is equivariant with respect to the S1-action, i.e.,

σ2(Rαx) = eiα · σ2(x) ∀Rα ∈ S1 . (2.16)

The stereographic projection of S4. By means of the isometric isomorphism ι∗ between 
S0 and R ⊕ C ⊕ C (see (2.5)), we identify S4 with unit sphere of R ⊕ C ⊕ C. Setting 
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S(4) := (−1, 0, 0) ∈ S4, the stereographic projection σ4 : S4 \ {S(4)} → C2 from the 
south pole S(4) and its inverse are given by

σ4(p) :=
(

ζ1
1 + t

,
ζ2

1 + t

)
,

σ−1
4 (η1, η2) = 1

1 + |η1|2 + |η2|2
(
1 − |η1|2 − |η2|2, 2η1, 2η2

)

where p = (t, ζ1, ζ2) ∈ S4 \ {S(4)} ⊆ R ⊕ C ⊕ C and (η1, η2) ∈ C2. Adding a point at 
infinity to C2 and sending {S(4)} to it, σ4 induces a diffeomorphism between S4 and 
C2 ∪ {∞}. Note that, according to (2.6), we have for the extended map the equivariance 
property (fixing S(4) and ∞), namely

σ4(Rα · p) =
(
eiαζ1
1 + t

,
e2iαζ2
1 + t

)
∀Rα ∈ S1 . (2.17)

Let us now denote by S2
(1) ⊆ L0⊕L1 the unit sphere of R ⊕C⊕{0} and by S2

(2) ⊆ L0⊕
L2 the unit sphere of R ⊕{0} ⊕C (which are equatorial 2-spheres of S4). We notice that 
σ4 maps S2

(1) \ {S(4)} and S2
(2) \ {S(4)} into C× {0} and {0} ×C respectively. Moreover, 

its restrictions give the mappings σ(1)
2 : S2

(1) \ {S(4)} → C and σ(2)
2 : S2

(2) \ {S(4)} → C
defined by

σ(1)
2 (t, ζ1, 0) := ζ1

1 + t
and σ(2)

2 (t, 0, ζ2) := ζ2
1 + t

, (2.18)

which are stereographic projections, and in view of (2.17) they satisfy

σ(1)
2 (Rα ·

(
t, ζ1, 0)

)
= eiασ(1)

2 (t, ζ1, 0) and σ(2)
2 (Rα ·

(
t, 0, ζ2)

)
= e2iασ(2)

2 (t, 0, ζ2)
(2.19)

for every Rα ∈ S1.

The twistor fibration CP 3 → S4. The complex projective 3-space CP 3 is the smooth 
(complex) manifold made of all complex lines through the origin in C4, i.e., CP 3 =
(C4 \ {0})/C∗. If we denote by [w0, w1, w2, w3], with (w0, w1, w2, w3) ∈ C4 \ {0}, the 
homogeneous coordinates of a point in CP 3, then [w0, w1, w2, w3] represents the complex 
line 

{
(ζ0, ζ1, ζ2, ζ3) ∈ C4 : w*ζm − wmζ* = 0 , 1 ! / < m ! 4

}
(i.e., the w*’s and the 

ζ*’s differ by a common nonzero factor).
Considering S4 as the unit sphere of R ⊕C ⊕C, the twistor fibration τ : CP 3 → S4

is the map given by

τ
(
[w0, w1, w2, w3]

)

:=

(
|w0|2 + |w3|2 − |w1|2 − |w2|2 , 2(w0w1 + w2w3), 2(w0w2 − w1w3)

)

|w0|2 + |w1|2 + |w2|2 + |w3|2
, (2.20)
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see [6–8,40]. Considering the S1-action on CP 3 defined by

Rα · [w0, w1, w2, w3] := [w0, e
iαw1, e

2iαw2, e
3iαw3] ∀Rα ∈ S1 , (2.21)

and the (induced) S1-action on S4 ⊆ R ⊕ C ⊕ C given by (2.6) (see Remark 2.3), the 
twistor map τ turns out to be equivariant. We state this property in the following lemma, 
whose proof is a straightforward consequence of formulas (2.6), (2.20), and (2.21), hence 
it is left to the reader.

Lemma 2.10. The twistor fibration τ : CP 3 → S4 is equivariant with respect to the 
S1-actions on CP 3 and S4 given in (2.21) and (2.6). In other words,

τ
(
Rα · [w0, w1, w2, w3]

)
= Rα · τ

(
[w0, w1, w2, w3]

)
(2.22)

for every Rα ∈ S1 and every [w0, w1, w2, w3] ∈ CP 3.

Remark 2.11. A simple way to get some insight in the formula (2.20) for the twistor fibra-
tion is to interpret it in terms of quaternions. We recall that quaternions may be thought 
of as a set H of ordered pairs of complex numbers endowed with a noncommutative mul-
tiplication. We identify C2 with H via (ζ1, ζ2) /→ ζ1 +ζ2j (here j is the second imaginary 
unit of quaternions anticommuting with i, whence noncommutativity of the multiplica-
tion), and we also identify C4 with H2 by the map4 (ζ0, ζ1, ζ2, ζ3) /→ (ζ0 + ζ3j, ζ1 + ζ2j). 
The quaternionic projective space HP 1 is the quotient of H2 by the left action by H\{0}. 
As recalled above for CP 1, we can identify HP 1 with H ∪ {∞} via [q1, q2] /→ q−1

1 q2
using the inhomogeneous quaternionic coordinate q−1

1 q2 for q1 &= 0 (extended sending 
[0, 1] /→ ∞), and in turn with C2 ∪ {∞} writing q−1

1 q2 = η1 + η2j, η1, η2 ∈ C. This way 
(i.e., considering the composite map) we can see the stereographic projection σ4 as a 
map identifying HP 1 with S4 through C2 ∪ {∞}, namely

HP 1 . [q1, q2]
σ−1

4−→
(
|q1|2 − |q2|2

|q1|2 + |q2|2
, 2q−1

1 q2

)
∈ S4 ⊆ R⊕H .

As a consequence one can check that the map τ in (2.20) is exactly the composition of 
the Hopf map ρ : CP 3 → HP 1, taking complex lines in C4 + H2 to their quaternionic 
envelope in H2 (i.e., ρ([w0, w1, w2, w3]) = [w0 + w3j, w1 + w2j]), with the inverse of σ4.

3. Equivariant harmonic spheres into S4

The auxiliary results contained in this section will be used later in the present paper, 
when discussing the asymptotic behavior of LdG minimizers at isolated singularities, 

4 Under this rather unconventional identification the twistor fibration τ takes the form (2.20) and it is 
equivariant in the sense of Lemma 2.10.
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and they will be also of use in our companion paper [17]. Since such profiles turn out 
to be homogeneous extensions of S1-equivariant harmonic maps from the two-sphere, 
their classification we present here is of independent interest and of possible use in the 
analysis of minimizing harmonic maps under symmetry constraint (see, e.g., [20,27] and 
references therein).

Recall that any weakly harmonic map in ω ∈ W 1,2(S2; S4) is by definition a critical 
point of the energy functional

E(ω) =
∫

S2

1
2 |∇ω|2 dvolS2 , (3.1)

where ∇ is the gradient w.r.to the standard metric on S2. Hence it is a weak solution to

∆ω + |∇ω|2 ω = 0 , (3.2)

where ∆ is the usual Laplace-Beltrami operator on S2, and therefore C∞-smooth due 
to Hélein’s theorem (see, e.g., [21, Section 10.4.1]) and in turn real analytic by the 
analyticity results in [45]. Smooth harmonic maps between Euclidean spheres are usually 
called harmonic spheres and we will often use such terminology here.

We start with the following important result due to E. Calabi [11].

Lemma 3.1. ([11]) Every nonconstant harmonic sphere ω is a weakly conformal branched 
minimal immersion for which the energy (or, equivalently by conformality, the area) and 
the dimension of the image satisfy

E(ω) =
∫

S2

1
2 |∇ω|2 dvolS2 = 4π |d| , |d| ∈ N , dim spanR ω(S2) = k ∈ {1, 3, 5} .

(3.3)

Besides constant maps (for which d = 0 and the range has dimension k = 1), we will 
distinguish between linearly degenerate and linearly full harmonic spheres (for which 
k = 3 and k = 5 respectively) and we will classify them in the next two subsections 
under the S1-equivariance assumption.

In the next lemma we recall two other well known facts concerning harmonic spheres 
which will be used in the next subsections (we refer to [26, Chapter 6] for the relevant 
definitions and for a proof).

Lemma 3.2. Any harmonic map ω : S2 → S4 is real isotropic. In particular, any har-
monic map ω : S2 → S4 is (weakly) conformal, hence in terms of the spherical coordinates 
(θ, φ) on S2

|∂θω|2 ≡ 1
sin2 θ

|∂φω|2 and ∂θω · 1
sin θ

∂φω ≡ 0 . (3.4)
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In view of Remark 2.3, we can identify S4 with the unit sphere of R ⊕C ⊕C, which 
allows to write an S1-equivariant harmonic map ω : S2 → S4 as a map ω given by

ω = (ω0,ω1,ω2) ,

where ω0 : S2 → [−1, 1], ω1 : S2 → C, and ω2 : S2 → C. By (2.6), the S1-equivariance 
of ω translates into

ω0(Rαx) = ω0(x) , ω1(Rαx) = eiαω1(x) , ω2(Rαx) = e2iαω2(x) ∀Rα ∈ S1 .

(3.5)
In terms of the spherical coordinates (θ, φ) of x ∈ S2 (see (2.12)), the identities above 
imply that

ω0(x) = ω0(θ) , ω1(x) = ω1(θ)eiφ , ω2(x) = ω2(θ)e2iφ , (3.6)

where ω0 : [0, π] → [−1, 1] and ωk : [0, π] → C for k = 1, 2. By smoothness of ω, we have

ω0(0) ∈ {±1} , ω0(π) ∈ {±1} , ω1(0) = ω1(π) = 0 , ω2(0) = ω2(π) = 0 . (3.7)

In particular, ω sends the south pole S(2) ∈ S2 either to the south pole S(4) ∈ S4, or 
to the north pole N (4) := −S(4). Finally, in view of (2.13), precomposing ω with the 
inverse stereographic projection σ−1

2 : C → S2 (given by (2.14)) leads to

ω ◦ σ−1
2 (z) =

(
ω̃0(|z|), ω̃1(|z|)

z

|z| , ω̃2(|z|)
z2

|z|2

)
, (3.8)

where ω̃0 : [0, +∞) → [−1, 1] and ω̃k : [0, +∞) → C for k = 1, 2 are given by ω̃k(r) :=
ωk

(
2 arctan(r)

)
.

Remark 3.3. When restricting to equivariant harmonic spheres, the first equality in (3.4), 
together with (3.6), yields the useful identities

|∂θω|2 = |ω1|2 + 4 |ω2|2

sin2 θ
= 1

2 |∇ω|2 . (3.9)

An interesting consequence of the previous identity is the following fact.

Remark 3.4. (Branch points). If a smooth nonconstant map ω : S2 → S4 is harmonic 
and S1-equivariant, then |ω0(p)| < 1 and (ω1(p), ω2(p)) &= (0, 0) whenever p &= ±S(2). 
Otherwise we would have ω0 ≡ ±1 on a circle, hence ω would be a constant map in a 
disc in view of Lemaire’s theorem [39] and then everywhere by unique continuation. As 
a consequence, by (3.9) the only possible branch points (i.e., the points where ω has zero 
differential) are the poles S = S(2) and N = −S(2).
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3.1. Classification of linearly degenerate harmonic spheres

The key preliminary fact is given in the following simple lemma.

Lemma 3.5. Let ω : S2 → S4 be a nonconstant S1-equivariant harmonic map. If ω is 
not linearly full, then either spanR ω(S2) = L0 ⊕ L1 or spanRω(S2) = L0 ⊕ L2.

Proof. Set V := spanR ω(S2). Since ω is assumed to be neither constant nor linearly 
full, then V is linear subspace of S0 of dimension k = 3 because of Lemma 3.1. On the 
other hand, the equivariance of ω implies that V is invariant under the action of S1. By 
Remark 2.4, it follows that either V = L0 ⊕ L1 or V = L0 ⊕ L2, as claimed. !

The classification of the linearly degenerate harmonic spheres is now a simple conse-
quence of the classification results for S2-valued harmonic maps from [10] specialized to 
the equivariant setting. Below, degω is the topological degree of a map ω : S2 → S2.

Proposition 3.6. If ω = (ω0, ω1, ω2) : S2 → S4 is a nonconstant S1-equivariant and 
nonfull harmonic map and d ∈ Z is as in (3.3), then the following holds:

(i) either ω2 ≡ 0, degω = d = ±1 and for some µ1 ∈ C \ {0} we have

ω
(
σ−1

2 (z)
)

= ±ω(1)
eq

(
σ−1

2 (µ1z)
)
, (3.10)

with the + sign if ω(S(2)) = S(4), and the − sign if ω(S(2)) = −S(4);
(ii) or ω1 ≡ 0, degω = d = ±2 and for some µ2 ∈ C \ {0} we have

ω
(
σ−1

2 (z)
)

= ±ω(2)
eq

(
σ−1

2 (µ2z
2)
)
, (3.11)

with the + sign if ω(S(2)) = S(4), and the − sign if ω(S(2)) = −S(4);

here ω(1)
eq : S2 → S2

(1) ⊆ S4 and ω(2)
eq : S2 → S2

(2) ⊆ S4 are the equatorial embeddings

ω(1)
eq (x) := (x3, x1 + ix2, 0) and ω(2)

eq (x) := (x3, 0, x1 + ix2) . (3.12)

Proof. By Lemma 3.5, if ω = (ω0, ω1, ω2) : S2 → S4 is a nonconstant S1-equivariant 
and nonfull harmonic map, then either ω2 ≡ 0, or ω1 ≡ 0. We shall consider the two 
cases separately.
Case 1: ω2 ≡ 0. Recalling that S2

(1) denotes the unit sphere of R ⊕C⊕{0} + L0⊕L1, the 
mapping ω : S2 → S2

(1) is harmonic. Since it is not constant, it has a nonzero topological 
degree d ∈ Z \ {0} such that (3.3) holds and, considering −ω instead of ω if necessary, 
we may assume that d > 0, so that ω is holomorphic. Note that ω−1({±S(4)}) ⊆ S2 are 
finite sets and ω−1({±S(4)}) ⊆ {±S(2)} because of equivariance. In view of [39] (see also 
[10, Section 7]) and (2.18), the map f := σ(1)

2 ◦ω◦σ−1
2 : C → C is a well-defined rational 
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function of the form f(z) = P (z)/Q(z) for some coprime polynomials P and Q such that 
d = max{degP, degQ}. Since {Q = 0} ⊆ ω−1(S(4)) and {P = 0} ⊆ ω−1(−S(4)), we 
must have f(z) = µ1zl for some l ∈ Z \ {0}. Since σ2 and σ(1)

2 are equivariant in view 
of (2.11) and (2.19), then the map f is also equivariant, namely f(eiαz) = eiαf(z) for 
every eiα ∈ S1 and for every z &= 0. Comparing with (3.8) yields l = 1 and the conclusion 

follows from the definition of f and the identity 
(
σ(1)

2

)−1
= ω(1)

eq ◦ σ−1
2 .

Case 2: ω1 ≡ 0. The proof of the second case is entirely similar to one above, therefore 
it will be omitted. !

3.2. Linearly full harmonic spheres and horizontal algebraic curves

In this subsection, we construct S1-equivariant linearly full harmonic spheres ω : S2 →
S4 by composing S1-equivariant horizontal algebraic curves Φ : CP 1 → CP 3 with the 
twistor fibration τ : CP 3 → S4 defined in (2.20). We will limit as much as possible the 
geometric terminology referring the unfamiliar reader to [4] and [57] for all the relevant 
definitions.

Recall that CP 3 is a compact manifold with a natural Riemannian metric called the 
Fubini-Study metric. A possible way to define it is to consider the embedding CP 3 ↪→
M4×4(C) induced by the map C4 \ {0} . w −→ I4 − 2w⊗w̄

|w|2 ∈ M4×4(C) sending each 
complex line in C4 into the reflection across the complex 3-plane w⊥, and to consider the 
pull-back metric on CP 3 of the Riemannian metric (A, B) = 7 tr(A∗B) on M4×4(C). 
Actually the Fubini-Study metric extends to a Hermitian metric on the complexified 
tangent bundle which is the pull-back of the standard Hermitian metric 〈A, B〉 = tr(A∗B)
on M4×4(C) and endowed with this metric CP 3 is a complex Kähler manifold.

Once CP 3 is endowed with the Fubini-Study metric the map τ becomes a Riemannian 
submersion [6]. The horizontal distribution H = Ker dτ⊥ ⊆ TCP 3 is the family of 
subspaces H[w] ⊆ T[w]CP 3 parametrized by [w] ∈ CP 3 consisting of those tangent 
vectors to CP 3 at [w] that are orthogonal to the fibers of τ passing through [w], i.e., of 
those vectors belonging to the 4-dimensional plane (Ker dτ [w])⊥. Being τ by definition 
a Riemannian submersion, dτ [w] : H[w] → Tτ ([w])S4 is an isometry for any [w] ∈ CP 3.

We say that a holomorphic map Φ̃ : CP 1 → CP 3 is horizontal if at each point 
of its image it intersects the fibers of τ orthogonally, i.e., Ran dΦ̃[z] ⊆ HΦ̃(z) for any 
z = [z0, z1] ∈ CP 1.

In order to check both holomorphicity and horizontality, but also to take advantage of 
S1-equivariance, it is convenient to compose the maps with the stereographic projection 
σ−1

2 and to consider (with a slight abuse of notation) the induced maps Φ̃ : C → CP 3, 
Φ̃(z) = Φ̃([1, z]). The map Φ̃ is usually defined (at least locally) as Φ̃(z) = [Ψ(z)], where 
Ψ : C → C4 \ {0} is a smooth map, Ψ(z) = (Ψ0(z), . . . , Ψ3(z)).

For a smooth function f : C → C of the complex variable z = x1 + ix2 ∈ C we 
will consider complex derivatives fz := ∂zf and fz̄ := ∂z̄f with respect to the usual 
Wirtinger’s operators
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∂z = 1
2

(
∂

∂x1
− i

∂

∂x2

)
, ∂z̄ = 1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Clearly f is holomorphic (resp., antiholomorphic) in C if and only if fz̄ ≡ 0 (resp., 
fz ≡ 0). In addition, the following intertwining relation between Wirtinger’s operators 
and complex conjugation, namely f̄z̄ = fz, will be tacitly used during the computations.

Note that if f is S1-equivariant of degree k in the sense that f(eiαz) = eikαf(z) for 
all z ∈ C and some k ∈ Z, then we have the identities on C for any α ∈ R,

fz̄(eiαz) = ei(k+1)αfz̄(z) , fz(eiαz) = ei(k−1)αfz(z) , (3.13)

showing how the “degree of equivariance” changes under complex differentiation. Clearly 
the conjugate function f̄ inherits equivariance of degree −k and similar relations for the 
degree of equivariance hold for its complex derivatives f̄z and f̄z̄.

The following simple result gives a full description of equivariant holomorphic maps 
Ψ : CP 1 → CP 3 together with their horizontality property.

Lemma 3.7. For each map Ψ̃ : C \ {0} + CP 1 \ {±S(2)} → CP 3, Ψ̃([z0, z1]) = Ψ̃(z1/z0), 
the following are equivalent:

(1) Ψ̃ is a nonconstant holomorphic map on CP 1 \ {±S(2)} and S1-equivariant with 
respect to the actions (2.15) and (2.21);

(2) there exist µ = (µ0, µ1, µ2, µ3) ∈ C4 with at least two nonzero entries such that on 
CP 1 \ {±S(2)} we have

Ψ̃([z0, z1]) =
[
µ0z

3
0 , µ1z

2
0z1, µ2z0z

2
1 , µ3z

3
1
]
. (3.14)

As a consequence, Ψ̃ extends to a holomorphic map Ψ̃ : CP 1 → CP 3 still given by (3.14). 
In addition, the map Ψ̃ in (3.14) is horizontal if and only if the parameters µ0, µ1, µ2
and µ3 satisfy

µ0µ3 = −µ1µ2
3 . (3.15)

Proof. We only discuss the implication (1) ⇒ (2), as the converse implication is trivial.
Clearly it is enough to show that for each z∗ &= 0 there exists an S1-invariant open 

annulus A = Az∗ on which the representation (3.14) holds. Indeed, taking a collection A
of such annuli, when two annuli A, A′ ∈ A overlap the corresponding representations with 
parameters µ and µ′ must be pointwise proportional, hence the parameters µ and µ′ must 
be proportional, i.e. each representation is valid on both the annuli. As a consequence, 
passing to a subfamily A′ ⊆ A which is a locally finite cover of C \ {0} allows to pick a 
representation (3.14) with fixed µ which is valid in the whole C \ {0}.

Since Ψ̃ is holomorphic and S1-equivariant, for each z∗ &= 0 there exists an invariant 
annulus A containing z∗ and a holomorphic map Φ : A → C4 \ {0} such that Ψ̃ = [Φ] on 
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A and Φ(z) = (Φ0(z), . . . , Φ3(z)) has each entry Φ* which is equivariant of degree / on A
and at least two of them do not vanish identically because Ψ̃ is nonconstant. Note that 
because of equivariance each entry Φ* is either identically zero or nowhere vanishing on 
A (for if Φ* vanishes on a circle then it is zero everywhere by the identity principle for 
holomorphic functions). Choosing µ* = 0 whenever Φ* ≡ 0, we can focus on the nonzero 
components.

We first fix an invariant circle C ⊆ A passing through z∗, we take 0 ! m < / ! 3
corresponding to nonzero components of Φ, with m being the minimum of such indices, 
and we set µm = 1. Then the ratio Φ*/Φm is well-defined and holomorphic on A and 
it is equivariant of degree / −m. As a consequence Φ*(z)/Φm(z) is a nonzero constant 
multiple µ* &= 0 of z*−m on the circle C, hence Φ* ≡ µ*z*−mΦm on A again because of 
the identity principle. Varying / with the restriction above we have shown in the annulus 
A the identity Φ(z) = Φm(z) 

(
µ0z−m, . . . , µ3z3−m

)
, hence (3.14) holds on A because 

Φm &= 0 on A. Thus (1) ⇒ (2) is completely proved.
Once the equivalence is proved, it is obvious that Ψ̃ admits the obvious holomorphic 

extension to CP 1 still given by (3.14). Concerning horizontality, in view of the homo-
geneity in (3.14) we can regard Φ as a globally defined map Φ : C2 → C4 and considering 
on C4 the 1-form

Θ = w0 dw3 − w3 dw0 + w1 dw2 − w2 dw1,

by the explicit form of τ the horizontality condition can be rewritten (see [40], see also 
[6], [7]) as

Φ∗Θ = 0. (3.16)

Then, a simple calculation combining (3.14) and (3.16) yields (3.15). !

The next result provides an explicit family of linearly full equivariant harmonic 
spheres.

Proposition 3.8. Let Ψ̃ : S2 = CP 1 → CP 3 be an S1-equivariant horizontal holomorphic 
map as in (3.14)-(3.15) and assume µ0 = 1. Then the composition ω = τ ◦ Ψ̃ is given by 
the formulas

ω([z0, z1]) = 1
D(z0, z1)

(
|z0|6 − |µ1|2 |z0|4 |z1|2 − |µ2|2 |z0|2 |z1|4 + |µ1|2 |µ2|2

9 |z1|6 ,

2µ1z0z1

(
|z0|4 −

|µ2|2

3 |z1|4
)
, 2µ2z0

2z2
1

(
|z0|2 + |µ1|2

3 |z1|2
))

,

(3.17)

where
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D(z0, z1) = |z0|6 + |µ1|2 |z0|4 |z1|2 + |µ2|2 |z0|2 |z1|4 + |µ1|2 |µ2|2

9 |z1|6 . (3.18)

In addition, for each (µ1, µ2) ∈ C2 the map ω : S2 → S4 is an S1-equivariant harmonic 
map with ω([1, 0]) = (1, 0, 0). Moreover, ω is linearly full with energy E(ωωω) = 4πd = 12π
if and only if µ1 &= 0 and µ2 &= 0.

Proof. The validity of the formula (3.17) for the composition τ ◦ Ψ̃ together with the 
normalization ω([1, 0]) = (1, 0, 0) are just straightforward computations. It is easy to 
check that the corresponding maps are S1-equivariant with respect to the actions given 
in (2.15)-(2.6), hence (3.5) holds. Harmonicity of ω as in (3.17) can be verified by a direct 
checking of (3.2). Alternatively, since the projective spaces CPN are Kähler manifolds, 
by [57, Chapter 4, Prop. 3.14] each holomorphic map in (3.14) is harmonic. In addition, 
since τ is a Riemannian submersion and under (3.15) each Ψ̃ is a horizontal harmonic 
map, then the composite maps ω = τ ◦Ψ̃ in (3.17) are harmonic in view of [57, Chapter 6, 
Prop. 2.36]. In view of the explicit form of its components, we see that ω1 ≡ 0 iff µ1 = 0
and ω2 ≡ 0 iff µ2 = 0, therefore the map ω is full if and only if µ1 &= 0 and µ2 &= 0. 
Finally, according to (3.3), the value of the energy being discrete, it has to be locally 
constant under continuous changes of the parameters, hence it must be independent of 
their effective values, whenever the condition µ1µ2 &= 0 holds (because the dependence 
of the map on the parameters is easily seen to be continuous in C1(S2; S4)). Choosing 
µ1 = µ2 =

√
3 a direct calculation gives |∇ω|2 ≡ 6, hence E(ω) = 12π, d = 3 and the 

proof is complete. !

Remark 3.9. As already observed in the previous proof and as we will comment more in 
the next section, the case µ1 = µ2 =

√
3 is special. The corresponding harmonic sphere 

is by a direct computation

ω(H)([z0, z1]) = 1
(
|z0|2 + |z1|2

)2

(
|z0|4 − 4 |z0|2 |z1|2 + |z1|4 , 2

√
3 z0z1

(
|z0|2 − |z1|2

)
,

2
√

3 z0
2z2

1

)
,

it is invariant under the antipodal map CP 1 . [z0, z1] → [z1, −z0] ∈ CP 1 and it corre-
sponds to the Veronese embedding S2/{±1} = RP 2 ↪→ S4.

Remark 3.10. Notice that the function ω0 is always real-valued, while the functions ω1, 
ω2 in (3.6) are complex-valued whenever the parameters µ1, µ2 are such and real-valued 
otherwise.

Remark 3.11. It is worth noticing that letting µ2 = 0 or µ1 = 0 in (3.17) we obtain 
precisely, up to the double sign, the linearly degenerate harmonic spheres of energy 4π
and 8π respectively described in Proposition 3.6.
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3.3. Classification of linearly full harmonic spheres

In this final subsection we are going to show that every equivariant linearly full har-
monic sphere ω is actually one of those constructed in Proposition 3.8, possibly up 
to composition with the antipodal involution on S4. As already announced in the In-
troduction, the key step to achieve such classification is to obtain each S1-equivariant 
linearly full harmonic sphere ω : S2 = CP 1 → S4 as a composition of the twistor 
fibration τ : CP 3 → S4 defined in (2.20) with a horizontal S1-equivariant algebraic 
curve ω̃ : CP 1 → CP 3, called the twistor lift5 of ω. The geometric meaning of such 
construction in terms of orthogonal almost complex structures on the tangent spaces 
{Tω(p)S4}p∈S2 together with its far-reaching higher dimensional generalizations in the 
framework of twistor theory are described in details in the references given in the In-
troduction but they will not be discussed at all here. Indeed, in order to keep to the 
minimum the needed background from complex geometry, we will follow quite closely 
the concrete description of the lift from [6–8] and [18], but avoiding any use of quater-
nions, so that the argument here will be more elementary and it will be presented in an 
almost self-contained form. Thus, we will take the general formulas for the lift ω̃ from 
those papers as an ansatz, and prove that they actually satisfy all the desired proper-
ties in order to reconstruct ω. In particular, we will check that the construction of ω̃
is compatible with the S1-equivariance constraint, which, apparently, has not yet been 
considered in the literature. As a final consequence, it will be quite easy to obtain explicit 
formulas for all the linearly full equivariant harmonic spheres ω : S2 → S4 in terms of 
those in (3.17).

We now explain how to construct an algebraic S1-equivariant horizontal lift start-
ing from ω. Since ω(−S(2)) ∈ {±S(4)} then, without loss of generality, up to com-
posing with the antipodal map a : S4 → S4 given by a(x) = −x we may assume 
ω(−S(2)) = ω(−S(4)). We follow [6] and for each linearly full harmonic sphere we con-
sider the complex valued smooth functions (ξ, η) = σ4 ◦ ω, so that

ξ := ωωω1
1 +ωωω0

, η := ωωω2
1 +ωωω0

. (3.19)

By Remark 3.4, both ξ and η are well-defined everywhere on S2 except, possibly, at 
the south pole because of our normalization above. Further, they are S1-equivariant in 
the sense of (2.15)-(2.17) and real-analytic, since both σ4 and ω enjoy these properties. 
Composing with σ−1

2 and identifying S2 \{S(2)} with C, we will regard (3.19) as smooth 
equivariant complex-valued functions defined in the whole complex plane C. In addition, 
by (3.2) and (3.19) simple computations yield

5 The twistor space of S4 is SO(5)/ U(2), see [4, Chapter 7]. However, for the purpose of presenting the lift 
in terms of explicit formulas, we find more convenient to work with its equivalent presentation as CP 3. For 
details on this identification and the deduction of these formulas from those in [11] we refer the interested 
reader to [18].
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ξzz̄ + ξ(|ηz̄|2 + |η̄z̄|2) − 2ξ̄ξz̄ξz − ξz̄∂z |η|2 − ξz∂z̄ |η|2

1 + |ξ|2 + |η|2
= 0 (3.20)

and

ηzz̄ +
η(|ξz̄|2 +

∣∣ξ̄z̄
∣∣2) − 2η̄ηz̄ηz − ηz̄∂z |ξ|2 − ηz∂z̄ |ξ|2

1 + |ξ|2 + |η|2
= 0, (3.21)

where the previous equations hold in the whole complex plane C.
Applying (3.13) to ξ and η with k = 1 and k = 2 respectively, we have the identities 

on C for any α ∈ R, namely,

ξz̄(eiαz) = ei2αξz̄(z) , ξz(eiαz) = ξz(z) , (3.22)

and

ηz̄(eiαz) = ei3αηz̄(z) , ηz(eiαz) = eiαηz(z) , (3.23)

with similar properties for the complex derivatives of ξ̄ and η̄.
The next result is a consequence of conformality and real isotropy of harmonic spheres 

stated in Lemma 3.2, once rewritten in complex coordinates and in terms of ξ, η.

Lemma 3.12. Let ω : S2 → S4 be an S1-equivariant harmonic map and ξ, η as in (3.19). 
Then:

ξz̄ ξ̄z̄ + ηz̄ η̄z̄ = 0 (3.24)

and

ξz̄z̄ ξ̄z̄z̄ + ηz̄z̄ η̄z̄z̄ = 0. (3.25)

Proof. Using the definition of ξ, η one may check directly that Eq. (3.24) and Eq. (3.25)
follow taking, respectively, α = 1, β = 1 and α = 2, β = 2 in [26, Proposition 6.1]. !

Another key consequence is the following lemma.

Lemma 3.13. If ω : S2 → S4 is a linearly full S1-equivariant harmonic map and ξ, η
are as in (3.19), then at any point z ∈ C \ {0} the complex derivatives ξ̄z̄, ηz̄, ξz̄ and 
η̄z̄ cannot vanish simultaneously. Moreover, neither ξ̄z̄ nor η̄z̄ can vanish identically. 
Finally, ξz̄ and ηz̄ cannot vanish identically at the same time.

Proof. The first statement follows from conformality and Remark 3.4. Indeed, if we take 
z &= 0 then p = σ−1

2 (z) ∈ S2 \ {±S(2)} and ω(p) &= ±S(4); hence we have (ξ(z), η(z)) =
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σ4(ω(p)) &= (0, 0) and, by the conformality of σ4, we can rewrite the energy density of 
ω at p as

|∇ω(p)|2 = 2
(
1 + |z|2

)2
∣∣ξ̄z̄

∣∣2 + |ηz̄|2 + |ξz̄|2 + |η̄z̄|2
(
1 + |ξ(z)|2 + |η(z)|2

)2 &= 0 ,

since the only branch points of ω can be at the poles.
Now we claim that ξ̄z̄ and η̄z̄ cannot vanish identically. Suppose by contradiction that 

ξ̄z̄ ≡ 0 in C. Then ξ̄ is an entire holomorphic function, hence ξ is antiholomorphic in the 
whole C. Note that ξ is equivariant of degree one on C \{0}, as the function g(z) = 1/z̄, 
hence ξ(z)/g(z) ≡ ξ(1) on the circle |z| = 1 again by equivariance. By the identity 
principle for antiholomorphic functions we have ξ(z) = ξ(1)/z̄ on C \{0}, hence ξ(1) = 0
and in turn ξ ≡ 0 because the function ξ is bounded near the origin. As a consequence, 
(3.19) yields ω1 ≡ 0, which is impossible, because the map ω is linearly full. A similar 
argument applies if we assume η̄z̄ ≡ 0. Indeed, then η(z)/h(z) ≡ η(1) in C \ {0} with 
h(z) = 1/z̄2, hence η ≡ 0 because it is bounded near the origin. Thus ω2 ≡ 0 because of 
(3.19), which is again impossible because the map ω is linearly full.

Finally, if ξz̄ and ηz̄ both vanish identically then ξ and η are both holomorphic and 
equivariant of degree one and two respectively. Arguing as above we have ξ ≡ c1z and 
η = c2z2, where c1c2 &= 0 because the map ω is linearly full. Then simple calculations 
give a contradiction because neither (3.20) nor (3.21) are satisfied. !

The last preliminary fact we need before defining the twistor lift is the following.

Lemma 3.14. Let ω : S2 → S4 be an S1-equivariant harmonic map and ξ, η as in (3.19). 
Then in the whole complex plane we have

(
ξ̄z̄z̄ η̄z̄ − η̄z̄z̄ ξ̄z̄

)
(ξz̄z̄ η̄z̄ − η̄z̄z̄ξz̄) = 0 . (3.26)

As a consequence, at least one of the two factors in (3.26) vanishes identically on C.
If, in addition, the map ω is linearly full, then only one factor in (3.26) vanishes 

identically.

Proof. The conclusion of the first part will follow from Lemma 3.12 by simple manipu-
lations in the whole complex plane. Differentiating (3.24) with respect to z̄ gives

ξz̄z̄ ξ̄z̄ + ξz̄ ξ̄z̄z̄ + ηz̄z̄ η̄z̄ + ηz̄ η̄z̄z̄ = 0 . (3.27)

Multiplying (3.25) by η̄z̄ we obtain

η̄z̄ξz̄z̄ ξ̄z̄z̄ + η̄z̄ηz̄z̄ η̄z̄z̄ = 0 .
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Solving (3.27) with respect to η̄z̄ηz̄z̄ and substituting into the last identity above, we 
have, after some rearrangements,

ξ̄z̄z̄ (ξz̄z̄ η̄z̄ − η̄z̄z̄ξz̄) − η̄z̄z̄
(
ξz̄z̄ ξ̄z̄ + η̄z̄z̄ηz̄

)
= 0 .

Multiplying also the last identity by η̄z̄ we have

η̄z̄ ξ̄z̄z̄ (ξz̄z̄ η̄z̄ − η̄z̄z̄ξz̄) − η̄z̄z̄
(
η̄z̄z̄ηz̄ η̄z̄ + ξz̄z̄ η̄z̄ ξ̄z̄

)
= 0 .

By the conformality relation (3.24), we have ηz̄ η̄z̄ = −ξz̄ ξ̄z̄ and, after substituting in the 
last identity and rearranging the resulting terms, Equation (3.26) follows. Finally, since 
both factors in (3.26) are real-analytic functions in the whole C, then at least one of the 
two must vanish identically by unique continuation.

Concerning the second part, we argue by contradiction, supposing that both factors 
(3.26) vanish identically. We start observing that in view of Lemma 3.13 we have {ξ̄z̄ &=
0} &= ∅ and this open set is S1-invariant because of (3.22). Hence, this open set contains 
a circle C = {|z| = a > 0} and an invariant annulus A around it. In the annulus A, as the 
first factor in (3.26) vanishes, the function η̄z̄/ξ̄z̄ is holomorphic with the same degree 
of equivariance of 1/z. Since by equivariance η̄z̄/ξ̄z̄ and 1/z differ only by a constant 
factor on C, by the identity principle for holomorphic functions the same holds on A. 
Hence, there is a complex number c1 such that zη̄z̄ − c1ξ̄z̄ ≡ 0 first on A and then 
on C by unique continuation for real-analytic functions. Clearly c1 &= 0, otherwise we 
would get η̄z̄ ≡ 0 which is impossible in view of Lemma 3.13. We argue in a similar 
way using the second factor in (3.26). By Lemma 3.13, the set {η̄z̄ &= 0} is not empty 
and invariant, hence it contains a second annulus where we can consider the function 
ξz̄/η̄z̄, which is holomorphic and equivariant of degree 3, hence arguing as above we may 
write ξz̄ = c2z3η̄z̄ for some c2 ∈ C, where the identity on the annulus also extends to 
C by unique continuation as above. Note that c2 &= 0, otherwise ξ would be an entire 
holomorphic function equivariant of degree one, hence ξ = c3z, with c3 &= 0 because ω is 
linearly full. On the other hand, in view of the conformality condition (3.24) the function 
η would satisfy ηz̄ = 0 since η̄z̄ &≡ 0. Being holomorphic, nontrivial and equivariant of 
degree two, we would have η = c4z2 for some c4 &= 0, but then ξ = c3z and η = c4z2

with c3c4 &= 0 should satisfy (3.20)-(3.21) which is impossible by direct computation. 
Hence, we showed that if both factors in (3.26) vanish then for some c1, c2 ∈ C \ {0} the 
functions ξ and η solve the first order system

{
zη̄z̄ = c1ξ̄z̄ ,

ξz̄ = c2z3η̄z̄ ,
(3.28)

whence (ξ − c1c2z2ξ̄)z̄ = 0 on C. Again, by holomorphicity and equivariance of degree 
one we would have ξ − c1c2z2ξ̄ = c5z, with c5 &= 0 (otherwise we would easily get 
|ξ|2(1 − |c1c2z2|2|) = 0 identically, which contradicts ξ &≡ 0). Combining the last equation 
with its conjugate ξ̄ = c1c2z̄2ξ + c5z̄ we finally get
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ξ = c5z(1 + c1c2c5/c5|z|2)
1 − |c1c2z2|2 = c5z

1 + |c1c2z2| ,

because ξ must be locally bounded, whence we must have c1c2c5/c5 = −|c1c2| and the 
last identity follows. In view of the previous formula for ξ, the function ξ̄z̄ does not vanish 
as z → 0, hence letting z → 0 in the first equation in (3.28) we derive a contradiction 
and the proof is complete. !

We are finally in the position to introduce the twistor lift of a harmonic sphere. 
Starting from ω, we can define on C \ {0} (i.e., on S2 \ {±S(2)}) two lifts

ω̃+(z) =
{

[ξ̄z̄, ξ̄z̄ξ + ηz̄ η̄, ξ̄z̄η − ηz̄ ξ̄,−ηz̄], if (ξ̄z̄, ηz̄) &= (0, 0) ,
[η̄z̄, η̄z̄ξ − ξz̄ η̄, η̄z̄η + ξz̄ ξ̄, ξz̄], if (ξz̄, η̄z̄) &= (0, 0) ,

(3.29)

and

ω̃−(z) =
{

[ξz̄ ξ̄ + ηz̄ η̄,−ξz̄,−ηz̄, ηz̄ξ − ξz̄η], if (ξz̄, ηz̄) &= (0, 0) ,
[ξ̄z̄ η̄ − η̄z̄ ξ̄, η̄z̄,−ξ̄z̄, ξ̄z̄ξ + η̄z̄η], if (ξ̄z̄, η̄z̄) &= (0, 0) .

(3.30)

In accordance with the standard terminology from twistor theory (see, e.g., [4], [40] and 
[18]), we call ω̃+ the positive lift of ω to CP 3 and ω̃− its negative lift. The reason for this 
terminology will not be explained and it depends on the geometric meaning of the above 
formulas (more precisely on the orientation of the associated almost complex structures 
on Tω(z)S4). Here we do not justify the expressions for the lifts in (3.29)-(3.30) but we 
just show that these are suitable for our purposes.

The following result is an adaptation to our symmetric context of [58, Theorem 1]
(see also [9] and [11]).

Proposition 3.15. Let ω : S2 → S4 be a linearly full S1-equivariant harmonic map such 
that ω(−S(2)) = −S(4). Let ω̃+, ω̃− : S2 + CP 1 → CP 3 be as in (3.29), (3.30) and 
a : S4 → S4 be the antipodal map on S4. Then:

(1) ω̃+, ω̃− are well-defined at any point of S2 \ {±S(2)} and real-analytic.
(2) ω̃+, ω̃− are S1-equivariant with respect to the action (2.15) on S2 + CP 1 and the 

action (2.21) on CP 3.
(3) ω̃+ is a lift of ω and ω̃− is a lift of a ◦ ω; i.e., τ ω̃+ = ω and τ ◦ ω̃− = a ◦ ω.
(4) At least one (and actually exactly one) among ω̃+ and ω̃− is holomorphic in S2 \

{±S(2)}. Thus, the lift extends to a holomorphic map defined on the whole S2.
(5) If ω̃+ (ω̃−) is holomorphic, then it is also horizontal.

Proof. The claimed statements follow combining the preliminary results presented above, 
therefore the argument are more direct and much more elementary than those in the 
existing literature covering the nonsymmetric case.
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For (1), we discuss only the case of ω̃+. The case of ω̃− is entirely similar and it is 
left to the reader. First observe that the domain of definition of the two formulas for ω̃+, 
namely {(ξ̄z̄, ηz̄) &= (0, 0)} and {(ξz̄, η̄z̄) &= (0, 0)}, are both nonempty and open and their 
union is C \ {0} because of Lemma 3.13, hence they have nonempty open intersection 
A ⊆ C \ {0}. Thus, equations (3.29) give on each open set a well-defined real-analytic 
map with values into C4 \ {0} because ξ and η are real-analytic. In addition, on the 
intersection A the two quadruples in C4 are proportional because of the conformality 
property of ω (considering them as rows of a matrix in M2×4(C), the rank is one at every 
point of A because of (3.24)). As a consequence (3.29) gives a well-defined real-analytic 
function from C \ {0} to CP 3.

Statement (2) is a consequence of the equivariance properties of ξ and η and their 
derivatives given in (3.22)-(3.23). Thus the complex entries in the first quadruple in 
(3.29) are equivariant of degrees (0, 1, 2, 3), those in the second of degrees (−1, 0, 1, 2), 
hence equivariance holds with respect to the action (2.21) on CP 3. Similar considerations 
apply to ω̃−.

Statement (3) is nothing more than a straightforward computation combining the 
explicit formulae for the lifts with (2.20) and using again the fact that the derivatives of 
ξ and η cannot vanish simultaneously because of Lemma 3.13.

For what concerns (4), we observe that, as detailed for instance in [18], the holomor-
phicity condition for the first representation of ω̃+ in terms of ξ, η clearly implies

ξ̄z̄z̄ηz̄ − ηz̄z̄ ξ̄z̄ = 0 in (ξ̄z̄, ηz̄) &= (0, 0) (3.31)

or for the second representation,

η̄z̄z̄ξz̄ − ξz̄z̄ η̄z̄ = 0 in (ξz̄, η̄z̄) &= (0, 0) . (3.32)

Similarly, for ω̃− we get

ξz̄z̄ηz̄ − ηz̄z̄ξz̄ = 0 in (ξz̄, ηz̄) &= (0, 0) , (3.33)

or for the second definition

ξ̄z̄z̄ η̄z̄ − η̄z̄z̄ ξ̄z̄ = 0 in (ξ̄z̄, η̄z̄) &= (0, 0) . (3.34)

These are easily seen by differentiating the ratio of the functions defining each domain. 
Simple calculations also show that the same holds for each ratio which is well-defined, i.e., 
it is routine to check that all the conditions (3.31)-(3.34) are also sufficient to characterize 
holomorphicity of the lifts in the respective domain of definition. Observe that when they 
hold these identities extend to the whole C \ {0} by unique continuation (although the 
corresponding ratio may not be well-defined) because ξ and η are real-analytic. Finally, 
observe that (3.31)-(3.32) and (3.33)-(3.34) are equivalent when two domains of definition 
overlap because of the conformality condition (3.24).
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In order to proceed in the proof of the claim we apply Lemma 3.14. It follows from 
(3.26) that at least one lift is holomorphic in C \ {0}, hence on S2 \ {±S(2)}, because 
one (actually two) among the conditions (3.31)-(3.34) is (are) satisfied. Moreover still 
Lemma 3.14 implies than only one lift is holomorphic whenever the harmonic map ω
is full. Finally, by Lemma 3.7 the map must be of the form (3.14), hence it extends 
holomorphically to the whole S2.

Now we come to (5). Suppose ω̃+ is holomorphic. Then, in the open subset {ξ̄z̄ &= 0}
where the first representation of the lift ω̃+ is defined (analogous argument applies in 
the subset {ηz̄ &= 0}) we can write

ω̃+ =
[
1, ξ̄z̄ξ + ηz̄ η̄

ξ̄z̄
,
ξ̄z̄η − ηz̄ ξ̄

ξ̄z̄
,−ηz̄

ξ̄z̄

]

where the functions

w0 = 1 , w1 = ξ̄z̄ξ + ηz̄ η̄

ξ̄z̄
, w2 = ξ̄z̄η − ηz̄ ξ̄

ξ̄z̄
, w3 = −ηz̄

ξ̄z̄

are holomorphic. The horizontality property, previously encoded in the condition (3.16), 
reduces to

(w3)z + w1(w2)z − w2(w1)z = 0 ,

which is easily verified taking advantage of conformality condition (3.24) and the fact 
that, since ω is harmonic, ξ and η respectively satisfy (3.20) and (3.21) in C.

The same holds for the second representation of ω̃+ in its domain of definition. In 
case ω̃− is holomorphic its horizontality property is treated in a similar way. The details 
are left to the reader. !

Remark 3.16. Although sufficient to our purposes in the present form, Proposition 3.15
actually holds without the assumption ω(−S(2)) = −S(4). Indeed, in case ω(−S(2)) =
S(4) instead of ξ and η one can define complex functions ζ and χ using the stereographic 
projection from the north pole −S(4) ∈ S4 (i.e., as in formulas (3.19) but with a minus 
sign in the denominator) and obtain equations similar to (3.20)-(3.21). Then one can 
construct positive and negative lifts with formulas similar to (3.29)-(3.30) in terms of 
ζ, χ so that the claims in Proposition 3.15 still hold. In addition, such new lifts can be 
proven to be equivalent to those in terms of ξ, η (hence the lifts do not depend on which 
stereographic projection has been chosen). For further details we refer the interested 
reader to [18, pp. 77-78 and 98-100].

Remark 3.17. It follows from the previous proposition, combined with the rigidity result 
in Lemma 3.7, that for a linearly full map ω the lift ω̃− cannot be holomorphic when 
ω(−S(2)) = −S(4). Otherwise we would have µ0 &= 0 from (3.15) and hence (3.14) would 
imply
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ω(−S(2)) = −S(4) = τ ([1, 0, 0, 0]) = τ ◦ ω̃−(−S(2)) = a ◦ ω(−S(2)) ,

which is a contradiction. Similarly, ω̃+ cannot be holomorphic when ω(−S(2)) = S(4). 
Thus, from claim (4) of the previous proposition we conclude that ω̃+ (resp. ω̃−) is 
holomorphic iff ω(−S(2)) = −S(4) (resp. ω(−S(2)) = S(4)).

Remark 3.18. As a consequence Proposition 3.15 and the previous remark we see that if 
ω : S2 → S4 is a linearly full equivariant harmonic sphere such that ω(−S(2)) = ∓S(4)

then Ψ = ±̃ω
+ : CP 1 → CP 3 is always an equivariant holomorphic horizontal curve. In 

addition, ±ω = τ ◦ Ψ. We will refer to it as the twistor lift of ω and we will denote it 
simply by ω̃.

Combining Proposition 3.15 with Lemma 3.7 and Proposition 3.8 we finally have the 
classification result for linearly full equivariant harmonic spheres.

Theorem 3.19. Let ω : S2 → S4 be an S1-equivariant harmonic sphere. If ω is linearly 
full then it can be recovered and explicitly described in terms of the composition of the 
twistor fibration τ in (2.20) with its S1-equivariant holomorphic and horizontal twistor 
lift ω̃ : CP 1 → CP 3 defined in Remark 3.18.

More explicitly, the following holds:

(1) We have ∓ω = τ ◦ ω̃, where ω̃ = ∓̃ω
+ is provided by Proposition 3.15, with the 

minus sign if ω(−S(2)) = S(4) and the plus sign otherwise.
(2) The lift ω̃ is given by (3.14) with µ0 = 1, µ1, µ2 ∈ C \ {0} and µ3 as in (3.15).
(3) Up to reversing the sign as in (1), the map ω is given by (3.17) with restriction on 

the parameters µ1, µ2 and µ3 as in (2).

4. Minimizing S1-equivariant tangent maps

In this section, we rely on the classification results for S1-equivariant harmonic spheres 
from Sec. 3 and we discuss the stability and energy minimality properties of the corre-
sponding degree-zero homogeneous extensions, the so-called tangent maps, with respect 
to the Dirichlet energy E0 in the class of S1-equivariant maps. Since the fundamental 
papers by R. Schoen and K. Uhlenbeck [48–50], tangent maps are used to study the 
local behavior of minimizing harmonic maps around possible singularities. As detailed 
in Sec. 6, our main interest here relies in the fact that they allow as well to investigate 
the local behavior around any point x ∈ Ω of S1-equivariant Q-tensor fields minimizing 
Eλ in the class Asym

Qb
(Ω). Because of the extra symmetry constraint, this specific stabil-

ity/minimality analysis is really necessary in the present case, since we are not allowed 
to apply the general results in [50] and [41] valid in the nonsymmetric setting.

As in the previous sections, we identify S0 with R ⊕ C ⊕ C and consider S4-valued 
maps.



F.L. Dipasquale et al. / Journal of Functional Analysis 286 (2024) 110314 39

Definition 4.1 (tangent map). We say that a degree-zero homogeneous map ω̂ : R3\{0} →
S4 is an S1-equivariant tangent map if

ω̂(x) = ω

(
x

|x|

)
∀x ∈ R3 \ {0} , (4.1)

and ω : S2 → S4 is an S1-equivariant harmonic map (see Sec. 3). Correspondingly, we say 
that ω̂ is the tangent map induced by the (S1-equivariant) harmonic sphere ω : S2 → S4.

Remark 4.2. A tangent map ω̂ is smooth in R3 \ {0} (see Sec. 3) and belongs to 
W 1,2

loc (R3, S4). It is also S1-equivariant and weakly harmonic in the whole space R3. 
Conversely, any weakly harmonic map from R3 into S4 which is 0-homogeneous and 
S1-equivariant is a tangent map (i.e., the 0-homogeneous extension of an S1-equivariant 
harmonic sphere into S4).

To investigate the stability of tangent maps in the class of S1-equivariant maps into 
S4, we need to recall the definition of the second variation of energy along admissible 
deformations. We proceed as follows. Consider a tangent map ω̂ : R3 \ {0} → S4. Given 
a compactly supported vector field X ∈ C∞

c (R3, R ⊕C⊕C) which is S1-equivariant (i.e., 
satisfying X(Rx) = R ·X(x) with respect to (2.6) for every R ∈ S1 and every x ∈ R3), 
we can find ε > 0 small enough such that for every t ∈ (−ε, ε),

ω̂t := ω̂ + tX

|ω̂ + tX| ∈ W 1,2
loc (R3;S4) .

Clearly, {ω̂t}t∈(−ε,ε) is a one parameter family of S1-equivariant maps into S4, ω̂t− ω̂ is 
compactly supported in sptX, and ω̂0 = ω̂. The second variation of the Dirichlet energy 
E0 of ω̂ evaluated at X is defined as

δ2E0(ω̂)[X] := d2

dt2
E0(ω̂t, Bρ)

∣∣∣∣
t=0

, (4.2)

where the radius ρ is chosen in a way that sptX ⊆ Bρ.
The explicit representation of the second variation δ2E0(ω̂) follows from classical com-

putations as in [50] (see also [42, Chapter 1]), and it is provided in the following lemma.

Lemma 4.3. Let ω̂ : R3 \ {0} → S4 be a tangent map. For every S1-equivariant vector 
field X ∈ C∞

c (R3; R ⊕C ⊕C), we have

δ2E0(ω̂)[X]

=
∫

R3

{
|∇X|2 + (4(ω̂ ·X)2 − |X|2) |∇ω̂|2 − |∇(ω̂ ·X)|2 − 4(ω̂ ·X)∇X : ∇ω̂

}
dx
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=
∫

R3

{
|∇XT |2 − |∇ω̂|2 |XT |2

}
dx , (4.3)

where XT := X − (ω̂ ·X)ω̂ is the tangential component of X along ω̂ and ω̂ ·X denotes 
the pointwise scalar product of the two functions as elements in the underlying real vector 
space.

Classically, we shall say that an S1-equivariant tangent map ω̂ is stable if the quadratic 
form δ2E0(ω̂) is nonnegative, i.e.,

δ2E0(ω̂)[X] " 0 for every S1-equivariant X ∈ C∞
c (R3;R⊕C ⊕C). (4.4)

If a tangent map ω̂ is not stable, we shall say that it is unstable.
A stronger property than stability for a tangent map is to be minimizing. We say that 

an S1-equivariant tangent map ω̂ is locally minimizing if it is energy minimizing in every 
ball Bρ, i.e., for every ρ > 0 and every S1-equivariant competitor w ∈ W 1,2(Bρ; S4) such 
that spt(ω̂ − w) ⊆ Bρ,

E0(ω̂, Bρ) ! E0(w,Bρ) . (4.5)

(Note that by 0-homogeneity it is enough to consider minimality in the unit ball B1.)

Remark 4.4. According to this definition, locally minimizing S1-equivariant tangent maps 
are indeed stable in the sense of (4.4) by the second order condition for minimality.

We are now ready to state the main result of this section, whose proof is the object 
of the following two subsections.

Theorem 4.5. Let ω̂ : R3 \ {0} → S4 be a nonconstant S1-equivariant tangent map.

1) If the range of ω̂ is not contained in R ⊕C ⊕ {0} + L0 ⊕ L1, then ω̂ is unstable.
2) The map ω̂ is locally minimizing iff there exists α ∈ R such that ω̂(x) = ±Rα ·

ω(1)
eq

(
x
|x|

)
with ω(1)

eq the equatorial embedding in (3.12) and Rα ∈ S1 acts as in 
(2.6).

Applying explicitly the identification S0 + R ⊕C ⊕C in Lemma 2.2, straightforward 
calculations yield the following two useful corollaries of Theorem 4.5 for the correspond-
ing maps ω̂ into S4 ⊆ S0.

Concerning unstable maps the following Corollary recovers the instability result from 
[16, Proposition 4.7] for the constant norm hedgehog (see also [29, Theorem 1.2 and 
Remark 1.3] for a related instability result for the non-constant norm hedgehog in the 
entire space under symmetric perturbations).
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Corollary 4.6. Let ω̂ : R3 \ {0} → S4 ⊆ S0 be the tangent map induced by the Veronese 
embedding ω(H) in Remark 3.9, i.e., the harmonic sphere in (3.17) with µ1 = µ2 =

√
3. 

Then ω̂ = H, where H is the constant norm hedgehog given in (1.23). As a consequence, 
the map H is unstable with respect to S1-equivariant perturbations.

For locally minimizing tangent maps we have the following result.

Corollary 4.7. Let ω̂ : R3 \ {0} → S4 ⊆ S0 be a locally minimizing tangent map. Then 
there exists α ∈ R such that ω̂ = Q(α) or ω̂ = −Q(α), where Q(α) is the matrix-valued 
map given in (1.18).

4.1. Instability of degree-two and linearly full tangent maps

For the reader’s convenience we restate the first part of Theorem 4.5 in the following 
result.

Proposition 4.8. A tangent map ω̂ whose range is not contained in R ⊕C⊕{0} is unstable.

The proof of this proposition relies on the classification of all S1-equivariant harmonic 
spheres into S4 provided by Theorem 3.19 and Proposition 3.6. We start with a reduction 
to real parameters in the representation of harmonic spheres.

Lemma 4.9. Let ω : S2 → S4 be a nonconstant S1-equivariant harmonic map as in (3.17)
with complex parameters µ1, µ2 ∈ C. If ω = (ω0, ωωω1, ωωω2) and for s = (s1, s2) ∈ R2 we 
set

ωs := (ω0, e
is1ωωω1, e

is2ωωω2) ,

then ωs is harmonic and S1-equivariant, moreover the induced tangent map ω̂s is stable 
if and only if ω̂ is stable. In particular, ω̂ is stable if and only if the tangent map ω̂+ is 
stable, where ω+ denotes the harmonic map with parameters |µ1|, |µ2|.

Proof. The first statement follows immediately from (3.2) and (2.6), noticing that 
|∇ω|2 = |∇ωs|2. The second is a direct consequence of the first and of the second vari-
ation formula (4.3). Indeed, for every S1-equivariant test vector field X = (X0, X1, X2)
with tangential part along ω given by XT = X − (ω̂ ·X)ω̂, we can consider the rotated 
vector field Xs = (X0, eis1X1, eis2X2) and its tangential component (Xs)T along ω̂s. It’s 
easy to check that |(Xs)T |2 = |XT |2, |∇(Xs)T |2 = |∇XT |2 and

δ2E0(ω̂)[X] = δ2E0(ω̂s)[Xs] .

As a consequence, X destabilizes ω̂ if and only if Xs destabilizes ω̂s, therefore the first 
equivalence is proved.
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The last claim is now obvious, choosing s = (s1, s2) such that eis1µ1 = |µ1| and 
eis2µ2 = |µ2| and checking that ω̂s = ω̂+ in view of (3.17). !

Remark 4.10. As a consequence of the previous lemma, in what follows the functions ω1, 
ω2 in (3.6) corresponding to (3.17) will be always considered as real-valued.

As a second step, we observe an easy consequence of stability inequality (4.4).

Lemma 4.11. Let ω̂ : R3 \ {0} → S4 ⊆ R ⊕ C ⊕ C be an S1-equivariant tangent map 
induced by a harmonic sphere ω as in (3.17) with µ1, µ2 " 0. If ω̂ is stable then ω
satisfies the following inequality:

∫

S2

g2 |∇ω|2 dvolS2 !
∫

S2

{1
4g

2 + |∂θg|2 + g2

sin2 θ

}
dvolS2 , (4.6)

for all g ∈ C1(S2) which depend only on the colatitude θ and vanish at the poles.

Proof. First we fix X ∈ C∞
c (R3 \ {0}; R ⊕C⊕C) an S1-equivariant deformation vector 

field which in polar coordinates has the form

X =
(
0,ψ(r, θ)ieiφ, 0

)
, (4.7)

with ψ ∈ C∞
0 ((0, +∞) × (0, π); R).

Since µ1 ∈ R then (3.17) yields ω̂ · X ≡ 0 and from (4.3) we have (recall that ω̂ is 
degree-zero homogeneous)

δ2E0(ω̂)[X] =
∫

R3

{
−ψ2

r2 |∇ω|2 + |∂rψ|2 + 1
r2

(
|∂θψ|2 + ψ2

sin2 θ

)}
dx ,

where ∇ω is evaluated at x
|x| .

We now decompose ψ(r, θ) = ϕ(r)g(θ), with ϕ ∈ C∞
c ((0, +∞)) and g ∈ C∞

0 ((0, π)), 
hence the stability property (4.4) yields for any ϕ and g the inequality

δ2E0(ω̂)[X] =
∫

R3

{
−ϕ2g2

r2 |∇ω|2 + g2 |∂rϕ|2 + ϕ2

r2

(
|∂θg|2 + g2

sin2 θ

)}
dx " 0 .

Now optimize with respect to ϕ using the sharp Hardy inequality. Integrating with 
respect to r ∈ (0, ∞) and on S2 separately, we conclude that for any g ∈ C∞

0 ((0, π)) we 
have

∫

S2

{
−g2 |∇ω|2 + 1

4g
2 + |∂θg|2 + g2

sin2 θ

}
dvolS2 " 0 .
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Finally, by a standard approximation argument in the C1-norm on the function g the 
previous inequality yields (4.6). !

The last lemma we need is a straightforward consequence of a general fact about 
harmonic maps from S2 into spheres together with S1-equivariance.

Lemma 4.12. Let ω : S2 → S4 ⊆ R ⊕ C ⊕ C be an S1-equivariant harmonic map as in 
(3.17). Let µ1, µ2 " 0 and write ω in the form ω = (ω0(θ), ω1(θ)eiφ, ω2(θ)e2iφ) as in 
(3.6), with ω1, ω2 real-valued. Then,

∫

S2

ω2
2 |∇ω|2 dvolS2 =

∫

S2

{
|∂θω2|2 + 4ω2

2
sin2 θ

}
dvolS2 . (4.8)

Proof. Suppose u : S2 → Sd ⊆ Rd+1 is harmonic. Let (ei)di=0 be an orthonormal basis 
for Rd+1 and ui the components of u with respect to this basis, so that u =

∑
i uiei and 

u solves ∆u + |∇u|2u = 0, i.e., ∆ui = − |∇u|2 ui for each i = 0, . . . , d.
Since each ui is a smooth function, evaluating ∆u2

i we have

1
2∆u2

i = ui∆ui + |∇ui|2 ,

whence the harmonic map equation together with the divergence theorem yield
∫

S2

u2
i |∇u|2 dvolS2 =

∫

S2

|∇ui|2 dvolS2 .

Taking d = 4 and u = ω as in equation (3.6), identity (4.8) follows by summing the last 
equality over i ∈ {3, 4}. !

We can finally prove the main result of this subsection.

Proof of Proposition 4.8. As a consequence of Lemma 4.9 it is enough to prove the 
claim when the harmonic sphere ω has parameters µ1, µ2 " 0. In view of its degree-zero 
homogeneity we can write ω̂ in the form ω̂(θ, φ) =

(
ω0(θ),ω1(θ)eiφ,ω2(θ)e2iφ) = ω(θ, φ), 

i.e., with ω as in (3.6) and with ω2 &≡ 0. Suppose, for a contradiction, that ω̂ is stable. 
Observe that, because of the explicit formulae (3.17), the function ω2 satisfies the same 
hypotheses as g in the statement of Lemma 4.11, so that it can be plugged into (4.6) to 
obtain

∫

S2

ω2
2 |∇ω|2 dvolS2 !

∫

S2

{1
4ω

2
2 + |∂θω2|2 + ω2

2
sin2 θ

}
dvolS2 . (4.9)

On the other hand, using (4.8) for the left hand side and comparing to (4.9), we see that 
stability of ω̂ implies
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∫

S2

3
sin2 θ

ω2
2 dvolS2 !

∫

S2

1
4ω

2
2 dvolS2 ,

which is clearly impossible because ω2 &≡ 0. Thus ω̂ cannot be stable and the proof is 
complete. !

4.2. Minimality of degree-one tangent maps

In this subsection we complete the proof of Theorem 4.5 by establishing claim 2). We 
first prove that the equator map ω̂eq(x) =

(
x
|x| , 0

)
is locally minimizing with respect to 

compactly supported perturbations, whence the same clearly holds also for the rotated 
maps ±Rα · ω̂eq because of the invariance of E0 under isometries on S4.

Proposition 4.13 (Equivariant minimality of the equator map). Let ω̂ : R3 \ {0} → S4

be the tangent map defined by ω̂(x) = ω(1)
eq

(
x
|x|

)
, with ω(1)

eq the equatorial embedding in 

(3.12). Then ω̂ is locally minimizing with respect to compactly supported S1-equivariant 
perturbations.

Proof. By the degree-zero homogeneity of ω̂, it suffices to prove the minimizing property 
in B1. Let u ∈ W 1,2(B1; S4) be an S1-equivariant map such that u|S2 = ω̂|S2 = ω(1)

eq . 
Write

u = (u0, u1e
iφ, u2e

2iφ) ∈ R⊕C ⊕C ,

where in polar coordinates ui = ui(r, θ), i = 0, 1, 2, because of equivariance; here u0 is 
real-valued while u1, u2 are generally complex-valued. Moreover functions ui are in W 1,2

loc
away from the symmetry axis with

∫

B1

|∇u|2 dx =
∫

B1

|∂ru|2 + 1
r2 |∂θu|2 + |u1|2 + |4u2|2

r2 sin2 θ
dx < ∞ . (4.10)

It follows easily from the previous relation together with the 1-d Sobolev embedding in 
the variable θ that for a.e. radius r ∈ (0, 1) the functions u1, u2 are continuous on the 
sphere {|x| = r} and vanish at poles, i.e., at θ = 0 and θ = π. In addition, the boundary 
condition on ∂B1 = S2 implies that u2 = 0, while u1 = sin θ and u0 = cos θ respectively, 
in the sense of traces on S2.

Now we use a trick similar to the one exploited in the proof of [30, Theorem 1.3], that 
is, from u we construct the auxiliary comparison map

ũ = (ũ0, ũ1, ũ2) =
(
u0,

√
|u1|2 + |u2|2eiφ, 0

)
.
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In view of (4.10) it is routine to check that ũ ∈ W 1,2(B1; S4), ũ is S1-equivariant and 
ũ|S2 = ω(1)

eq .
We claim that E0(ũ) ! E0(u). Indeed, a simple calculation gives

|∇ũ|2 =
∣∣∣∣
∂ũ0
∂r

∣∣∣∣
2

+ 1
r2

∣∣∣∣
∂ũ0
∂θ

∣∣∣∣
2

+
∣∣∣∣
∂ũ1
∂r

∣∣∣∣
2

+ 1
r2

∣∣∣∣
∂ũ1
∂θ

∣∣∣∣
2

+ 1
r2 sin2 θ

∣∣∣∣
∂ũ1
∂φ

∣∣∣∣
2

= |∇r,θu0|2 + |∇r,θũ1|2 + |u1|2 + |u2|2

r2 sin2 θ
,

where |∇r,θu0|2, |∇r,θũ1|2 are defined in an obvious way from the first line above. Now, 
note that

|∇r,θũ1|2 = 1
|u1|2 + |u2|2

|u1∇r,θu1 + u2∇r,θu2|2 ! |∇r,θu1|2 + |∇r,θu2|2 .

To conclude that E0(ũ) ! E0(u), it now suffices to note that the previous relations yield

|∇ũ|2 ! |∇r,θu0|2 + |∇r,θu1|2 + |∇r,θu2|2 + |u1|2 + 4 |u2|2

r2 sin2 θ
= |∇u|2 .

Thus, ũ can be regarded as a map in W 1,2(B1; S2) that coincides with ω(1)
eq on ∂B1 = S2

and having lower energy than u, as claimed. Since ω̂(1)
eq is minimizing among the maps 

in W 1,2(B1; S2) subject to its own boundary condition (see [10, Theorem 7.3]), we have 
E0(ω̂eq) ! E0(ũ) ! E0(u), and this concludes the proof. !

In order to conclude the proof of Theorem 4.5 we need the converse of Proposition 4.13, 
i.e., we need to show that any locally minimizing tangent map ω̂ has actually the form 
±Rα · ω(1)

eq
(

x
|x|

)
for some α ∈ R. To see this, we first recall that in view of Remark 4.4

any locally minimizing tangent map is stable, therefore the first part of Theorem 4.5
yields ω̂2 ≡ 0, hence the corresponding harmonic sphere ω is linearly degenerate. It 
follows from Proposition 3.6 that

ω̂(x) = ±ω(1)
eq ◦ σ−1

2

(
µ1σ2

(
x

|x|

))
,

for some µ1 ∈ C \ {0} and by assumption it is locally minimizing among equivariant 
S4-valued perturbations. Writing µ1 = δeiα, with α ∈ R and δ > 0, and in view of the 
S1-equivariance of both σ2 and ω(1)

eq with respect to the rotation Rα = eiα, it remains 
to prove that δ = 1.

It follows from the previous argument that the map v(x) = σ−1
2

(
δσ2

(
x
|x|

))
is locally 

minimizing among compactly supported symmetric perturbations in W 1,2
loc (R3; S2) and it 

remains to infer that, because of local minimality, δ = 1. This is a classical argument from 
[10, Theorem 7.3] which requires minor modifications because of symmetry. Following 
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[54, Chapter 2, p. 21], v is stationary with respect to equivariant inner variations, i.e., 
for any S1-equivariant vector field Φ ∈ C∞

0 (B1; R3) we have

0 = d

dt
E0 (v ◦ (id + tΦ))

∣∣∣∣
t=0

=
∫

B1

|∇v|2div Φ − 2
(
(∇v)t∇v

)
: ∇Φ dx .

Choosing admissible vector fields Φ = ϕe3, with e3 = (0, 0, 1) and ϕ ∈ C∞
0 (B1) a 

radial function, we have ∇v(∇Φ)t ≡ 0, because v is degree-zero homogeneous and, if 
ϕ = ϕn is a sequence of radial functions increasing to χB1 and bounded in W 1,1, we 
have div Φn

∗
⇀ x3H2 S2 as measures in R3. Passing to the limit in the previous equality 

we obtain

∫

S2

x3|∇v|2 dvolS2 = 0 , (4.11)

and the conclusion δ = 1 follows exactly from [10, p. 678] (see also [23, p. 125]) because 
the energy measure |∇v|2 dvolS2 has barycenter at the origin if and only if δ = 1 (note 
that the analogues of (4.11) in which x3 is replaced by x1, x2 are obvious because of the 
invariance of |∇v|2 under the S1-action).

5. Compactness of minimizing S1-equivariant maps

In this section, we discuss compactness properties for equivariant minimizers of the 
Landau-de Gennes energy (1.8) both in the interior and near the boundary. Such results 
will be used both in the next section for the proof of the partial regularity Theorem 1.1
and in the final section of the paper to obtain existence of minimizing torus and split 
solutions to equations (1.10) as described in Theorem 1.2 and Theorem 1.3 respectively. 
The results presented here are the natural counterpart in the LdG case of the Luckhaus 
compactness Theorem for harmonic and p-harmonic maps established in the influential
paper [43]. As in the harmonic map case, the key technical step is the construction 
of comparison maps by a gluing argument, in the spirit of the Luckhaus interpolation 
Lemma from the reference above, to exploit the local minimality property and turn it 
into a compactness one. Here, inspired by a similar construction in [23, Proof of Theorem 
4.2] for axially symmetric maps into S2, we give a simple self-contained construction of 
equivariant competitors both in the interior and near the boundary which is well-suited 
for our case. We refer the interested readers to [20, Lemma 4.4] for a similar but much 
more complicated construction of equivariant competitors in the interior in the context 
of minimizing harmonic maps between Riemannian manifolds equivariant with respect 
to fairly general group actions.
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5.1. Local compactness

We consider a sequence of minimizers of functionals Eλ defined as in (1.8), with po-
tential energy W given by (1.9).

Theorem 5.1. Let {λn} ⊆ [0, ∞) be such that λn → λ∗ ∈ [0, ∞), and {Qn} ⊆
W 1,2

sym(B1; S4). Assume that each Qn is minimizing Eλn(·, B1) among all Q ∈ W 1,2
sym(B1;

S4) such that Q = Qn on ∂B1. If supn Eλn(Qn, B1) < ∞, then there exist a (not rela-
beled) subsequence and a map Q∗ ∈ W 1,2

sym(B1; S4) such that Qn ⇀ Q∗ weakly in W 1,2(B1)
and Qn → Q∗ strongly in W 1,2

loc (B1). In addition, Q∗ is minimizing Eλ∗(·, B1) among all 
Q ∈ W 1,2

sym(B1; S4) such that Q = Q∗ on ∂B1.

Proof. By assumption, the sequence {Qn} is bounded in W 1,2(B1). Hence we can find 
a subsequence and a map Q∗ such that Qn ⇀ Q∗ weakly in W 1,2(B1). By the compact 
embedding of W 1,2(B1) into L2(B1), we have Qn → Q∗ strongly in L2(B1), and extract-
ing a further subsequence, Qn → Q∗ a.e. in B1. Moreover, by dominated convergence, 
we then have

W (Qn) → W (Q∗) in L1(B1) . (5.1)

As a consequence of the pointwise convergence we also deduce that the S4-constraint 
and the S1-equivariance property are weakly closed, hence Q∗ ∈ W 1,2

sym(B1; S4).
In what follows, we shall first prove the local strong convergence of the sequence {Qn}

in W 1,2, and then the minimality of Q∗. We start fixing an arbitrary parameter δ ∈
(0, 1/2) and a competitor Q̄ ∈ W 1,2

sym(B1; S4) such that spt(Q̄−Q∗) ⊆ B1−δ. Extracting 
another subsequence if necessary, by Fatou’s lemma and Fubini’s theorem, we can find 
a radius ρ ∈ (1 − δ, 1) such that

lim
n→∞

∫

∂Bρ

|Qn −Q∗|2 dH2 = 0 and
∫

∂Bρ

(
|∇tanQn|2 + |∇tanQ∗|2

)
dH2 ! C , (5.2)

for a constant C independent of n. Here ∇tan denotes the tangential gradient along 
spheres. Set Dρ := Bρ ∩ {x2 = 0} to be the disc of radius ρ centered at the origin and 
lying in the vertical plane {x2 = 0}. Using spherical coordinates (r, φ, θ) on B1, we infer 
from (5.2) and the S1-equivariance of Qn and Q∗ that those maps belong to the weighted 
Sobolev space W 1,2 over ∂Dρ \{x1 = 0} with respect to the weight |x1|. Moreover, since 
by equivariance the integrands in (5.2) do not depend on φ, we have a uniform bound 
on the sequence

∫

∂Dρ

|x1|
(
|∇S1Qn|2 + |∇S1Q∗|2

)
dH1 ! C ,
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where ∇S1 = ∂θ stands for the tangential derivative along the circle ∂Dρ. In particular, 
Qn and Q∗ are absolutely continuous on ∂Dρ \ {x1 = 0}.

We now consider the sequence σn := ‖Qn−Q∗‖1/3
L2(∂Bρ) +2−n → 0. Using the absolute 

continuity of Qn and Q∗ on ∂Dρ \ {x1 = 0}, we estimate by 1d-calculus and Cauchy-
Schwarz inequality,

sup
∂Dρ∩

{
|x1|! ρσn

2
} |x1|2|Qn −Q∗|2 !

C




∫

∂Dρ

|x1||∇S1(Qn −Q∗)|2 dH1





1
2



∫

∂Dρ

|x1||Qn −Q∗|2 dH1





1
2

+ C

∫

∂Dρ

|x1||Qn −Q∗|2 dH1 .

Still by S1-equivariance, we deduce from (5.2) that

sup
∂Bρ∩

{
(x2

1+x2
2)1/2! ρσn

2
} |Qn −Q∗|2 !

Cσ−2
n




∫

∂Bρ

|∇tan(Qn −Q∗)|2 dH2





1
2



∫

∂Bρ

|Qn −Q∗|2 dH2





1
2

+ Cσ−2
n

∫

∂Bρ

|Qn −Q∗|2 dH2 ! Cσn . (5.3)

We now introduce the subsets

T±
n :=

{
x ∈ Bρ \Bρ(1−σn) : (x2

1 + x2
2)1/2 <

σn

2 |x| , ±x3 > 0
}
,

L±
n :=

{
x ∈ Bρ \Bρ(1−σn) : (x2

1 + x2
2)1/2 = σn

2 |x| , ±x3 > 0
}
,

and

An :=
(
Bρ \Bρ(1−σn)

)
\
(
T+
n ∪ T−

n

)
.

We define for x ∈ An,

vn(x) := Q∗

(
ρ
x

|x|

)
+ |x|− ρ(1 − σn)

ρσn

(
Qn

(
ρ
x

|x|

)
−Q∗

(
ρ
x

|x|

))
.

Then we have by (5.2),
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∫

An

|∇vn|2 dx ! Cσn

∫

∂Bρ

(
|∇tanQn|2 + |∇tanQ∗|2

)
dH2 + Cσ−1

n

∫

∂Bρ

|Qn −Q∗|2 dH2

! Cσn , (5.4)

and by (5.3),

sup
x∈An

dist2(vn(x),S4) ! Cσn . (5.5)

Using the equivariance of vn and the fact that |Qn| = |Q∗| = 1, we have |∇tanvn|2 !
Cσ−2

n , H2(L±
n ) ! Cσ2

n and finally
∫

L±
n

|∇tanvn|2 dH2 ! Cσ−2
n H2(L±

n ) ! C . (5.6)

Then we set for x ∈ ∂T±
n ,

wn(x) :=






Qn(x) if x ∈ ∂T±
n ∩ ∂Bρ ,

Q∗

(
x

1 − σn

)
if x ∈ ∂T±

n ∩ ∂Bρ(1−σn) ,

vn(x) if x ∈ L±
n ,

and we extend wn to T±
n by 0-homogeneity with respect to the center point a±n :=

(0, 0, ±ρ(1 − σn
2 )), i.e.,

wn(x) = wn

(
x− a±n
|x− a±n |

)
for x ∈ T±

n \ {a±n } .

Combining (5.2) and (5.6), we derive that

∫

T±
n

|∇wn|2 dx ! Cσn

∫

∂T±
n

|∇tanwn|2 dx

! Cσn

∫

∂Bρ

(
|∇tanQn|2 + |∇tanQ∗|2

)
dH2 + Cσn ! Cσn . (5.7)

Finally, we extend wn to the whole annulus Bρ \Bρ(1−σn) by setting

wn(x) := vn(x) for x ∈ An .

By construction, wn ∈ W 1,2
sym(Bρ \Bρ(1−σn); S0), and we infer from (5.4), (5.5), and (5.7)

that
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∫

Bρ\Bρ(1−σn)

|∇wn|2 dx ! Cσn , (5.8)

and

sup
x∈Bρ\Bρ(1−σn)

dist2(wn(x),S4) ! Cσn .

As a consequence, |wn| > 1/2 for n large enough, and we can define a competitor 
Q̄n ∈ W 1,2

sym(B1; S4) by setting

Q̄n(x) :=






Q̄
( x

1 − σn

)
if |x| ! ρ(1 − σn) ,

wn(x)
|wn(x)| if ρ(1 − σn) < |x| < ρ ,

Qn(x) if |x| " ρ .

(5.9)

Note that each map Q̄n in (5.9) is equivariant and W 1,2 because we are gluig together 
equivariant maps which are W 1,2 on each subdomain and on the spheres {|x| = ρ} and 
{|x| = ρ(1 − σn)} the traces on both sides agree by construction of wn.

By minimality of Qn, we have Eλn(Qn, B1) ! Eλn(Q̄n, B1), which reduces to

Eλn(Qn, Bρ) ! Eλn(Q̄n, Bρ) , (5.10)

since Q̄n = Qn in B1 \Bρ. By (5.1) and dominated convergence, we have

lim
n→∞

∫

Bρ

λnW (Qn) dx =
∫

Bρ

λ∗W (Q∗) dx and lim
n→∞

∫

Bρ

λnW (Q̄n) dx =
∫

Bρ

λ∗W (Q̄) dx .

On the other hand, in view of (5.8) we have
∫

Bρ

|∇Q̄n|2 dx = (1 − σn)
∫

Bρ

|∇Q̄|2 dx +
∫

Bρ\Bρ(1−σn)

|∇Q̄n|2 dx

! (1 − σn)
∫

Bρ

|∇Q̄|2 dx + C

∫

Bρ\Bρ(1−σn)

|∇wn|2 dx

! (1 − σn)
∫

Bρ

|∇Q̄|2 dx + Cσn ,

where we have used that |wn| > 1/2 in the first inequality. Therefore, Eλn(Q̄n, Bρ) →
Eλ∗(Q̄, Bρ). By lower semicontinuity of the Dirichlet energy E0(·, Bρ), we infer from (5.10)
that
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Eλ∗(Q∗, Bρ) ! lim inf
n→+∞

E0(Qn, Bρ) +
∫

Bρ

λ∗W (Q∗) dx

! lim sup
n→+∞

E0(Qn, Bρ) +
∫

Bρ

λ∗W (Q∗) dx ! Eλ∗(Q̄, Bρ) . (5.11)

Since Q̄ = Q∗ in B1 \Bρ, we deduce that

Eλ∗(Q∗, B1) ! Eλ∗(Q̄, B1) . (5.12)

In view of the arbitrariness of Q̄, we may have chosen Q̄ = Q∗, in which case (5.11)
shows that E0(Qn, Bρ) → E0(Q∗, Bρ). Combined with the weak convergence in W 1,2, it 
leads to the strong W 1,2-convergence of Qn toward Q∗ in Bρ, and hence in B1−δ.

By arbitrariness of δ, we have thus shown that Qn → Q∗ strongly in W 1,2
loc (B1), and 

(5.12) holds for every Q̄ ∈ W 1,2
sym(B1; S4) such that spt(Q̄−Q∗) ⊆ B1.

Finally, in order to prove the minimality of Q∗ with respect to its own boundary 
condition, we now consider an arbitrary Q̄ ∈ W 1,2

sym(B1; S4) such that Q̄ = Q∗ on ∂B1. 
For ε ∈ (0, 1/4), we set

Q̄ε(x) :=






Q∗(x) if 1 − ε ! |x| ! 1 ,

Q∗

(
(2 − 2ε− |x|) x

|x|

)
if 1 − 2ε ! |x| ! 1 − ε ,

Q̄
( x

1 − 2ε
)

if |x| ! 1 − 2ε .

Straightforward computations yield

(1 − 2ε)E(1−2ε)2λ∗(Q̄, B1) ! Eλ∗(Q̄ε, B1) ! Eλ∗(Q̄, B1) + CEλ∗(Q∗, B1 \B1−ε) ,

so that Eλ∗(Q̄ε, B1) → Eλ∗(Q̄, B1) as ε ↓ 0. Since Q̄ε ∈ W 1,2
sym(B1; S4) satisfies 

spt(Q̄ε − Q∗) ⊆ B1−ε, from the previous part of the proof we have Eλ∗(Q∗, B1) !
Eλ∗(Q̄ε, B1). Letting ε → 0, we conclude that Eλ∗(Q∗, B1) ! Eλ∗(Q̄, B1), and the proof 
is complete. !

Remark 5.2. In the case λ∗ = 0, Theorem 5.1 tells us that the limiting map Q∗ is minimiz-
ing the Dirichlet energy among all S1-equivariant maps with values in S4 agreeing with 
Q∗ on ∂B1. In particular, Q∗ is a weakly harmonic map in B1, see e.g. Proposition 6.2.

Remark 5.3. In the particular case λn ≡ λ∗ = 0 the previous result reduces to a local 
compactness property for equivariant harmonic maps into S4 and it is just a particular 
case of the much more general statement established in [20, Proposition 4.6].
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5.2. Compactness up to the boundary

For an axisymmetric open neighborhood U of a point x0 ∈ ∂Ω ∩ {x3-axis}, we shall 
assume on U that

U ∩ Ω has a Lipschitz boundary, (5.13)

and that there exists a C1-diffeomorphism Φ : B2 ⊆ R3 → Φ(B2) ⊆ R3 satisfying





Φ(0) = x0;
Φ is symmetric, i.e., Φ(Rx) = RΦ(x) for all R ∈ S1 and for all x ∈ B2;
Φ(B1) = U , Φ(B+

1 ) = U ∩ Ω, Φ(B1 ∩ {x3 = 0}) = U ∩ ∂Ω, Φ(∂B1 ∩ {x3 > 0}) ⊆ Ω;
(5.14)

where we have set B+
1 := B1 ∩ {x3 > 0}.

Remark 5.4. If ∂Ω is of class C1 and rotationally symmetric then a sufficiently small 
neighborhood U of a given point x0 ∈ ∂Ω ∩ {x3-axis} satisfying properties (5.13)-(5.14)
above clearly exists and indeed it is enough to choose U = Br(x0) for a radius r > 0
small enough.

Theorem 5.5. Let x0 ∈ ∂Ω ∩ {x3-axis} and U an axisymmetric open neighborhood of 
x0 satisfying (5.13)-(5.14) above. Let {Qn

b} ⊆ C1(∂Ω; S4) be a sequence of boundary 
conditions satisfying

sup
n

∫

U∩∂Ω

|∇tanQ
n
b |2 dH2 < +∞ . (5.15)

Let {λn} ⊆ [0, ∞) be such that λn → λ∗ ∈ [0, ∞), and {Qn} ⊆ Asym
Qn

b
(Ω). Assume that 

Qn is minimizing Eλn over Asym
Qn

b
(Ω). If supn Eλn(Qn, U ∩ Ω) < ∞, then there exist a 

(not relabeled) subsequence and Q∗ ∈ W 1,2
sym(U ∩ Ω; S4) such that Qn → Q∗ strongly in 

W 1,2
loc (U ∩ Ω).

Proof. We proceed as in the proof of Theorem 5.1, and we partially sketch the argument, 
focusing on the main differences. First, we infer from the uniform energy bound that there 
exist a subsequence and Q∗ ∈ W 1,2

sym(U∩Ω; S4) such that Qn ⇀ Q∗ weakly in W 1,2(U∩Ω), 
Qn → Q∗ strongly in L2(U ∩Ω) and a.e. on U ∩Ω. Then, W (Qn) → W (Q∗) strongly in 
L1(U ∩ Ω).

We now consider the maps Q̃n := Qn ◦ Φ ∈ W 1,2
sym(B+

1 ; S4) and Q̃∗ := Q∗ ◦ Φ ∈
W 1,2

sym(B+
1 ; S4) (note that the S1-equivariance of Q̃n and Q̃∗ follows from the equivariance 

assumption on Φ). Then, Q̃n ⇀ Q̃∗ weakly in W 1,2(B+
1 ), and Q̃n → Q̃∗ strongly in 

L2(B+
1 ) because the corresponding properties for {Qn} are preserved under composition 

with the diffeomorphism Φ. By weak continuity of the trace operator, we also have Q̃n ⇀

Q̃∗ weakly in W 1/2,2(B1 ∩{x3 = 0}), and hence Q̃n → Q̃∗ strongly in L2(B1 ∩{x3 = 0})
by the compact embedding W 1/2,2 ↪→ L2. On the other hand, assumption (5.15) implies 
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that (the traces of) Q̃n are bounded in W 1,2(B1 ∩ {x3 = 0}), and thus Q̃n ⇀ Q̃∗ weakly 
in W 1,2(B1 ∩ {x3 = 0}).

We fix an arbitrary parameter δ ∈ (0, 1/2), and we aim to show that Qn → Q∗
strongly in W 1,2(Φ(B+

1−δ)). Since Q̃n ⇀ Q̃∗ weakly in W 1,2(B1 ∩ {x3 = 0}), arguing as 
in the proof of Theorem 5.1, up to a subsequence, we can find ρ ∈ (1 − δ, 1) such that

lim
n→∞

∫

∂B+
ρ

|Q̃n − Q̃∗|2 dH2 = 0 and
∫

∂B+
ρ

(
|∇tanQ̃n|2 + |∇tanQ̃∗|2

)
dH2 ! C . (5.16)

It is now convenient to consider a biLipschitz (i.e., invertible Lipschitz map with Lipschitz 
inverse) map Ψ : Bρ → B

+
ρ satisfying the properties

• Ψ(Rx) = RΨ(x) for every R ∈ S1;
• Ψ(∂Bρ ∩ {x3 > 0}) = ∂B+

ρ ∩ {x3 = 0},

and to define Q̂n(x) := Q̃n(Ψ(x)) and Q̂∗(x) := Q̃∗(Ψ(x)) for x ∈ Bρ. Then, Q̂n, Q̂∗ ∈
W 1,2

sym(Bρ; S4), and for the corresponding traces on ∂Bρ the estimate (5.16) yields

lim
n→∞

∫

∂Bρ

|Q̂n − Q̂∗|2 dH2 = 0 and
∫

∂Bρ

(
|∇tanQ̂n|2 + |∇tanQ̂∗|2

)
dH2 ! C . (5.17)

Setting σn := ‖Q̂n−Q̂∗‖1/3
L2(∂Bρ)+2−n → 0, we proceed as in the proof of Theorem 5.1

to construct a sequence wn ∈ W 1,2
sym(Bρ \Bρ(1−σn); S0) satisfying wn(x) = Q̂n(x) on ∂Bρ

and wn(x) = Q̂∗( x
1−σn

) on ∂Bρ(1−σn), together with the bounds
∫

Bρ\Bρ(1−σn)

|∇wn|2 dx ! Cσn (5.18)

and

sup
x∈Bρ\Bρ(1−σn)

dist2(wn(x),S4) ! Cσn ,

for a constant C > 0 independent of n.
When n is large enough, we have |wn| > 1/2, and we can then define a map Q̄n on Ω

by setting

Q̄n(x) :=






Qn(x) for x ∈ Ω \ Φ ◦ Ψ(Bρ)

wn(Ψ−1 ◦ Φ−1(x))
|wn(Ψ−1 ◦ Φ−1(x))| for x ∈ Φ ◦ Ψ(Bρ \Bρ(1−σn)) ,

Q∗

(
Φ ◦ Ψ

(Ψ−1 ◦ Φ−1(x)
1 − σn

))
for x ∈ Φ ◦ Ψ(Bρ(1−σn)) .
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By construction, Q̄n ∈ Asym
Qn

b
(Ω), so that Eλn(Qn) ! Eλn(Q̄n). Since Q̄n = Qn outside 

Φ ◦Ψ(Bρ), the last inequality reduces to Eλn(Qn, Φ ◦Ψ(Bρ)) ! Eλn(Q̄n, Φ ◦Ψ(Bρ)). On 
the other hand, it follows from (5.18) that

Eλn(Q̄n,Φ ◦ Ψ(Bρ \Bρ(1−σn))) → 0 ,

and by a change of variables,

Eλn(Q̄n,Φ ◦ Ψ(Bρ(1−σn))) → Eλ∗(Q∗,Φ ◦ Ψ(Bρ)) .

Hence, Eλn(Q̄n, Φ ◦Ψ(Bρ)) → Eλ∗(Q∗, Φ ◦Ψ(Bρ)). By lower semicontinuity of the Dirichlet 
energy and the established convergence of the potential term, we have

Eλ∗(Q∗,Φ ◦ Ψ(Bρ)) ! lim inf
n→∞

Eλn(Qn,Φ ◦ Ψ(Bρ))

! lim sup
n→∞

Eλn(Qn,Φ ◦ Ψ(Bρ)) ! Eλ∗(Q∗,Φ ◦ Ψ(Bρ)) .

We have thus proved that Eλn(Qn, Φ ◦Ψ(Bρ)) → Eλ∗(Q∗, Φ ◦Ψ(Bρ)). As in the proof of 
Theorem 5.1, it implies the W 1,2-strong convergence of Qn in the open set Φ ◦Ψ(Bρ) =
Φ(B+

ρ ), whence the strong W 1,2-convergence in the smaller open set Φ(B+
1−δ). Finally, 

as δ ↓ 0 we have Φ(B+
1−δ) ↑ U ∩ Ω and the conclusion follows. !

Remark 5.6. Theorem 5.5 can be easily extended to the case of varying domains Ωn

depending on the sequence index n. This case is of specific interest when analyzing 
blow-up sequences at the boundary as we will do in the next section when discussing 
boundary regularity properties for energy minimizers. To this latter purpose, we consider 
a sequence {Ωn}n∈N of axisymmetric bounded open sets such that x0 ∈ ∂Ωn∩{x3-axis}. 
We assume that for a fixed axisymmetric neighborhood U of x0 there exists a sequence 
of C1-diffeomorphisms Φn : B2 → Φn(B2) satisfying (5.13)-(5.14) with U = Φn(B1), 
and such that Φn → τx0 as n → ∞ in C1(B2), where τx0(x) := x + x0. This latter 
condition implies that U ∩ Ωn → B+

1 (x0) as n → ∞ in the Hausdorff metric. Under 
these assumptions and (5.15), the conclusion (and proof) of Theorem 5.5 holds in the 
following form: there exist a (not relabeled) subsequence and Q∗ ∈ W 1,2

sym(B+
1 (x0); S4)

such that Qn ◦ Φn → Q∗ ◦ τx0 strongly in W 1,2(B+
r ) for every radius r ∈ (0, 1) (and in 

particular, Qn → Q∗ strongly in W 1,2
loc (B+

1 (x0))).

6. Partial regularity of LdG minimizers under axial symmetry

In this section we provide the proof of Theorem 1.1 as outlined in the Introduction, 
following the well-known strategy introduced in [48–50] for minimizing harmonic maps as 
already adapted to the LdG context in [16] without the symmetry constraint. However, 
the arguments here are similar, but sometimes deviate substantially from [16] as we 
illustrate now.
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Our proof of the partial regularity is based on the results in Sec. 5 and 6 for axially 
symmetric minimizers of (1.8) combined with the regularity results for arbitrary weak so-
lutions to (1.10) under smallness of the scaled energy from our previous paper [16]. Here, 
the smallness property both in the interior and at the boundary automatically holds out 
of the symmetry axis in view of a classical capacity argument for W 1,2 functions, there-
fore the singular set is confined to the symmetry axis. When dealing with points on the 
symmetry axis, we apply the general strategy by suitably modifying the arguments used 
there because the minimality property is now available only in the restricted class of 
symmetric competitors. Here monotonicity formulas are obtained through the same pe-
nalization trick from [16] adapted to the S1-equivariant case. Compactness of blow-ups 
centered on the symmetry axis are obtained as in the previous section, through a Luck-
haus’ type interpolation argument but constructing the comparison maps by suitable 
S1-equivariant extensions into spherical shells. The novelty when discussing the Liou-
ville property in the interior has been already pointed out in the Introduction whereas 
the analogous Liouville property at the boundary is obtained as in the nonsymmetric 
case, since only criticality and no energy minimality was used in [16]. As a consequence, 
complete boundary regularity also follows in the present case.

Finally, the asymptotic analysis at isolated singularities relies instead on the classi-
fication and (in)stability results for tangent maps from Sec. 3 and 4 together with the 
celebrated Simon-Łojasiewicz inequality, adapting to our context the simplified proof 
from [54] for the case of harmonic maps. We refer the interested reader to the introduc-
tion to Sec. 6.5 for further remarks on the proof.

6.1. Symmetric criticality & the Euler-Lagrange equations

In this subsection, we establish the Euler-Lagrange equation satisfied by critical points 
of Eλ in the constrained class W 1,2

sym(Ω; S4). As a preliminary step, we show that the 
admissible class of symmetric configurations Asym

Qb
(Ω) defined in (1.15) is not empty for 

any equivariant boundary condition of interest in this work, a fact which immediately 
implies also existence of minimizers of Eλ over Asym

Qb
(Ω).

Proposition 6.1. Let Ω ⊆ R3 be an S1-invariant bounded open set with Lipschitz boundary 
and let Qb ∈ Lipsym(∂Ω; S4). Then Asym

Qb
(Ω) is not empty. As a consequence, there exists 

at least one minimizer of Eλ over Asym
Qb

(Ω).

Proof. Once we have proved that Asym
Qb

(Ω) is not empty, existence of minimizers is stan-
dard from the direct method in the Calculus of Variations. Indeed, whenever not empty 
Asym

Qb
(Ω) is sequentially closed under weak convergence in W 1,2

sym(Ω; S4) (which is in turn 
sequentially weakly closed in W 1,2(Ω; S4)) and Eλ is bounded below, coercive and lower 
semicontinuous w.r.to the W 1,2-weak convergence.

To show Asym
Qb

(Ω) is not empty, there are two cases to deal with: writing /k = (x−
k , x

+
k )

for each segment /k ⊆ Ω ∩ {x3-axis} as in Sec. 2, either we have Qb(x−
k ) = Qb(x+

k ) for 
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every k (Case 1) or there is a segment /k at the endpoints of which the map Qb attains 
different values (Case 2). Recall that, according to Remark 2.9, Qb = ±e0 on B.

Case 1. As in Sec. 2, we consider D+
Ω = Ω ∩ {x2 = 0, x1 > 0}. Let ψ denote the 

restriction of Qb to ∂D+
Ω extended to each segment /k as the constant corresponding to 

the common value of Qb at the endpoints of the segment. Then ψ ∈ Lip(∂D+
Ω ; S4). Being 

Lipschitz, ψ omits at least a point P ∈ S4 (indeed, H1(ψ(∂D+
Ω )) ! Lip(ψ) · H1(∂D+

Ω ) <
∞, where Lip(ψ) is the Lipschitz constant of ψ, therefore ψ(∂D+

Ω) can’t be the whole 
S4), therefore the composition ψ̂ := σ4◦ψ, where σ4 : S4\{P} → R4 is the stereographic 
projection from P , belongs to Lip(∂D+

Ω ; R4). By McShane-Whitney extension theorem, ψ̂
has an extension Ψ̂ ∈ Lip(D+

Ω ; R4). Letting Ψ := σ−1
4 ◦Ψ̂, we then have Ψ ∈ Lip(D+

Ω ; S4). 
From Ψ, we define a map Φ ∈ Lipsym(Ω; S4) by letting Φ(Rx) := RΨ(x)Rt for every 

R ∈ S1 and every x ∈ D+
Ω . Noticing that, by construction, Φ|∂Ω = Qb, we finally see 

that Φ ∈ Asym
Qb

(Ω) and, by the boundedness of the potential, Eλ(Φ) is finite.
Case 2. In this case any S1-equivariant extension of Qb necessarily has singularities 

and the argument below slightly deviates from the one used in Case 1 precisely to deal 
with this fact. Let p ! M + 1 (where M is as in Sec. 2) denote the number of segments 
/k ⊆ Ω ∩ {x3-axis} so that at the endpoints of these Qb attains different values and 
denote such segments /̃1, /̃2 . . . , /̃p, ordering them increasingly with the x3-coordinate of 
their lower endpoint. For each j = 1, 2, . . . , p, we pick the mid-point xj ∈ /̃j = (x−

j , x
+
j )

and we fix a small δ > 0 such that V := ∪p
j=1Bδ(xj) ⊆ Ω and the union is disjoint. 

Let us set U := Ω \ V and notice U ∩ /̃j = (x−
j , y

−
j ) ∪ (y+

j , x
+
j ), where y−j , y+

j are the 
intersections of ∂Bδ(xj) with the x3-axis, ordered in the obvious way.

To construct the desired extension Φ of Qb, we first define Φ := Qb on ∂Ω (in the 
pointwise sense) so that, in particular, Φ(x±

j ) = Qb(x±
j ) for every j = 1, 2, . . . , p. Then 

we define Φ on V \ {x1, x2, . . . , xp}. To this purpose, on each set Bδ(xj) \ {xj} we let 
Φ(x) := ±Q(0)(x − xj), where Q(0) is given by the formula (1.18) with α = 0 and 
we take the positive sign if Qb(x−

j ) = −e0 and the negative sign otherwise, i.e., if 
Qb(x−

j ) = e0. Thanks to this sign convention, we thus have Φ(x±
j ) = Φ(y±j ) for each 

j = 1, 2, . . . , p. Therefore we can extend Φ to each segment (x−
j , y

−
j ), resp. (y+

j , x
+
j ), as 

the corresponding constant at the endpoints. Noticing Φ ∈ C∞
sym(V \{x1, x2, . . . , xp}; S4), 

we see Φ is a well-defined S1-equivariant Lipschitz map on ∂U and therefore, arguing 
as in Case 1, we can extend Φ to U in an S1-equivariant Lipschitz way. Because of 
this, and since we also have Φ ∈ W 1,2

sym(Bδ(xj); S4) for every j = 1, 2, . . . , p, we finally 
deduce Φ ∈ Asym

Qb
(Ω). Moreover, by the boundedness of the potential, Eλ(Φ) is finite. 

This concludes the proof. !

A map Qλ ∈ W 1,2
sym(Ω; S4) is said to be a critical point of Eλ in W 1,2

sym(Ω; S4) if

d

dt
Eλ

(
Qλ + tΦ
|Qλ + tΦ|

)∣∣∣∣
t=0

= 0 ∀Φ ∈ C1,sym
c (Ω;S0) , (6.1)
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while Qλ is said to be a critical point in the unconstrained class W 1,2(Ω; S4) if (6.1)
actually holds for every Φ ∈ C1

c (Ω; S0), see [16, Definition 2.1]. We shall prove in Propo-
sition 6.2 that a critical point in the symmetric class W 1,2

sym(Ω; S4) is always a critical point 
in the global class W 1,2(Ω; S4) in the spirit of the general Palais symmetric criticality 
principle [46]. Note that this principle does not directly apply here since W 1,2(Ω; S4) and 
W 1,2

sym(Ω; S4) are not Banach manifolds, and we need to prove it by hand (see also [20] and 
[27] for a similar results in the context of harmonic and biharmonic maps respectively).

Proposition 6.2. If Qλ ∈ W 1,2
sym(Ω; S4) is a critical point of Eλ among maps in 

W 1,2
sym(Ω; S4), then Qλ is a critical point of Eλ among all maps W 1,2(Ω; S4).

Proof. Arguing as in [16, proof of Proposition 2.2, Step 1], we derive from (6.1) that
∫

Ω

∇Qλ : ∇Φ −
(
|∇Qλ|2Qλ + λf(Qλ)

)
: Φ dx = 0 ∀Φ ∈ C1

c,sym(Ω;S0) , (6.2)

where we have set f(Q) := Q2 − tr(Q3)Q. Still by [16, Proposition 2.2], it is enough to 
show that (6.2) actually holds for every Φ ∈ C1

c (Ω; S0). To this purpose, let us fix an 
arbitrary Φ ∈ C1

c (Ω; S0). Given R ∈ S1, we define the “twisted action” of R on Φ by 
setting

R ∗ Φ(x) := RΦ(Rtx)Rt ,

and we set

Φs :=
∫

S1

R ∗ Φ dh ,

where h denotes the normalized Haar measure on S1. Since R′ ∗ (R ∗ Φ) = (R′R) ∗ Φ, 
using the invariance under translations of h, we obtain R′ ∗ Φs = Φs and in turn Φs ∈
C1

c,sym(Ω; S0), which is indeed the subclass of deformations fixed by the twisted action 
of S1 on C1

c (Ω; S0).
By equivariance of Qλ, we have Qλ(x) = RtQλ(Rx)R a.e. in Ω for every R ∈ S1. 

Using this identity, straightforward computations yield for every R ∈ S1,

∇Qλ(x) : ∇Φ(x) = ∇Qλ(Rx) : ∇(R ∗ Φ)(Rx) a.e. in Ω ,

and

(
|∇Qλ(x)|2Qλ(x) + λf(Qλ(x))

)
: Φ(x)

=
(
|∇Qλ(Rx)|2Qλ(Rx) + λf(Qλ(Rx))

)
: (R ∗ Φ)(Rx) a.e. in Ω .
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Integrating the previous identities over Ω and averaging over S1, using a change of 
variables and Fubini’s theorem, we are then led to

∫

Ω

∇Qλ : ∇Φ−
(
|∇Qλ|2Qλ + λf(Qλ)

)
: Φ dx

=
∫

S1

{∫

Ω

∇Qλ : ∇(R ∗ Φ) −
(
|∇Qλ|2Qλ + λf(Qλ)

)
: (R ∗ Φ) dx

}
dh

=
∫

Ω

{∫

S1

∇Qλ : ∇(R ∗ Φ) −
(
|∇Qλ|2Qλ + λf(Qλ)

)
: (R ∗ Φ) dh

}
dx

=
∫

Ω

∇Qλ : ∇Φs −
(
|∇Qλ|2Qλ + λf(Qλ)

)
: Φs dx = 0 ,

thanks to (6.2), and the proof is complete. !

As a consequence of Proposition 6.2 and [16, Proposition 2.2], we thus have

Corollary 6.3. A map Qλ ∈ W 1,2
sym(Ω; S4) is a critical point of Eλ over W 1,2

sym(Ω; S4) if 
and only if it satisfies

−∆Qλ = |∇Qλ|2Qλ + λ
(
Q2

λ − 1
3I − tr(Q3

λ)Qλ

)
in D ′(Ω) . (6.3)

Remark 6.4. If a map Qλ ∈ W 1,2
sym(Ω; S4) is a minimizer of Eλ among all Q ∈ W 1,2

sym(Ω; S4)
such that Q − Qλ is compactly supported in Ω, then Qλ is a critical point of Eλ. In 
particular, if Qλ is minimizing Eλ over Asym

Qb
(Ω), then Qλ solves (6.3).

Remark 6.5. The discussion above applies also in the particular case λ = 0. In other 
words, Q0 ∈ W 1,2

sym(Ω; S4) is a critical point of the Dirichlet energy E0 over W 1,2
sym(Ω; S4)

if and only if Q0 is a weakly harmonic into S4 map in Ω. In particular, if Q0 is a minimizer 
of E0 among all Q ∈ W 1,2

sym(Ω; S4) such that Q −Q0 is compactly supported in Ω, then 
Q0 is a weakly harmonic map in Ω.

6.2. Monotonicity formulas

The partial regularity for minimizers of Eλ in the symmetric class Asym
Qb

(Ω) is based in 
a fundamental way on (standard) energy monotonicity formulas for the scaled energy on 
balls. Due to the symmetry constraint, such formulas cannot be directly deduced from 
inner variations of the energy, unless the center of the balls is on the symmetry axis. 
Here we rely on the results in [16, Section 2.1] which were developed precisely for this 
purpose.
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Proposition 6.6. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω, S4). If Qλ ∈ Asym
Qb

(Ω)
is a minimizer of Eλ over Asym

Qb
(Ω), then Qλ satisfies

1) the Interior Monotonicity Formula:

1
r
Eλ(Qλ, Br(x0)) −

1
ρ
Eλ(Qλ, Bρ(x0)) =

∫

Br(x0)\Bρ(x0)

1
|x− x0|

∣∣∣∣
∂Qλ

∂|x− x0|

∣∣∣∣
2
dx + 2λ

r∫

ρ

( 1
t2

∫

Bt(x0)

W (Qλ) dx
)
dt (6.4)

for every x0 ∈ Ω and every 0 < ρ < r ! dist(x0, ∂Ω);
2) the Boundary Monotonicity Inequality: there exist two constants CΩ > 0 and rΩ > 0

(depending only on Ω) such that

1
r
Eλ(Qλ, Br(x0) ∩ Ω) − 1

ρ
Eλ(Qλ, Bρ(x0) ∩ Ω) " −(r − ρ)Kλ(Qb, Qλ)

+
∫

(
Br(x0)\Bρ(x0)

)
∩Ω

1
|x− x0|

∣∣∣∣
∂Qλ

∂|x− x0|

∣∣∣∣
2
dx

+ 2λ
r∫

ρ

( 1
t2

∫

Bt(x0)∩Ω

W (Qλ) dx
)
dt (6.5)

for every x0 ∈ ∂Ω and every 0 < ρ < r < rΩ, where

Kλ(Qb, Qλ) := CΩ

(
‖∇tanQb‖2

L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + ‖∇Qλ‖2
L2(Ω)

)
.

Moreover the quantity Kλ(Qb, Qλ) in (6.5) satisfies

Kλ(Qb, Qλ) ! CΩ

(
‖∇tanQb‖2

L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + Eλ(Q̄b)
)
, (6.6)

where Q̄b ∈ Asym
Qb

(Ω) is any given extension of Qb to Ω.

Proof. We are going to prove that Qλ satisfies the assumptions in [16, Proposition 2.4]
(with Qref = Qλ). This will lead to (6.4) and (6.5). Hence, according to [16, Proposition 
2.4], we consider for ε > 0 the energy functional GLε( · ; Qλ) defined over W 1,2(Ω; S0) by

GLε(Q;Qλ) := Eλ(Q) + 1
4ε2

∫

Ω

(1 − |Q|2)2 dx + 1
2

∫

Ω

|Q−Qλ|2 dx . (6.7)

Next we set for convenience
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Wsym
Qb

(Ω) :=
{
Q ∈ W 1,2

sym(Ω;S0) : Q = Qb on ∂Ω
}
.

Since the potential W is nonnegative (see (1.9) and (1.1)), for each ε > 0 the functional 
GLε( · ; Qλ) is coercive on W 1,2(Ω; S0). Moreover, GLε( · ; Qλ) is lower semi-continuous 
with respect to the weak W 1,2-convergence (see [16, Proposition 3.1]). The class Wsym

Qb
(Ω)

being closed under weak W 1,2-convergence, GLε( · ; Qλ) admits a minimizer Qε over 
Wsym

Qb
(Ω) by the direct method of calculus of variations. Such minimizer Qε is then a 

critical point of GLε( · ; Qλ) over Wsym
Qb

(Ω). Arguing exactly as in the proof of Proposi-
tion 6.2 (with minor modifications), the symmetric criticality principle holds and Qε is 
actually a critical point of GLε( · ; Qλ) over W 1,2

Qb
(Ω; S0).

Now we consider an arbitrary sequence εn → 0. By minimality of Qεn in Wsym
Qb

(Ω)
(which contains Asym

Qb
(Ω)), we have

GLεn(Qεn ;Qλ) ! GLεn(Qλ;Qλ) = Eλ(Qλ) . (6.8)

From this estimate, we can argue as in [16, Proof of Proposition 3.1] to find a (not 
relabeled) subsequence and Q∗ ∈ Asym

Qb
(Ω) such that Qεn ⇀ Q∗ weakly in W 1,2(Ω) and 

strongly in L2(Ω). By lower semi-continuity of Eλ and (6.8), we have

Eλ(Qλ) ! Eλ(Q∗) + 1
2

∫

Ω

|Q∗ −Qλ|2 dx ! lim inf
n→∞

GLεn(Qεn ;Qλ) ! Eλ(Qλ) ,

where we have used the minimality of Qλ in the class Asym
Qb

(Ω) in the first inequality. 
Therefore, Q∗ = Qλ and limn GLεn(Qεn ; Qλ) = Eλ(Qλ), which proves that the assump-
tions of [16, Proposition 2.4] are satisfied.

To complete the proof, it only remains to prove (6.6). It is a direct consequence of the 
minimality of Qλ. Indeed, if Q̄b ∈ Asym

Qb
(Ω), then ‖∇Qλ‖2

L2(Ω) ! 2Eλ(Qλ) ! 2Eλ(Q̄b), 
which clearly implies (6.6). !

6.3. Compactness of blow-ups and smallness of the scaled energy

Proposition 6.7. Let Qλ be a minimizer of Eλ over Asym
Qb

(Ω). Given x0 ∈ Ω ∩ {x3-axis}
and r0 > 0 such that Br0(x0) ⊆ Ω, consider the rescaled map Qx0,r

λ ∈ W 1,2
sym(Br0/r; S4)

defined by

Qx0,r
λ (x) := Qλ(x0 + rx) .

For every sequence rn → 0, there exist a (not relabeled) subsequence and Q∗ ∈
W 1,2

sym,loc(R3; S4) such that Qx0,rn
λ → Q∗ strongly in W 1,2

loc (R3). In addition, Q∗ is homo-
geneous of degree zero, and Q∗ is a weakly harmonic map which is energy minimizing 
with respect to S1-equivariant compactly supported perturbations.



F.L. Dipasquale et al. / Journal of Functional Analysis 286 (2024) 110314 61

Proof. Rescaling variables, we have

Eλr2
n
(Qx0,rn

λ , Bρ) = 1
rn

Eλ(Qλ, Bρrn(x0)) ,

for an arbitrarily fixed radius ρ ∈ (0, r0/rn). Using the monotonicity formula (6.4) we 
see that the sequence {Qn} of rescaled maps, Qn := Qx0,rn

λ , is eventually bounded in 
W 1,2(Bρ) for any ρ > 0. Then the proof follows the argument in [16, Proposition 3.2], 
using again the monotonicity formula (6.4), the compactness property established in 
Theorem 5.1 (with Qn := Qx0,rn

λ and λn := λr2
n), and taking also Remark 6.5 into 

account. !

Proposition 6.8. Assume that ∂Ω is of class C3 and Qb ∈ C1,1
sym(∂Ω; S4). If Qλ is a 

minimizer of Eλ over Asym
Qb

(Ω), then

lim
r→0

1
r
Eλ(Qλ, Br(x0) ∩ Ω) = 0 (6.9)

for every x0 ∈ ∂Ω ∩ {x3-axis}.

Proof. Again, we essentially argue as in the proof of [16, Propositions 3.5 and 3.7] with 
the help of the boundary monotonicity formula (6.5) and Remark 5.6 (which is based 
on the proof of Theorem 5.5). Hence we only sketch the proof and refer to [16] for 
details. First notice that the limit in (6.9) exists thanks to (6.5). Given a sequence 
rn → 0, we consider for n large the domain Ωn := r−1

n (Ω − x0). By smoothness of 
∂Ω, for n large enough, U = B1 is an axisymmetric open neighborhood of the origin 
satisfying the assumptions in Remark 5.6 (since there is no loss of generality to assume 
that B1 ∩ Ωn → B+

1 ). Considering as above the rescaled maps Qn(x) := Qλ(x0 + rnx), 
we infer from (6.5) and a rescaling of variables that Eλr2

n
(Qn, B1 ∩Ωn) remains bounded 

independently of n. Moreover, since Qn(x) = Qb(x0 + rnx) for x ∈ B1 ∩ ∂Ωn, we 
have ‖Qn − Qb(x0)‖L∞(B1∩∂Ωn) + ‖∇Qn‖L∞(B1∩∂Ωn) ! Crn → 0. We can thus apply 
Remark 5.6 to find a (not relabeled) subsequence and Q∗ ∈ W 1,2

sym(B+
1 ; S4) satisfying 

Q∗ = Qb(x0) on B1 ∩ {x3 = 0} such that Qn ◦ Φn → Q∗ strongly in W 1,2(B+
ρ ) and 

Qn → Q∗ strongly in W 1,2
loc (B+

ρ ) for every ρ ∈ (0, 1), where the diffeomorphisms Φn

satisfy Φn(B+
1 ) = B1 ∩ Ωn and ‖Φn − id‖C1(B2) → 0.

Rescaling variables, we deduce from (6.3) that Qn satisfies equation (6.3) in B1 ∩
Ωn with λr2

n in place of λ. In view of the strong W 1,2-convergence of Qn, we deduce 
that Q∗ is a weakly harmonic map in B+

1 . On the other hand, letting n → ∞ in the 
monotonicity formula satisfied by Qn as in [16, Proof of Proposition 3.5], we infer that Q∗
is homogeneous of degree zero. As a consequence, Q∗(x) = ω( x

|x| ) where ω : S2
+ → S4 is 

weakly harmonic and satisfies ω(x) = Qb(x0) on ∂S2
+ (here we have set S2

+ := S2∩{x3 >

0}). Exactly as in [16, Proof of Proposition 3.7], it follows that ω is constant, and hence 
Q∗ ≡ Qb(x0). From the strong convergence Qn ◦ Φn → Q∗ in W 1,2(B+

1/2), we easily 
deduce that Eλr2

n
(Qn, B1/2 ∩ Ωn) → E0(Q∗, B+

1/2) = 0, so that
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lim
r→0

1
r
Eλ(Qλ, Br(x0) ∩ Ω) = lim

n→∞

2
rn

Eλ(Qλ, Brn/2(x0) ∩ Ω)

= lim
n→∞

2Eλr2
n
(Qn, B1/2 ∩ Ωn) = 0 ,

which completes the proof. !

Proposition 6.9. If Qλ is a minimizer of Eλ over Asym
Qb

(Ω), then

lim
r→0

1
r
Eλ(Qλ, Br(x0) ∩ Ω) = 0

for every x0 ∈ Ω \ {x3-axis}.

Proof. By S1-equivariance of Qλ and the invariance under translations, we can assume 
without loss of generality that x0 belongs to the x1-axis. We set r0 := |x0|. Using the 
cylindrical coordinates x = (ρ cos(φ), ρ sin(φ), x3) with ρ > 0 and φ ∈ [0, 2π), we observe 
that for every r ∈ (0, r0),

Br(x0) ⊆ Gr(x0) :=
⋃

φ∈(−φr,φr)
Rφ ·Dr(x0) ,

where Dr(x0) :=
{
x = (ρ, 0, x3) : (ρ − r0)2 + x2

3 < r2} and φr := arcsin(r/r0), therefore 
Eλ(Qλ, Br(x0) ∩Ω) ! Eλ(Qλ, Gr(x0) ∩Ω). Combining the S1-invariance of the energy den-
sity, the equivariance of Qλ and Fubini’s Theorem, we infer that for every r ∈ (0, r0/2),

1
r
Eλ(Qλ, Gr(x0) ∩ Ω)

! Cr−1
0

∫

Dr(x0)∩DΩ

(
|∂ρQλ|2 + 1

ρ2 |Q
2
λ| + |∂x3Qλ|2 + λW (Qλ))

)
ρ dρdx3

(where DΩ is the section of Ω with the plane x2 = 0, see Definition 2.6). Since the 
measure of Dr(x0) ∩DΩ goes to zero as r → 0, the conclusion follows. !

6.4. Partial regularity

We split the proof of Theorem 1.1 in two steps. The first is presented here and concerns 
the smoothness away from a finite set. The second one concerns the behavior around 
singular points and it is postponed to the next subsection.

Proof of Theorem 1.1, Step 1. By the monotonicity formulas established in Proposi-
tion 6.6 (and the fact that W (Qλ) is bounded), the limit

Θ(Qλ, x0) := lim
r→0

1
2r

∫

Br(x0)∩Ω

|∇Qλ|2 dx = lim
r→0

1
r
Eλ(Qλ, Br(x0) ∩ Ω) (6.10)



F.L. Dipasquale et al. / Journal of Functional Analysis 286 (2024) 110314 63

exists at every x0 ∈ Ω.
Combining Proposition 6.6 and [16, Lemma 2.6] with [16, Corollary 2.19] we obtain 

the existence of a universal constant εin > 0 such that for every x0 ∈ Ω, the condition 
Θ(Qλ, x0) < εin implies Qλ ∈ Cω(Bρ(x0)) for some radius ρ > 0 depending only on 
x0 and λ. In particular, for every x0 ∈ Ω the assumption Θ(Qλ, x0) < εin implies 
Θ(Qλ, x) = 0 for every x ∈ Bρ(x0).

For points on the boundary, we invoke [16, Lemma 2.10] and [16, Corollary 2.20] in 
place of [16, Lemma 2.6] and [16, Corollary 2.19], respectively. This yields the existence 
of a constant εbd > 0 depending only on Ω and Qb such that for every x0 ∈ ∂Ω, the 
condition Θ(Qλ, x0) < εbd implies Qλ ∈ C1,δ(Bρ(x0) ∩Ω). In view of Proposition 6.8 and 
Proposition 6.9, we have Θ(Qλ, x0) = 0 for every x0 ∈ ∂Ω. Consequently, Qλ is of class 
C1,δ for every δ ∈ (0, 1) in a neighborhood of ∂Ω up to ∂Ω. In particular Θ(Qλ, ·) = 0
in a neighborhood of ∂Ω up to ∂Ω. Moreover, [16, Corollary 2.20] tells us that (i) if 
Qb ∈ C2,δ(∂Ω) for some δ > 0, then Qλ is of class C2,δ in a neighborhood of ∂Ω up to 
∂Ω; (ii) if ∂Ω is real-analytic and Qb ∈ Cω(∂Ω), then Qλ is of class Cω in a neighborhood 
of ∂Ω up to ∂Ω.

As a consequence of the discussion above, the set Σ :=
{
x ∈ Ω : Θ(Qλ, x) > 0

}
is 

a closed set which is contained in Ω, and Σ =
{
x ∈ Ω : Θ(Qλ, x) " εin

}
. In view of 

Proposition 6.9, we also have Σ ⊆ Ω ∩ {x3-axis}. Since we have proved the announced 
regularity in Ω\Σ, it now remains to show that Σ is a finite set. Since Σ is a compact set, 
it is enough to prove that all the points of Σ are isolated. We argue by contradiction fol-
lowing a somehow classical argument (see e.g. [54, Section 3.4]). Assume that there exist 
x̄ ∈ Σ and a sequence {xn} ⊆ Σ \ {x̄} such that xn → x̄. Set rn := 2|xn − x̄| and define 
(for n large enough) Qn ∈ W 1,2

sym(B1; S4) by setting Qn(x) := Qλ(x̄ + rnx). According 
to Proposition 6.7, there exist a (not relabeled) subsequence and Q∗ ∈ W 1,2

sym,loc(R3; S4)
such that Qn → Q∗ strongly in W 1,2

loc (R3) and Q∗ is degree-zero homogeneous and 
weakly harmonic. Extracting a further subsequence if necessary, we can assume that 
r−1
n (xn − x̄) = (0, 0, 1/2) =: a for every n (or, alternatively, r−1

n (xn − x̄) = −a for every 
n, a case for which the argument below is the same, up to obvious modifications).

As recalled in Sec. 4, if Q∗ ∈ W 1,2
sym,loc(R3; S4) is a degree-zero homogeneous weakly 

harmonic map then Q∗(x) = ω
(

x
|x|

)
, for some harmonic sphere ω ∈ C∞

sym(S2; S4). Thus 
Q∗ ∈ C∞(R3 \ {0}; S4) and in turn Θ(Q∗, a) = 0. In view of this property, we can 
find a radius ρ∗ ∈ (0, 1/2) such that 1

ρ∗
E0(Q∗, Bρ∗(a)) ! εin/2. Once again, by strong 

W 1,2-convergence of Qn, we deduce that 1
ρ∗
Eλr2

n
(Qn, Bρ∗(a)) < εin for n large enough. 

Scaling back, it implies that 1
ρ∗rn

Eλ(Qλ, Bρ∗rn(xn)) < εin for n large enough, and thus 
Θ(Qλ, xn) = 0. In other words, xn &∈ Σ for n large enough, a contradiction. !

6.5. Uniqueness of tangent maps at isolated singularities

In this subsection we detail the second step in the proof of Theorem 1.1, concerning the 
asymptotic decay of a singular minimizer to a unique tangent map at any of its isolated 
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singular points. This property can be regarded as a consequence of the fundamental 
result from the paper [52] and its further improvements and simplifications by the same 
author in [54, Chapter 3] (see also [42, Chapter 2.5] for an account on the subject).

Since [52], the key tool to obtain this property is the celebrated Simon-Łojasiewicz 
inequality recalled in Proposition 6.13 and, as in [42, Theorem 2.6.3] for the harmonic 
map case, the power-type decay will depend on its validity with the optimal exponent 
s = 1. Note that in our setting this validity is not obvious, since the space of harmonic 
spheres Harm(S2; S4) is not a smooth submanifold of C3(S2; S4) (indeed, according to 
[58] it is just a singular complex variety in the sense of Algebraic Geometry) and even the 
integrability property of the Jacobi fields (see [54, Chapter 3.14] and [42, Chapter 2.6] for 
explanations) along any of its element may fail because of the results in [40]. However, as 
we detail below, in the present case the classification of minimizing equivariant tangent 
maps from Sec. 4 allows to restrict the attention to the stratum Harm1(S2; S4) of har-
monic spheres with energy 4π which is a nice analytic manifold, whence the integrability 
condition is obviously satisfied and the Simon-Łojasiewicz inequality (6.13) holds with 
the optimal exponent.

Our proof of the asymptotic decay is a modification of the simplified argument from 
[54, Chapter 3.15] for harmonic maps, taking into account the optimal exponent in (6.13)
but without using the integrability property at linearized level as in [42, Lemma 2.6.5]
or [53, Part II, proof of Theorem 6.6]. Here, instead, an elementary iterative argument 
gives at once the power-type decay of the radial derivative keeping the rescaled map 
at bounded small distance from any of its asymptotic limit. Then the L2-decay to a 
unique limit, and in turn the C2-decay, follow, still with a power-type decay rate which 
is however not optimal.

The following preliminary result allows to classify the possible blow-up limit and to 
identify a first good approximation at some sufficiently small scale.

Lemma 6.10. Let Qλ, x̄, {rn}, Qx̄,rn
λ and Q∗ be as in Proposition 6.7 and suppose in 

addition x̄ ∈ Σ = SingQλ. Then Q∗ = Q(α), where Q(α) is one of the maps described by 
(1.18). In particular, up to subsequences

lim
n→∞






∫

B1

∣∣∣∣∣
∂Qx̄,rn

λ

∂|x− x̄|

∣∣∣∣∣

2
dx

|x− x̄| +
∫

B1\B1/2

|Qx̄,rn
λ −Q∗|2dx





= 0 .

Proof. As Qλ is a minimizer, we can apply the monotonicity formula (6.4) with ρ =
rn → 0 to conclude that 

∣∣∣ ∂Qλ

∂|x−x̄|

∣∣∣
2 1

|x| is integrable near x̄, hence

lim
n→∞

∫

B1

∣∣∣∣∣
∂Qx̄,rn

λ

∂|x− x̄|

∣∣∣∣∣

2
dx

|x− x̄| = lim
n→∞

∫

Brn

∣∣∣∣
∂Qλ

∂|x− x̄|

∣∣∣∣
2 dx

|x− x̄| = 0 .
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According to Proposition 6.7, for every sequence rn → 0, the sequence Qx̄,rn
λ has a 

subsequence converging in W 1,2
loc (R3) to Q∗, where Q∗ belongs to W 1,2

sym,loc(R3; S4) and 
it is a 0-homogeneous weakly harmonic map minimizing the Dirichlet energy with re-
spect to S1-equivariant compactly supported perturbations. Applying Corollary 4.7, the 
conclusion follows. !

In view of the previous lemma and according to Theorem 4.5 and Corollary 4.7, we see 
that the possible minimizing tangent maps correspond to the set of equivariant harmonic 
spheres given by

Harm∗(S2;S4) := {±Rα · ω(1)
eq , Rα ∈ S1} ⊆ Harm(S2;S4) . (6.11)

It follows from Lemma 3.1 that the space of harmonic spheres can be decomposed ac-
cording to the values of the energy (3.1), i.e.,

Harm(S2;S4) =
∞⋃

d=0
Harmd(S2;S4) ,

Harmd(S2;S4) = {ω ∈ Harm(S2;S4) s.t. E(ω) = 4πd } .

Note that Harm∗(S2; S4) + S1 ∪ S1, in addition

Harm∗(S2;S4) ⊆ Harm1(S2;S4) ⊆ C3(S2;S4) , (6.12)

and Harm1 is a C1-closed subset since the energy is continuous in the C1-topology.
The following fact is well known from [58].

Lemma 6.11. Harm1 ⊆ C3(S2; S4) is a finite dimensional real-analytic submanifold.

Proof. We sketch an elementary proof for the reader’s convenience. First notice that by 
Lemma 3.1 every ω ∈ Harm1(S2; S4) is not linearly full, it has three dimensional image 
and its energy is 4π. Thus, it is a harmonic sphere into S2 with energy 4π embedded 
isometrically along a 3-plane in S0. In view of [39] we have ω = A ◦ Φ, where Φ ∈
Conf+(S2) is an orientation preserving conformal diffeomorphism and A ∈ Isom(R3; S0). 
The map

Isom(R3;S0) × Conf+(S2) . (A,Φ) −→ A ◦ Φ ∈ Harm1(S2;S4)

is clearly smooth and surjective, moreover is constant along the SO(3)-orbits of the 
diagonal action on Isom(R3; S0) ×Conf+(S2) given by (A, Φ) → (ARt, RΦ), R ∈ SO(3). 
Since the previous representation of ω in terms of (A, Φ) is clearly unique up to the 
choice of an orthonormal basis in Ranω we see that

Harm1(S2;S4) +
(
Isom(R3;S0) × Conf+(S2)

)
/ SO(3) ,
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and the quotient has a natural structure of real-analytic manifold because the action 
is free and properly discontinuous. Finally the map (A, Φ) → A ◦ Φ gives an analytic 
embedding of the quotient into C3(S2; S4). !

Remark 6.12. It follows from the previous lemma and the C1-continuity of the Dirichlet 
energy E in (3.1) that for any ω ∈ Harm1(S2; S4) there exists γ > 0 such that ψ ∈
Harm(S2; S4) and ‖ψ − ω‖C3 < γ yields ψ ∈ Harm1(S2; S4), therefore C3-close critical 
points ψ belong to a small neighborhood of an analytic manifold passing through ω.

As a consequence of the previous discussion we see that the integrability assumptions 
in [54, Chapter 3.14] are satisfied and we can finally recall the celebrated Łojasiewicz-
Simon inequality for the Dirichlet energy functional on C3(S2; S4) with optimal exponent 
around any harmonic sphere of energy 4π.

Proposition 6.13. Let ω ∈ Harm1(S2; S4) be a harmonic map. Then there are C > 0 and 
γ ∈ (0, 1) such that

|E(ψ) − E(ω)| ! C‖M (ψ)‖2
L2(S2) , (6.13)

for any ψ ∈ C3(S2; S4) such that ‖ψ − ω‖C3(S2) < γ, where M (ψ) denotes the tension 
field for a map ψ ∈ C3(S2; S4), i.e.,

M (ψ) := ∆S2ψ + |∇S2ψ|2 ψ .

For a proof of a weaker analogue of Proposition 6.13, in the general case of a real-
analytic compact target manifold N , we refer the interested reader to [54, Section 3.14]. 
Under integrability assumptions as the one in Remark 6.12, the generalization of the 
optimal inequality (6.13) is given by [54, Chapter 3.14, page 82, inequality (xiv)].

The next result gives the necessary a priori bounds of minimizers around isolated 
singularities to show the convergence to a unique tangent map.

Proposition 6.14. Let r > 0, let x̄ be a point on the x3-axis and let Qλ ∈ W 1,2
sym(Br(x̄); S4)

be a minimizer of Eλ with respect to S1-equivariant compactly supported perturbations. 
Suppose in addition x̄ ∈ Σ and Qλ ∈ C∞(Br(x̄) \ {x̄}). Then, for every k ∈ N,

sup
x∈Br/2(x̄)\{x̄}

|x− x̄|k
∣∣∇kQλ(x)

∣∣ ! Ck , (6.14)

where Ck is a positive constant depending only on k and on r.

Proof. Given the sequence rn = r2−n ↓ 0, we set Qn(x) := Qλ(x̄ + rnx) for x ∈ Br/rn . 
By Proposition 6.7, the sequence {Qn} has a (not relabeled) subsequence converging 
strongly in W 1,2

loc (R3) to some minimizing tangent map Q∗ (which is one of those maps 
given in Lemma 6.10), therefore in particular we have strong convergence Qn → Q∗
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in W 1,2(B3/2 \ B1/3). Since Q∗ has only an isolated singularity at the origin and it 
is 0-degree homogeneous, we can find 0 < ρ < 1/6 so that for every y ∈ B1 \ B1/2
we have 1

ρ

∫
Bρ(y) |∇Q∗|2 dx ! εin/2, where εin is the critical parameter in [16, Corol-

lary 2.19]. Note that ρ depends only on |∇Q∗|2, therefore it does not depend on the 
chosen subsequence and on which map Q∗ really is among those in (1.18). Thanks to 
strong convergence, we have 1

ρ

∫
Bρ(y) |∇Qn|2 dx ! εin for all n large enough uniformly 

over y ∈ B1 \B1/2, therefore [16, Corollary 2.19] gives ρk‖∇kQn‖L∞(Bρ/8(y)) ! Ck for all 
sufficiently large n uniformly over y ∈ B1 \B1/2. Thus the same estimate holds for every 
n, because of the smoothness of each map Qn away from the origin, for a possibly larger 
constant still uniform with respect to y ∈ B1\B1/2. Thus, by covering B1\B1/2 with balls 
of radius ρ/8, we have supy∈B1\B1/2

∣∣∇kQn(y)
∣∣ ! Ck, where Ck does not depend on n. 

Since Br/2(x̄) \ {x̄} = ∪∞
n=1An, where An = {x : 2−(n+1)r ! |x− x̄| < 2−nr} are dyadic 

annuli around x̄, scaling back the previous inequalities we have 2−knrk
∣∣∇kQλ(x)

∣∣ ! Ck

for every x ∈ An, for every n ∈ N, and in turn we deduce |x− x̄|k
∣∣∇kQλ(x)

∣∣ ! Ck for 
every x ∈ An, for every n " 1, hence the conclusion follows. !

As a corollary, a simple interpolation argument gives the following result which turns 
L2-closeness to a tangent map into C3-closeness and which will allow to let the Simon-
Łojasiewicz inequality (6.13) come into play.

Corollary 6.15 (L2-closeness =⇒ C3-closeness). Let r > 0, let x̄ be a point on the x3-
axis and let Qλ ∈ W 1,2

sym(Br(x̄); S4) be a minimizer of Eλ with respect to S1-equivariant 
compactly supported perturbations such that Qλ ∈ C∞(Br(x̄) \ {x̄}). There exists C > 0
such that for any rescaled map Q̃ρ(x) := Qλ(x̄ + ρx), 0 < ρ ! r/3, and any minimizing 
tangent map Q∗ in the sense of Proposition 6.7 we have

‖Q̃ρ −Q∗‖C3(B3/2\B3/4) ! C‖Q̃ρ −Q∗‖1/6
L2(B3/2\B3/4) . (6.15)

As a consequence, for any γ > 0 there exists η > 0 such that ‖Q̃ρ−Q∗‖C3(B3/2\B3/4) < γ

whenever ‖Q̃ρ −Q∗‖L2(B3/2\B3/4) < η.

Proof. Since B1 ⊆ R3 we have W 2,2(B3/2 \ B3/4) ⊆ C0,1/2(B3/2 \ B3/4) and in turn 
W 5,2(B3/2 \B3/4) ↪→ C3(B3/2 \B3/4) with compact embedding, hence

‖Q̃ρ −Q∗‖C3(B3/2\B3/4) ! C‖Q̃ρ −Q∗‖W 5,2(B3/2\B3/4) ,

for some constant C > 0 independent of ρ. On the other hand, classical interpolation 
results among W k,2-spaces give

‖Q̃ρ −Q∗‖W 5,2(B3/2\B3/4) ! C‖Q̃ρ −Q∗‖5/6
W 6,2(B3/2\B3/4)‖Q̃ρ −Q∗‖1/6

L2(B3/2\B3/4) ,

for some constant C > 0 independent of ρ. Clearly C6 ⊆ W 6,2 with continuous embed-
ding, and the derivative bounds (6.14) from Proposition 6.14 yield
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‖Q̃ρ −Q∗‖C6(B3/2\B3/4) ! C(‖Q̃ρ‖C6(B3/2\B3/4) + ‖Q∗‖C6(B3/2\B3/4)) ! C ,

for another constant C > 0 independent of ρ. Finally, (6.15) follows from the previous 
three inequalities and the final claim follows immediately. !

The next result is the final ingredient in proving uniqueness of tangent maps at isolated 
singularities. It gives the inductive step to improve L2-closeness to a tangent map from 
each dyadic scale to the next one assuming we start the process sufficiently close to a 
given tangent map.

Proposition 6.16. Let r > 0, let x̄ be a point on the x3-axis and let Qλ ∈ W 1,2
sym(Br(x̄); S4)

be a minimizer of Eλ with respect to S1-equivariant compactly supported perturbations 
such that Qλ ∈ C∞(Br(x̄) \ {x̄}).

Fix ρ∗ ! r/3 a small number such that 
∫
Bρ∗

∣∣∣ ∂Qλ

∂|x−x̄|

∣∣∣
2

dx
|x| ! 1

2 and let Q∗ be a mini-
mizing tangent map at x̄ as in Proposition 6.7.

There exist C∗ > 1 and η∗ ∈ (0, 1) depending only on Q∗ and ρ∗ with the following 
properties. If for some 0 < ρ̂ ! ρ∗ the scaled map Q̂(x) := Qλ(x̄ + ρ̂x) satisfies ‖Q̂ −
Q∗‖L2(B1\B1/2) < η∗, then

∫

B1/2

1
|x|

∣∣∣∣∣
∂Q̂

∂|x|

∣∣∣∣∣

2

dx ! C∗




∫

B1\B1/2

1
|x|

∣∣∣∣∣
∂Q̂

∂|x|

∣∣∣∣∣

2

dx + 1
4 ρ̂

2



 . (6.16)

Proof. The proof follows closely the one in [54, page 83-85, inequality (8)], with some 
modifications to handle the extra terms coming from the potential energy W and to take 
advantage of the Simon-Łojasiewicz inequality with optimal exponent.

According to Corollary 4.7 and to (6.11)-(6.12), we have Q∗(x) = ω
(

x
|x|

)
for some 

harmonic sphere ω ∈ Harm∗(S2; S4) ⊆ Harm1(S2; S4). By Proposition 6.13 we can 
choose γ > 0 such that (6.13) holds whenever ψ ∈ C3(S2; S4) satisfies ‖ψ − ω‖C3 < γ. 
Given γ as above, we fix η as in Corollary 6.15 and we set η∗ :=

( 2
3
)3/2

η.
For ρ = 3

2 ρ̂ ∈
(
0, 3

2ρ∗
]
⊆ (0, r/2], we consider the scaled map Q̃(x) = Q̃ρ(x) as in 

Corollary 6.15, so that Q̂(x) = Q̃
( 3

2x
)

on B1. Clearly the assumption of the proposition 
yields

‖Q̃−Q∗‖L2(B3/2\B3/4) =
(3

2

)3/2
‖Q̂−Q∗‖L2(B1\B1/2) < η ,

hence

‖Q̃−Q∗‖L2(B3/2\B3/4) < η =⇒ ‖Q̃−Q∗‖C3(B5/4\B7/8) < γ (6.17)

because of Corollary 6.15, and we are in the position to apply the Łojasiewicz-Simon 
inequality (6.13) to the map ψ = Q̃|∂B1 .
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Rewriting (6.16) in terms of Q̃, it is clear that to finish the proof we must show that

∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx ! C∗




∫

B3/2\B3/4

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx + 9
16ρ

2



 , (6.18)

for some C∗ > 0 independent of ρ ∈
(
0, 3

2ρ∗
]
.

Setting λ̃ = ρ2λ, by the Interior Monotonicity Formula (6.4) we have

Eλ̃(Q̃, B1) − Θ(Q̃, 0) =
∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx + 2λ̃
1∫

0



 1
t2

∫

Bt

W (Q̃) dx



 dt , (6.19)

where the density Θ(Q̃, 0) is defined as in (6.10) above.
Arguing by approximation as in the proof of the monotonicity formula above, the first 

identity from step 2 in the proof of [16, Proposition 2.4] yields

1
2

∫

∂B1



|∇Q̃|2 − 2
∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

 dH2 + λ̃

∫

∂B1

W (Q̃) dH2 = Eλ̃(Q̃, B1) + 2λ̃
∫

B1

W (Q̃) dx.

Hence,

Eλ̃(Q̃, B1) !
1
2

∫

∂B1

|∇tanQ̃|2 dH2 + λ̃

∫

∂B1

W (Q̃) dH2.

On the other hand,

Θ(Q̃, 0) = Θ(Qλ, x̄) = Θ(Q∗, 0) = 1
2

∫

∂B1

|∇tanQ∗|2 dH2 ,

so that the last inequality can be rewritten as

Eλ̃(Q̃, B1) − Θ(Q̃, 0) ! 1
2

∫

∂B1

(
|∇tanQ̃|2 − |∇tanQ∗|2

)
dH2 + λ̃

∫

∂B1

W (Q̃) dH2 ,

which combined with (6.19) in turn leads to

∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx ! 1
2

∫

∂B1

(
|∇tanQ̃|2 − |∇tanQ∗|2

)
dH2 + λ̃

∫

∂B1

W (Q̃) dH2 .

As already mentioned, we can apply (6.13) from Proposition 6.13 with ψ = Q̃ |∂B1=S2

to deduce
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∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx ! C‖M (Q̃)‖2
L2(∂B1) + λ̃

∫

∂B1

W (Q̃) dH2 , (6.20)

because of the condition ‖Q̃−Q∗‖L2(B3/2\B3/4) < η and of (6.17).
Now, the rescaled map Q̃ satisfies

−∆Q̃ = |∇Q̃|2Q̃ + λ̃

(
Q̃2 − 1

3I − tr(Q̃3)Q̃
)

,

which in spherical coordinates rewrites as

1
|x|2

∂

∂|x|

(
|x|2 ∂Q̃

∂|x|

)
+ 1

|x|2 ∆S2Q̃ + 1
|x|2 |∇S2Q̃|2Q̃

+
∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

Q̃ + λ̃

(
Q̃2 − 1

3I − tr(Q̃3)Q̃
)

= 0 .

Separating the terms with angular derivatives we obtain

1
|x|2 M (Q̃) = − 1

|x|2
∂

∂|x|

(
|x|2 ∂Q̃

∂|x|

)
−

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

Q̃− λ̃

(
Q̃2 − 1

3I − tr(Q̃3)Q̃
)

,

which combined with (6.20) leads to (recall that λ̃ = ρ2λ)

∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

!C








∫

∂B1

∣∣∣∣∣
∂

∂|x|

(
|x|2 ∂Q̃

∂|x|

)∣∣∣∣∣

2

+
∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

4

dH2 + ρ4



 + ρ2





!C




∫

∂B1

∣∣∣∣∣
∂

∂|x|

(
|x|2 ∂Q̃

∂|x|

)∣∣∣∣∣

2

+
∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

4

dH2 + ρ2



 ,

with C = C(λ, ρ∗, Q∗). Therefore, expanding the derivative on the product and applying 
the gradient bound (6.14) on the scaled map Q̃ we arrive at

∫

B1

1
|x|

∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dx ! C




∫

∂B1

∣∣∣∣∣
∂

∂|x|

(
|x| ∂Q̃

∂|x|

)∣∣∣∣∣

2

+
∣∣∣∣∣
∂Q̃

∂|x|

∣∣∣∣∣

2

dH2 + ρ2



 , (6.21)

because of our assumption ‖Q̃−Q∗‖L2(B3/2\B3/4) < η.
In order to obtain (6.18), we apply elliptic regularity. For σ ∈ (3/4, 4/3) we define

Q̃σ(x) := Q̃(σx) ,
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so that Q̃σ ∈ C∞(B3/2 \B3/4) and it is a smooth solution to the rescaled system

∆Q̃σ + |∇Q̃σ|2Q̃ + λ̃σ2
(
Q̃2

σ − 1
3I − tr

(
Q̃3

σ

)
Q̃σ

)
= 0 . (6.22)

Since

∂

∂σ

(
Q̃(σx)

)
= x ·∇Q̃(σx) = 1

σ
x ·∇Q̃σ(x) = |x|

σ

∂Q̃σ

∂|x| (x) ,

differentiating (6.22) with respect to σ at σ = 1 and setting v := |x| ∂Q̃∂|x| yields

∆v + 2(∇Q̃ : ∇v)Q̃ + |∇Q̃|2v

+ λ̃σ2
(
vQ̃ + Q̃v − tr(Q̃3)v − 3tr(Q̃2v)

)
= 2λ̃

(
Q̃2 − 1

3I − tr(Q̃3)Q̃
)

.

Thus v(x) = x ·∇Q̃(x) is a smooth solution in B3/2 \B3/4 of the elliptic system

L (v) = λ̃f , (6.23)

where L (v) = ∆v + b ·∇v + c · v, and

‖b‖C1(B3/2\B3/4) + ‖c‖C1(B3/2\B3/4) + ‖f‖C1(B3/2\B3/4) ! C

because of the estimate ‖Q̃−Q∗‖C3(B5/4\B7/8) < γ.
Applying local H2-regularity theory for linear elliptic system as in [21, Theorem 4.11]

in view of the bounds on the coefficients, we have

‖v‖H2(B5/4\B7/8) ! C
(
‖v‖L2(B3/2\B3/4) + λ̃‖f‖L2(B3/2\B3/4)

)

! C
(
‖v‖L2(B3/2\B3/4) + ρ2

)
,

whence the 3d-embedding H2 ↪→ C0,1/2 yields

‖v‖C0,1/2(B5/4\B7/8) ! C
(
‖v‖L2(B3/2\B3/4) + ρ2

)
, (6.24)

On the other hand, rewriting the first order terms in (6.23) as b ·∇v = ∇ · (bv) − (∇ · b)v
and applying Schauder regularity theory for elliptic systems in divergence form as in [21, 
Theorem 5.20] we obtain

‖∇v‖C0,1/2(B9/8\B8/9) ! C
(
‖v‖C0,1/2(B5/4\B7/8) + λ̃‖f‖C0,1/2(B5/4\B7/8)

)
,

whence (6.24) yields
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‖v‖C1(B9/8\B8/9) ! C
(
‖v‖L2(B3/2\b3/4) + ρ

)
, (6.25)

where the constant C is independent of the rescaled map Q̃ and v = x ·∇Q̃.
Finally, combining (6.25) with (6.21) we easily obtain (6.18) and the proof is com-

plete. !

We are finally in the position to conclude the proof of Theorem 1.1. The proof here 
differs substantially from [54] and [42], as it is based on the improved inequality (6.16)
and an elementary iteration argument.

Proof of Theorem 1.1, Step 2. Let x̄ ∈ Σ. We know from the previous subsection that 
Qλ is (at least) C1-smooth in a neighborhood of the boundary and that Σ is a finite 
set of interior singularities on the symmetry axis, therefore singularities are isolated 
and we can fix r > 0 so that Qλ ∈ C∞(Br(x̄) \ {x̄}). We set Q̃ρ(x) := Qλ(x̄ + ρx), 
0 < ρ ! ρ∗ ! r/3 and ρ∗ as in Proposition 6.16, hence Q̃ρ is well-defined for x ∈ B2 \{0}
and Q̃ρ is minimizing Eλ̃, with λ̃ = λρ2, in B2 with respect to S1-equivariant compactly 
supported perturbations.

Notice that a simple application of the fundamental theorem of calculus gives

‖Q̃σ′ − Q̃σ‖L2(B1 \B1/2) !

√√√√√
∫

B1

1
|x|

∣∣∣∣∣
∂Q̃σ

∂|x|

∣∣∣∣∣

2

dx =

√√√√√
∫

Bσ(x̄)

1
|x|

∣∣∣∣
∂Qλ

∂|x|

∣∣∣∣
2
dx ,

σ/2 ! σ′ < σ ! ρ∗ , (6.26)

so the L2-oscillation between comparable scales tends to zero as σ → 0.
We are going to improve the estimate (6.26) to a power-type decay in terms of σ valid 

for all 0 < σ′ < σ ! ρ∗ by proving a quantitative decay of the right hand side, at least 
for σ small enough so that inequality (6.16) can be applied.

For fixed 0 < ρ < ρ∗ and any j ∈ N we define the sequence {Q̃ρ,j}j as Q̃ρ,j := Q̃2−jρ. 
In view of Lemma 6.10, there exists a minimizing tangent map Q∗ such that

i) Q̃ρ,j → Q∗ in L2(B1 \B1/2) as j → ∞ along a subsequence;
ii) for each η′ ∈ (0, η∗), η∗ as in Proposition 6.16, there exist j̄ = j̄(η′) such that

√√√√√
∫

B1

∣∣∣∣∣
∂Q̃ρ,j̄

∂|x|

∣∣∣∣∣

2
dx

|x| + 2−j̄ρ + ‖Q̃ρ,j̄ −Q∗‖L2(B1\B1/2) < η′ . (6.27)

Before making explicit the choice for η′ in terms of C∗ and η∗ from Proposition 6.16, 
we simplify the notation, setting for brevity Q̂ = Q̃ρ,j̄ . From now on we will work with 
the sequence {Q̂*}*∈N , where / ∈ N is such that j = j̄+/ and, obviously, Q̂* := Q̃ρ,j̄+* =
Q̃2−(j̄+%)ρ.
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We are going to describe the behavior of the whole sequence {Q̂*}*∈N , knowing that

1) Q̂* → Q∗ in L2(B1 \B1/2) as / → ∞ along a subsequence;
2) the map Q̂0 satisfies

√√√√√
∫

B1

∣∣∣∣∣
∂Q̂0
∂|x|

∣∣∣∣∣

2
dx

|x| + 2−j̄ρ + ‖Q̂0 −Q∗‖L2(B1\B1/2) < η′ , (6.28)

where η′ is the fixed constant in claim ii) above.

Applying Proposition 6.16 with ρ̂ = 2−(j̄+*)ρ, if Q̂* satisfies ‖Q̂*−Q∗‖L2(B1\B1/2) < η∗
then

∫

B1/2

1
|x|

∣∣∣∣∣
∂Q̂*

∂|x|

∣∣∣∣∣

2

dx ! C∗

∫

B1\B1/2

1
|x|

∣∣∣∣∣
∂Q̂*

∂|x|

∣∣∣∣∣

2

dx +
(
2−*

)2
C∗

1
4 ρ̄

2 ,

where for brevity ρ̄ = 2−j̄ρ.
Now we apply Widman’s hole-filling trick. As C∗ > 1 we have 1

4 ρ̄
2 ! ρ̄2 − C∗+1

C∗

( ρ̄
2
)2, 

hence summing to both sides C∗ times 
∫
B1/2

1
|x|

∣∣∣∂Q̂%

∂|x|

∣∣∣
2
dx =

∫
B1

1
|x|

∣∣∣∂Q̂%+1
∂|x|

∣∣∣
2
dx and 

rearranging we obtain

∫

B1

1
|x|

∣∣∣∣∣
∂Q̂*+1
∂|x|

∣∣∣∣∣

2

dx +
(
2−(*+1)

)2
ρ̄2 !

(
C∗

C∗ + 1

)


∫

B1

1
|x|

∣∣∣∣∣
∂Q̂*

∂|x|

∣∣∣∣∣

2

dx +
(
2−*

)2
ρ̄2



 ,

(6.29)
provided ‖Q̂* −Q∗‖L2(B1\B1/2) < η∗.

Now we set ϑ :=
√

C∗
C∗+1 ∈ (0, 1) and for / ∈ N we define two sequences

y* := ‖Q̂* −Q∗‖L2(B1\B1/2) , z* :=

√√√√√
∫

B1

1
|x|

∣∣∣∣∣
∂Q̂*

∂|x|

∣∣∣∣∣

2

dx + (2−*)2 ρ̄2 . (6.30)

Combining (6.28), (6.26) with σ′ = 2−(*+1)ρ̄ and σ = 2−*ρ̄ together with triangle in-
equality, and the iterative estimate (6.29), we obtain the following three properties valid 
for each / " 0:

a) y0 + z0 < η′;
b) y*+1 ! y* + z*;
c) y* < η∗ =⇒ z*+1 ! ϑz*.
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As a consequence, choosing η′ = 1−ϑ
4 η∗, a simple induction argument using a), b) and 

c) yields the following two inequalities for all / " 0, namely

y*+1 ! y0 + 1 − ϑ*+1

1 − ϑ
z0 < η∗ , z*+1 ! ϑ*+1z0 . (6.31)

Going back to the definition of z* and Q̂*, by (6.31) we obtain for all / " 0
√√√√√

∫

B2−%

1
|x|

∣∣∣∣∣
∂Q̃ρ̄

∂|x|

∣∣∣∣∣

2

dx =

√√√√√
∫

B1

1
|x|

∣∣∣∣∣
∂Q̃2−(j̄+%)ρ

∂|x|

∣∣∣∣∣

2

dx

=

√√√√√
∫

B1

1
|x|

∣∣∣∣∣
∂Q̂*

∂|x|

∣∣∣∣∣

2

dx ! z* ! ϑ*z0 ! ϑ*η′ ,

hence, if for fixed 0 < σ ! ρ̄ we choose / such that 2−(*+1)ρ̄ ! σ < 2−*ρ̄, then
√√√√√

∫

Bσ(x̄)

1
|x− x̄|

∣∣∣∣
∂Qλ

∂|x|

∣∣∣∣
2
dx =

√√√√√
∫

B1

1
|x|

∣∣∣∣∣
∂Q̃σ

∂|x|

∣∣∣∣∣

2

dx

! Cσν̄ , 0 < σ ! ρ̄ , (6.32)

where ν̄ ∈ (0, 1) is such that 2−ν̄ = ϑ (note that ϑ ∈ (1/2, 1) since C∗ > 1).
Applying the same comparison argument between dyadic and arbitrary radii and 

estimating the terms of a telescopic sum through (6.32) and (6.26), we easily obtain

‖Q̃2−%ρ̄ − Q̃σ‖L2(B1 \B1/2) ! Cσν̄ , 2−*ρ̄ < σ ! ρ̄ ,

hence, for fixed σ, taking the limit / → ∞ along the same subsequence chosen above 
finally gives the L2-decay estimate

‖Q∗ − Q̃σ‖L2(B1 \B1/2) ! Cσν̄ , 0 < σ ! ρ̄ . (6.33)

Setting ν = ν̄/6 and combining (6.33) with (6.15) in Corollary 6.15 the conclusion 
follows. !

7. Topology of minimizing equivariant configurations

In this final section we prove the other results announced in the Introduction, namely 
the existence of torus solutions given in Theorem 1.2, the existence of split minimizers 
in Theorem 1.3, and the topological properties for smooth and singular equivariant min-
imizers of the functional (1.8) presented respectively in Theorem 1.4 and Theorem 1.5.
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In Theorem 1.2 we exhibit the first examples of smooth solution to (1.10) which are 
minimizers of Eλ in the class of S1-equivariant maps on the unit ball subject to ap-
propriate positive uniaxial smooth boundary conditions. Since the boundary data are 
topologically equivalent to the radial anchoring, the corresponding minimizers inherit 
a nontrivial topological structure in the interior. As discussed in the Introduction, the 
structure of such minimizers resembles that of the torus solutions found in many numer-
ical simulations [55,36,35,19,14,28]. In particular, they possess a negative uniaxial ring 
inside the ball (an embedded copy of S1) which is surrounded by biaxial tori and which 
is mutually linked to the region of positive uniaxiality made up by the boundary of the 
ball and the vertical axis.

The structure properties of the solutions in Theorem 1.2 are actually quite ro-
bust. With Theorem 7.4 below we show that these are general features of smooth 
S1-equivariant maps under hypotheses (HP0)-(HP3). Thus, they pertain to general 
smooth equivariant critical points of Eλ and Theorem 1.4 follows as a special case of 
this more general result. On this basis, we propose a definition of torus solution (see 
Definition 7.6) that seems natural and consistent with the phenomenological picture 
emerging from the numerical simulations mentioned above.

The topological structure of singular minimizers is instead really different. Theo-
rem 1.5 deals with singular minimizers in the class of equivariant maps Asym

Qb
(Ω) still 

assuming smoothness of the domain and of the boundary data and the validity of 
conditions (HP1)–(HP3). Due to Theorem 1.1, we know that the singular set of such min-
imizers is a finite subset of the symmetry axis. In Proposition 7.9 we show that, thanks to 
(HP1)–(HP3) and S1-equivariance, it has a more particular structure, namely, it consists 
of finitely many dipoles (see Remark 7.8 for this terminology). The proof of Theorem 1.5
exploits the behavior of tangent maps at isolated singularities and shows in particular 
that for each regular value of the biaxiality parameter each dipole belongs to spherical 
connected components of the corresponding biaxiality surface.

Finally, examples of split minimizers under suitably chosen topologically nontrivial 
boundary data in the unit ball B1 are provided by Theorem 1.3. A very important point 
here is that singularities appear because they are energetically convenient although not 
necessary for trivial topological reasons.

7.1. Existence and topology of smooth minimizers

In this subsection, we explore the topology of biaxial sets of smooth S1-equivariant 
maps under assumptions (HP0)–(HP3). To such maps, all the results in [16, Section 5]
apply. However, S1-equivariance will allow us to give more direct arguments and to 
obtain more refined information. In particular, in view of the S1-symmetry we are able 
to improve [16, Theorem 5.7, claim 1)], controlling the genus of the biaxial surfaces, 
at least for regular values of the signed biaxiality below the critical value β̄ in (HP1), 
which must be therefore finite unions of tori (see below for the precise statement). Since 
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this analysis mainly relies on the smoothness property of the configurations, the same 
qualitative properties will hold for arbitrary equivariant critical points of (1.8).

The first result of this subsection provides the key step to reveal in any smooth S1-
equivariant configuration (assuming (HP0)–(HP3) are in force) the phenomenological 
picture of torus solutions discussed in the Introduction.

Proposition 7.1. Let Ω ⊆ R3 be an axisymmetric bounded open set with C1-smooth 
boundary and let Q : Ω → S4 be an S1-equivariant map. Suppose that Ω and Q sat-
isfy assumptions (HP0)-(HP3). Then the biaxiality set {β = −1} of Q contains an 
invariant circle S1 which is mutually linked to ∂D+

Ω , where ∂D+
Ω is the boundary of the 

simply connected domain D+
Ω = Ω ∩{x2 = 0, x1 > 0} as already defined in Corollary 2.7.

Proof. By symmetry of Ω and assumptions (HP0)-(HP1), the maximal eigenvalue 
λmax ≡ λ3 varies continuously and it is always simple on ∂Ω and hence on ∂D+

Ω (because 
Q(x) ≡ e0, hence λ3 = 2/

√
6 and it is simple on the symmetry axis). Note that, in 

view of assumption (HP2) and Corollary 2.7, the section D+
Ω is simply connected and 

with piecewise smooth boundary. Notice that the eigenspace map Vmax : ∂Ω → RP 2 is 
well-defined and smooth because of (HP2), moreover it is equivariant, because λmax(·) is 
invariant and Q(·) is equivariant. As in (1.24), we define γ : ∂D+

Ω → RP 2 as the restric-
tion of the map Vmax to ∂D+

Ω (extended to be the vertical direction e0 ∈ RP 2 for every 
x ∈ I = Ω ∩ {x3 axis}) and we claim that γ is a non-contractible loop in RP 2. Indeed, 
suppose the converse: then γ would have a continuous extension to D+

Ω and in turn a 
continuous equivariant extension Ṽ ∈ C(Ω; RP 2) because of (1.25). Due to (HP2) the 
map Ṽ would have a continuous (and equivariant) lifting ṽ ∈ C(Ω; S2), in particular at 
the boundary, where in turn deg(ṽ, ∂Ω) = 0. On the other hand, in view of assumption 
(HP3) any lifting of Ṽ |∂Ω = Vmax at the boundary must have odd degree, which gives a 
contradiction and proves the previous claim.

Now we claim that there exists in D+
Ω a point x0 at which λ2(x0) = λmax(x0), so 

that x0 ∈ D+
Ω ∩ {β = −1}. Note that this fact could be deduced using [16, Lemma 

5.2] which is valid also in the nonsymmetric context, but we prefer to give here a more 
transparent and elementary argument. Indeed, suppose this is not the case: then λmax
would be always simple on D+

Ω . Arguing as above, the eigenspace map Vmax would be 
well-defined and smooth on the whole Ω, therefore the map γ : ∂D+

Ω → RP 2 defined 
above, setting γ(x) = Vmax(x), could be extended to a map γ ∈ C1(D+

Ω ; RP 2), hence it 
would be homotopically equivalent to a constant again because D+

Ω is simply connected. 
Since γ on the boundary is the nontrivial loop in π1(RP 2), then we have a contradiction 
and such x0 ∈ D+

Ω ∩{β = −1} must exist. Since β̃ ◦Q(x0) = −1 and β̃ ◦Q is an invariant 
function under S1-action, then we have β̃ ◦ Q(Rx0) = −1 for all R ∈ S1, that is, on 
the whole orbit of x0 which is an embedded copy of S1. Thus, the negative biaxial set 
{β = −1} contains an embedded copy of S1 and it is clearly mutually linked to ∂D+

Ω . !
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Proposition 7.1 is crucial in the proof of Theorem 1.2 below together with the following 
auxiliary result.

Lemma 7.2. Let D ⊆ R2 be the open unit disk and RP 2 ⊆ S4 ⊆ S0. Let U2η :=
{dist( · , RP 2) < 2η} ⊆ S0, η > 0 small, a tubular neighborhood of RP 2 such that the 
nearest point projection Π : U2η → RP 2 is well-defined and smooth. There exists δ > 0
depending only on η such that the following holds. For any Q̄ ∈ C(D; S0) ∩W 1,2(D; S0)
such that

1)
∫
D |∇Q̄|2 dx < δ,

2) Q̄(∂D) ⊆ Uη,

the normalized map γ̄ ∈ C(∂D; RP 2) given by γ̄ = Π ◦ Q̄ satisfies [γ̄] = 0 in π1(RP 2).

Proof. We argue by contradiction and assume there exists a sequence {Q̄j} ⊆ C(D; S0) ∩
W 1,2(D; S0) such that 

∫
D |∇Q̄j |2 dx → 0 as j → ∞, Q̄j(∂D) ⊆ Uη for each j and for the 

corresponding sequence of “normalized” boundary traces {γ̄j} ∈ C(∂D; RP 2) given by 
γ̄j = Π ◦ Q̄j we have [γ̄j ] &= 0 in π1(RP 2) for all j. We replace each Q̄j with the harmonic 
extension Q̂j with values into S0 of its boundary trace γ̄j ; by energy minimality, regularity 
up to the boundary and maximum principle for S0-valued harmonic functions, we see 
that {Q̂j} ⊆ C(D; S0) ∩W 1,2(D; S0) and they satisfy

a)
∫
D |∇Q̂j |2 dx → 0 as j → ∞,

b) Q̂j(∂D) ⊆ Uη and |Q̂j | ! 1 + η on D for all j.

Now we claim that Q̂j(D) ⊆ U2η for j large enough. Before proving the claim, we show 
that it yields the desired contradiction. Indeed, assuming the claim for a moment, then 
the “normalized” maps Γj = Π ◦ Q̂j would be well-defined and Γj ∈ C(D; RP 2) for j
large enough, whence for such j the maps γ̄j = Γj |∂D would be homotopic through Γj to 
a constant map Γj(0) in C(S1; RP 2), a contradiction. Thus the conclusion of the lemma 
is true up to proving that Q̂j(D) ⊆ U2η for j large enough.

In order to prove the last claim we argue by contradiction and we suppose that, up to a 
subsequence, for each j there exists a point zj ∈ D such that dist(Q̂j(zj), RP 2) " 2η. We 
rescale each map Q̂j by composing with the Möbius trasformation Φj(z) = z+zj

1+zjz
. Since 

each Φj is a conformal self-diffeomorphism of D with Φj(0) = zj , then the compositions 
Uj = Q̂j ◦ Φj are still harmonic functions such that {Uj} ⊆ C(D; B1+η) ∩W 1,2(D; S0). 
Moreover, by conformal invariance and normalization,

i)
∫
D |∇Uj |2 dx =

∫
D |∇Q̂j |2 dx → 0 as j → ∞,

ii) dist(Uj(·), RP 2) ! η on ∂D and dist(Uj(0), RP 2) " 2η for all j.
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Since {Uj(0)} ⊆ B1+2η, passing to a further subsequence if necessary we obtain a con-
stant map U∗ = limj→∞ Uj(0) such that Uj ⇀ U∗ weakly in W 1,2(D; S0) and locally 
uniformly in D (even smoothly, by elliptic regularity). On the other hand by weak con-
vergence of traces still to the constant map U∗ and the compactness of the embedding 
W 1/2,2(∂D; S0) ↪→ L2(∂D; S0), we also obtain, up to subsequences, Uj → U∗ a.e. on 
∂D. Passing to the limit in the inequalities ii) we have a contradiction and the proof is 
complete. !

Proof of Theorem 1.2. We divide the proof into three steps to make the argument easier 
to follow.

Step 1: we construct comparison maps {Θj} ⊆ Lipsym(Ω; S4) such that supj Eλ(Θj) !
C for some constant C > 0 and the corresponding traces Qj

b := tr Θj give a bounded 
sequence in W 1/2,2(S2; RP 2) converging weakly to e0 and correspond as in (1.22) to a 
sequence {vj} ⊆ C∞

sym(S2; S2) equivariantly homotopic to the outer normal to S2.
We first consider maps v ∈ C∞

sym(S2; S2) described in terms of spherical coordinates 
(φ, θ) using an angle function (see [23,24]) h ∈ C∞([0, π]), with 0 ! h(θ) ! π, so that

v(φ, θ) = (cosφ sin h(θ), sinφ sin h(θ), cosh(θ)) , 0 ! φ ! 2π , 0 ! θ ! π . (7.1)

We assume for simplicity the extra symmetry h(−θ+π/2) +h(θ+π/2) = π, 0 ! θ ! π/2, 
so that the corresponding map v commutes with the reflection with respect to the plane 
{x3 = 0}. The basic example is the function h(θ) ≡ θ, for which the corresponding map 
v is the outer normal →n (i.e., the identity map). We fix an increasing smooth function 
h̄ with the symmetry above and such that h̄ ≡ 0 for 0 ! θ ! π/6 and h̄ ≡ π for 
5π/6 ! θ ! π, denoting with v̄ ∈ C∞

sym(S2; S2) the corresponding map. Consequently, we 
denote with Qb ∈ C∞

sym(S2; RP 2) the map obtained from v̄ using (1.22) and we observe 
that by construction of h̄ we have Qb ≡ e0 in S2 ∩ {x2

1 + x2
2 < 1/4}. Notice that v̄

is (equivariantly) homotopic to the identity map simply through the affine homotopy 
of their angle functions H(θ, t) = tθ + (1 − t)h̄(θ), 0 ! t ! 1, so that in particular 
deg(v̄, ∂Ω) = deg(Id, ∂Ω) = 1.

In order to extend Qb to Ω = B1, we find it is more convenient to work on the 
vertical slice D+ = Ω ∩ {x2 = 0 , x1 > 0}, defining the map Θ : ∂D+ → RP 2 by 
restriction of Qb on the curved part of the boundary extended with the constant value 
e0 on the vertical segment I = Ω ∩ {x3-axis} ⊆ ∂D+. Notice that the previous map 
Θ : ∂D+ + S1 → RP 2 is continuous and [Θ] &= 0 in π1(RP 2) because v̄ is equivariantly 
homotopic to the identity. Now we extend Θ to D+ as the constant e0 on D+∩{x1 ! 1

2}
and then on T + := D+ ∩ {x1 > 1

2} as any fixed Lipschitz extension with values into 
S4 (as the latter is simply connected there is no obstruction for such an extension). To 
summarize, there exists Θ ∈ Lip(D+; S4) such that Θ ≡ e0 on D+ ∩ {0 ! x1 ! 1

2} and 
Θ ∈ C(∂T +; RP 2) but not homotopic to a constant. Then, due to (1.25), we can extend 
Θ equivariantly to the whole Ω to have a map Θ ∈ Lipsym(Ω; S4) such that Θ|∂Ω = Qb
and Θ ≡ e0 on Ω ∩ {x2

1 + x2
2 < 1

4}.
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Finally, we construct the sequence {Θj} and the corresponding boundary traces {Qj
b}

by deforming the map Θ as follows. First we extend Θ from D+ to a map Θ̄ on the 
whole D = Ω ∩ {x2 = 0} with the constant value e0 for x1 < 0. Then for a deformation 
parameter ρ " 1 we consider Möbius maps Φρ : D → D defined as Φρ(z) = z−1+1/ρ

1−(1−1/ρ)z . 
Note that as ρ increases the conformal diffeomorphisms Φρ “squeeze the interior of D
towards the point (−1, 0)”. In addition, Φ−1

ρ (D+) ⊆ D+, Φ−1
ρ (T +) ⊆ T + and Φ−1

ρ (T +) ↓
{(1, 0)} as ρ → ∞. Thus, if we set Θρ = Θ̄◦Φρ then Θρ ∈ Lip(D+; S4) and Θρ is obtained 
by a continuous deformation of Θ̄, “concentrating Θ̄ near the point (1, 0)”.

Taking ρ = j and extending each Θj equivariantly to Ω we have the following:

1) for each j " 1 we have Θj ∈ Lip(∂D+; RP 2) and [Θj ] &= 0 in π1(RP 2) because 
the same property holds for Θ̄ by construction (just use ρ ∈ [1, j] as a homotopy 
parameter);

2) {Θj} ⊆ Lipsym(Ω; S4) and Θj ≡ e0 out of S1 ·Φ−1
j (T +) ↓ S1 · {(1, 0)} = C as j → ∞; 

thus Θj → e0 locally uniformly on Ω \ C as j → ∞ because of the properties of the 
Möbius transformations combined with those of Θ̄;

3) for every j " 1, by equivariance of Θj and conformal invariance in 2d we have

∫

Ω

|∇Θj |2 dx =
∫

Ω∩{x2
1+x2

2>
1
4}

|∇Θj |2 dx ! C



1 +
∫

T +

|∇x1,x3Θj |2dH2





! C



1 +
∫

D+

|∇x1,x3Θ|2dH2



 ; (7.2)

4) supj Eλ(Θj) ! C for some C > 0 because of the equiboundedness of the potential 
energy W on S4 and the a priori bound (7.2) in 3);

5) the traces Qj
b := tr Θj are bounded in W 1/2,2(∂Ω; RP 2) by the pointwise properties 

of Θj at the boundary and 2)+3); in addition, the weak limit of Qj
b is the constant 

map e0 since Θj ⇀ e0 in W 1,2(Ω) as j → ∞ because of 2)+3); thus, claim 1) of 
Theorem 1.2 hold;

6) the sequence {Qj
b} corresponds as in (1.22) to a sequence {vj} ⊆ C∞

sym(S2; S2)
equivariantly homotopic to the outer normal to S2 given through (7.1) by angle 
functions hj = h̄ ◦ Φj , hj ∈ C∞([0, π]) increasing (here we extend h̄ to the whole 
(−π/2, 3π/2) + ∂D \ {(−1, 0)} as a constant 0 in (−π/2, 0) and π in (π, 3π/2) re-
spectively, hence they are still smooth).

Notice that in 6) the equivariant homotopy for each j fixed is given through a homotopy 
of angle functions hj with h̄ varying the parameter ρ ∈ [1, j] of the Möbius maps Φρ. 
Finally, since h̄(π/2) = π/2 because of the symmetry above and h̄ being increasing, the 
same hold for corresponding angle functions {hj}, therefore for the corresponding maps 
{vj} equation (7.1) yields vj ·

→
n > 0 on ∂Ω for each j " 1.
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Step 2: we prove that the corresponding minimizers Qj of Eλ in Asym
Qj

b
(Ω) for j suf-

ficiently large are smooth up to the boundary, converge locally smoothly in Ω to the 
constant map Q∗ ≡ e0 away from the circle C and moreover that claim 2) and 3) of 
Theorem 1.2 hold.

Indeed, first notice that by Proposition 6.2 each minimizer Qj is a weak solution to 
(1.10) and, due to Proposition 6.6, the monotonicity formulas (6.4)-(6.5) are satisfied.

Using Θj as comparison maps for every j " 1, in view of Step 1, claim 4), the 
minimizers Qj satisfy

sup
j

Eλ(Qj ,Ω) ! sup
j

Eλ(Θj ,Ω) ! C . (7.3)

Since the energies Eλ(Qj , Ω) are equibounded and Ω = B1, we can apply Theorem 5.1
to the sequence {Qj} (with λj ≡ λ) to deduce there is a (not relabeled) subsequence 
and a limiting map Q∗ ∈ W 1,2

sym(Ω; S4) minimizing the energy in Ω with respect to its 
boundary trace so that Qj ⇀ Q∗ in W 1,2(Ω) as j → ∞ and Qj → Q∗ strongly in 
W 1,2

loc (Ω) as j → ∞. From the fact that Qj
b ⇀ e0 weakly in W 1/2,2(S2; RP 2) as j → ∞

and the commutativity of the trace operator with weak limits, we infer that the trace of 
Q∗ on ∂Ω = S2 is the constant map e0, hence Q∗ = e0 because such constant map is 
clearly the unique minimizer of Eλ with constant trace e0 on the boundary (note that 
uniqueness also implies the convergence of the whole sequence {Qj} to e0). Thus claim 
2) is proved.

In order to prove claim 3), first we recall that according to Step 1), claim 2), the 
boundary data Θj are constant away from neighborhoods of the equatorial circle C =
∂Ω ∩{x3 = 0}, and such neighborhoods shrink onto C as j → ∞. Therefore, recalling the 
equiboundedness of {Qj}, using Theorem 5.5 (and the already obtained locally strong 
convergence in the interior) we deduce that Qj → e0 strongly in W 1,2

loc (Ω\C). Now observe 
that in view of (7.3) and the pointwise equiboundedness of the potential W (Qj), the 
energy measures µj =

∣∣∇Qj
∣∣2 dx have equibounded mass. Since each Qj is equivariant 

then each µj is invariant, hence the local strong convergence to a constant map just 
mentioned above yields, up to subsequences,

∣∣∇Qj
∣∣2 dx ⇀ cH1 C (7.4)

as measures on Ω as j → ∞, for some c " 0.
To conclude the proof of claim 3) it remains to show that c > 0. Before doing this 

we first observe that, even if c " 0, we have the constancy of the boundary data in 
uniform neighborhoods of the poles (due to Step 1, claim 2)) and in view of (7.4) also 
smallness of the scaled energy centered at the poles for uniform neighborhoods Br ∩ Ω. 
Actually, using again (7.4) we see that for any 0 < r < 1/2 there exists j0 such that 
1
rEλ(Qj , Br(x̄) ∩ Ω) < min{εin, εbd} for all j " j0 and for all x̄ ∈ Ω ∩ {x3 -axis}. 
Neglecting finitely many maps with j < j0 and applying the ε-regularity property from 
[16, Corollary 2.19 and 2.20], we see that all the minimizers Qj must be smooth on the 
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whole Ω because each boundary datum Qj
b is C∞-smooth and no interior singularities 

on the symmetry axis are allowed. We can push the same argument further and indeed 
in the truncated domain Ω ∩ {x2

1 + x2
2 ! 1

4}, possibly neglecting finitely many maps 
if necessary, combining again (7.4) with [16, Corollary 2.19 and 2.20] we see that all 
the minimizers Qj must be equi-Lipschitz continuous, therefore Qj → e0 uniformly on 
Ω ∩ {x2

1 + x2
2 ! 1

4}.
We are finally in the position to prove that the constant c " 0 in (7.4) is indeed 

strictly positive. We argue by contradiction and suppose that c = 0, aiming to derive 
a contradiction for the sequence of minimizers {Qj} restricted to the vertical slice T +

with the help of Lemma 7.2. First notice that for j large enough we have Qj ∈ Uη, 
Uη being the η-neighborhood of RP 2, on the whole Ω ∩ {x2

1 + x2
2 ! 1

4} because of the 
uniform convergence to e0 just established above. Since Qj |∂D+ = Θj we see that, with 
the notations of Lemma 7.2, the maps Θ ∈ C(∂D+; RP 2) and Qj ∈ C(∂T +; Uη) satisfy 
[Θj ] = [Π ◦Qj ] &= 0 in π1(RP 2) for j large enough (because of Step 1, claim 1) and using 
Qj itself as homotopy to deform the restriction of Θj to ∂D+ into the one to ∂T +). 
Now observe that if c = 0 then using equivariance and arguing as in Step 1, claim 3), as 
j → ∞ we have

∫

T +

∣∣∇x1,x3Q
j
∣∣2 dx1dx3 ! C

∫

Ω∩{x2
1+x2

2>
1
4}

∣∣∇Qj
∣∣2 dx → 0 .

Then we infer a contradiction from Lemma 7.2 up to pulling back the maps onto the unit 
disc D by composition with a biLipschitz homeomorphism Φ : D → T +. Indeed, setting 
Q̄j := Qj ◦Φ, all the assumptions in Lemma 7.2 are trivially satisfied (assumption 1) for 
j large enough) but [Π ◦ Q̄j ] = [Π ◦Qj ] &= 0 in π1(RP 2) for all j, a contradiction.

Step 3: we show that for j large enough the uniaxial sets and the biaxial regions corre-
sponding to the smooth minimizers Qj possess all the announced qualitative properties.

Indeed, first notice that each minimizer is smooth up to the boundary of Ω and 
analytic in the interior (see [16, Corollary 2.19]), hence assumption (HP0) holds. On the 
other hand, since Ω = B1, assumptions (HP1)–(HP3) are clearly satisfied by the domain 
and the boundary data, because of Step 1, claim 6). Since the whole set of assumptions 
(HP0)–(HP3) is verified by each minimizer Qj , applying Proposition 7.1 we infer that, 
for every Qj , the set {βj = −1} contains an invariant circle Γj mutually linked to 
∂D+. Moreover, since Qj

b takes values into RP 2 for every j, we have ∂B1 ⊆ {βj = 1}
(actually, we have also ∂B1∪I ⊆ {βj = 1}, where I denotes the vertical diameter because 
smoothness yields Qj ≡ e0 on the symmetry axis). From [16, Lemma 5.2], it then follows 
that all levels of biaxiality are nonempty. Moreover, the set of singular values for βj in 
the whole range [−1, 1] is at most countable and can accumulate only at t = 1. Now, 
if −1 < t < 1 is a regular value for βj , we know from [16, Theorem 5.7, claim 1)] that 
{β = t} is a smooth surface with a connected component of positive genus. On the 
other hand, because of equivariance of each map the set {β = t} is an S1-invariant set, 
hence we can study it by looking to its section in the vertical plane, i.e., by looking at 
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{β = t} ∩ {x2 = 0}. This fact allows to completely characterize {β = t}. Indeed, because 
of S1-equivariance and the regularity of Qj, its planar section can only look as the union 
of finitely many smooth closed simple curves, so that {βj = t} is the union of finitely 
many axially symmetric tori.

It remains to prove that the biaxial regions {βj ! t}, where t ∈ (−1, 1), are pushed 
towards the circle C as j → ∞. This property is a straightforward consequence of the 
fact that Qj → e0 uniformly on Ω ∩ {x2

1 + x2
2 ! r2} for any 0 < r < 1 by an argument 

entirely similar to the one used in Step 2 above for the case r = 1/2. We leave the simple 
adaptation to the reader. Thus, for each 0 < ρ < 1 and for each distance neighborhood 
Oρ from C we have βj(x) = β̃(Qj(x)) → 1 uniformly in B1 \ Oρ as j → ∞, whence for 
each number t ∈ (−1, 1) we have ∅ &= {βj ! t} ⊆ Oρ for any j large enough and the 
proof is complete. !

Remark 7.3. (W 1/2,2-bubbling of nontrivial loops) As shown during the proof of Theo-
rem 1.2, the sequence of minimizers {Qj} concentrates energy on the horizontal circle C
in the sense described in (7.4). Considering their restrictions to the vertical slice D+, one 
has the uniform convergence Qj → e0 on D+ ∩ {x1 ! 1

2} (actually on D+ ∩ {x1 ! r} for 
any fixed 0 < r < 1). On the other hand, slicing (7.4) one has the 2d-energy convergence

∣∣∇x1,x3Q
j
∣∣2 dx1dx3 ⇀ c̄δ(1,0) ,

for some c̄ > 0 in the sense of measures on T +, where T + = D+ ∩ {x1 > 1
2}, whence 

the restrictions also satisfy the condition Qj ⇀ e0 weakly in W 1,2(T +) as j → ∞. As 
observed during the proof of the theorem, the sequence of traces γj := Qj |∂T + inherits 
the following two properties (compare Lemma 7.2 for the relevant definitions):

1) for a given neighborhood Uη of RP 2 we have {γj} ⊆ C(∂T +; Uη) and for the nor-
malized maps γ̄j := Π ◦ γj we have [γ̄j ] &= 0 in π1(RP 2) for all j large enough;

2) {γj} ⊆ W 1/2,2(∂T +; S4) is bounded and γj ⇀ e0 weakly in W 1/2,2 as j → ∞.

As the maps Qj are S1-equivariant, the properties above amount to say that, for the 1d-
restriction of Qj to the simple loop ∂T + as well as to each of its congruent copies under 
rotation, the “normalizations” γ̄j := Π ◦ γj are homotopically nontrivial, bounded in 
W 1/2,2(T +; RP 2) and weakly convergent to the constant map e0 as j → ∞ (bubbling-off
of a topologically nontrivial loop under weak W 1/2,2-convergence).

In the final part of this subsection we study more generally the topology of smooth 
S1-equivariant maps satisfying (HP0)–(HP3). The following result is the counterpart of 
[16, Theorem 5.7] in the axially symmetric setting and obviously implies Theorem 1.4 as 
a particular case.

Theorem 7.4. Let Ω ⊆ R3 be an axisymmetric bounded open set with C1-smooth boundary 
and let Q : Ω → S4 be S1-equivariant. Assume that Ω and Q are such that (HP0)-(HP3) 
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hold. Then the biaxiality regions associated with Q are nonempty S1-invariant closed 
subsets of Ω and satisfy:

1) the set of singular values of β in [−1, β̄] is at most countable and can accumulate 
only at β̄; moreover, for any regular value −1 < t < β̄ the set {β = t} is the disjoint 
union of finitely many (at least one) revolution tori well contained in Ω while for any 
regular value β̄ ! t < 1 the set {β = t} is the disjoint union of, possibly, finitely many 
revolution tori, finitely many S1-invariant strips touching the boundary and finitely 
many circles lying on the boundary. If in addition Ω is real-analytic and Q ∈ Cω(Ω), 
then the set of singular values of β in [−1, β̄] is finite.

2) For any −1 ! t1 < β̄ ! t2 < 1, the set {β ! t1} contains an invariant circle 
Γ ⊆ {β = −1} and the set {β " t2} contains ∂D+. Γ and ∂D+ are mutually linked. 
As a consequence, for any −1 ! t1 < t2 < 1 the sets {β ! t1} and {β " t2}
are nonempty, compact and mutually linked. In particular, the set {β = 1} ∩ Ω is 
nonempty. If in addition β̄ = 1, then {β = 1} ⊆ Ω is not simply connected.

Proof. As a preliminary remark we observe that, due to (HP1), (HP2) and S1-
equivariance, β0 := max∂Ω β = 1, hence it follows from [16, Lemma 5.2] that all levels 
of biaxiality are non-empty. Now, the first part of Statement 1) follows as in Theorem 
5.7 in [16], using the analytic Morse-Sard theorem from [56]. The more detailed infor-
mation we are claiming about the genus of the biaxiality surfaces comes as follows: we 
first recall that for a regular value −1 < t < 1 the biaxiality set {β = t} is a finite union 
of smooth connected orientable surfaces Σi which are analytic in the interior (and also 
boundaryless when t < β̄). Notice that such surfaces do not touch the x3-axis, where 
β ≡ 1 because of (HP1) and the equivariance of Q (see Remark 2.9). Then we observe 
that β is invariant under rotations around the x3-axis, so that each Σi must be a smooth 
revolution surface and, as a consequence, it is enough to discuss its behavior looking at 
its cross-section with the planar domain D+. From this and the implicit function theo-
rem, the section Σi ∩D+ appears either as a simple closed curve, or as a smooth curve 
connecting two or more boundary points or even as a single point on the boundary. This 
in turn implies that each Σi is either a revolution torus, a cylinder-type surface touching 
the boundary (which we call a strip for brevity) or a circle lying on the boundary. In 
particular, when t < β̄ we can only have a finite number of tori (at least one) well inside 
Ω, which concludes the proof of 1).

The existence of an invariant circle Γ ⊆ {β = −1} and the fact that {β " t2} ⊇ ∂D+

follow from Proposition 7.1 and definition of β̄. Now we show that K1 := {β ! t1} and 
K2 := {β " t2} are always mutually linked (even if there are critical values for β between 
t1 and t2). Indeed, we claim that no one of K1, K2 is contractible in the complement of 
the other. To see this, denote Γ1 = Γ and Γ2 = ∂D+ with continuous parametrizations 
γi : S1 → Γi, i = 1, 2. Suppose, for a contradiction, that Ki is contractible in Kc

j :=
Ω \Kj , with i &= j. This means there exists a homotopy Gj : [0, 1] ×Kc

j → Kc
j so that 

Gj(0, ·)|Ki = Id and Gj(1, ·)|Ki = constant. Thus, we can find a homotopy Hj : [0, 1] ×
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S1 → Γc
j with Hj(0, s) = γi(s) and Hj(1, s) = const. (in fact, Hj(t, s) = Gj(t, γi(s)) and 

Γi ⊆ Ki ⊆ Kc
j ⊆ Γc

j). This means γi is homotopic to a constant in Ω \ Γj , i.e., Γi is 
contractible in Ω \ Γj ; however this is false, because Γ and ∂D+ are mutually linked.

To conclude the proof, notice that, as already observed above, β ≡ 1 on Ω ∩{ x3-axis }, 
hence on the vertical part of ∂D+. In addition, when β̄ = 1, then {β = 1} on the whole 
∂D+. Then it is clear that {β = 1} cannot be simply connected because we have just 
seen that it contains non contractible loops, and we are done. !

As a particular case of the above theorem, we have the following corollary, generalizing 
Theorem 1.4 to the case of critical points (note that for C1 solutions to (1.10) linear 
higher regularity theory yields C∞-regularity and in turn Cω-regularity because of [45]; 
hence assumption (HP0) automatically holds in the corollary).

Corollary 7.5. Let Ω ⊆ R3 be an axisymmetric bounded open set with C1-smooth bound-
ary and let Qb ∈ C1(∂Ω, S4) be S1-equivariant. Suppose that Qλ ∈ Asym

Qb
(Ω) ∩ C1(Ω)

is a smooth critical point of Eλ over Asym
Qb

(Ω) and assume that Ω and Qλ satisfy 
(HP1)–(HP3). Then the biaxiality regions of Qλ satisfy the conclusions of Theorem 7.4.

Thus, the topology of smooth S1-equivariant critical points of Eλ looks very similar to 
the picture emerging from numerical simulations. For this reason, the following definition 
seems appropriate.

Definition 7.6 (Torus solution with Lyuksyutov constraint). Let Ω ⊆ R3 be an axysim-
metric bounded open set with C1-smooth boundary and let Qb ∈ C1(∂Ω, S4) be S1-
equivariant. Suppose Qλ ∈ Asym

Qb
(Ω) is a critical point of Eλ over Asym

Qb
(Ω). If Ω and Qλ

satisfy (HP0) − (HP3) — so that the conclusion of Theorem 7.4 holds — we call Qλ a
torus solution of the Euler-Lagrange equations (1.10) in Asym

Qb
(Ω).

Note that this definition entails the existence of a negative uniaxial ring mutually 
linked to a region of strictly larger signed biaxiality, namely ∂Ω ∪ I where I = Ω ∩
{ x3-axis }. In particular, when the domain is a ball and the boundary condition is the 
radial anchoring, we have a negative uniaxial ring mutually linked to a positive uniaxial 
region, as for the minimizers constructed in Theorem 1.2.

Remark 7.7. There are two main reasons to encode smoothness (i.e., requiring (HP0)) 
inside the very definition of torus solution. The first is that numerical simulations, even 
the ones in which the norm constraint is imposed, hint that biaxial torus solutions are 
smooth (see, e.g., [19,14,28], see also [35] and [36] for the constrained case). The second 
lies in the fact that, in principle, also in split minimizers (see next subsection) there can 
be mutually linked biaxial regions and tori. This could a priori happen also for the other 
singular solutions once we drop the hypothesis Qb ≡ e0 on B = Ω ∩ { x3-axis }. To rule 
out these apparently spurious cases, we restrict the notion of torus solution to smooth 
solutions.
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7.2. Existence and topology of split minimizers

In this subsection, we study the topology of singular minimizers Qλ of Eλ in Asym
Qb

(Ω)
assuming that the domain has smooth boundary, the Dirichlet datum is smooth enough 
and that assumptions (HP1)–(HP3) hold. The key ingredients to this purpose, as es-
sentially explained in the remark below and then formalized in Proposition 7.9, are a 
special structure of the singular set of such minimizers and the detailed knowledge of the 
asymptotic behavior of minimizers at the singular points in terms of the tangent maps 
described in the previous section.

Remark 7.8. Let Ω be an axially symmetric domain with C1-smooth boundary and 
suppose we have an axially symmetric configuration Q belonging to C1(Ω \ Σ), where 
Σ = Sing(Q) ⊆ Ω ∩ { x3-axis } is a finite set, so that in view of Remark 2.9 we have 
Q(x) = ±e0 at any regular point. We assume Q = e0 on B, where B is the set of 
boundary points defined in (2.10), and that when passing through a singular point along 
the symmetry axis Q jumps from e0 to −e0 or vice-versa.

Then, it is clear that singularities come out in pairs. That is, if Sing(Q) =
{a1, a2, . . . , aM} are ordered increasingly on the x3-axis, then M = 2N for some N ∈ N
and, moving monotonically along the symmetry axis, if Q around ak jumps from ±e0 to 
∓e0, then it jumps from ∓e0 to ±e0 at ak+1. In this sense, the singularities not only are 
even in number but they are naturally grouped as pairs of endpoints for the segments on 
the symmetry axis where Q ≡ −e0. In addition, each pair is contained in some segment 
/k as defined in (2.9). We term these pairs dipoles (extending to this case the terminology 
of [10]; see also [23,24] for related statements for the case of axially symmetric maps from 
B1 to S2 described by an angle function).

Proposition 7.9. Suppose Ω is an axisymmetric bounded open set with C3-smooth bound-
ary, let Qb ∈ C1,1(∂Ω; S4) be S1-equivariant and assume that (HP1)–(HP3) are satisfied. 
Let Qλ ∈ Asym

Qb
(Ω) be a minimizer of Eλ over Asym

Qb
(Ω). Then, Sing(Qλ), the singular set 

of Qλ, either is empty or consists of a finite number of dipoles located on the x3-axis. In 
fact, more precisely, on each segment /k as in (2.9) there are either no singularities of 
Qλ or a finite number of dipoles.

Proof. The claim is a straightforward consequence of Theorem 1.1 and Remark 7.8. 
Indeed, all the structural assumptions in Remark 7.8 follow from the partial regularity 
result from the previous section. In particular, since the tangent map at each singularity 
of Qλ is one of those given by equation (1.18), when passing through a singular point 
along the symmetry axis Qλ can only jump from e0 to −e0 or vice-versa. In addition, 
Qb ≡ e0 on B because of (HP1) and S1-equivariance (compare Remark 2.9), hence along 
each connected component /k of Ω ∩ { x3-axis } there must be either no jumps (i.e., no 
singularities) or an even number of jumps, i.e., a finite number of dipoles. !
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Remark 7.10. Symmetrically, the same conclusion in Proposition 7.9 holds if Qb ≡ −e0
on B. If instead we allow Qb to be both e0 and −e0 on B and in particular if there 
is an /k = [b2k−1, b2k] such that Qb(b2k−1) = −Qb(b2k), then there is an odd number 
of interior singularities of Qλ in /k. As a model example, which will be of use below, 
we may take Ω = B1 and Qb = Q(0), with Q(0) as in formula (1.18) for α = 0. Then 
any minimizing solution of the Euler-Lagrange equations in Asym

Qb
(B1) must have an odd 

number of singularities.

In view of the peculiar structure of their singular set, it is natural to give a special 
name to the singular minimizers Qλ in Proposition 7.9.

Definition 7.11 (Split minimizer with Lyuksyutov constraint). Let Ω be an axisymmetric 
bounded open set with C3-smooth boundary, Qb ∈ C1,1(∂Ω; S4) be S1-equivariant and 
assume that (HP1)–(HP3) are satisfied. If Qλ is a minimizer of Eλ over Asym

Qb
(Ω) and 

Sing(Qλ) &= ∅, we call Qλ a split minimizer of Eλ over Asym
Qb

(Ω).

For exposition purposes, it will be convenient to associate a sign with each singularity. 
This sign will play a role similar to the degree of tangent maps in the case of harmonic 
maps from B1 to S2; it can be defined as follows.

Definition 7.12. Let Qλ ∈ Asym
Qb

(Ω) be a singular minimizer of Eλ over Asym
Qb

(Ω) and 
suppose a1, a2, . . . , aN ∈ Sing(Qλ) are the singularities of Qλ. We say that an is positive
if, for x3 increasing, approaching an from below along the x3-axis we have Qλ = −e0
and approaching an from above along the x3-axis we have Qλ = e0. We say that an is 
negative if it is not positive.

After the previous preliminary discussion we are finally in the position to prove The-
orem 1.3, on the existence of split minimizers in a nematic droplet. The proof is a 
combination of compactness and partial regularity results from Sec. 5 and Sec. 6 to-
gether with the classification of harmonic spheres from Sec. 3.

Proof of Theorem 1.3. We divide the proof into three steps to make the argument easier 
to follow. Some technical points are essentially the same as in the proof of Theorem 1.2, 
hence in these instances we shall not repeat full details here.

Step 1. Construction of boundary data and their weak convergence. We shall construct 
S1-equivariant boundary data Qj

b ∈ C1,1
sym(S2; S4), for j = 1, 2, . . . , such that Qj

b ⇀ Q(0)

in W 1,2(S2; S4) as j → ∞; here Q(0) is given by (1.18) for α = 0, i.e., it is the Q-
tensor field corresponding to the equator map ω(1)

eq . To this end, we shall exploit the 
classification results in Sec. 3 and the correspondence between harmonic spheres and 
Q-tensor fields given by Lemma 2.2.

More precisely, from formula (3.17) and making use of Lemma 2.2, we immediately 
obtain a family of S1-equivariant Q-tensor fields {Qµ1,µ2} ⊆ Cω

sym(∂B1; S4) indexed by 
the two complex parameters µ1, µ2 appearing in (3.17).
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Notice that as the two parameters µ1 and µ2 vary we have:

i) The constant norm hedgehog H corresponds to the case µ1 = µ2 =
√

3.
ii) The limiting boundary datum Q(0) corresponds to the case µ1 = 1, µ2 = 0.
iii) Every map Qµ1,µ2 with µ1 &= 0 and µ2 &= 0 (i.e., corresponding to a linearly full 

harmonic sphere in (3.17)) attains e0 at both poles and has Dirichlet energy 12π.
iv) Each map Qµ1,µ2 with µ1, µ2 real, µ1 > 0 and µ2 > 0, satisfies (HP1).
v) Each map Qµ1,µ2 with µ1, µ2 real, µ1 > 0 and µ2 > 0, satisfies (HP3).

Clearly, i)-iii) are obvious consequences of the results in Sec. 3 (see Remark 4.6, Propo-
sition 3.6 and Proposition 3.8 respectively).

To see iv), first notice that for any Q ∈ S4 we have β̃(Q) = −1 if and only if Q
belongs to −RP 2 ⊆ S4 (the mirror image of RP 2, embedded in S4 as in (1.6), through 
the antipodal map of S4). Now, let ωµ1,µ2 be a harmonic sphere given by (3.17), with 
µ1 > 0 and µ2 > 0, and let Qµ1,µ2 be the corresponding Q-tensor field as in the above. 
By equivariance, if at x ∈ S2 we have β̃(Qµ1,µ2)(x) = −1, then the same is true on 
the whole orbit of x under the action of S1. We are going to rule out the two cases: 
either Qµ1,µ2(x) = −e0 or Qµ1,µ2(x) ∈ −RP 2 \ {−e0}. In the first case x is not a pole 
by property iii) above. Then ωµ1,µ2 takes the constant value −e0 on a circle, hence 
it must be constant on the enclosed spherical cap by Lemaire’s Theorem [39] and in 
turn ωµ1,µ2 ≡ −e0 by unique continuation, contradicting the fact that it is linearly full. 
Next, we show that Qµ1,µ2(x) ∈ −RP 2 \ {−e0} is also impossible, where x cannot be 
a pole again by iii) above. Indeed, if this were the case, from (1.6), Lemma 2.2 and 
equivariance, we would infer that the function ω2, relative to ω = ωµ1,µ2 as in (3.6), is 
strictly negative on the orbit of x, whereas (3.17) tells us it is strictly positive. Hence, 
if Qµ1,µ2 is built upon the harmonic spheres in (3.17) and µ1, µ2 are real and positive, 
then min∂Ω β̃(Qµ1,µ2) > −1, i.e., assumption (HP1) holds.

To prove v), first observe it holds true for H. Let Y = {(µ1, µ2) ∈ R2 : µ1 > 0, µ2 >

0}. We notice that Y is path connected and that, by the discussion above, the leading 
eigenvalue remains simple for every x ∈ ∂Ω moving the parameters along any path in Y . 
In particular, every pair (µ1, µ2) ∈ Y can be connected to (

√
3, 
√

3) by a path in Y with 
parameter s ∈ [0, 1] and the corresponding path of maps Qµ1(s),µ2(s), 0 ! s ! 1, gives 
an equivariant homotopy between Qµ1,µ2 and H. In addition, for every fixed value of 
the parameter s of the path the maximal eigenvalue λ(s)

max(x) of the corresponding map 
Qµ1(s),µ2(s) is simple for every x ∈ ∂Ω because of property iv). Thus, the corresponding 
eigenspace V (s)

max : ∂Ω = S2 → RP 2 is well-defined for every s ∈ [0, 1] again by property 
iv), it is of class C1 and it depends continuously on s. Hence V (0)

max and V (1)
max are homo-

topic. Moreover, for each s ∈ [0, 1], V (s)
max lifts to v(s)

max ∈ C1
sym(S2; S2) and indeed the 

whole homotopy lifts [25, Proposition 1.30]. As a consequence, v0
max and v1

max are also 
homotopic, so that deg(v0

max, ∂Ω) = deg(v1
max, ∂Ω) = ±1 and assumption (HP3) holds.

Finally, for any sequence µ2,j ↓ 0 we define Qj
b := Q1,µ2,j . Note for each Qj

b the 
maximal eigenvalue λj

max is simple on S2 because of property iv) above; in addition, 
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the corresponding eigenspace map V j
max is homotopic to H̄ as shown in the proof of 

property v) above, hence claim (1) holds. Now a direct inspection of (3.17) reveals 
that Qj

b(x) → Q(0)(x) a.e. on S2 as j → ∞. Moreover, in view of (iii) the sequence 
{Qj

b} ⊆ W 1,2(S2; S4) is bounded, which in turn easily yields claim (2) of the theorem.
Step 2. Strong and locally smooth convergence to a singular minimizer. Now, for each 

boundary datum Qj
b on S2 = ∂B1, we take an Eλ-minimizer Qj (which exists by the 

direct method). Notice that for every j " 1 the degree-zero homogeneous extension Q̂j

to Ω = B1 of Qj
b is an admissible competitor for testing the minimality of Qj and, 

since the potential energies of the maps Q̂j are equibounded, we have supj Eλ(Q̂j , Ω) <
+∞ and in turn {Qj} is bounded in W 1,2(Ω; S4). Passing to a subsequence, we have 
Qj ⇀ Q∗ in W 1,2 to some map Q∗ ∈ W 1,2

sym(B1; S4) and, moreover, Q∗|S2 = Q(0) by the 
weak continuity of the trace operator. We now observe we can apply Theorem 5.1 (with 
λj ≡ λ) to deduce Qj → Q∗ in W 1,2

loc (B1; S4) and that Q∗ is minimizing Eλ w.r.to Q(0)

as boundary datum. Actually, thanks to the properties of the boundary data and the 
minimizers proved in Step 1, we may also apply Theorem 5.5 to improve local strong 
convergence to strong convergence Qj → Q∗ in W 1,2(Ω; S4). Moreover, by the uniform 
gradient estimates in [16, Corollary 2.19], the strong convergence Qj → Q∗ improves to 
local smooth convergence in Ω \ Σ∗, where Σ∗ ⊆ Ω is the finite set of possible interior 
singularities of Q∗ according to Theorem 1.1. We now observe that Q(0) attains e0 at the 
north pole and −e0 at the south pole of B1, hence any Eλ-minimizer Q∗ over Asym

Q(0)(Ω)
must have an odd number of singularities in view of Remark 7.10.

Step 3. Persistence of singularities and existence of split solutions. According to claim 
(1) of the theorem and to Remark 7.8, each minimizer Qj has either no singularities or 
an even number of singularities coming in dipoles. We now claim that, for j large enough, 
any such minimizer is not smooth, hence it has an even number of singularities. Notice 
that, as shown in Step 2, the limiting map Q∗ has an odd number of singularities. In 
order to prove the claim, let x∗ ∈ Σ∗ and, just to fix ideas, suppose x∗ is a singularity 
with positive sign (in the sense of Definition 7.12). Letting r∗ > 0 so small that there are 
no singularities of Q∗ in Br∗(x∗) \{x∗} then, for every point z+ ∈ Br∗(x∗) on the x3-axis 
which is above x∗, we have Q∗(z+) = e0 and, for every z− ∈ Br∗(x∗) on the x3-axis 
below x∗, we have Q∗(z−) = −e0. From the strong W 1,2-convergence and ε-regularity 
we have C1

loc-convergence Qj → Q∗ in Ω \Σ∗. As a consequence, up to discarding finitely 
many values of j it follows that for every map Qj there are points in Br∗(x∗) ∩{x3-axis}
above x∗ at which Qj is e0 and points below x∗ at which Qj is −e0. This means that 
Qj has at least one singularity in Br∗(x∗) ∩ {x3-axis} and the proof is complete. !

Remark 7.13. Although the boundary data Qj
b in Theorem 1.3 are real-analytic, ana-

lyticity does not play a role in the argument. Thus, singularities can occur because of 
energy efficiency even when the regularity of the boundary data is maximal.

Remark 7.14. Keeping in mind the examples of torus solutions in the unit ball con-
structed in Theorem 1.2, the theorem above also suggests how delicate is the interplay 
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between the geometry of the domain and the properties of boundary conditions in de-
termining the (regularity, hence topological) properties of the corresponding minimizers. 
Further results in this sense, including the coexistence of smooth and singular minimizers, 
will be discussed in our forthcoming paper [17].

The previous theorem has two remarkable consequences even for the minimization 
of the Landau-de Gennes energies among nonsymmetric maps. Indeed, for {Qj

b} as in 
Theorem 1.3 we know from [16, Theorem 1.2] that any minimizer of Eλ over each norm-
constrained nonsymmetric classes AQj

b
(Ω) is smooth up to the boundary. In view of 

Theorem 1.3 such minimizers cannot be axially symmetric for j large enough because 
the minimizers in the subclass Asym

Qj
b

(Ω) must be singular. As a consequence, symmetry 

breaking and nonuniqueness of minimizers in the class AQj
b
(Ω) occur as summarized in 

the following corollary.

Corollary 7.15 (Symmetry breaking). Let Ω = B1, let {Qj
b} ⊆ C1,1(S2; S4) be the S1-

equivariant boundary data constructed in Theorem 1.3 and let Q̄j be a sequence of 
minimizer of Eλ over AQj

b
(Ω). Then, for every j large enough Q̄j is not S1-equivariant 

(i.e., Q̄j belongs to AQj
b
(Ω) \Asym

Qj
b

(Ω)). In particular R · Q̄j(Rt·) is a minimizer for each 

R ∈ S1, hence nonuniqueness of minimizers occurs.

The symmetry breaking phenomenon extends to the Lyuksyutov regime introduced 
in [16], as made precise in the corollary below. Let us recall that without the norm 
constraint (1.7) the relevant energy functional is

Fλ,µ(Q) =
∫

Ω

1
2 |∇Q|2 + λW (Q) + µ

4
(
1 − |Q|2

)2
dx,

where λ is defined after (1.8), µ := a2

L > 0, and

W (Q) = 1
4
√

6
|Q|4 − 1

3tr(Q3) + 1
12

√
6
.

The functional Fλ,µ is defined over W 1,2(Ω; S0) and it reduces to Eλ under the Lyuksyu-
tov constraint (1.7) in view of the definition of β̃ in (1.1) (see also discussion in the 
introduction of [16]). The Lyuksyutov regime considered in [16] corresponds to

λ = const., µ → +∞ ,

where the energy minimization was performed under a fixed boundary datum Qb ∈
C1,1(∂Ω; S4). According to [16, Theorem 1.3], in the Lyuksyutov regime the minimizers 
of Fλ,µ over W 1,2

Qb
(Ω; S0) strongly converge in W 1,2 to minimizers of Eλ over AQb(Ω)

which are smooth up to the boundary, as already recalled above. Since S1-equivariance 
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would persist under strong convergence, we deduce that it eventually fails when it fails 
for the limiting map. Thus, Corollary 7.15 immediately yields the following result.

Corollary 7.16 (Symmetry breaking in the Lyuksyutov regime). Let Ω = B1 and let 
{Qj

b} ⊆ C1,1(S2; S4) be the sequence of S1-equivariant boundary data constructed in 
Theorem 1.3 and let us fix j large enough such that Corollary 7.15 holds. Then, for each 
µ > 0 large enough any minimizer Q̄j

µ of Fλ,µ over W 1,2
Qj

b
(Ω; S0) is not S1-equivariant.

Finally, we discuss general properties of singular minimizers under norm and sym-
metry constraints as those constructed in Theorem 1.3. We are now going to prove 
Theorem 1.5 but we still need some preparation. Indeed, another important ingredient 
in the proof of Theorem 1.5 is the following result which explains how biaxiality behaves 
near the singular points. The statement is an immediate consequence of the asymptotic 
analysis at isolated singularities from the previous section and the structure of tangent 
maps in (1.18).

Proposition 7.17. Let Qλ ∈ Asym
Qb

(Ω) be a minimizer of Eλ over Asym
Qb

(Ω) and let us fix 
x0 ∈ Sing(Qλ) and r0 > 0 such that Qλ ∈ C∞(Br0(x0) \ {x0}). Let Q(α) denote the 
corresponding tangent map at x0 and Qx0,r

λ (x) = Qλ(x0 + rx) the rescaled maps, so that 
by Theorem 1.1 we have Qx0,r

λ → Q(α) in C2(B2 \B1) as r → 0. Then for the biaxiality 
functions of the rescaled maps we have that β̃ ◦Qx0,rj

λ smoothly converges to β̃ ◦Q(α) as 
j → ∞ in B2 \ B1 along any sequence rj → 0. As a consequence, for any −1 < t < 1, 
there is a cylinder Ct coaxial with the x3-axis with the property that {β̃ ◦Qλ = t} ∩ Ct is 
a smooth disc-type surface with a conical point at x0.

Remark 7.18. Notice that, due to the explicit formula (1.18) for any minimizing tangent 
map, the function β = β̃ ◦ Q(α) is invariant under rotations around the x3-axis, it is 
actually independent of α and in spherical coordinates depends just on the colatitude 
θ ∈ [0, π]. Indeed, an elementary calculation gives β(θ) = −1

2 cos3 θ + 3
2 cos θ, therefore 

all the values t ∈ (−1, 1) are regular. As a consequence, Proposition 7.17 would hold 
even without uniqueness of the tangent map proved in the previous section.

Proof. The proof is elementary, so we only sketch the main idea. First we observe that 
in view of (1.18) and Remark 7.18 the level sets {β̃ ◦ Q(α) = t}, t ∈ (−1, 1) fixed, 
are S1-invariant round cones with tip at x0 and opening angle ϑ ∈ (0, π) depending on 
t ∈ (−1, 1). As for the limit function all the values are regular (away from the origin), the 
same property holds for the biaxiality functions β̃◦Qx0,rj

λ for j " j0, j0 large enough, and 
indeed smooth convergence of the functions implies smooth convergence of the surfaces 
seen as graphs over a fixed annular region of the limiting cone. Choosing dyadic radii 
rj = r02−j and undoing the scaling, we see that {β̃ ◦ Qλ = t} is a smooth disc-type 
surface (it is indeed the union of the rescaled annular graphs) with a conical point at x0
and having {β̃ ◦Q(α) = t} as tangent cone at it. Thus the conclusion follows in a small 
cylinder Ct of radius r = r02−j0 . !
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Proof of Theorem 1.5. Since Qλ is equivariant, the function β is invariant under rota-
tions around the x3-axis, therefore it is enough to work in the planar domain D+

Ω , where 
D+

Ω is as in (2.8). The function β is real-analytic where Qλ is; thus in particular β is 
real-analytic in D+

Ω . Recall that Sing(Qλ) is a finite set of isolated points on the x3-axis. 
Then we infer from Sard’s theorem for analytic functions [56] that the set of singular 
values of β is finite on each compact set K ⊆ D+

Ω (note that because of S1-invariance 
the critical values of β in Ω are exactly those of the restriction to D+

Ω), hence all but 
at most countably many t ∈ [−1, β̄] are regular values of β (note that β = ±1 on the 
symmetry axis).

Suppose there is a sequence of distinct singular values {βn} ⊆ [−1, β̄) accumulating 
at some −1 < β∗ < β̄ with corresponding points {xn} ⊆ D+

Ω \ Sing(Qλ). Passing to 
a subsequence we may assume xn → x∗ and ∇β(x∗) = 0. Since β(x∗) = β∗ < β̄ we 
conclude that x∗ ∈ Ω. Note that x∗ &∈ Ω \ Sing(Qλ), because otherwise β would have 
countably many distinct singular values in some closed ball Br(x∗) ⊆ Ω \Sing(Qλ), which 
is impossible by Sard’s Theorem. We are going to show that the last possible option, i.e., 
x∗ ∈ Sing(Qλ), is also impossible, therefore the critical values can accumulate only at β̄
or at −1 as claimed. Indeed, assume the converse. Then there would be x∗ ∈ Sing(Qλ)
and a (not relabeled) sequence xn → x∗ such that ∇β(xn) = 0 for all n. Applying 
Proposition 7.17 with x0 = x∗, rn = |xn − x∗| and tangent map Q(α), passing to a (not 
relabeled) subsequence we would have yn = (xn − x∗)/rn → y∗ ∈ ∂B1 which is not on 
the vertical axis, because clearly β̃ ◦Q(α)(y∗) = β∗ &= ±1, in contrast with Remark 2.9. 
On the other hand, the C1-convergence in Proposition 7.17 yields ∇(β̃ ◦ Q(α))(y∗) =
limn ∇(β̃ ◦Qx0,rn

λ )(yn) = 0 which is clearly false, since t = β∗ (indeed every t ∈ (−1, 1)) 
is a regular value of β̃ ◦Q(α) away from the origin in view of Remark 7.18.

Let t ∈ (−1, β̄) be a regular value of β and a ∈ Sing(Qλ). Then the biaxiality set 
{β = t} ∩ D+

Ω comes out from a tangent to a straight line by Proposition 7.17, it is 
contained in D+

Ω by the definition of β̄ and it is a finite union of analytic connected arcs 
and, possibly, of finitely many disjoint analytic closed simple curves. Let C be a maximal 
arc in {β = t} ∩D+

Ω originating from a. We want to show that it ends at another singular 
point a1 &= a of Qλ, with opposite sign w.r.to a. Indeed, we observe that C cannot end 
on ∂D+

Ω \ Sing(Qλ), since either β > t or β = −1 there. On the other hand, C cannot 
end at a point x1 in the interior of D+

Ω , since here β is analytic and, with the aid of 
the implicit function theorem, we could continue C a bit as a smooth arc across x1, 
contradicting maximality. Thus, C can only end on a singular point a1, necessarily with 
opposite sign w.r.to a since t is a regular value of β (the sign of the normal derivative 
of β along the arc with respect to the outer normal of the enclosed region is constant, 
so the sign of the two endpoint singularities must be opposite). Rotating around the 
x3-axis, we have topological axisymmetric spheres and, possibly, tori. Note that the 
topological axisymmetric spheres so determined have corners for any t &= 0 because of 
the asymptotically conical behavior in Proposition 7.17. In the special case t = 0 is a 
regular value, then the set {β = 0} contains N smooth axisymmetric topological spheres.



92 F.L. Dipasquale et al. / Journal of Functional Analysis 286 (2024) 110314

Now, let β̄ ! t < 1 be a regular value of β. Arguing as in the proof of 1) in Theorem 7.4
and in the above, we see that {β = t} ∩D+

Ω looks like the disjoint union of finitely many of 
the followings: (a) arcs connecting singularities with opposite sign (as in the above); (b) 
arcs connecting boundary points; (c) arcs connecting singularities and boundary points; 
(d) points on the boundary; (e) simple closed curves. Therefore, rotating the planar 
section around the x3-axis gives both 1) and 2).

Finally we now prove 3). In view of the information previously obtained, going down 
along the symmetry axis we have a first singularity a+ ∈ Ω, which is clearly positive 
because of (HP1), and which is the north pole of a sphere S contained inside the biaxial 
set {β = t2}, whose south pole is a negative singularity a−. Notice that this pair could 
be a dipole or not, if there are other singularities in between. In both cases there is a 
regular point ã such that Qλ(ã) = −e0 and which is on the symmetry axis in between 
the two singularities (this is trivial if the two forms a dipole but also obvious if there is 
an extra singularity in between, choosing ã sufficiently close and “on the negative side” 
of it) and therefore contained in the interior of the biaxial sphere S.

Clearly, S ⊆ {β " t2} and ã ∈ {β ! t1}, hence S ⊆ {β " t2} ⊆ Ω \ {β ! t1} ⊆
R3 \ {ã}, therefore if {β " t2} is contractible inside Ω \ {β ! t1} then S is contractible 
inside R3 \ {ã}. However, the latter fact is clearly impossible by the following classical 
argument from degree theory, which gives the desired conclusion. Indeed, since S is 
topologically a sphere we have a bi-Lipschitz embedding ϕ : S2 → S ⊆ {β " t2} and 
of course ã &∈ S by construction. If O ⊆ Ω is the region enclosed by S, then for r > 0
small enough we have ã ∈ Br(ã) ⊆ O, hence the map Φ : S2 → S2 obtained through the 
retraction Πã : R3 \ {ã} → S2 given by

Φ(y) = Πã ◦ ϕ(y) = ϕ(y) − ã

|ϕ(y) − ã|

is well-defined and by Stokes theorem deg(Φ, S2) = deg(Πã, S) = deg(Πã, ∂Br(ã)) = 1. 
Now, for the sake of a contradiction, assume that {β " t2} is contractible in Ω\{β ! t1}. 
Thus, there exists a homotopy H : (Ω \ {β ! t1}) × [0, 1] → Ω \ {β ! t1} so that 
H(·, 0)|{β!t2} = Id, H(·, 1)|{β!t2} = const. Considering the induced continuous map 
G : S2 × [0, 1] → S2 defined by

G(y, s) = H(Φ(y), s) − ã

|H(Φ(y), s) − ã| ,

we have degG(·, 1) = deg const = 0 while degG(·, 0) = deg Φ = 1, which contradicts the 
invariance of the degree under homotopy. !

Remark 7.19. Split minimizers are somewhat analogues of the so-called split core solu-
tions found numerically in [19]. Also split core solutions contain pairs of special points 
but these are isotropic points (i.e., points at which Q = 0) rather than singularities, and 
because of axial symmetry they still bound a segment of negative uniaxiality. In fact, 
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singularities are impossible in the framework of [19] since there is no norm-constraint 
there. Conversely, isotropic points are impossible here, because of the norm constraint. It 
is natural to conjecture that the norm constraint turns isotropic points into singularities. 
Arguments in [17] will provide more evidence for this. For all these reasons, we preferred 
to give these singular solutions a still evocative but slightly different name.

Remark 7.20. As stated in the previous theorem, the presence of tori in the biaxial 
sets of split minimizers is not excluded. The difference with the smooth case is that, 
according to Corollary 7.5, tori must be contained in the biaxiality surfaces of smooth 
solutions, at least for levels of biaxiality lower than β̄. For singular minimizers this is not 
yet clear, because we are not able at present to describe the topological structure of a 
singular configuration near each dipole and consequently to understand its relation with 
the topological properties of the boundary data.

Remark 7.21. Further, numerics from [35] and [36] suggest these singular solutions are 
not minimizing deep in the nematic phase, at least in the ball under homeotropic bound-
ary condition, where energy minimizing configurations should be smooth with torus-like 
structure. However, as commented in the final subsection of the paper, the coexistence 
of smooth and singular minimizers in such model case has been proved in the recent 
remarkable paper [59] in the smaller class of O(2) ×Z2-equivariant configurations. As we 
will discuss in [17] in the context of S1-equivariant minimizers under radial anchoring, 
this coexistence can occur but it depends in a subtle way on the geometry of the domain 
Ω and it may be lost for suitable deformations of the ball for which energy minimiz-
ing configurations turn out to be necessarily minimizing torus solution in the sense of 
Definition 7.6 or minimizing split solutions in the sense of Definition 7.11.

7.3. Concluding remarks

Many results of this paper, in particular Theorem 1.1, Theorem 1.4, Theorem 1.2 and 
Theorem 3.19, are much improved versions of results proven for the first time in the Ph.D. 
thesis of the first author [15], where the concepts of torus solution and split minimizer 
have been firstly formalized, at the least to the best of our knowledge. Theorem 1.4 and 
Theorem 1.5 are the first results in literature describing the topology of S1-equivariant 
(LdG) minimizers in such detail and, at the same time, in such generality.

However, as already remarked in the Introduction, apparently similar and somewhat 
related results very recently appeared in the interesting paper [59], where the mini-
mization problem of the energy functional (1.8) in a symmetric class of competitors is 
considered, and here we want to comment a bit on the differences between our work and 
[59].

First of all, as we already mentioned in the Introduction, the analysis in [59] is re-
stricted to the case when the domain is the unit ball Ω = B1 and the boundary condition 
is always the constant norm hedgehog H given by (1.23). In addition, the class of Q-
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tensor fields considered in [59] is strictly smaller than Asym
H

(B1), because instead of 
considering arbitrary S1-equivariant configurations the author restricts to the smaller 
class of O(2) × Z2-equivariant configurations. More explicitly, in [59] the author con-
siders maps Q that in cylindrical coordinates (r, φ, z) ∈ B1 can be equivalently written 
as

Q(r,φ, z) = (f0(r, z), f1(r, z)eiφ, f2(r, z)ei2φ) , (r cosφ, r sinφ, z) ∈ B1 , (7.5)

using the identification of S0 with R ⊕ C ⊕ C instead of a reference moving frame 
adopted there. It is assumed that fj ∈ R for j = 0, 1, 2, to entail O(2)-equivariance, 
so that the admissible space of tensors at each point is only a two dimensional sphere, 
i.e., f(r, z) ∈ S2 and Q(·, ·, φ) ∈ S2

φ ⊆ S4. In addition each fj is also assumed to be 
even/odd symmetric in the x3 variable, more precisely fj(r, −z) = (−1)jfj(r, z) for each 
j = 0, 1, 2, which amounts to the Z2-equivariance with respect to the reflection across 
the plane {x3 = 0}. In this restricted class the author performs a clever parametrized 
constrained minimization which yields in the limit coexistence of “torus” and “split” 
minimizers of the unconstrained minimization problem in the O(2) × Z2-equivariant 
class having the same energy.

In essence, both the minimizers in [59] are smooth near the origin, and the different 
behavior depends essentially on the possible values Qλ(0) = ±e0. Since the extra Z2-
symmetry forces the singular set to be symmetric as well, in agreement with Remark 7.8, 
the number of singularities in the upper half space is shown to be even (possibly zero) if 
Qλ(0) = e0 or odd in the opposite case Qλ(0) = −e0. In the former case, Z2-symmetry 
is cleverly used to deduce the existence of a negative uniaxial ring on the symmetry 
plane {x3 = 0}, surrounded by a coaxial thin solid torus of biaxial tensors. In the latter 
case instead, a vertical segment of negative uniaxiality containing the origin with a pair 
of singularities at the endpoint is shown to exist, surrounded by a thin neighborhood 
of biaxial phase. These conclusions, as well as further interesting results concerning 
the behavior of the eigenvalues and the eigenframes in these neighborhoods, depend in a 
crucial way on the O(2)-equivariance. Indeed, compared to our setting, O(2)-equivariance 
allows to conclude that the vector field eφ(x) = (− sinφ, cosφ, 0) is an eigenvector of any 
O(2)-equivariant Q-tensor at any point. In turn this allows to write the corresponding 
eigenvalue Qeφ·eφ as a linear combination of the entries of Q, to give manageable formulas 
for the remaining ones and to deduce ordering properties between the eigenvalues which 
are crucial when discussing the behavior of the eigenframe mentioned above. It would be 
very interesting to extend these conclusions to the full S1-equivariant context, in which 
a better understanding of the behavior of the eigenframe near the uniaxial sets would 
be highly desirable.

Also the explicit boundary datum plays a major role in [59], in combination with the 
O(2)-equivariance and at least in two respects. Firstly, it allows to deduce by the maxi-
mum principle that f2 > 0 in the interior and f1 ≷ 0 for x3 ≷ 0 from the same properties 
on the boundary, useful sign properties which are crucial to prove that the uniaxial sets 
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mentioned above are surrounded by the biaxial phase. The second fundamental aspect 
in which it enters concerns the discussion of the regularity theory in [59], where through 
an a priori energy upper bound on the minimizers it allows to exclude a priori (and not 
by any stability analysis, as done here in Sec. 4) the presence of linearly full harmonic 
spheres as tangent map, therefore no classification as the one in Sec. 3 is needed. As 
a result, the possible tangent maps at isolated singularities are still of the form (1.18), 
with the further restriction α = 0 in the upper half space and α = π otherwise, due to 
O(2)-equivariance and the sign condition on f1 mentioned above.

Concerning qualitative properties of the minimizers in [59], these seems to be somehow 
weaker counterparts of the ones in Theorem 1.4 and 1.5 above. Clearly the minimizers 
in the restricted class described above are critical points of the energy functional (1.8)
as those in the class Asym

Qb
(B1) by a symmetric criticality principle as the one in Sec. 6, 

although their energy minimality in the class Asym
H

(B1) remains unclear. On the other 
hand, the fundamental difference between our definition of torus solution (and, in turn, 
of split minimizer) and the corresponding one in [59] is the full regularity assumption we 
make in Definition 7.6 (and in turn its violation in Definition 7.11) and which is absent 
in [59]. Indeed, as already recalled above, torus solutions as constructed in [59] may 
have singularities (although when they are smooth then they satisfy our Definition 7.6
in view of Corollary 7.5); more precisely, they may have a finite number of dipoles (in 
our sense) in each half-space. As a consequence of regularity, in our case the linking 
property of the negative uniaxial ring with the positive uniaxial region made up by the 
boundary and the x3-axis holds and is actually encoded in Definition 7.6. On the other 
hand, without assuming regularity it is unclear whether the linking property or some 
weaker counterpart of it still holds when a negative uniaxial ring is present. This is quite 
undesirable, since the linking property seems to be the most striking feature of biaxial 
torus solutions according to numerical simulations, leading to a foliation of the domain 
in tori corresponding to the level sets of the (signed) biaxiality parameter.

Without further regularity information, the most intriguing conclusion of [59], the 
coexistence of a torus and a split minimizer, should be reinterpreted in the weaker sense 
of “coexistence of two minimizers among O(2) × Z2-equivariant configurations with a 
different number of singularities”. In the full S1-equivariant class, but for well-chosen 
domains and boundary conditions (allowing also for the stronger conclusion that one of 
the two must be a torus solution), this fact was already proven by the first author in 
[15, Theorem 8.9]. Anyway, even if weakened and even if valid only in a restricted class, 
the conclusion of [59] remains very interesting because no rigorous result was previously 
known for the ball with the constant norm hedgehog on the boundary, which is by far the 
most interesting and representative case considered in literature. Inevitably, comparison 
with [59] puts in even more evidence the interest of Theorem 1.2 and Theorem 1.3, 
since we not only proved that torus solutions and split solutions in the ball do exist 
but also that there are fairly natural boundary conditions with respect to which they 
are the only minimizers in the full S1-equivariant class. Furthermore, in analogy with 
the results announced in Remark 7.21, in our companion paper [17] we will elaborate 
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more on this theme and we will show how singular and smooth solutions for the Euler-
Lagrange equations do appear simultaneously as minimizers among S1-equivariant maps 
in a nematic droplet for suitable deformations of the radial anchoring as boundary data.
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