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ABSTRACT 
In the context of population concentration in large cities, assess-
ing the risks posed by geological hazards to enhance urban resili-
ence is becoming increasingly important. This study introduces a 
robust and replicable procedure for assessing ground instability 
hazards and associated physical risks. Specifically, our comprehen-
sive model integrates spatial hazard assessments, multi-satellite 
InSAR data, and physical features of the built environment to 
rank and prioritize assets facing multiple risks, with a focus on 
ground instabilities. The model generates risk scores based on 
hazard probability, potential damage, and displacement rates, aid-
ing decision-makers in identifying high-risk buildings and imple-
menting appropriate mitigation measures to reduce economic 
losses. The procedure was tested in Rome, Italy, where the ana-
lysis revealed that 60% of the examined buildings (90� 103) are 
at risk of ground instability. Specifically, 33%, 22%, and 5% exhibit 
the highest multi-risk score for sinkholes, landslides, and subsid-
ence, respectively. Landslide risk prevails among residential struc-
tures, while retail and office buildings face a higher risk of 
subsidence and sinkholes. Notably, our study identified a positive 
correlation between mitigation expenses and the multi-risk scores 
of nearby buildings, highlighting the practical implications of our 
findings for urban planning and risk management strategies.
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1. Introduction

Large cities often face natural and geological hazards, engineering geological, and 
technological threats. The importance of the analysis and evaluation of geo-hazards 
for effective risk mitigation measures is evident in view of implementing effective 
strategies to make our cities and communities more resilient to natural disasters 
(Frankenberg et al. 2013). Due to the increased incidence of extreme weather events 
and human-made hazards related to accelerated urban growth (UNISDR 2012), built- 
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up areas are specifically threatened and should therefore be the priority target of the 
action. Identifying the spatial distribution and concentration of risks in urban areas 
helps determine where and how preventive and corrective actions can reduce levels of 
vulnerability and exposure of urban populations (Johnson et al. 2016). Therefore, 
simplified vulnerability and risk assessment methodologies have been gaining space 
and importance (Kappes et al. 2012a; Liu Z et al. 2015; Rom~ao et al. 2016; Liu X and 
Chen 2019; Wei et al. 2022). Geo-hazards risk assessment provides strategic input for 
enhancing city resilience through mitigation design (McGlade et al. 2019). 
Nevertheless, losses from natural disasters continue to grow (White et al. 2001; 
Annual Report 2022). According to Kappes et al. (2012b), this may be due to a lack 
of interaction between science and practice in terms of knowledge transfer and 
applicability of results. To fill this gap, multi-risk assessment must support decision- 
makers by providing them with valuable information regarding the types and proba-
bilities of hazards and their physical impacts, which will guide mitigation measures 
(Komendantova et al. 2014).

The statement that natural hazards almost never occur individually is of great 
importance: this leads to the notion of multi-risk (Gill et al. 2022). Multi-risk is gen-
erated from the presence of multiple hazards that may also be correlated, affecting 
the same elements exposed (Terzi et al. 2019). The interrelationships between these 
hazards and vulnerability level should be considered. A necessary condition for risk 
prevention, mitigation and reduction is its analysis, quantification, and assessment 
(Ward et al. 2020; Hochrainer-Stigler et al. 2023). However, assessing the risks and 
vulnerabilities of an entire city is a very demanding task, requiring considerable 
amount of data, technical knowledge and financial resources that are usually not 
available (Kappes et al. 2012b; van Westen et al. 2014; Juli�a and Ferreira 2021). 
Different temporal and spatial scales of hazardous events, and the potential interac-
tions between hazards and socio-economic fragilities make multi-risk assessment 
problematic (Bell and Glade 2004; Kappes et al. 2012a). Existing risk assessment 
methods integrate large volumes of data and sophisticated analyses, as well as differ-
ent approaches to risk quantification. In multi-risk assessment, three different 
approaches are commonly used to calculate compound risk: the first approach com-
bines hazard, vulnerability, and exposure indexes through qualitative analysis or com-
putation indices (Dilley 2005; Greiving 2006). The second approach combines 
quantitative single-hazard risk analysis methods to assess multiple hazards (Bell and 
Glade 2004). These approaches often disregard hazard interactions and amplified 
risks. To address this, the third approach incorporates advanced modelling techniques 
that consider interdependencies and cascading effects (Terzi et al. 2019). Nowadays, a 
universally accepted procedure for multi-risk assessment has yet to be established.

This paper seeks to contribute to the field of urban resilience by providing a 
robust and replicable method for evaluating ground instability hazards (i.e. landslides, 
sinkholes, and subsidence) and associated building risks, ultimately leading to an 
effective framework for decision-makers in order to address the most appropriate 
mitigation measures, thus enhancing the resilience of urban environments. Risk 
assessment for landslides, subsidence, and sinkholes have been exploited by several 
researchers both qualitative and quantitative (Brabb 1984; Guzzetti 2000; Fell et al. 
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2008; Huang B et al. 2012; Zisman 2008; Corominas et al. 2013; Chang and Hanssen 
2014; Giampaolo et al. 2016; Shi et al. 2019; Mohebbi Tafreshi et al. 2021). However, 
in the existing literature, these ground instability processes have not yet been inte-
grated with each other into a unified multi-risk assessment. In this study, we present 
a novel score-based approach which ranks assets exposed at multiple risks 
through the integration of multiple spatial hazard maps with multi-satellite and 
multi-frequency InSAR data and physical features of the urban built environment, 
thus guiding mitigation measures aimed at preventing future losses. The risk scores 
rely on three components, namely hazard, activity, and potential damage score engi-
neered using data retrieved from susceptibility analyses, building displacement rates, 
census tracts and real estate market observatory. Consequently, each individual build-
ing is ranked according to its single- and multi-risk score, and the elements with the 
maximum values are the most relevant ones, as these are the geographic areas which 
are most affected by ground instabilities and potential economic losses.

2. Area of application

The area of interest (AOI) includes the Metropolitan City of Rome, extending from 
the historical centre to about the A90 highway (Figure 1). The city of Rome is situ-
ated in a hilly region characterized by a diverse geological and geomorphological set-
ting. The geological formations consist of marine deposits (late Pliocene to lower 
Pleistocene), and continental sediments (middle Pleistocene – Holocene). These 
deposits, including marine clays, silt, silty sands, and transitional sediments, are 
prominently exposed on the hills along the right bank of the Tiber River. 
Additionally, volcanic deposits from the Colli Albani and Sabatini Volcanic Districts 
alternate with continental sediments, such as alluvial and palustrine deposits (middle 
to upper Pleistocene) (Figure 1).

The present-day landscape is shaped by the Tiber River and its tributaries, which 
have carved valleys and slopes. The river valleys are partially filled with alluvial 
deposits, reaching considerable thicknesses (Bozzano et al. 2000). The groundwater 
circulation is controlled by the superimposition of permeable volcanic deposits over 
less permeable clayey and silty horizons, resulting in the development of ephemeral 
and perched water tables, such as those forming within the weathered soil covers and 
contributing to surface seepage in unsaturated soils. The different geological units on 
the left and right embankments of the Tiber River valley play a significant role in the 
response to natural and anthropogenic hazards affecting the urban area. Hazards 
such as subsidence, sinkholes, landslides, and floods have been previously experienced 
and assessed by several studies (Alessi et al. 2014; Bozzano et al. 2015a; Delgado 
Blasco et al. 2019; Esposito et al. 2021, 2023).

Landslides are often localized within unsaturated soil covers originated from 
Plio-Pleistocene sedimentary units. Intense and prolonged rainfall events have been 
identified as triggering factors for many slope failures, causing significant damage to 
infrastructure such as pipelines, aqueducts, and roads (Amanti et al. 2008; Alessi 
et al. 2014; Esposito et al. 2023).
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Landslides and natural or anthropogenic sinkholes are the most common and 
impactful processes in the urban area. Sinkholes concentrate primarily in sectors 
characterized by the presence of volcanic deposits that were extensively exploited as a 
mineral resource since ancient Roman times. Consequently, a dense network of 
underground cavities exists, the majority of which remain undiscovered (Ciotoli et al. 
2014, 2016; Esposito et al. 2021). According to Bianchi Fasani et al. (2011), these cav-
ities experience an upward migration of the tunnel crown within the volcanic subsoil, 
eventually leading to the formation of sinkholes. Due to the predominantly brittle 
behaviour of cap rocks, particularly tuffs, abrupt failures following minimal deforma-
tions may occur, thus affecting effective monitoring for early-warning purposes 
(Esposito et al. 2021).

Numerous instances of land subsidence in Rome have been identified and quanti-
fied using multi-temporal InSAR techniques (Campolunghi et al. 2007; Cigna et al. 
2014; Bozzano et al. 2015b; Delgado Blasco et al. 2019). The subsidence processes pri-
marily occur in the alluvial sediments along the Tiber River and are mainly attributed 
to the load imposed by relatively recent urban development on the unconsolidated 

Figure 1. Lithological units in the Municipality of Rome with the municipal districts, the study 
area, and the A90 highway outlined. Key to legend: 1: anthropic deposits; 3: recent and terraced 
sandy-gravelly alluvial deposits; 6: silty-sandy alluvial deposits, fluvio-lacustrine deposits; 7: traver-
tines; 10: Plio-Pleistocene clayey and silty deposits; 11: marine Pliocene clays; 12: debris and talus 
slope deposits, conglomerates and cemented breccias; 14: marls, marly limestones and calcarenites; 
41: leucitic/trachytic lavas; 43: lithoid tuffs, pomiceous ignimbritic and phreatomagmatic facies; 45: 
welded tuffs, tufites; 46: pozzolanic sequence; 55: alternance of loose and welded ignimbrites. 
EPSG:4326.
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alluvial deposits. The subsidence rate in the region varies depending on the age of the 
constructed structures and the geological characteristics of the underlying formations 
(Bozzano et al. 2018; Delgado Blasco et al. 2019).

3. Materials and methods

In this work, multi-risk assessment is conceived as the process of assessing different 
independent hazards threatening individual buildings. We assume landslides, sink-
holes, and subsidence as compound threats with no interrelationships between them 
(Kappes et al. 2012b; Tilloy et al. 2019; Hochrainer-Stigler et al. 2023).

In this framework, a new workflow to identify and rank urban assets at risk (e.g. 
buildings) integrating hazard maps, multi-frequency PS-InSAR data and building fea-
tures was developed. We underline that cultural heritage and religious structures were 
neglected in the present study due to the complexity of estimating their economic 
and vulnerability value. The workflow of the proposed methodology is reported in 
Figure 2. It consists of three main sections where geo-hazards probability for ground 
instabilities (a), building features (b), and multi-frequency InSAR displacement rates 
(c) are analysed and integrated to achieve both single- and multi-risk values. Each 
section results in a score that makes up the specific risk and subsequently the multi- 
risk ranking of analysed buildings.

A detailed description of the implemented workflow and methods of achieving risk 
components is discussed in the following chapters. The entire data analysis process 
was automated via an implemented Python code freely available on the author’s 
GitHub page (https://github.com/gmastrantoni/mhr) together with the input data 
(Table 1).

Figure 2. Flowchart of the adopted methodology to compute buildings’ single- and multi-risk 
scores. Coloured subplots report the workflow to derive the hazard (a), potential damage (b) and 
activity (c) components of the multi-risk equation. In bold the main inputs and outputs data.
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3.1. Spatial multi-hazard assessment

This section describes the materials and methods applied for the assessment of mul-
tiple single hazard scores related to elements exposed to ground instabilities, as 
depicted in Figure 2(a).

3.1.1. Hazard score
In this work, we considered the spatial component of the hazard, which is the suscep-
tibility, since the analysed ground instabilities are based on completely different proc-
esses with peculiar characteristics. Hence, the need to standardize the data to 
common information arises. Among the three geohazards considered in the present 
study, the temporal component of the hazard factor is conceptually definable for 
landslides only. Given the nature of subsidence, it occurs as a continuous (and non- 
linear) process that may be triggered by overloads and/or vary its intensity with time 
(e.g. velocity of settlements) up to the end of the process, thus preventing the 

Table 1. Input data with features and role in the multi-risk ranking. ISTAT (istituto nazionale di 
STATistica) stands for ‘national institute of statistics’.
Input data Description Risk component Format Website/reference

Landslide 
susceptibility map

Spatial probability of 
landslides 
occurrence

Hazard Raster (5� 5m) Esposito et al. (2023) 
Mastrantoni et al. 
(2023)

Subsidence 
susceptibility map

Spatial probability of 
subsidence 
occurrence

Hazard Raster (5� 5m) Research contract 
CERI – ACEA 
‘Development of 
a monitoring and 
prevention plan 
of the geo- 
hydrological 
instability of the 
city of Rome’

Sinkhole 
susceptibility map

Spatial probability of 
sinkhole 
occurrence

Hazard Raster (5� 5m) Esposito et al. 
(2021), and 
Research contract 
CERI – ACEA.

ISTAT census tracts Spatial distribution 
of building 
features

Vulnerability Vector (polygons) https://www.istat.it/

DBSN database Building footprints 
and features

Building type and 
footprint

Vector (polygons) https://www. 
igmi.org/

OMI database Asset market value Exposure Vector (polygons) https://www. 
agenziaentrate. 
gov.it/portale/

Sentinel-1 PS time 
series

Spatial distribution 
of ground motion 
rate

Activity Vector (points) https://land. 
copernicus.eu/ 
pan-european/ 
european-ground- 
motion-service

Cosmo-SkyMed PS 
time series

Spatial distribution 
of ground motion 
rate

Activity Vector (points) https://www.asi.it/ 
en/earth-science/ 
cosmo-skymed/

DTM Elevation Topography Raster (5� 5m) Esposito et al. (2023)
ReNDiS Mitigation Measures Validation Vector (points) http://www.rendis. 

isprambiente.it/ 
rendisweb/

Note: DBSN (DataBase di Sintesi Nazionale) stands for ‘national synthesis database’. OMI (Osservatorio Mercato 
Immobiliare) stands for ‘real estate market observatory’. ReNDiS (repertorio Nazionale degli interventi per la difesa 
del suolo) stands for ‘national inventory of soil protection interventions.
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assignment of return time values, as for landslides. A similar reasoning applies to 
sinkholes. A sinkhole can be interpreted as a unique shock event occurring in a con-
fined place, which will no longer experience it. For this reason, sinkholes do not have 
a return time, nor have significant relationship with recurrent triggers pointed out so 
far. Given that, we decide to use high-resolution susceptibility maps as the hazard 
component of risk. Susceptibility maps report the spatial probability of occurrence of 
a certain event without considering the temporal dimension. They represent one of 
the products that lead to a comprehensive hazard assessment (Cascini 2008; Fell et al. 
2008; Corominas et al. 2013). According to Corominas et al. (2013), susceptibility 
assessment can be considered an end product that can be used in land-use planning 
and environmental impact assessment. As demonstrated by Mastrantoni et al. (2023), 
a measurable loss in accuracy, and thus in reliability for specific purposes (Cascini 
2008), is proportional to the decrease in zoning scale.

Susceptibility maps are represented in raster format with a resolution of 5 metres 
and cover the entire centre of Rome (Figure 3). Each raster cell gives the level of 
probability of being affected by a landslide (Figure 3(a)), a sinkhole (Figure 3(b)), and 
a subsidence (Figure 3(c)). The value of susceptibility ranges from 1 to 5, where 1 
stands for negligible and 5 for very high probability. The employed landslide and 
sinkhole susceptibility maps derive from already published studies (Esposito et al. 
2021, 2023; Mastrantoni et al. 2023). Susceptibility to subsidence was commissioned 
to Sapienza University of Rome by ACEA ATO2 Spa that funded a project for a bet-
ter knowledge of hazards aimed at safeguarding the underground service network in 
Rome.

The landslide susceptibility map was obtained by applying the extra trees classifier 
(Pedregosa et al. 2011), a supervised machine learning model that has proved to out-
perform several other algorithms (Mastrantoni et al. 2023). The model was trained 
and tested with a database of about 3000 landslide initiation and stable points distrib-
uted throughout the Municipality of Rome.

Figure 3. Susceptibility map for landslides (a), sinkholes (b) and subsidence (c) within the area of 
interest (AOI).
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The sinkhole susceptibility map refers to anthropogenic sinkholes of Rome mainly 
due to the presence of underground cavity networks in areas featured by relevant 
thickness of volcanic deposits (Bianchi Fasani et al. 2011) and to ‘piping-like’ proc-
esses due to shallow groundwater circulation and related erosion of silty fraction of 
layers in area dominated by sedimentary sequences. The assessment was carried out 
through the logistic regression multivariate statistical technique taking advantage of a 
database containing about 1000 sinkholes that occurred in the period 1875–2018.

Lastly, the subsidence susceptibility map was realized by reconstructing the extent 
and thickness of recent alluvial deposits. This process was based on the interpolation 
of available stratigraphic logs throughout the valley of the Tiber River. The derived 
thickness map of recent alluvial deposits was then weighted based on their type, 
thickness, and depth within the stratigraphic sequence, considered as proxies of com-
pressibility, and thus proneness to develop consolidation settlements.

To derive the multiple single-hazard scores, the built environment was analysed 
with the zonal statistics method, thus retrieving the maximum value of hazard class 
within the perimeter of individual buildings. Elements with a hazard score above 2 
were considered exposed to a specific single risk. We stress that to account for land-
slide run-outs, a buffer of 20 m was drawn around the buildings. The buffer size was 
calibrated on the mapped landslides within the territory of Rome, as reported by 
Alessi et al. (2014) and Del Monte et al. (2016).

3.1.2. Impact ratio
Since susceptibility maps do not directly provide magnitude information in terms of 
dimension and volume of the process, a strategy to overcome this limitation and 
define a proxy for hazard intensities was needed. Consequently, it was assumed that 
the potential magnitude of the hazards impacting the built environment is directly 
related to the percentage of the building’s area exposed to the threat. To achieve this 
information, building footprints were overlaid on susceptibility maps and a categor-
ical zonal statistic was computed, thus counting, and weighting the hazard classes 
within the polygons. By setting the threshold for the hazard class equal to 2 (i.e. low 
susceptibility) the weighted area of the element exposed to risk was derived, and con-
sequently the ratio of the total area. Such information, hereafter called impact ratio 
(Ib), is then coupled in the following phases with structural resistance for the assign-
ment of physical vulnerability values to the specific ground instability hazard. The 
values of the impact ratio were classified into four classes using equal intervals. I0 is 
defined by an impact ratio equal to 0, I1 for 0< Ib�0.25; I2 for 0.25< Ib�0.5; I3 for 
0.5< Ib�0.75 and I4 for Ib>0.75. Therefore, each element within the area of interest 
has one or more impact ratio classes following the threats to which it is exposed.

3.2. Multi-hazard consequence analysis

This section describes the materials and methods applied for quantifying the potential 
multi-hazard damage scores of the built environment, as depicted in Figure 2(b).
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3.2.1. Vulnerability
Building vulnerability was defined according to the impact ratio of the i-th hazard 
and the structural resistance of buildings. The definition of structural resistance relies 
on the approach proposed by Li et al. (2010) for landslide hazards and modified by 
Caleca et al. (2022). In this study, we assume that structural resistance to landslides 
can also be considered valid for sinkhole and subsidence hazards.

The applied approach exploits census tract data produced by ISTAT in 2011 
(Table 1) and impact ratio data. It consists of three phases. First, the estimation of 
the structural resistance for each census tract within the area of interest was made by 
using a modified equation proposed by Li et al. (2010) and Caleca et al. (2022):

Rstr ¼ esty � esmn � eshtð Þ
1=3 (1) 

where esty, esmn, and esht are resistance factors of structure type, maintenance state 
and number of floors, respectively. These parameters are derived from census tract 
data (Table 2). The Italian census tracts are delineated as geographically contiguous 
areas within the country’s territory that demonstrate a notable degree of homogeneity. 
Each census tract represents either an entire municipality, a specific portion thereof, 
or a cluster of municipalities characterized by comparable environmental and socioe-
conomic features. They provide comprehensive information pertaining to the charac-
teristics of buildings within the area, encompassing factors such as typology, quantity, 
materials, and other relevant attributes. Furthermore, census tracts offer valuable 
insights into population distribution. Values of resistance factors are set according to 
that suggested by previous studies (Li et al. 2010; Caleca et al. 2022) (Table 2), and 
combined with impact ratio values to retrieve the vulnerability level.

The second step of the procedure consists of the attribution of the structural resist-
ance values (Rstr) computed from the census tracts to the corresponding building 
depending on its position and type (i.e. residential/not residential). Following that, a 
classification was conducted, categorizing the built environment into six distinct 
classes based on their respective level of structural resistance (Table 3). Footprints 
and categories of use of the built environment were extracted from the DBSN 

Table 2. Values of resistance factors employed in the structural resistance assessment (from 
Caleca et al. 2022).
Resistance factor Parameter Typology Value

Structure type Esty Productive and commercial 0.1
Residential with light structure 0.2
Residential with brick walls 0.8
Residential reinforced concrete 1.5

Maintenance state Esmn Productive and commercial 0.1
Residential in very poor condition 0.1
Residential in a medium condition 0.6
Residential in a good condition 1.2
Residential in a very good condition 1.5

Number of floors Esht Productive and commercial 0.1
Single-storey residential 0.1
Two-storey residential 0.4
Three-storey residential 0.9
Number of floors �4 1.5

GEOMATICS, NATURAL HAZARDS AND RISK 9



database (Database di Sintesi Nazionale) (Table 1). It is freely available under the 
Open Data Commons Open Database Licence (ODbL). The DBSN database is a geo-
graphic database containing territorial information primarily derived from regional 
geo-topographic data. These data have been harmonized and standardized within the 
structure to ensure national homogeneity while preserving the original level of detail. 
Administrative boundaries are derived from cadastral data, ensuring congruence with 
municipal and state administrative borders. The built environment is classified into 
detailed categories of use.

The third phase of the applied approach involved the quantification of the multi- 
hazard vulnerability values for each element at risk. These values were obtained using 
the contingency matrix proposed by Caleca et al. (2022) and tailored to this study, to 
established a link between the classes of the impact ratio for the i-th hazard type and 
the classes of structural resistance (Table 3). The contingency matrix defines five dis-
tinct vulnerability classes: V0 (null vulnerability), V1 (low vulnerability), V2 (medium 
vulnerability), V3 (high vulnerability), and V4 (very high vulnerability). To calculate 
quantitative values for vulnerability, which were necessary for assessing the economic 
potential damage, numerical values ranging from 0 to 1 were assigned to each vulner-
ability class as follows: V0 ¼ 0, V1 ¼ 0.25, V2 ¼ 0.5, V3 ¼ 0.75, V4 ¼ 1. Hence, each 
building has been assigned one or more vulnerability values depending on the num-
ber and type of hazards to which it is exposed.

3.2.2. Exposure
In this study, exposure of elements at risk (Eb) is deemed as the economic value per 
square metre, taking the real estate’s market value as a reference. To obtain this infor-
mation, we exploited the OMI national-scale open access database (which stands for 
Osservatorio Mercato Immobiliare – real estate market observatory) (Table 1). It is 
managed and updated every six months by the National Revenue Agency under the 
Italian Ministry of Economy and Finance. The OMI dataset encompasses comprehen-
sive information regarding the minimum and maximum market values for various 
building typologies, expressed in euros per square metre (e/m2). These data are 
aggregated at the municipality level and further stratified into smaller subdivisions, 
known as ‘OMI zones’, within the respective municipality. The study area includes 
186 zones. Market data related to the first semester of 2022 were downloaded and 
pre-processed to define for each OMI zone the average market value of six peculiar 
building typologies: economic, retail, residential, office, and industrial (Figure A1 in 
Appendix A). Thereafter, categories of use from the DBSN database were linked to 

Table 3. Contingency matrix for the assessment of building vulnerability by means of impact ratio 
and structural resistance classes (modified from Caleca et al. 2022).

Resistance

Impact ratio

I0 I1 I2 I3 I4

R4 0 0 0.25 0.25 0.50
R3 0 0.25 0.25 0.50 0.50
R2 0 0.25 0.50 0.50 0.75
R1 0 0.25 0.50 0.75 0.75
R0 0 0.25 0.75 0.75 1
N.A. 0 0 0 0 0
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typologies from OMI zones, and the respective economic values were associated 
according to location and type of buildings.

3.2.3. Potential damage score
To quantify the potential damage, multi-hazard vulnerabilities were combined with 
the previously derived exposure values (Marzocchi et al. 2012), thus obtaining the 
expected economic loss per square metre (LOSSb):

LOSSbðhÞ ¼ VbðhÞ � Eb (2) 

where Vb(h) is the vulnerability value of building exposed to the hazard h, and Eb 

represents its economic value expressed in euros per square metre.
Once the potential multi-hazard loss data were derived, the empirical cumulative 

distribution function (eCDF) was applied to them. With this approach, we sorted and 
ranked the damage data without making assumptions about the underlying probabil-
ity distribution. The eCDF quantifies the proportion of data points that are less or 
equal to a given value. By exploiting the cumulative distribution of potential eco-
nomic losses, class thresholds were set following Equation (3) and potential damage 
scores (Db) ranging from 1 to 5 were defined.

Db hð Þ ¼ eCDF−1 p, LOSS bjhð Þ
� �

, p ¼ ð20, 40, 60, 80Þ (3) 

where eCDF−1 denotes the inverse of the empirical cumulative distribution function, 
p is the specific value of the proportion or percentile for which the damage score Db 

was calculated. LOSS bjhð Þ represents the distribution of economic loss values of 
buildings (b) considering only those exposed to the hazard h: These class thresholds 
assist in delineating the severity levels of the potential economic loss associated with 
multiple hazards. We acknowledge that the ranking will be sensitive to the threshold 
values chosen to delimit the classes. However, the strength of it lies in being able to 
customize and optimize class thresholds according to the proportion of items to be 
contained in each class.

3.3. Multi-satellite SAR interferometry

This section describes the materials and methods applied for assessing the multi-haz-
ard activity scores of the built environment, as depicted in Figure 2(c).

3.3.1. Interferometric analysis
In this study, the Advanced-DInSAR (A-DInSAR) technique (Hanssen 2001) was 
employed to derive displacement rates throughout the area of interest. The A- 
DInSAR method is increasingly applied to study the temporal evolution (by means of 
time series) of ground displacements for objects with long-term stability in terms of 
reflectivity, known as Persistent Scatterers (PS) (Ferretti et al. 2001). The PS-InSAR 
technique extracts this information from a huge collection of SAR images, forming 
an interferometric stack that enables the derivation of displacement patterns over the 
desired time span. The dataset accessed in this study was acquired from two currently 
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active satellite SAR missions that provide freely available historical archive data for 
scientific research: Sentinel-1 (by ESA) and Cosmo-SkyMed (by ASI). The main dif-
ferences between these images lie in the resolution, both temporal and geometrical, 
and in the acquisition bandwidth (C- and X-band respectively). Sentinel-1 (S1) has a 
pixel resolution of 5� 20 m on the ground, while Cosmo-SkyMed (CSK) has a reso-
lution of 3� 3 m (for the Interferometric Wide images used and available from the 
archive). The revisit time of the S1 constellation is higher than CSK. The former 
being approximately 6 days (until 23 December 2021, end date of the Sentinel-1B mis-
sion), whereas the latter being 16 days on average. This is due to its dual-purpose 
mission for both civilian and military applications. Moreover, it may have sparse 
missing data.

The S1 PS derive from the European Ground Motion Service products (EGMS). 
The EGMS is part of the Copernicus Land Monitoring Service and applies the PS- 
InSAR technology to monitor ground deformations over most of Europe (Costantini 
et al. 2021). The data employed in this study refers to Level 2a, which is the first of 
three product levels (Costantini et al. 2021; Crosetto et al. 2021). This level is also 
called Basic Product, it includes displacement rates and time series measured along 
the Line of Sight (LOS) for both the ascending and descending orbital geometries. 
According to Crosetto et al. (2021), these data are suitable to study local deformation 
phenomena such as subsidence, landslides, tectonic effects, and earthquakes, which 
impact the stability of slopes, buildings and infrastructures. The resultant PS time ser-
ies data covers a period of seven years (from 10 February 2015 to 23 December 2021), 
with a temporal sampling of one image every six days.

The CSK dataset, not yet available from the EGMS project, was elaborated using 
the PS approach starting from a total of 358 SAR images retrieved from the archives 
of the Italian Space Agency (ASI), which provides free of charge data for academic 
purposes. The selected time span ranges from 2010 to 2022 for both orbital 
geometries:

� Ascending orbital geometry: 196 images in Single Look Complex (SLC) format 
acquired by the CSK satellites from 04 July 2010 to 19 July 2022.

� Descending orbital geometry: 162 images in Single Look Complex (SLC) format 
acquired by the CSK satellites from 27 July 2010 to 19 June 2022.

For each geometry in each dataset, a master image was selected as the reference 
for the calculation of phase differences in other images within the dataset. The 
master image for the descending dataset was captured on 17 December 2017, and 
for the ascending dataset on 28 May 2014. The displacement rate values (here 
expressed in mm/year) estimated by the A-DInSAR analysis for all the PS are rela-
tive to the selected reference point. The reference point for the ascending dataset 
was located at LAT ¼ 41.8868, LON ¼ 12.4914 and for the descending dataset at 
LAT ¼ 41.8879, LON ¼ 12.4405 (EPSG:4326). Finally, the analyses were calibrated 
and validated with displacement data acquired from GNSS stations (Ferretti et al. 
2022). The greater ground resolution of the CSK SAR images provided a denser PS 
coverage than the S1 products. Indeed, the total number of PS within the area of 
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interest is about 4.65� 106 and 1.46� 106 for CSK and S1 descending geometry 
respectively.

Displacement time series can be divided into three parts that include seasonal, 
trend, and remainder components. The latter containing random fluctuations and 
noise (Costantini et al. 2018; Hyndman and Athanasopoulos 2018). Hence, the need 
to decompose PS time series to extract the long-term trend arises. To this purpose, 
we applied a Seasonal-Trend Decomposition (STL) technique (Cleveland et al. 1990) 
based on a LOcally wEighted regreSsion Smoother (LOESS) (Figure 4), which is 
implemented within the PS-ToolBox plugin for QGIS developed by Nhazca (https:// 
www.sarinterferometry.com/ps-toolbox/).

3.3.2. Data fusion
S1 and CSK PS time series were then merged for cross-validation and to gain reliabil-
ity, as well as to increase spatial coverage of displacement information. The 
implemented data fusion method within the PS-ToolBox allows the integration of 
multi-mission PS data. The combination of multiple sources measurements, with dif-
ferent orbital geometries, exploits the strain tensor (Guglielmino et al. 2011) through 
the ESISTEM (Extended Simultaneous and Integrated Strain Tensor Estimation from 

Figure 4. PSs map of average velocity along LOS computed from long-term trends extracted from 
Sentinel-1 and Cosmo-SkyMed for ascending and descending orbits. EPSG:3857.
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Geodetic and Satellite Deformation Measurements) (Luo and Chen 2016) method to 
generate synthetic datasets that incorporate multi-band information. The estimated 
displacement (Dk

LOS Xð Þ, k ¼ 1, :::, K) of each synthetic data point (X ¼ ðx, yÞ) along 
the k LOS is determined by combining the ground deformation components (i.e. the 
vertical Up-Down and horizontal East-West displacement, fi Xð Þ, i ¼ ð1, 2Þ) and the 
direction cosine ðSk

i , i ¼ ð1, 2Þ) of the k LOS:

Dk
LOS Xð Þ ¼ Sk

1f1 Xð Þ þ Sk
2 f2 Xð Þ, k ¼ 1, :::, K (4) 

The deformation components are estimated using the known N neighbour PS 
points (Xn ¼ ðxn, yn), n¼ 1, … , N) along each k LOS through the formulation of a 
first order Taylor polynomial:

Dk
LOS Xnð Þ ¼ Dk

LOS Xð Þ þ rDk
LOS Xð ÞDXn (5) 

where DXn contains the relative distances between the Xn point components and the 
synthetic point X: The displacement map along the multi-satellite LOS is found by 
solving the Taylor system for the K LOS. The data fusion formulation considers two 
parameters: the maximum distance within which nearby PS measurements are selected 
to estimate deformations, and the locality factor that weights the contribution of each 
measurement based on its distance from the point estimation. The synthetic datasets of 
Up-Down and East-West components are derived into a regular grid of squared cells 
from the vector decomposition of the displacement map along the multi-satellite LOS.

3.3.3. Activity score
The vertical and horizontal components of ground displacement achieved by the fusion 
of S1 and CSK PS data were further processed with building footprints. Points contained 
within each polygon were interpolated to produce a raster with mean velocity values over 
the time span at 10 metres grid resolution. This procedure results in a series of velocity 
values for each element within the area of interest. With the aim of quantifying the state 
of activity of each element in reference to the hazard to which it is exposed, three specific 
values of velocity were retrieved from individual building statistics and assigned to the 
whole element at risk. For the landslide hazard, the maximum absolute velocity between 
the vertical and horizontal components was selected. Regarding the subsidence hazard, 
we computed the range between minimum and maximum vertical velocity, thus focusing 
on buildings experiencing distortion; and concerning the sinkhole hazard, the maximum 
negative velocity of the vertical component was preferred.

Once the specific hazard velocities were assigned to the entire built environment, 
we applied the same approach employed to rank potential damage. Therefore, 
Equation (6) was applied to derive class thresholds of the building velocity. 
According to the eCDF in Equation (6), class thresholds were set at the respective 
percentile (p) value, and activity scores (Ab) ranging from 1 to 5 were defined.

Ab hð Þ ¼ eCDF−1 p, VEL bjhð Þ
� �

, p ¼ ð50, 82, 95, 97:5Þ (6) 
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3.4. Multi-risk ranking

To derive multi-risk scores, we firstly ranked the specific risk of single hazards by 
combining the three risk components described above. Equation (7) defines the con-
volution of the hazard (HbðhÞ), activity (AbðhÞ), and potential damage (DbðhÞ) that 
compose the single-risk score (R) of each exposed building (b).

Rb ¼ HbðhÞ � AbðhÞ � DbðhÞ (7) 

Secondly, starting from the single-risk evaluations (Rb), the multi-risk score at 
building level (MRb) is defined as their summation corrected by a multiplication fac-
tor (Fh) (Equation (8)). This coefficient weights the risk score by the corresponding 
hazard type, depending on whether it is a shock or a stress process. This is because 
stress phenomena usually cause fewer losses than shock ones and are also harder to 
mitigate. Regarding shock events such as landslides and sinkholes, the Fh coefficient 
is set equal to 1, thus keeping the risk score unchanged. Whereas, in the case of stress 
processes (e.g. subsidence) we decided to fix the Fh coefficient equal to 0.5.

MRb ¼
X

All risks
ðRb � FhÞ (8) 

Finally, a spatial distribution of dominant risk among the built environment was 
retrieved by selecting the maximum value across single risk scores and assigning the 
corresponding hazard to it.

Once obtained, both the single- and multi-risk scores were rescaled to five classes 
using the eCDF based method and percentiles described above, thus clustering assets 
with risk level in the top 2.5%, 5%, 18%, 50%, and lower than median into scores 
ranging from 5 to 1, respectively.

Finally, to validate the results, financial data related to expenses incurred for 
remediation and mitigation measures within the AOI were retrieved from the 
ReNDiS database (Table 1) and compared with the multi-risk scores of nearby 
buildings.

4. Results

4.1. Hazard

The exposure analysis to ground instabilities of urban assets within the area of inter-
est assigned a binary classification (i.e. exposed/not exposed) to each individual build-
ing. As a result, the threat to which most buildings are exposed proves to be the 
sinkhole hazard (Figure 5), as more than half of the elements were found to be at 
risk. Additionally, about 10% of the built-up area might be affected by subsidence 
processes, while landslides pose a potential risk to about one-third of the buildings.

Further investigation into the specific elements exposed to each threat revealed 
their hazard score, which was subsequently mapped (Figure 6). Figure 6(d) reports 
the statistical distribution of the elements at risk across assigned hazard scores. 
Landslide-prone buildings are mainly ranked with a hazard score of 3, with just a few 
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having the maximum hazard. Spatially, they spread throughout the northwestern and 
southern slopes (Figure 6(a)). The sinkhole hazard score seems to distribute almost 
equally, and the same applies to subsidence hazard. However, subsidence hazard 
spread along the valleys and paleo-valleys of the Tiber and Aniene Rivers (Figure 
6(b)), whereas the highest sinkhole hazard scores concentrate among the S-E part of 
the city (Figure 6(c)).

4.2. Potential damage

Figure 7(a) illustrates the probability density function (PDF) of impact ratio values by 
different ground instability types. The distributions of impact ratios exhibit similar-
ities between landslide and subsidence, with values spread over the range. A slight 
deviation towards higher values is observed for subsidence. Conversely, the impact 
ratio values for sinkholes tend to concentrate around 0.8.

Structural resistance values were obtained for both residential and non-residential 
buildings (i.e. productive, and commercial). In Table 2, the reported parameters 
reveal that resistance values for non-residential constructions consistently equate to 
0.1, as no structural characteristics are included in the census tract data. Contrarily, 
for residential buildings, the resistance values can vary between 0 and 1.5. Figure 7(b)
displays the histograms along with the PDF of computed structural resistance values 
specifically for residential buildings, which have a mean value of 0.9 and a standard 
deviation of 0.28.

Once reclassified, impact ratio and structural resistance were merged to form vul-
nerability classes using the contingency matrix presented in Table 3. The pairs of 
impact ratio and resistance values are illustrated in Figure 8(a), with distinct colours 
indicating the assigned vulnerability value. This graphical representation effectively 
shows the boundaries of the vulnerability classes. The resultant multi-hazard physical 
vulnerability values (Figure 8(b)) exhibit a tendency to concentrate at 0 and 0.5 for 
landslides, with about 75% of the structures within the two classes. In the case of 
sinkhole events, about 55% of the buildings demonstrate a vulnerability value of 0.5 

Figure 5. Overall number of buildings exposed (true) and unexposed (false) for each type of haz-
ard investigated.
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Figure 7. Probability density functions of impact ratio values by hazard type (a), and of structural 
resistance values for residential buildings.

Figure 6. Hazard score of buildings for landslides (a), subsidence (b), and sinkholes (c). Statistical 
distribution of hazard score for elements at risk by hazard type (d). EPSG:3857.
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and 20% of 0.75. However, vulnerability to subsidence appears to be evenly distrib-
uted among values of 0, 0.5, and 0.75 for 80% of the buildings. Furthermore, it 
should be noted that among the others, subsidence hazard has the highest percentage 
of elements with vulnerability of 0.75 and 1.0, about 25% and 10% respectively.

The analysis of real estate market data enabled the determination of economic 
value per square metre for each urban asset. Figure 9 presents the exposure of the 
built environment in the designated area of interest. Notably, there is a distinctive 
radial distribution pattern observed, with the highest values concentrated within the 
historic centre. These peak values exceed 7000 euro/m2 and gradually decrease as one 
moves towards the suburbs. In suburban areas, the exposed value can be as low as 
1000 euro/m2. This applies particularly to the eastern sector, where a significant num-
ber of industrial activities are located.

The integration of multi-hazard vulnerability and exposure values enabled the 
computation of potential economic losses per square metre. Subsequently, these losses 
were reclassified into potential damage scores, as depicted in Figure 10. Each element 
at risk was assigned a damage score based on the specific threats it is exposed to. The 
mapped damage scores for landslide, subsidence, and sinkhole can be observed in 
Figure 10(a–c), respectively. Furthermore, Figure 10(d) presents the eCDF of resultant 
potential economic losses. These eCDF were utilized to identify the score class thresh-
olds, which are indicated by markers along the curves.

4.3. State of activity

The synthetic datasets of vertical and horizontal components derived from the data 
fusion process of S1, and CSK PS time series are reported in Figure A2 (see 
Appendix A). The resulting displacement rates of the built environment are reported 
in Figure 11. A comparison between the two components reveals that displacements 
predominantly occur along the vertical axis (Figure 11(a)). The horizontal displace-
ments exhibit minimal rates, peaking at a few mm per year (Figure 11(b)). Notably, 
the largest rates can be observed for assets situated along the Tiber River valley.

Figure 8. Graphical representation of the vulnerability value (V) assignment based on the contin-
gency matrix reported in Table 3 (a). Distribution of vulnerability value of elements at risk by haz-
ard type (b).
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Based on the hazard-specific value distribution, activity scores were assigned to the 
building displacement rates. Figure 12(a–c) depict the resulting activity scores for 
landslide, subsidence, and sinkhole, respectively. Figure 12(d) presents the eCDF of 
the quantitative absolute velocity values, which were assigned to individual assets 
based on the hazard under consideration.

4.4. Multi-risk

The rankings of landslide, subsidence, and sinkhole risks for individual buildings, 
derived from the combination of the corresponding hazard, damage, and activity 
scores, are illustrated in Figure 13(a–c), respectively. Moreover, the aggregation of 
single-risk scores using the appropriate weighting factor produced a multi-risk map, 
as shown in Figure 13(d). Examining the building use categories alongside their asso-
ciated risk scores reveals that retail and economic structures exhibit the highest pro-
portion of buildings with elevated risk scores, closely followed by offices (Figure A3
in Appendix A). In the case of residential buildings, they are distributed relatively 
evenly across the risk classes, although there is a slightly higher concentration within 
risk score 1. The dominant risk type of each element at risk is depicted in Figure 
14(a). Out of the approximately 90� 103 urban assets analysed, it was determined 

Figure 9. Real estate market values of buildings per square metre (e/m2) within the study area 
according to their category of use and position. EPSG:3857.
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that 60% of them are at risk. Within this group, 33% exhibit the highest risk score 
attributed to sinkhole phenomena, while 22% and 5% possess the highest score 
related to landslides and subsidence processes, respectively (Figure 14(b)). Delving 
into buildings’ use categories, it results that the dominant risk type is not evenly dis-
tributed among them, thus landslide risk prevails for residential buildings, while sub-
sidence and sinkhole risks predominate for retail and offices, respectively 
(Figure 14(c)).

5. Discussion

Risk assessment of natural hazards can guide preventive and corrective actions to 
reduce levels of vulnerability and hazard exposure of urban assets and populations.

Figure 10. Potential damage score of buildings for landslides (a), subsidence (b), and sinkholes (c). 
Empirical cumulative distribution of economic losses per square metre selected according to hazard 
type (d). The coloured diamonds define percentile thresholds used to derive the five score classes. 
EPSG:3857.
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In this study, a semiquantitative multi-risk assessment was developed to provide a 
replicable and customizable framework for ranking and prioritizing elements at risk 
based on official open-source data. The approach relies on three factors (i.e. hazard, 
potential damage, and state of activity) that are combined to compute the specific- 
and multi-risk score of urban buildings. Albeit both temporal and spatial information 
should be considered to perform a proper hazard assessment (Fell et al. 2008), data 
on the recurrence and magnitude of ground instabilities in Rome are lacking, except 
for landslides (Esposito et al. 2023). The investigated ground instabilities rely on com-
pletely different geological processes that affect the possibility of estimating return 
periods. Moreover, they don’t seem to be triggered by any environmental variables. 
Hence, the hazard related score factors are only based on the spatial component (i.e. 
susceptibility) which was engineered to derive (i) the probability of individual ele-
ments being involved in an event in the near future (hazard score), and (ii) the build-
ing’s area potentially affected and weighted by susceptibility levels, as a proxy for the 
expected magnitude, and thus for the destructiveness of the event (impact ratio). The 
potential damage score is built upon building’s physical vulnerability and its eco-
nomic value, which provide valuable results to quantify the potential economic losses. 
With respect to others (Papathoma-K€ohle et al. 2007; Kappes et al. 2012a; Rom~ao 
et al. 2016; Bianchini et al. 2017; Huang S et al. 2023) deriving the physical 
vulnerability from structural resistance values and hazard intensity facilitated the 
computation at large scale, since it exploits features of the built environment based 
on open-source official census tracts of Italy. Moreover, structural resistance parame-
ters can be easily modified to suit specific hazards. The last risk component, i.e. activ-
ity score, provides a dynamic layer that relies on displacement rates of the elements 
within hazardous area. It employs the distribution of building velocity values 
retrieved from multi-satellite PS time series. The activity score is based on the fusion 
of S1 and CSK PSs, thus exploiting the strengths and overcoming the weaknesses of 

Figure 11. Buildings’ vertical (a) and horizontal (b) displacement rates (i.e. velocity) derived from 
the grid-based synthetic datasets (Figure A2) and assigned to the entire built-environment under 
investigation. EPSG:4326.
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each dataset. According to Costantini et al. (2017), PS density from CSK images (X- 
band) is higher by one order of magnitude respect to C-band SAR (e.g. S1), especially 
for surfaces with reduced radar backscattering coefficient and without strong point- 
like scatterers, thus helping to better detect ground deformation phenomena affecting 
small areas (Esposito et al. 2021; Festa et al. 2022). Moreover, CSK sensor has higher 
sensitivity in detecting small movements. Conversely, S1 has significantly higher fre-
quency and regularity, thus increasing the applicability for early detection of failure 
precursors. Hence, the fusion of PSs retrieved from both satellites ensured higher 
resolution and spatial coverage to catch ground instability processes in detail. Both 
potential damage and activity scores derive from the exploitation of the empirical 
cumulative distribution function, which allows the selection of threshold values equal 

Figure 12. Activity score of buildings for landslides (a), subsidence (b), and sinkholes (c). Empirical 
cumulative distribution of absolute velocities values selected according to hazard type (d) 
employed to set up class thresholds. EPSG:3857.
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to the specified fraction of observations (e.g. percentile). According to Mastrantoni 
et al. (2023), percentiles must be chosen based on values distribution and expert judg-
ment. Therefore, class thresholds can be easily adapted to other cities. For the city of 
Rome, the top 2.5% of buildings at multi-risk were selected as the highest class. 
However, the number of elements in the highest priority class may be set depending 
on the availability of funds for mitigation measures. The ReNDiS database states a 
total amount of expenses financed for mitigation measures within the area of interest 
of approximately 97 million euros, encompassing 71 projects. These data enable us 
to compare and validate the multi-risk outcomes using official financial records 
(Figure 15). The average cost of mitigation rises progressively as the multi-risk class 
of the nearby buildings increases, thus revealing a significant correlation between 

Figure 13. Risk score of buildings for landslides (a), subsidence (b), sinkholes (c) and multi- 
hazard (d).
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mitigation expenses and calculated multi-risk score that ensure the reliability of the 
proposed method.

Multi-risk scores can also be analysed prior to reclassification, thus retrieving the 
buildings with the absolute highest indices (Figure 16). As expected, the most at-risk 
buildings may face all three ground instabilities investigated, although landslide and 
sinkhole risk generally overwhelm subsidence risk. This is mainly related to the Fh 

coefficient halving the risk of subsidence, since stress phenomena, such as subsidence, 
are hereby considered less urgent and impactful in terms of mitigation measures and 
expected economic losses respectively.

Figure 14. Spatial distribution of dominant risk threatening individual buildings (a) with a focus on 
the hazard type ratio among the overall elements (b), and among the buildings use categories (c).

Figure 15. Average expenses (Me) and standard deviations of incurred mitigation measures within 
the study area compared with the multi-risk score of nearby buildings as computed in this work.
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The developed model is intended as an alternative to other risk assessment 
approaches requiring very demanding tasks, such as quantitative probabilistic hazard 
scenarios and fragility curves. The workflow is completely automated and customiz-
able. More hazards related to ground deformations can be easily added, albeit not 
considering potential interrelationships. Structural resistance parameters can be 
adapted to suit the hazard characteristics and percentile thresholds defining the scores 
can be modified to fit stakeholders needs. The data availability at national scale 
unlocks its replicability throughout Italy, thus enhancing the scalability of the 
approach. Moreover, by exploiting individual urban assets and their features allowed 
us to perform the analyses at the real scale (i.e. 1:1). Further advantages of the multi- 
risk ranking approach presented in this study are (i) its complete objectivity in con-
ducting the analyses without any assumption on the input data, (ii) its site-specific 
risk prioritization of structures for natural hazards mitigation, and (iii) the possibility 
of updating the results using up-to-date satellite InSAR monitoring data. However, it 
has some limitations. Hazards interactions, and therefore amplified vulnerability and 
risk, are not evaluated due to the challenges of performing multi-hazard scenarios 
modelling for ground instabilities. The hazard component of the risk equation is 
derived from spatial probability without considering the temporal factor, thus static 
risk and multi-risk scores are defined. Although the application in the selected case 
study did not account for structural resistance parameters variations depending on 
hazard type, the optimization of such parameters based on historical data and expert 
judgement may improve the quality of results. Thus, future research and development 
will focus on the integration of additional geohazards, such as earthquakes and floods, 

Figure 16. Ranking of the top 10 buildings with the highest absolute risk within the study area.
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and the optimization of building data, with the aim of also assessing cultural heritage, 
currently omitted due to the lack of official data on economic value and vulnerability. 
A huge effort will also be devoted to multi-hazard scenario modelling aimed at corre-
lating the three components of the hazard (i.e. space, time, and intensity) and evalu-
ating potential hazard interactions, which will unlock a quantitative multi-risk 
assessment. A key point is represented by the expected costs of mitigation actions. 
Their estimation will have a significant impact on stakeholders involved in risk man-
agement for large cities. Nowadays, ever more accurate data is being collected and 
released through databases often with open access. The new census tracts of Italy 
from ISTAT will contain data about hospitals, schools and other non-residential 
structures that may allow to better constrain their vulnerability to natural hazards. 
Eventually, knowing the heights of buildings will also be crucial to better model the 
physical vulnerability of buildings and therefore quantify the potential losses.

6. Conclusion

A novel semiquantitative model for multi-risk ranking of buildings exposed to ground 
instability hazards is presented and tested in this study. The developed approach, 
which is replicable on a national scale, was tested and validated in the centre of 
Rome, where it assessed approximately 90� 103 buildings at a 1:1 scale. The integra-
tion of hazard, vulnerability, and activity score maps has yielded the first comprehen-
sive multi-risk assessment for ground instability in Rome. Notably, 60% of the city’s 
assets were found to be at risk, with residential buildings, offices, and retail primarily 
associated with landslide, sinkhole, and subsidence risk, respectively. The proposed 
procedure offers valuable support to risk managers and decision-makers by providing 
objective prioritization of elements at risk and identifying the dominant threats. This 
guidance can inform mitigation strategies, ultimately enhancing urban resilience and 
minimizing future economic losses. We achieved this by integrating and fusing vari-
ous official databases and monitoring data accessible at the national scale, allowing 
for scalability and reproducibility of the analysis in Italian cities and potentially 
beyond. Our incorporation of activity rate data into the risk equation, as proposed by 
Varnes (1984), introduces a dynamic dimension to the multi-risk assessment, ena-
bling regular updates over time. Empirical cumulative distribution functions and 
score classes based on percentile thresholds were applied to each risk component, 
facilitating the ranking of urban assets by single- and multi-risk levels. Financial data 
of incurred mitigation measures were exploited to validate the results. The findings of 
our study provide crucial insights into the potential hazards facing urban commun-
ities, enabling the identification of vulnerable assets and prioritization of mitigation 
measures. As urbanization continues to drive population concentration in large cities, 
our research carries significant implications for infrastructure management, disaster 
preparedness, and urban planning. By applying the developed multi-risk ranking 
model, city planners and policymakers can better adapt to the challenges posed by 
ground instabilities, enhancing urban resilience and safeguarding lives and critical 
infrastructure. Moreover, the methodology presented here can serve as a model for 
conducting similar assessments globally, fostering a collaborative effort to address 
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geological multi-hazard risks and promote sustainable urban development. Ultimately, 
the integration of scientific research and geospatial data science methodologies, as 
demonstrated in this work, plays a vital role in building resilient societies prepared to 
face natural hazards.
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Appendix A

Figure A1. OMI macro-zones (a) and distribution of real-estate market values of buildings in Rome 
according to category of use and zone.

Figure A2. Synthetic datasets of up-down (a) and East-West (b) ground displacement rates derived 
from the data fusion of PSs resulting from A-DInSAR analyses of S1 and CSK SAR images.
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Figure A3. Distribution of building use categories according to single- and multi-risk scores.
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