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Prototype-Based Interpretable Graph
Neural Networks

Alessio Ragno , Biagio La Rosa , and Roberto Capobianco

Abstract—Graph neural networks have proved to be a key tool
for dealing with many problems and domains, such as chemistry,
natural language processing, and social networks. While the struc-
ture of the layers is simple, it is difficult to identify the patterns
learned by the graph neural network. Several works propose
post hoc methods to explain graph predictions, but few of them
try to generate interpretable models. Conversely, the topic of the
interpretable models is highly investigated in image recognition.
Given the similarity between image and graph domains, we analyze
the adaptability of prototype-based neural networks for graph
and node classification. In particular, we investigate the use of
two interpretable networks, ProtoPNet and TesNet, in the graph
domain. We show that the adapted networks manage to reach
better or higher accuracy scores than their respective black-box
models and comparable performances with state-of-the-art self-
explainable models. Showing how to extract ProtoPNet and TesNet
explanations on graph neural networks, we further study how to
obtain global and local explanations for the trained models. We then
evaluate the explanations of the interpretable models by comparing
them with post hoc approaches and self-explainable models. Our
findings show that the application of TesNet and ProtoPNet to the
graph domain produces qualitative predictions while improving
their reliability and transparency.

Impact Statement—Explainability works for graph neural net-
works mainly focus on post-hoc explanations rather than devel-
oping self-explainable models. By adapting two self-interpretable
prototype-based networks from the image to the graph domain, we
analyze a self-explainable graph technique that enables both graph
and node classification. We show that the explainable methods are
able to obtain equal or higher accuracy scores than their respective
black box versions while providing the possibility to obtain insights
about their reasoning process.We set the basis for future works in
the explainability of the graph neural networks.We also provide an
open source implementation that can be employed for approaching
several scientific problems, such as computational chemistry and
natural language processing.

Index Terms—Artificial neural networks, case-based reasoning,
classification and regression, deep learning, explainable artificial
intelligence, interpretable artificial intelligence.
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I. INTRODUCTION

THE ability of graph neural networks (GNNs) to adapt
to several domains, such as social networks [1],

molecules [2], [3], and textual data [4] have made these
architectures palatable. Although GNNs succeed in solving
many problems, it is difficult to understand the motivations
behind their predictions or to identify the learned patterns.

The field of explainable artificial intelligence (XAI) addresses
this issue by proposing ways to understand the inner working
of the models and provide interpretations of their predictions.
XAI approaches can be categorized into two main groups:
methods that interpret already trained models, known as post
hoc methods; and the ones that aim at defining models that are
interpretable by design, i.e., intrinsic methods [5]. In this study,
we focus on the latter.

The field of image recognition is one of the most active on
this topic. Some recent works of this field focus on prototype-
based networks that learn representations able to encode entire
samples, or common parts of the input, called prototypes, which
are then used during the reasoning process. Among them, Pro-
toPNet [6] and TesNet [7] use similarity distances to identify
relevant portions of the images close to the learned prototypes
and use these to classify the images. Additionally, the case-based
reasoning behind these models makes it easier to interpret their
predictions.

The aim of this work is to take a step in this direction by
investigating the application of part-based prototype models to
the graph domain for both graph and node classification tasks.
The idea is to look at images as a particular type of graph and
replace 2D-convolution layers with graph ones. In particular, we
focus on adapting ProtoPNet and TesNet to learn prototypes that
represent node embeddings and that are able to identify relevant
class-aware motifs. At inference time, the models actively use
the prototypes to generate the prediction, and we can use them
to extract explanations about the model’s behavior too.

More in detail, since the prediction is based on the similarity
between the node prototypes and the input graph/node, we
inspect the subgraphs that most activate the prototypes of a
certain class to understand the reasoning process of the model.
When using n graph convolution layers, in facts, the node em-
beddings contain a latent representation of the k-hop surrounding
subgraph. This information allows us to explain the models both
locally, i.e., for a certain prediction, and globally, i.e., visualizing
the learned patterns from the network.

We then train such networks to perform graph and node
classification on seven datasets and compare their performance
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against their black-box variants. We further investigate the ex-
planations by comparing different ways to compute them and
by providing a qualitative and quantitative comparison against
alternative methods, i.e., post hoc.

Summarizing, the purpose of this work is to show and analyze
the benefits of the adaptation of ProtoPNet and TesNet to the
graph domain. Indeed, we note that they are often overlooked
by current research, despite their capabilities. We highlight
the changes in the architecture needed for the adaptation, and
propose a different procedure tailored for the graph domain to
extract the explanations. More in details, the contributions can
be summarized as follows.

1) We analyze the adaptation of ProtoPNet and TesNet to
GNNs and study the elements that impact the performance
and explanations.

2) We show how to explain the obtained models through the
inspection of the prototype activations.

3) We analyze the performance of these approaches by com-
paring the models’ classification and explanation perfor-
mances with black-box architectures over seven graph and
node classification datasets:

4) We compare the performance of these approaches with
other state-of-the-art self-explainable architectures over
three classification datasets.

5) We analyze the quality of the explanations provided by the
interpretable models by comparing them with the ones of
post hoc methods and self-explainable models.

6) We provide an open-source implementation1 useful as a
baseline for future work.

The rest of this work is organized as follows. Section II
presents the related work for GNNs and interpretability; Sec-
tion III describes prototype-based neural networks and how they
can be translated to the graph domain; in Section IV, we analyze
the results for both performances and explanations. Finally,
Section V concludes this article.

II. RELATED WORK

A. Prototype-Based Networks

The idea of prototype-based neural networks is to use an em-
bedding for clustering points of the datasets around specific ones
called prototypes. Snell et al. [8] first propose this framework
for performing few-shot classification, where a classifier has to
be able to generalize to new classes not seen during the training
process. Having some representative instances that resemble a
big portion of the dataset, prototypes can also be used by post
hoc methods, in particular those that generate explanations by
example. These methods explain the prediction by identifying
samples similar to the input that the model associates with
either a similar prediction (i.e., factuals) or an opposite one
(i.e., counterfactuals). When it is possible to assign a semantic
meaning to the set of samples identified by a prototype, we
refer to them as concepts. For instance, Kim et al. [9] identify
concepts by using concept activation vectors, which are vectors

1The code is available at https://github.com/KRLGroup/PrototypeGNN

in the direction of the neuron activations of a concept’s set of
examples.

Explainable architectures can learn and use concepts too, both
in a supervised [10] and an unsupervised fashion [6], [7], [11].
They usually use embedding layers to represent concepts and
feed them into a final layer to make the prediction.

The supervised process aligns the latent representation to
specific labeled concepts. Even if it produces a meaningful
representation, this approach requires a labeled concept dataset.
On the other hand, unsupervised methods aim to extract relevant
patterns for predicting the desired output in the embedding layer.

Among the unsupervised methods, there are different solu-
tions for tackling various tasks. For time series, for example,
Ni et al. [12] proposed to split input sequences into rele-
vant segments that represent with prototypes. Alvarez Melis
and Jaakkola [13], instead propose a general form of a self-
explainable neural network (SENN), based on prototypes that
consists of the following three components: a concept encoder
that transforms input features into basis concepts; an input-
dependent parametrizer that calculates relevance scores for the
basis concepts; and an aggregation function that combines the
first two to produce the prediction. Starting from the SENN
architecture, Li et al. [14] proposed a model without the input-
dependent parametrizer, where the prediction is performed on
the similarity between the input and the basis concepts.

Chen et al. [6] proposed ProtoPNet, a slight modification
of SENN, where the encoder consists of an embedding layer,
trained using a clustering and a separation losses based on
the L2-distance, and the parametrizer does not depend on the
input. Since the L2-distance used by ProtoPNet cannot ensure
the disentanglement of the prototypes, Wang et al. [7] pro-
posed TesNet, replacing the L2-distance with the inner product
similarity. In this architecture, the prototypes are trained to
produce an orthonormal space, which minimizes and maxi-
mizes the similarity of same-class and different-class concepts,
respectively.

We contribute to this literature by investigating the application
of ProtoPNet and TesNet to the graph domain. We substitute
2D-convolutional layers with graph ones and analyze the mod-
ifications needed to adapt such models.

B. Graph Neural Networks

GNNs are based on a message passing paradigm that consists
of a neighborhood aggregation scheme, where the latent repre-
sentation of a node is computed by recursively aggregating and
updating the ones of its adjacent nodes [15].

We can define different variants of GNNs by changing the
aggregate and update functions.

In this work, we employ the following three popular GNN
architectures: graph convolutional networks (GCNs) [16], graph
attention networks (GATs) [17], and graph isomorphism net-
works (GINs) [18]. With GCN, Kipf and Welling [16] pro-
posed a layer that updates the node representations by means
of the average latent representations of neighbor nodes, as in

https://github.com/KRLGroup/PrototypeGNN
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2D-convolution. While GCN assumes equal contribution be-
tween the connections of different nodes, GAT [17] changes the
convolution scheme by weighting the aggregation with attention
scores between couples of nodes. Finally, using a theoretical
approach based on the Weisfeiler–Lehman algorithm [19], Xu
et al. [18] find that previous message passing neural networks
lack in distinguishing different subgraphs based on the generated
graph embedding and, to address this problem, they propose
GIN, which adjust the weight of the central node with a trainable
parameter.

While this article focuses on these three architectures, its
findings can be easily translated to other architectures that share
the same update and aggregate paradigm.

C. GNN Interpretability

As stated before, the approaches for interpretability can be
categorized in post hoc and intrinsic methods [20]. Post hoc
ones can be gradient-based, such as CAM, Grad-CAM [21],
and DeepLIFT [22], optimization-based, such as GNNEx-
plainer [23] and PGExplainer [24], and decomposition-based
methods, such as LRP-based ones [4].

A first drawback of these approaches, especially the ones
based on permutations, is the time needed to compute a rea-
sonable explanation. At the same time, Kindermans et al. [25]
and Adebayo et al.[26] show that some of these methods are
independent of both the training data and the model parameters,
a crucial problem when they are used to debug the models.
Other works propose an alternative to post hoc methods in the
form of neural networks interpretable by design, thus enforcing
reasoning processes easier to explain.

To the best of the authors’ knowledge, little effort has been
done for building interpretable GNNs. The closest work to ours
is the one by Zhang et al. [27], who propose ProtGNN. In this
case, the prototypes are computed on graph embedding and
the classification is based on the similarity between them and
the current input graph embedding. ProtGNN+ is an evolution
that uses a subsampling layer to identify substructures in the
graph. Differently from them, we do not compare the similarity
at a graph level but at a node level and focus on learning
graph-prototypical parts. An other related approach is the one
proposed by Dai and Wang [28]: SEGNN is a node classification
network that uses subgraph similarity to find K-nearest nodes for
performing the prediction.

While they represent a promising direction, the current re-
search seems to overlook at similar methods proposed for the
image counterparts. Indeed, none of the so far published self-
explainable architectures for GNNs compares against Protop-
Net, TesNet, or similar architectures. Thus, one of the goal of
our work is to encourage future research to compare with these
kind of models by providing an implementation ready to be
used.

Several proxy metrics have been proposed in order to quantita-
tively evaluate the explanations. As most of XAI for GNNs meth-
ods aim to find structural motifs that are relevant for a certain
prediction, many metrics focus on input attribution approaches.
Among them, we consider the Fidelity+ [20], defined as the

average of the difference of accuracy between the prediction of
the graphs and the predictions after masking out relevant nodes
and edges.

III. UNSUPERVISED PROTOTYPE-BASED GRAPH NETWORKS

This section analyzes the different strategies needed to adapt
prototype-based image recognition networks to graphs. First, we
present the details of ProtoPNet and TesNet, and then we provide
the mathematical formulation for their graph application.

A. Prototype-Based Neural Networks

1) ProtoPNet: ProtoPNet’s architecture consists of a convo-
lutional neural network f , followed by a prototype layer gP and
a final linear layer l without bias.

Given an input image x, f extracts features organized as a
matrix of dimensions H×W×D

z = f(x) ∈ RH×W×D. (1)

gP then computes squared L2-distances between the m pro-
totypes and all the possible patches zi ∈ RHP×WP×D of z and
returns the minimum distance

d = gP (z) =

[
min
zi

L2(pj , zi), j ∈ {1, . . .,m}
]

(2)

where pj is the jth prototype learned by the layer gP

pj ∈ RHP×WP×D, HP ≤ H, WP ≤ W, j ∈ {1, . . .,m}.
(3)

Finally, the distances are converted into similarity scores, using
a logarithmic activation function, and the last layer l takes them
as input and returns the prediction

ŷ = l

(
log(1 + d)

d

)
. (4)

The prototypes are allocated such that there exist mk pro-
totypes for each class k ∈ {1, . . .,K}. The subset of allocated
prototypes to the class k are defined as Pk ∈ P.

Each epoch consists of the following three phases:
1) stochastic gradient descent of layers before the last layer;
2) projection of prototypes;
3) convex optimization of last layer.
First phase: The first phase optimizes the following problem:

minw,P Class + λ1Clst + λ2Sep (5)

where

Class =
1

n

n∑
i=1

CrsEnt(ŷi, yi) (6)

Clst =
1

n

n∑
i=1

minj:pj∈Pyi
minz∈patches(f(xi))||z− pj ||22 (7)

Sep = − 1

n

n∑
i=1

minj:pj /∈Pyi
minz∈patches(f(xi))||z− pj ||22.

(8)

w are the weights of the convolutional layers f and λ1 and λ2 are
two penalty terms set to 0.8 and 0.08, as proposed by Chen et al.
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[6]. CrsEnt is the cross entropy loss for the classification task,
and Clst and Sep are two cost functions, which encourage and
penalize same-class and different-class prototypes similarity,
respectively.

Second phase: The second phase consists of replacing the
jth prototype of the class k pj ∈ Pk with the closest point
argminzi

L2(pj , zi) over all the patches zi of the features ex-
tracted from images of the class k.

Third phase: In the last phase, the weights wl of the last layer
are optimized starting from the following initialization:

w
(k,j)
l =

{
+1.0 ∀j s.t. pj ∈ Pk

−0.5 ∀j s.t. pj /∈ Pk

(9)

where the (k, j)th entry of wl is the weight between the output
gPj

and the logit of the class k. This setting induces the model to
learn the weights such that the similarity to a class k prototype
should increase the predicted probability that the image belongs
to classk, whereas the similarity to a nonclassk prototype should
decrease class ks predicted probability.

2) TesNet: TesNet shares the same learning paradigm as
ProtoPNet, organized in three phases, but it uses an alternative
formulation for the optimization problem:

minP,wClass + λ1Clst + λ2Sep + λ3Orth + λ4ClassSep
(10)

where

Clst =
1

n

n∑
i=1

minj:pj∈Pyi
minz∈patches(f(xi)) −

zTpj

||z||
(11)

Sep =
1

n

n∑
i=1

minj:pj /∈Pyi
minz∈patches(f(xi))

zTpj

||z|| (12)

Orth =

K∑
k=1

||PkP
T
k − I||2F (13)

ClassSep = − 1√
2

K−1∑
k1=1

K∑
k2=k1+1

||PT
k1
Pk1

− PT
k2
Pk2

||F . (14)

In this case, ClassSep encourages the similarity between the
basis concepts of different classes and Orth enforces the or-
thonormality among the basis concepts of a class.

1) Prototype-Based Explanations: ProtoPNet and TesNet al-
low producing both global and local explanations. The former
can be obtained by inspecting the images represented by proto-
types, while the latter is obtained by looking at the similarities
of a certain input to the various prototypes. Additionally, we can
visualize the image patches that activate the most a prototype
by plotting its activations (similarities) on the different pixels
in a heatmap. In particular, given an image x, we can extract
the activations of the (i, j)th patch of x with respect to the kth
prototype as

act(x)(i,j) = s(f(x)(i,j),pk) (15)

where s : (RD,RD) −→ [0, 1] is a similarity function between
the embedding and the prototypes, such as the logarithmic
activation for ProtoPNet and the cosine similarity for TesNet.

B. Graph Neural Networks

GNNs are a particular kind of neural networks designed to
work with graph domains. Most of them use a message passing
schema formed by two basic operations: aggregation and update.
The generic kth layer of a graph network can be defined in the
following way:

a(k)v = AGGREGATE(k)
({

h(k−1)
u : u ∈ N (v)

})
(16)

h(k)
v = UPDATE(k)

(
h(k−1)
v , a(k)v

)
(17)

where v is the current node, h(k)
v is the feature vector of v, and

N (v) is the set of the neighbor nodes of v.
GCNs [16] update the representation by aggregating an av-

erage contribution from the neighboring nodes, GATs [17],
instead, weight the aggregation mean by learning self-attention
scores between couples of node. Finally, GINs [18] base ag-
gregation and update on the Weisfeiler–Lehman test. The three
aggregate functions are summarized as follows:

h
(k)
v, GCN = W(k) · MEAN

({
h(k−1)
u : u ∈ N (v) ∪ {v}

})
(18)

h
(k)
v, GAT = SUM

({
αvuW(k) · h(k−1)

u : u ∈ N (v)
})

(19)

h
(k)
v, GIN = MLP(k)

⎛
⎝(

1 + ε(k)
)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

⎞
⎠
(20)

where W(k) are the learnable weights of the convolutional layers.
The structure of a GNN is composed of a sequence of convolu-
tional layers that generate a latent representation of the nodes.
For node classification tasks, a final feed-forward layer takes this
representation and produces the logits. For graph classification,
a graph representation is obtained by means of a readout layer,
such as a global pooling layer, followed by a final classification
layer that makes the prediction [15].

C. Adapting Prototype Networks to the Graph Domain

Recall that a graph G = (N,E) is a tuple of nodes and edges
that connect them. We can represent graphs by using two matri-
ces: the node features matrix X ∈ R|N |×F , where F is the num-
ber of node features, and the adjacency matrix A ∈ {0, 1}N×N .
Therefore, a prototype-based GNN is composed of the following
three functions.

1) f , is a GNN feature extractor formed of graph convolu-
tional layers that return node embeddings:

z = f(X,A). (21)

2) gP , is a prototype layer that projects the node embed-
dings and calculates the similarities between them and the
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Fig. 1. Prototype-based GNN architecture for graph classification using one
GCN-layer.

Fig. 2. Prototype-based GNN architecture for node classification using one
GCN-layer.

learned prototypes

d = gP (z). (22)

3) l, is a classification layer that takes the prototype similar-
ities and outputs the probabilities of a graph, or a node, to
belong to a certain class

ŷ = l(d). (23)

Additionally, in the case of graph classification, as gP returns
the similarities between prototypes and projected node embed-
dings,

we need to add a global max-pooling readout layer after gP ,
which selects the highest similarities between the nodes and
each prototypes. The resulting similarity of the graph to the jth
prototype dj is calculated as follows:

dj = max
n∈N

dnj . (24)

In this way, l classifies using prototype similarities at graph level.
Summarizing, since node embeddings encode information of

a subgraph as big as the number of GNN layers, the prototype
layer compares the presence of particular patterns inside the
graph for predicting the graph or node properties. Figs. 1 and
2 show a schema of the described architecture for performing
graph and node classification, respectively.

Note that while in the original TesNet and ProtoPNet the
prototypes identify patches of the images, here the prototypes
are obtained from the node embeddings, and thus, their meaning
is different. In fact, since the node representation over k convo-
lutions contain information of the k-hop subgraphs around the
nodes, we are actually embedding the information of subgraphs
of radius k inside the prototypes.

1) Prototype-Based Explanations: Inspecting prototypes is a
key procedure for understanding the model’s reasoning process.
Chen et al. [6] and Wang et al. [7] provide prototype visualization
by means of a heat-map that shows the prototype activations over
different image patches. This procedure allows them to identify
the areas in the image that mostly activate a certain prototype.
Similarly, we can identify the most important subgraphs learned
by the model.

While images usually have thousands of pixels, in most
datasets graphs might be composed of less than a hundred
nodes. This difference would result in a less sparse visualization
of the prototype activations. Instead of showing the prototype
activations over all the nodes, we propose to highlight only
the k-hop subgraph around the node that is mostly similar to
the specific prototype, where k is the number of GNN layers.
This is justified by the fact that by using k GNN layers, each
node embedding contains information about the node and the
neighbor nodes within a radius of k edges.

For node classification, instead, as the datasets are composed
of only one graph, where nodes are masked throughout training
and validation procedures, we propose to extract the (k+2)-hop
subgraphs around the most similar node and only highlight the
k-hop subgraphs with the prototype activations. This allows us
to extract a small subgraph from the original one, without the
need of plotting all the nodes.

The proposed technique allows dropping unnecessary attri-
butions derived from prototype activations that are not actually
used for the prediction, by only selecting them that are within a
k-hop subgraph from the activated node.

IV. EXPERIMENTS

In this section, we analyze the classification and explanation
performances of ProtoPNet and TesNet applied to the graph
domain: first, we present the experimental setting; subsequently
we compare the classification performances on the presented
datasets with black-box and self-explainable models, including
an analysis of the impact of the number of prototypes and transfer
learning; finally, we study the explanations of the trained models
providing visual and quantitative results.

A. Experimental Setup

We train and evaluate the models on the following graph and
node classification datasets:

1) MUTAG [29], BBBP [30], and BACE [31], which are
molecule datasets for graph classification, where atoms
and bonds are encoded as nodes and edges, respectively,
and the labels classify molecules as either active or inactive
against some targets.
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TABLE I
CLASSIFICATION PERFORMANCES

2) BA-shapes [23] and BA-Community [23], which are two
synthetic node classification datasets that contain graphs
obtained by the Barabási-Albert model with the house-like
five node motifs.

3) BA-2Motifs [24], which is a synthetic graph classification
datasets where graphs are discriminated by the presence
of a house-like motif between their nodes.

4) Tree-Grid [23], which is a synthetic node classification
datasets where nodes are labeled by their presence in a
grid motif inside some tree-shaped graphs.

5) Cora, Citeseer, and Pubmed [32] are three widely used
real-world benchmark datasets. They consist of graphs
where nodes represent scientific publications labeled in
several classes while links represent the citations. While
for Cora and Pubmed we use the publicly available splits,
for Citeseer we refer to the version from [28] and [33] for
comparison purposes.

For each dataset, we compare three black-box models com-
posed of 3 GCN, GAT, and GIN layers, respectively, against
their ProtoPNet and TesNet variants, obtained by adding the
prototype layers. Following the dive-into-graphs benchmark
repository [23], for the molecular graph datasets, the GNN
layers are formed of 128 units, and each GNN layer’s output
is activated by an ReLU unit. We set the number of proto-
types per class to 10, as done by [6] and [7]. We repeat each
experiment 15 times to compare different seeds for statistical
significance.

B. Classification Performances

In this section, we test whether adding the prototype layers
leads to a decrease of performances. Wang et al. [7] and Chen
et al. [6] show that, for images, this is not necessarily true, and
self-interpretable models sometimes manage to perform better
than the black-box ones.

1) Small Datasets: In Table I, we report the accuracy scores
for the graph and node classification tasks using GCN, GAT,
and GIN networks as backbone. We observe that, in general,
explainable models reach higher accuracy than the black-box
counterparts. Furthermore, in most cases, the TesNet models
reach the highest score, thus confirming the findings in the image
domain. Our hypothesis is that by using basis concepts in place of

TABLE II
CLASSIFICATION PERFORMANCES ON BIG DATASETS

the prototypes, we encourage learning a disentangled prototype
space that is crucial for the graph domain too.

More in detail, we see that TesNet based GIN models achieve
the highest performances for almost all the tasks. While for the
molecules graph classification the difference between TesNet
models and the baseline is subtle, for the synthetic datasets,
and in particular for node classification, it gets sharper. We
relate these findings to the observations by Xu et al. [18], where
they show that GNNs suffer from not being able to distinguish
between some graph structures and propose GIN as a remedy.

These results demonstrate that prototype-based models, such
as TesNet and ProtoPNet can be adapted to the field of graphs,
and they can also be employed for training self-interpretable
models for the node classification task.

2) Big Datasets: Now, we compare the performances with
other state-of-the-art models on bigger datasets. In particular, we
use three big node classification datasets and train and compare
GCN-TesNet and GCN-ProtoPNet models with two state-of-
the-art self-explainable models: SEGNN [28] and ProtGNN[27].
We also show the accuracy score for the black-box GCN model
for comparison purposes (see Table II).

We observe comparable performances on Cora and Pubmed
for both ProtoPNet and TesNet with respect to the top per-
former (SEGNN). On Citeseer, the performances are lower than
SEGNN but higher than ProtGNN. The lower performance is
probably due to the difficulty of generalizing the publications
with a limited set of prototypes. Moreover, this gap is mitigated
by the higher explanation performances of TesNet and ProtoP-
Net (see Section IV-C).

3) Impact of the Number of Prototypes: Here, we investigate
the impact of the number of prototypes per class on the accuracy
of the transparent models. We test three different values (5,
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Fig. 3. Accuracy scores of the explainable GIN models varying the number
of prototypes on the BBBP, BACE, BA-Community, and Tree-Grid datasets.

Fig. 4. Accuracy scores of the transfer learning models using the GIN archi-
tecture. BBBP and BACE share the same node features as well as BA-Shapes
and BA-Community.

Fig. 5. Comparison between classic (a) and our (b) visualization of ProtoPNet
explanations. The prototype activations are highlighted with a shade of colors
from light blue, low activation, to dark blue, high activation. The node used for
the prediction is marked with a red border.

10, and 15) on four datasets, using GIN as backbone model.
Although in some cases using a varying number of prototypes
determines an increase or decrease in the model’s performances,
we do not find a general pattern over the datasets (see Fig. 3).
The reason is that, for most datasets, the discrimination between
the classes is represented by few patterns and the models, even
if they have different prototypes, end up learning the same
subgraphs. On the other hand, the number of prototypes is crucial
when we know a priori that there exists a specific number of
patterns to look at.

Therefore, the number of prototypes is a hyperparameter to
be tuned, possibly using the explanations returned by the model
(see Section IV-C).

4) Impact of Transfer Learning: In this section, we investi-
gate two ways for reproducing the transfer learning procedure in
our setting. In fact, the models analyzed in the previous section
are trained from scratch. This differs from the image domain,
where the networks are obtained by means of transfer learning
of models trained on large corpora. However, for graphs there is
not any available library of pretrained GNNs. Moreover, while
when dealing with images it is possible to preprocess the input
to certain shapes and channels, on the other hand, with GNNs,
node, and edge features might vary between different tasks and
domains.

Therefore, we test pretraining on a dataset and then use the
learned weights of the convolutional layers to initialize the
explainable networks for a new training phase. In this way,
we end up having a task-specific feature extraction network to
which we add a prototype layer. In particular, we compare the
performance when the network is pretrained both on the same
dataset and on another dataset that share the same features. For
instance, the datasets BBBP and BACE represent the molecules
with the same features, hence, we can use the first for pretraining
and the second for the standard training procedure.

Using pretrained models on the same dataset, both TesNet
and ProtoPNet almost reproduce the same performance of the
earlier results, although in general the values are slightly lower
(see Fig. 4). Overall, transfer learning tests do not provide any
advantage and the performances decrease when the pretrained
network is built on another dataset. This issue represent the main
dissimilarity between the application of ProtoPNet and TesNet
to images and graphs. For the molecule dataset, we hypothesize
that the datasets are particularly different, and the molecules
belong to separate chemical spaces. This problem is noted as
domain of applicability [34] in chemistry. Similarly, on the other
datasets, the substructures in the graphs are dissimilar from each
other, and, for this reason, the features learned on BA-Shapes
might not be adequate for BA-Community.

C. Explanations

In this section, we analyze the explanations provided by
ProtoPNet and TesNet on the graph domain. We test different
ways for computing them, we compare their quality against some
post hoc methods, and finally we provide some visual examples
to show of how users can exploit this type of explanations to
extract insights about the model behavior.

We start the analysis by comparing the explanations obtained
with two different methods (see Section III-C1): the original
method from ProtoPNet and TesNet, plotting the activation
scores over the whole input; and our modification, where we
restrict the explanation only to the nodes involved in the actual
prediction. To compare them, we use the Fidelity+ score, defined
as

Fidelity+ =
1

N

N∑
i=1

(f(Gi)yi
− f(G1−mi

i )yi
). (25)
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Fig. 6. Fidelity+ score comparison between explanations computed using post hoc (orange and green) and intrinsic methods (blue).

Fig. 7. Subgraphs learned by the ProtoPNet GCN model on the Ba-2Motifs
dataset. The most activated node is marked with a red borderline and the subgraph
nodes are highlighted in blue: the darker the node the higher the activation.

TABLE III
COMPARISON BETWEEN VANILLA AND K-HOP METHOD FOR EXTRACTING

EXPLANATIONS FROM PROTOPNET AND TESNET

Although in terms of Fidelity+, the explanation produce the
same results (see Table III), the visualization of our method ap-
pears clearer (see Fig. 5) and gives insights on the activations of a
certain prototype: the model is recognizing the house-like motif
with the chosen prototype. Conversely, the classic method does

Fig. 8. Subgraphs learned by the TesNet GIN model on the tree-grid dataset.
The most activated node is marked with a red borderline and the subgraph nodes
are highlighted in blue: the darker the node the higher the activation.

Fig. 9. Visualization of local explanations. We indicate with a red border the
node we want to predict in the Input and Input Activation columns, and the node
associated to the prototype in the prototype activation column.
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TABLE IV
EXPLANATIONS PERFORMANCES ON BIG DATASETS

not highlight the specific subgraph that is used in the reasoning
process. These results show that neglecting the activations of
the other nodes does not reduce the performance of the explana-
tion and, at the same time, provides a more “human-readable”
interpretation.

Once the method is chosen, we study the goodness of expla-
nations provided by such models, by comparing them against
explanations computed on both the interpretable and the black-
box models using GNNExplainer and DeepLift (see Fig. 6).

White-box models’ explanations report relatively higher
scores than the post hoc ones. For the graph classification task,
the explanations of ProtoPNet are more faithful than the ones
of TesNet, while for the node classification this is inverted.
In some cases, the black-box models reach higher Fidelity+
than the white box ones, but with a small difference. This is
somehow compensated by the smaller amount of time required
by ProtoPNet and TesNet for producing the explanations: while
DeepLift, using the gradients, takes similar time to ProtoPNet
and TesNet for explaining the prediction, GNNExplainer takes
up to 20 times longer for optimizing the graph mask.

Regarding the self-explainable models, we observe higher
fidelity scores on the explanations extracted by ProtoPNet and
TesNet (see Table IV). Indeed, ProtoPNet reports the highest
fidelity score on the Citeseer dataset, while TesNet is the leading
one explainer on Pubmed and Cora. We justify these findings by
the fact that masking out relevant nodes the has a high impact
on the prototype activations and affects the prediction. On the
other hand, SEGNN, not having a fixed number of prototypes,
might relate on the similarity to other labeled nodes.

We also report the ROC-AUC scores of the predictions of
masked inputs, it is expected to have lower ROC-AUC scores
when relevant edges are masked out. While DeepLIFT obtains
the lowest values of ROC-AUC score, TesNet generally reports
lower values compared to SEGNN and ProtGNN, which, in
accordance with the Fidelity+ score, confirms the better explain-
ability of the adapted models.

Finally, to inspect the model behavior, we can visually study
which are the most activated prototypes for the elements of the
dataset and plot the subgraphs that correspond to the learned
prototypes, as shown in Section III-C1.

Fig. 7 shows the learned prototypes for a ProtoPNet GCN
model trained on Ba-2Motifs. For the class 0, all the prototypes
match the house motif. Instead, the prototypes of class 1 match
a particular 3-node loop motif, captured in different positions on
the graph. We further investigate this result by checking the acti-
vations of the class 1 graphs with respect to these prototypes, and
we find that over 86% of the samples share an activation higher
than 0.95, likely due to an artifact resulting from the automated

generation of the dataset. Fig. 8 shows another example, where
we identify the most important substructures of the best TesNet
GIN model trained on the tree-grid dataset. In particular, we use
the explanations to understand why the model was not able to
correctly score mislabeled nodes. Similarly to the example of
Ba-2Motifs, we can obtain global interpretation of the model
behavior by analyzing the subgraphs that the model learns as
the most important. The first two rows highlight the subgraphs
matched for predicting the nodes that do not belong to a grid
shape subgraph. Conversely, the last two rows clearly grasp the
grid shape for predicting the nodes.

Additionally, Fig. 9 shows the local explanations for a mis-
predicted node. It reports the activations of the nodes for each
prototype together with the similarities between the analyzed
node (red border) and the prototypes. The reason for the mis-
prediction is that the node shares a similarity of 0.7 with class
1 prototype due to the high degree of the node, which makes it
more similar to a “grid node” rather than a “tree node.”

These analyzes show that we can understand the reasoning
process that led to a specific prediction, both at local and global
level, by visualizing the activations of the nodes to the different
prototypes.

V. CONCLUSION

This article analyzed the application of ProtoPNet and TesNet
for performing graph and node classification. We found that,
in contrast to the image domain, the best models are obtained
by starting from randomized weights. We confirmed that these
models reach equal or higher performances of black box ones.
Additionally, we studied the interpretability power of the archi-
tectures, both in terms of global and local explanations, and we
found that they produce more faithful explanations than post hoc
methods and competitors. In particular, we showed that while
maintaining comparable classification performances with state-
of-the-art self-explainable networks, our models outperform the
others in terms of explanation capability.

We think that the findings of this work could open the path for
further development of interpretable graph architectures. Future
works might investigate the use of metrics better tailored to the
graph domain, or methods to automatically modulate the number
of prototypes learned by the model. Additionally, we release the
open source code to encourage further research.
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