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1

Introduction

The description of nuclear matter at low temperature and high density, exceeding
several times nuclear saturation density ϱ0 = 0.16 fm−3, is still an open and
challenging problem. If on one hand Quantum Chromo-Dynamics (QCD) is well
established as the fundamental theory of strong interactions, on the other hand
its non-perturbative nature at low energies together with the phenomenon of color
confinement severely limits its applicability to describe the properties of cold and
dense nuclear matter. Indeed the confinement of quarks and gluons inside hadrons
hides the fundamental degrees of freedom in nuclear interactions, which have to
be studied within effective models, in a similar way to what happens with atoms
and molecules. Besides being in principle disadvantageous, QCD calculations of
nuclear matter can still be attempted via lattice simulations. However, despite the
great progress of recent years, lattice QCD is still limited by the occurrence of the
sign problem when applied to study matter at zero temperature and finite chemical
potential, see [1, 2]. Therefore, in order to consistently describe the properties of
nuclear matter, we have to rely upon largely phenomenological models as much as
possible constrained by empirical data.

In this respect astrophysical observations involving Neutron Stars (NSs) are of
prominent importance in order to shed new light on the nature of nuclear interactions.
NSs are extremely compact objects composed mainly by neutrons and a small fraction
of protons, electrons and muons. Inside their core the density can exceed ϱ0 by
large factors, whereas temperature remains well below the typical Fermi temperature
of nucleons ∼ 1012K. Therefore NSs are unique laboratories to investigate the
properties of dense and cold nuclear matter. They exhibit strong magnetic fields
and during the cooling phase subsequent to their formation, also strong neutrino
emissions. Moreover, because of their compactness, general relativity can not be
neglected when studying their structure. Because of all these properties NSs represent
exceptional environments in which all the fundamental interactions come into play.

The first detection of gravitational waves (GWs) emitted by a binary neutron
star (BNS) system, performed by the LIGO/Virgo collaboration in the summer
of 2017 [3, 4] opened the possibility of a new source of information, marking the
beginning of the era of multimessenger astronomy.

Lying at the interface between electromagnetic (EM) observatories, GW in-
terferometers, and Earth based laboratories, multimessenger astrophysics has the
potential to shape a novel view of both structure and dynamics of dense nuclear
matter. Mass-radius measurements of rotating pulsars are rapidly improving thanks
to the information provided by the NASA satellite NICER [5–10], which has recently
targeted the most massive NS known so far. Remarkably, NICER observations of PSR
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J0030+0451 and PSR J0740+662—the inferred masses of which are M = 1.34+0.16
−0.15 [7]

(M = 1.44+0.15
−0.14M⊙ [8]) and M = 2.072+0.067

−0.066 M⊙, respectively—yield comparable
values of the stellar radius, pointing to a stiff nuclear matter equation of state
(EOS). On the other hand, constraints inferred from binary NS mergers detected by
the LIGO/Virgo Collaboration, and in particular from the landmark discovery of
GW170817, [3,4,11], have already ruled out some of the stiffest EOSs, which predict
large tidal deformabilities, hinting instead to a softer matter content [12–17]. In
addition, astrophysical data are being complemented by the information coming
from terrestrial experiments, such as heavy-ion collisions or the recent measurement
of the neutron skin thickness of lead, performed at Jefferson Lab by the PREX-II
Collaboration [18–25].

Posterior distributions inferred from space- and ground-based facilities have been
widely exploited in a variety of multimessenger analyses, aimed at constraining
models of the EOS or specific properties of neutron star matter. Examples of this
approach include reconstruction of the EOS within both phenomenological and
non-parametric frameworks, calculations based on microscopic models, and analyses
focused on features such as the occurrence of phase transitions, or the behavior
of the symmetry energy above nuclear density [26–55]; for recent reviews, see also
Refs. [56–58] and references therein.

Among the several existing frameworks attempting to describe nuclear matter
properties, non-relativistic Nuclear Many-Body Theory (NMBT) has proved to
be extremely consistent and to have a remarkable predictive power. Within this
framework, nuclear systems are pictured in terms of point-like nucleons, the dynamics
of which is completely determined by the Hamiltonian

H =
∑

i

p2
i

2m +
∑
i<j

vij +
∑

i<j<k

Vijk ,

where m and pi denote the mass and momentum of the i-th nucleon, respectively.
Interactions between matter constituents are driven by the nucleon-nucleon (NN)
potential vij—providing an accurate description of the two-nucleon system in both
bound and scattering states—supplemented by the three-nucleon (NNN) potential
Vijk, whose inclusion is needed to implicitly take into account the occurrence of
processes involving the internal structure of nucleons. As a consequence, the role of
NNN interactions is expected to become more and more important with increasing
density.

The ultimate goal of NMBT is to carry out a unified description for all nuclear
phenomena, starting from a microscopic dynamics tuned to reproduce the observed
properties of exactly solvable few-nucleon systems [59,60].

Starting from the above equation, a number of different EOSs have been obtained
using both different Hamiltonian models and different many-body techniques. Purely
phenomenological Hamiltonians, fitted to the properties of two- and three-nucleon
systems, have been shown to provide a very accurate account of the energies of the
ground and low-lying excited states of nuclei with mass number A ≤ 12, as well as
of their radii [61]. In addition, they allow for reproducing the empirical value of the
equilibrium density of isospin-symmetric matter (SNM) ϱ0; see, e.g., Ref. [62].

Over the past two decades, a great deal of attention has been given to a novel
generation of nuclear Hamiltonians, derived using the formalism of Chiral Effective
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Field Theory (χEFT). Within χEFT, the nuclear potentials are obtained from
effective Lagrangians comprising pion and nucleon degrees of freedom, constrained
by the chiral symmetry of strong interactions. The main advantage of this approach
is the capability to determine two- and many-nucleon potentials in a fully consistent
fashion. However, being based on a low momentum expansion its applicability is
inherently limited to densities ≲ 2ϱ0 [63, 64].

Among the phenomenological models, a state-of-the-art Hamiltonian comprises
the Argonne v18 (AV18) NN potential plus the Urbana IX (UIX) NNN potential.
Such an Hamiltonian in combination with a variational approach to the many-body
problem was used to obtain the EOSs of Akmal Pandharipande and Revenhal
(APR) [62, 65], widely used in astrophysical simulations involving NSs as well as
supernova explosions. The AV18 potential is represented in coordinate space as a
sum over 18 operators, necessary to fit the NN scattering phase shifts in all different
channels. This potential provides an accurate description of the scattering data
up to energies ∼ 600 MeV in the laboratory frame. Note that this is the energy
scale typical of nucleon-nucleon scattering in strongly degenerate matter at densities
up to ∼ 4 ϱ0. Since the core of NSs as massive as ∼ 2M⊙ should be characterized
by densities as large as ∼ 5ϱ0, it appears that the AV18 potential is well suited to
describe neutron star matter. Recently some accurate calculations of nuclear matter
properties have shown that a simplified Hamiltonian comprising the Argonne v6’
(AV6P) and the UIX interactions produces an EOS nearly identical to its AV18+UIX
counterpart [66]. The AV6P potential is a re-projection of the full AV18 onto the
first six operators. The algebraic properties of such a potential results in a dramatic
simplification in the many-body calculations.

In Ref [67] the authors proposed to use the AV6P+UIX Hamiltonian to derive
an effective interaction suited to be applied in perturbation theory. The ability of
such a formalism to enable perturbative calculations with respect to the Fermi gas
basis, allows to compute several nuclear matter properties well beyond the EOS of
cold nuclear matter, such as nucleon effective mass, neutrino mean free-path and
finite temperature properties.

Being largely determined by a fit over NN scattering data, NN potentials are
defined in the reference frame in which the center-of-mass momentum of the inter-
acting pair, Pij , vanishes. As a consequence, in order to consistently describe NN
interactions in the locally inertial frame associated with a NS, vij must be boosted
to a frame in which Pij ̸= 0, introducing a correction δvij(Pij , rij) [68, 69].

Detailed calculations of the energy of nuclear matter performed including δvij

show that the contribution of relativistic effects is repulsive and is responsible for
the ∼ 37% of the repulsive contribution arising from NNN interactions [70, 71].
As a consequence, besides the additional term δvij , the Hamiltonian including
relativistic corrections, HR, has to account also for a modified NNN potential,
featuring a softer repulsive component. Recently the authors of Ref. [48] have
pointed out how this modification of the NNN interaction has a strong impact on
NS observables, underlining the necessity of further investigation about the interplay
between relativistic corrections and NNN interactions.

In this Thesis we have investigated the possibility of employing a relativistic
Hamiltonian HR for the calculation of an effective interaction along the line proposed
in Ref. [67]. As an important part of this effort, we present a detailed analysis of
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the effects of the boost on the radial shape of the effective interaction.
Because of the strong relation between boost corrections and irreducible NNN

interactions, in the last part of this Thesis we present the results of an analysis
aimed at inferring direct information on the NNN repulsion from multimessenger as-
trophysical observations [72–74]. Indeed, unlike the NN potential, phenomenological
models of NNN interactions are only constrained by the physics at saturation density,
but their contribution to the EOS becomes larger and larger as the density increases.
Also in light of their connection with boost corrections, whose introduction yields
another source of uncertainty on the NNN potentials, it is clear that any additional
information about the behavior of such interaction at high density would repre-
sent a significant breakthrough. The Thesis is structured as follows. In Chapter 1
we summarize the main properties of neutron star structure and observables. In
Chapter 2 we introduce the concept of nuclear Hamiltonian. The main features of
phenomenological interaction potentials, as well as a comprehensive and pedagogical
discussion of relativistic effects are presented. We give an introduction to the basic
concepts of the many-body theory and methods, necessary to describe infinite nuclear
matter, in Chapter 3. In the final section of that chapter we also review in depth
the characterizing traits of the APR EOSs. In Chapter 4 we finally introduce the
effective interaction formalism. A formal description of the introduction of boost
corrections within this framework, as well as their impact on the shape of the radial
functions of the effective interaction is presented. In Chapter 5 we report a detailed
analysis about the sensitivity of NS observables to NNN interactions. Finally in
Chapter 6 we summarize all the work and expose our conclusions and potential
future developments.

Unless otherwise stated, and with the exception of Chapter 1, we employ a
system of units with ℏ = c = 1. Moreover, within the whole Thesis we will refer
with ϱ to the number density and with ρ to the matter density. Summation over
repeated indices is usually understood.
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Chapter 1

Neutron Stars

Neutron Stars (NSs) are extremely compact astrophysical objects, with typical
observed masses around one or two solar masses and estimated radii of about ten
kilometers. Therefore one can imagine something as massive as our Sun but concen-
trated in a spherical region whose circumference is comparable to the GRA, the major
highway surrounding Rome. In such conditions matter is super-compressed forming
the perfect environment for the occurrence of unprecedented physical phenomena. In
this sense, the observation of NS phenomenology opens a window onto microscopic
physics in a regime which is impossible to be achieved in laboratory experiments.

NSs are believed to be one of the possible outcomes of the evolution of very
massive stars. During the central phase of a star’s evolution, the pressure needed
to balance the gravitational attraction is provided by the thermonuclear reactions
that happen in its core. When the fuel is all burnt out there is nothing left to
contrast the self-gravity of the object and the star collapses. As the contraction
goes on the temperature increases until thermonuclear reactions burning heavier
elements set in and a new equilibrium is reached. This thermonuclear evolution goes
on until the formation of the heaviest element allowed by the star’s initial mass. For
progenitor masses ∼ 8M⊙ (with M⊙ labeling the mass of the Sun), according to
current theories, the collapse proceeds until it is halted by the degeneracy pressure
of the electrons. The outer layers of the stars are then expelled as solar wind giving
birth to a white dwarf, usually composed of oxygen and carbon. If the progenitor
mass is in the range ∼ 8 − 10M⊙ oxygen-neon-magnesium stars can form, but they
are quite rare. White dwarfs can exist in stable configurations only if their mass is
smaller than the Chandrasekhar limit, MCH ∼ 1.4M⊙.

If the mass of the progenitor belongs to the range ∼ 8M⊙ < m < 20 − 30M⊙
the evolution follows a different path. Nuclear processes are able to burn elements
heavier than carbon and oxygen, and exothermic nuclear reactions can proceed until
the production of 56Fe, which is the most stable element in nature1.

The process producing the iron core starts with silicon burning and goes through

1No element heavier than 56F e can be generated by nuclear fusion of lighter elements through
exothermic reactions.
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these stages:
28Si+28 Si →56 Ni+ γ (1.1)
56Ni →56 Co+ e+ + νe (1.2)

56Co →56 Fe+ e+ + νe. (1.3)

In addition to the appearance of the 56Fe, the above process produces neutrinos
that interact very little with the surrounding matter and thus go away from the star
bringing out a relevant fraction of energy. Moreover, as the core density increases,
the inverse β decay (electronic capture)

e− + p → n+ νe, (1.4)

that contributes to the production of neutrinos and therefore subtracts energy
from the star, becomes more and more efficient. Other than the production of
neutrinos, electronic capture tends to increase the number of neutrons. Therefore
heavier elements than 56Fe may be produced through neutron capture, that is
an endothermic process. Finally there is another endothermic reaction, known as
photo-disintegration that may take place. It is ignited by high energy photons
(> 8MeV ) and occurs as

γ +56 Fe → 13 4He+ 4n. (1.5)

All these processes have the effect of decreasing the kinetic energy and thus the
pressure inside the core, destabilizing the star. When the mass of the core exceeds
the Chandrasekar limit it collapses within a fraction of second and the interior
matter can reach densities ρ ∼ 1014g/cm3 i.e. comparable with the central density of
atomic nuclei ρ0 = 2.67 ·1014g/cm3. At this stage the core behaves as a giant nucleus,
made mostly of neutrons, and reacts elastically to further compression producing
a shock wave which ejects a significant fraction of matter in the outer layers of
the star in a great explosion. This phenomenon is called supernova explosion: the
luminosity of the star suddenly increases to values exceeding the luminosity of the
Sun (L⊙ = 3.832 · 1033erg/s) by a factor ∼ 109, and elements heavier than 56Fe are
created. The remnant of this explosion is a nebula, in the middle of which sits the
remnant of the core: a neutron star.

Neutron stars are often observed as pulsars, i.e. radio sources whose emission
exhibits a very sharp periodicity, blinking on and off at a constant frequency. This
periodicity is due to the fact that pulsars are rapidly rotating objects with strong
magnetic fields (B ∼ 1011 − 1013Gauss) which emit beams of radio waves from the
magnetic poles, that are not aligned with the rotation axis. The beam is clearly
visible only when it points in the direction of the detectors.

In the rest of this chapter we will give an overview of the current knowledge of
the internal structure of neutron stars.

1.1 Internal composition
As already mentioned in the Introduction, the description of matter at supranuclear
density (ρ > ρ0), which is believed to compose the core of a neutron star, is still
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an open problem and represents one of the main challenges of modern physics.
Nevertheless, there is a quite general consensus regarding the behavior of matter
at lower densities because of the information coming from the experimental data
about neutron rich nuclei. Typically a neutron star is thought to be composed by a
sequence of layers with different composition and density, as depicted in Figure 1.1.
Proceeding from the exterior, we first encounter an outer crust, 0.3 km thick, an
inner crust, ∼ 0.5 km thick and a core that extends over 10 km.

The density of the neutron star core ranges between ∼ ρ0 (= 2.67 · 1014g/cm3)
at the boundary with the inner crust to a central value that can be as large as
ρ ∼ 4 · 1015 g/cm3. All models of EOS based on hadronic degrees of freedom
predict that in the density range ρ0 < ρ < 2ρ0 neutron star matter consists mainly
of neutrons together with a small fraction of protons, electrons and muons in β
equilibrium and electrically neutral. This picture may change significantly at larger
densities with the appearance of heavy strange baryons, such as the Σ− produced
by the weak reaction

n+ e− → Σ− + νe, (1.6)
that could be energetically favored when the sum of electron and neutron chemical
potential equals the one of Σ−. Finally since nucleons are composite objects of
size ∼ 0.5 − 1.0 fm i.e. of density ∼ 1015, one could expect that whenever matter
reaches these conditions a transition to a new phase may take place. This could lead
to a situation in which quarks are no longer confined into hadrons [75]. A recent
study has pointed out how deconfined quark matter is very likely to be present in
the innermost region of maximally massive neutron stars, with masses exceeding
∼ 2M⊙ [34].

In the description of the neutron star interior we shall assume that the tempera-
ture is equal to zero and that matter is transparent to neutrinos. The first assumption
is justified because the observed temperature of neutron stars are T ≤ 109K, whereas
the Fermi temperature of neutrons (TF = ϵF /kB) at the typical densities of neutron
stars reaches ∼ 3 · 1011 − 1012K >> 109K. The second assumption follows from
the fact that the mean free path of neutrinos in nuclear matter at temperature
T ≤ 109K is much larger than the typical radius of a neutron star.

For an extensive treatment of the topics touched in this first chapter, the
interested reader can look at Ref. [76] and references therein.

1.1.1 Outer crust

The outer crust corresponds to densities ranging from ∼ 107 g/cm3 to ρd = 4 ·
1011 g/cm3. It is a solid layer composed by a lattice of heavy nuclei immersed in an
electron gas. Proceeding towards the star interior the density increases, and the
inverse β decay becomes more and more efficient, thanks to the increasing Fermi
momentum of the electron gas that shifts the energy balance. As a result a large
number of neutrons are produced in the density region 107 − 1011 g/cm3 and new
nuclear species appear through the sequence

Fe → Ni → Se → Ge. (1.7)

This process is called neutronization. In this region the pressure is mainly due to
the degenerate electron gas. When the density approaches the so called neutron
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Figure 1.1. Schematic illustration of neutron star section.

drip density, ρd, all nuclear bound states available for neutrons are filled, therefore
they can no longer live bound to nuclei and start to leak out. This effect is called
neutron drip.

1.1.2 Inner crust

In this region density ranges between ρd and ρ0 = 2.67 · 1014 g/cm3. As already
said, in this regime, since neutrons created by electron capture begins to drip out
of the nuclei, the ground state corresponds to a mixture of two phases: matter
consisting in neutron rich nuclei containing also the relevant fraction of protons,
referred to as Proton Rich Matter (PRM), and a neutron gas (NG). In addition there
is the electron gas to ensure charge neutrality. The fundamental state of matter
in this region is affected by the density of the two phases ρP RM and ρNG, by the
proton fraction in PRM and by the geometrical properties of the structures that are
formed by the two phases which strongly depend on surface effects at the interface of
different phases. Recent studies suggest that at densities ρd < ρ < 0.35ρ0 the PRM
is arranged in spheres, surrounded by a gas of electrons and neutrons. For higher
densities the separation between spheres decreases up to the touching limit. In the
region with 0.35ρ0 < ρ < 0.5ρ0 the spheres merge forming bar-type structures, and
when 0.5ρ0 < ρ < 0.56ρ0 bars merge to form slab-type structures. With increasing
density nuclear matter occupies most of the volume with the exception of tubes that
later becomes bubbles of the neutron-electron gas. Because of the peculiar shape of
these phases they take the name of nuclear pasta (gnocchi, spaghetti, lasagna) [77,78].
A schematic representation of these pasta phases can be seen in Fig. 1.2. Finally
when the density approaches ρ0 a new transition to uniform nuclear matter occurs
and the two phases form an homogeneous fluid of protons, neutrons and electrons.
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Figure 1.2. Schematic representation of nuclear pasta phases in the inner crust [78]

1.1.3 The core

The core matter is characterized by densities ρ ? 1014 g/cm3 and it can be thought
as an homogeneous fluid of p, n, e− in β equilibrium. At higher densities several
processes may occur. For instance, as the density increases, electrons become more
energetic and therefore their chemical potential, that is the energy needed to insert
a new particle in the system at equilibrium, increases too. As the electrons chemical
potential exceeds the rest mass of the muon, mµ = 105.7MeV/c2, the neutron decay

n → p+ µ− + ν̄µ (1.8)

becomes energetically favoured than the usual β decay, leading to the appearance
of muons. At these densities the main contribution to the pressure must come
from neutrons. However it cannot be associated with the Pauli exclusion principle
only, because we cannot consider the neutrons as non-interacting particles. The
treatment of the interacting problem is made very complex by the very nature of
the strong interactions and the EOS of matter at supranuclear density depends on
the particular model employed to describe nuclear dynamics. A detailed description
of the behavior of matter in these conditions is reserved to the next chapters of this
Thesis.

1.2 Stellar structure equations

Since neutron stars are astrophysical objects we need a way to link the description
of their internal composition to macroscopic observables, such as mass and radius.
Within the framework of Newtonian gravity we can derive the equations describing
the stellar structure by imposing the hydrostatic equilibrium of a self gravitating
perfect fluid. Unfortunately because of their high compactness we can’t neglect
the spacetime curvature when dealing with neutron stars (typical values of mass
and radius give GM/Rc2 ∼ 10−1) and General Relativity must be employed. In
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the following section we will make a brief recap of General Relativity in order to
introduce the basic concepts necessary to carry out the Tolman-Oppenheimer and
Volkoff (TOV) equaitions, the general relativistic analogue of the stellar structure
equations.

1.2.1 General Relativity

General Relativity is the spacetime theory of gravity proposed by Einstein in 1915.
Within this framework spacetime becomes for the first time an active physical entity
whose curvature is responsible for gravitational phenomena. This revolutionary
theory is entirely based upon two principles:

• the Equivalence Principle, stating that in any given spacetime point it’s always
possible to choose a local inertial reference frame in which the physical laws
are those described by special relativity i.e. in absence of gravity;

• the Principle of General Covariance stating that physical laws have to be the
same in every coordinate system.

The Equivalence Principle establishes the connection between gravity and the
spacetime curvature. Before Einstein published his work, Gauss identified a class
of metric spaces in which the curvature could be locally ruled out. The concept
of curvature is strongly related to how one can calculate the distance between two
points, therefore stating that the curvature can be locally eliminated is equivalent to
say that the distance between two points, which are sufficiently close to each others,
can be evaluated using the euclidean formula

ds2 =
N∑

i=1
dx2

i , (1.9)

where N is the dimension of the metric space. In a similar manner the Equivalence
Principle states that is always possible to chose two events that are close enough
such that the distance between them is given by

ds2 = −dx2
0 +

3∑
i=1

dx2
i . (1.10)

Therefore the equivalence principle is basically the same principle that Gauss used
for the definition of non-euclidean geometries. According to this principle we expect
that the equations of gravity will look very similar to those of Riemaniann geometry.
The relevant quantity in such a framework becomes the metric tensor gµν that allows
to compute the distance between two points according to

ds2 = gµν(x)dxµdxν . (1.11)

The metric tensor depends on the spacetime point in which it is evaluated, and on
the particular choice of coordinate system. In a locally inertial frame (LIF) we have
that the metric tensor becomes the same of the flat spacetime i.e. gµν = ηµν with

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.12)



1.2 Stellar structure equations 11

Being ξα a set of coordinates in a LIF and xα a coordinate set in a generic reference
frame then we have

ds2 = ηµνdξ
µdξν = ηµν

∂ξµ

∂xα

∂ξµ

∂xβ
dxβdxα = gαβdx

αdxβ. (1.13)

From the last equation we can infer the transformation law of the metric tensor

xα → xα′(xµ)

gαβ → gα′β′ = ∂xµ

∂xα′
∂xν

∂xβ′ gµν ≡ Λµ
α′Λν

β′ gµν .
(1.14)

We define the inverse metric gµν as:

gµαgαν = δµ
ν , (1.15)

that allows for raising and lowering a tensor index through

Aµ
ν = gµαAαν . (1.16)

We can also deduce the geodesic equation, i.e. the equation of motion of a
particle under the effect of gravity when observed in a generic reference frame. If
the ξαs are the coordinates in a LIF and τ is the proper time of the particle we have

d2ξα

dτ2 = 0. (1.17)

Using the general coordinate transformation ξα = ξα(xµ) and after making some
composite derivatives we get

d2xα

dτ2 + Γα
µν

[
dxµ

dτ

dxν

dτ

]
= 0, (1.18)

where the quantities

Γα
µν = ∂xα

∂ξλ

∂ξλ

∂xµ∂xν
, (1.19)

are called affine connections or Christoffel symbols and satisfy

Γα
µν = 1

2 g
αλ (gµλ,ν + gλν,µ − gµν,λ) . (1.20)

We remark the fact that the affine connections aren’t tensors since they don’t obey
the tensor transformation rules. The Christoffel symbols can be used to define a
covariant derivative i.e. a derivative that transforms like a tensor under the change
of coordinate frames. The covariant derivative of a vector V µ is defined as

V µ
;α = V µ

,α + Γµ
αβV

β. (1.21)

It can be shown that V µ
;α transforms as a tensor and that in a locally inertial frame

the covariant derivative reduces to the usual derivative, which means V µ
;α = V µ

,α.
All these considerations can be made more formal by using the theory of the

differentiable manifolds, but we won’t go into the details.
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We limit ourselves to report the Einstein equations that embody the dynamics
of gravitation

Gµν = 8πG
c4 Tµν . (1.22)

In the above equation Tµν is the energy-momentum tensor whose components are
defined as follows. T00 is the energy density, T0i is the energy which flows per unit
time across a unit surface orthogonal to the axis xi, and Tij is the amount of the
i-th component of momentum which flows per unit time across the unit surface
orthogonal to the axis xj . Gµν is the so-called Einstein tensor and its related to the
underlying spacetime geometry. It is defined as

Gµν =
(
Rµν − 1

2gµνR

)
(1.23)

where Rµν and R depend upon the metric tensor and its derivatives and are therefore
directly related to the spacetime curvature. Equation (1.22) establishes a connection
between the spacetime geometry and the amount of mass-energy that is present.

It is interesting to see how we can recover Newtonian gravity from the Einstein
equations. Let us consider a non relativistic particle in a weak and stationary
gravitational field. Since v << c it follows

dxi

dt
<< c ⇒ dxi

dτ
<<

cdt

dτ
= dx0

dτ
. (1.24)

The geodesic equation (1.18) therefore becomes:

d2xµ

dτ2 + Γµ
00

(
dx0

dτ

)2

= 0. (1.25)

If we use the assumption that the field is stationary, i.e. we can take a time-
independent metric tensor, according to equation (1.20) we have

Γµ
00 = 1

2g
µλ(g0λ,0 + gλ0,0 − g00,λ) = −1

2g
µλg00,λ. (1.26)

Now we consider the case of a weak gravitational field, which means that we can
chose a reference frame in which the metric is nearly flat

gµν = ηµν + hµν , |hµν | << 1. (1.27)

Since we are going to keep only the leading order in hµν we can raise and lower its
indices with the flat metric ηµν . Substituting Eq. (1.27) into (1.26) we have

Γµ
00 ∼ −1

2η
µλ∂h00
∂xλ

(1.28)

that put into (1.25) yields

d2xi

dτ2 = 1
2
∂h00
∂xi

(
cdt

dτ

)2
. (1.29)
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If we rescale the time coordinate according to cdt/dτ = 1 we find

d2x
dt2

= c2

2 ∇h00. (1.30)

Since the equation of motion of a particle in a Newtonian gravitational field is given
by

d2x
dt2

= ∇Φ, (1.31)

if we take Φ = −GM/r and impose that h00 vanishes at infinity we finally have the
correspondence we were looking for

h00 = −2Φ
c2 and g00 = −(1 + 2Φ

c2 ). (1.32)

The Newtonian potential Φ satisfies the Poisson equation

∇2Φ = 4πGρ, (1.33)

where ρ is the matter density. Substituting (1.32) into Eq. (1.33) yields

∇2g00 = −8πG
c4 T00 (1.34)

where we have used the identity
T00
c2 = ρ, (1.35)

which holds in the non-relativistic limit. Since Eq. (1.34) can also be obtained as
the limit in the case of weak stationary field for the (0, 0) component of the Einstein
equations, we can finally say that in the limit of week field and little velocity General
Relativity reduces to Newtonian gravity.

1.2.2 TOV equations

In order to carry out the general relativistic stellar structure equations we have
to solve the Einstein equations in the presence of matter. Hereafter we shall use
geometric units G = c = 1.

We can model a star as a stationary spherically symmetric perfect fluid in
chemical, hydrostatic and thermodynamic equilibrium. A fluid is said to be perfect
if both viscosity and heat flow are absent. The motion of the fluid is described by
the vector field of the four-velocity uα that will define a worldtube in the spacetime.
Consider a small volume of fluid and a point P0 in its center of mass. We put
ourselves in a locally inertial reference frame with the origin in P0 and such that P0
is at rest. We name it a locally inertial comoving frame (LICF). We have to take into
account a worldvolume small enough to be covered by the LICF, and large enough
with respect to the scale of the microscopic dynamics of the system. The fluid
element enclosed in this worldvolume can be described by the usual thermodynamic
quantities.
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In this LICF the stress-energy tensor of the fluid assumes the form

Tµν =


ϵ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (1.36)

where ϵ is the energy density and P is the pressure. The components T 0i vanish
because the fluid is at rest and there is no heat flux. The absence of viscosity put at
zero the components T ij with i ̸= j. Since we are in a LICF we also have

gµν = ηµν and uα = (1, 0, 0, 0) , (1.37)

Putting together Eqs. (1.36) and (1.37), Tµν can be written as

Tµν = uµuν (ϵ+ P ) + gµνP. (1.38)

This definition of Tµν involves a tensorial equation and therefore it holds any
reference frame.

The Einstein equations can be solved together with the additional condition
coming from the energy and momentum conservation, i.e.

Tµν
;ν = 0. (1.39)

Since we are interested in the structure of a spherically symmetric, non rotating
and stationary star, the most general metric according to these properties can be
written as

ds2 = gµνdx
µdxν = −e2ν(r)dt2 + e2λ(r)dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
, (1.40)

thus

gµν =


−e2ν(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (1.41)

With this metric and with the hypothesis that the fluid is at rest, the 4-velocity uα

is given by

−1 = uαuβgαβ = (u0)2g00 ⇒ uα =
(
e−ν(r), 0, 0, 0

)
. (1.42)

Since Rµν and R are defined respectively as

Rµν =
(
Γα

µα,ν − Γα
µν,α − Γα

µνΓβ
αβ + Γα

µβΓβ
να

)
(1.43)

and
R = gµνRµν , (1.44)

we can finally write the non vanishing components of the Einstein equations as

a) G00 = 8πT00 ⇒ 1
r2 e

2ν d

dr

[
r
(
1 − e−2λ

)]
= 8πϵe2ν

b) Grr = 8πTrr ⇒ − 1
r2 e

2λ
(
1 − e−2λ

)
+ 2
r
ν,r = 8πPe2λ

c) Gθθ = 8πTθθ ⇒ r2e−2λ
[
ν,rr + ν2

,r + ν,r

r
− ν,rλ,r − λ,r

r

]
= 8πr2P.

(1.45)
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From equation (1.39) it follows

ν,r = − P,r

ϵ+ P
, (1.46)

that combined with (1.45) leads to the final set of equations
dM(r)
dr

= 4πr2ϵ(r)

dP

dr
= − [ϵ(r) + P (r)]

[
M(r) + 4πr3P (r)

]
r [r − 2M(r)]

(1.47)

where M(r) is defined as

M(r) = 1
2r
(
1 − e−2λ(r)

)
. (1.48)

The set of equations (1.47) was derived independently by Tolman [79] and Oppen-
heimer and Volkoff [80] in 1939 and for this reason they are called the TOV equations.
The second equation of (1.47) can be cast into the form

dP

dr
= −ϵ(r)GM(r)

r2

[
1 + P (r)

ϵ(r)

] [
1 + 4πr3P (r)

M(r)

] [
1 − 2GM(r)

r

]−1
, (1.49)

where we have restored the gravitational constant G. This form makes explicit
the physical origin of the different contributions. The first term is the same that
is present in its Newtonian counterpart, with the mass density replaced by the
energy density. The second and third terms represent relativistic corrections that
vanish when P/ϵ << 1 i.e. when the constituents of matter are non-relativistic
particles. Finally the last term accounts for spacetime curvature, indeed it vanishes
when GM/r << 1. Therefore it is clear that in the non-relativistic limit the TOV
equations reduce to the usual Newtonian equations. Finally we remark the fact that
these equations cannot be solved without the knowledge of the equation of state
(EOS) describing the behavior matter in the star interior, that in our case assumes
the form of a P (ϵ) relation.

1.2.3 Boundary conditions

In order to solve the set of equations (1.47), for any given EOS P (ϵ), we have to
specify two boundary conditions: M(r0) and P (r0). We can always chose as a
boundary condition M(r = 0) = 0. This choice can be justified as follows. Take a
tiny sphere of radius x and circumference 2πx. The proper radius will be∫ x

0
eλdr ≃ eλx. (1.50)

Therefore the ratio between the circumference and the proper radius will be 2πe−λ.
But we know that the spacetime is locally flat, and since a flat space-time implies
that such a ratio should be 2π, we will have that as r → 0 then eλ → 1. Because of
the relation

e2λ = 1
1 − 2M(r)

r

, (1.51)
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it follows that M(r) has to go to zero faster than r. The quantity

M(R) = 4π
∫ R

0
r2ϵ(r)dr, (1.52)

can be interpreted as the total mass-energy inside the radius R.
For any assigned EOS now we have a one-parameter family of solutions, identified

by the value of the energy density at r = 0, i.e. ϵ(r = 0) = ϵ0. Outside the star,
instead, P = 0 and ϵ = 0, and the Einstein equations reduce to those in vacuum,
whose unique solution is given by the Schwarzschild metric.

1.2.4 A necessary condition for the stability of a star

The solution of the TOV equations, with the appropriate boundary conditions,
describe the equilibrium configuration of a star. In principle this equilibrium could
be stable or unstable. We are now interested in discussing whenever one of these
two possible scenarios may occur. Suppose to have solved the TOV equations for
any value of the central energy density ϵ0, i.e. to have found the function M(ϵ0)
that relates the total gravitational mass of the star to its central energy density.

A typical M(ϵ0) curve is illustrated in Fig. 1.3.

Figure 1.3. The mass of a star as function of the central energy density [81]

Now consider an equilibrium configuration such as the one labelled as A in the
figure. Let’s consider a small perturbation of the central density, we can have two
possible outcomes. If the density decreases to a value ϵ01, the star will have a mass
that is above the value required for hydrostatic equilibrium (A1 in the picture),
therefore the gravitational attraction generates a further contraction and the density
increases until the equilibrium is reached. Conversely if the density increases to a
value ϵ02, the star will be in a configuration (A2) in which its mass is too low in
order for gravity to balance the internal pressure. This generates an expansion that
lowers the density and brings the star again in an equilibrium configuration. After
these considerations we can conclude that the equilibrium in A is stable.

Conversely, a similar discussion can be done about the point B in the picture,
which lays on the right branch of the curve M(ϵ0) with respect to its maximum.
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From Fig. 1.3 we infer that a displacement to a configuration B1 leads to a gravity
weaker than the internal pressure and an uncontrolled expansion causes the density
to become lower and lower. Alternatively the displacement to a configuration B2
provides the star to collapse under its own gravity. Therefore the equilibrium in B
is unstable. In light of the previous discussion we can conclude that a necessary
condition for the stability of a star is provided by the requirement

dM

dϵ0
> 0. (1.53)

The previous condition represents only a necessary requirement for the stability,
but not a sufficient one. In order to conclude if a given configuration is effectively
stable it is necessary to analyze the oscillation behavior of the star. A comprehensive
description of the theory of radial oscillation is beyond the scope of this Thesis, we
limit ourselves to a qualitative but somehow instructive explanation. According
to the theory of radial perturbation each star has an infinite number of proper
oscillation modes ωn, with n = 0, 1, 2... . During the star oscillation each fluid
element is moved from its equilibrium position by a radial displacement ξ(r, t). In
the n-th mode this radial displacement takes the form

ξ(r, t) = un(r)eiωnt. (1.54)

where un(r) is the oscillation amplitude and ωn is the frequency. The oscillation
frequency of different modes are ordered according to

ω2
0 < ω2

1 < ω2
2 < ..., (1.55)

and ω0 is referred to as the fundamental mode. Since ω2
n could be either positive

or negative, it turns out that if ω2
n > 0 we have that Eq. (1.54) actually describes

an oscillation around the equilibrium configuration. On the other hand if ω2
n < 0

we have that the radial displacement can grow exponentially making the mode
unstable. Since the modes are ordered according to Eq. (1.55) it is clear that if the
fundamental mode is stable every other mode will also be.

1.2.5 Early considerations about the EOS

The equation of state is a relation between the thermodynamic quantities of a given
system, reflecting the microscopic behavior of its constituents. In the case of neutron
stars, as we said in the previous section, we are looking for an EOS of the form

P = P (ϵ), (1.56)

which is called a barotropic equation of state. However the thermodynamic quantities
characterizing a fluid, such as the one present inside a neutron star, could be more
than just the pressure and the energy density. In the most general case we should have
the pressure P , the energy density ϵ, the temperature T and the number of particles
N . Therefore a generic EOS should be in principle of the form f(P, ϵ, T,N) = 0.
Anyway a barotropic EOS turns out to be perfectly suited for the description of
NS matter. First of all we can rule out the temperature dependence by noting that
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the typical observed NS temperatures, which are of the order of T ∼ 109K, are
much smaller than the Fermi temperature of nucleons at the typical NS densities,
TF ∼ 1011−12K. Thanks to these considerations we can safely put T = 0. Concerning
the dependence on the number of particles N , we can exploit an accidental symmetry
of the Universe, the conservation of the baryon number. If we assume that the star
does not contain antimatter and that the number of mesons is negligible, the baryon
number coincides with the number of baryons in the system. Since baryons are much
heavier than electrons, muons and neutrinos, the star rest mass can be considered
as due to baryons only. Thanks to the baryon number conservation law we can fix
N and rule out its dependence from the EOS.

At first one could be tempted to model NS matter with a degenerate neutron
gas in the same way as what is done with electrons in white dwarfs. There was a
pioneering study, carried out in 1939 by Oppenheimer and Volkoff [80], where they
studied this possibility. This work has shown that stars made up by non-interacting
neutrons should have a mass not larger than ∼ 0.8M⊙. This is in contrast with
several observations of neutron stars with masses much bigger than this theoretical
limit, pointing out that neutron star equilibrium requires an additional pressure
other than the degeneracy one. The origin of this pressure has to be ascribed to
hadronic interactions. Unfortunately the need to include dynamical effects in the
EOS collides with the complexity of the fundamental theory of strong interactions.
As a consequence all available descriptions of the EOS of neutron star matter are
obtained within phenomenological or effective theoretical models as much as possible
constrained by empirical data.

1.3 Tidal deformability
On August 17, 2017 Advanced LIGO and Advanced Virgo made the first observation
of the gravitational-wave (GW) signal emitted by a binary neutron-star merger.
This discovery opened the door to a new frontier in the search for EOS probes
in astrophysical observation. It was shown in several works that the GW signals
coming from a binary neutron star merger can be affected by measurable EOS
dependent effects, such as rotational and tidal deformations. These effects contribute
to distinguishing the signal provided by two neutron stars from that of two black
holes which have no internal structure. Some features and techniques concerning how
these effects can be seen in the gravitational waveforms, with particular attention to
the high spin deformation effects, are reviewed in [82].

In this work we take in consideration only tidal effects whose relevance is
quantified by a parameter known as the tidal Love number.

The idea is as follows. The orbital motion of a binary neutron star system
produces GWs that carry out energy and angular momentum from the system.
This causes the decreasing of the orbital radius, and conversely the increasing in
the frequency. At early times the two objects have a large orbital separation and
low orbital frequency. In this phase the bodies behave as point particles and the
evolution of the frequency is primarily determined by the chirp mass M, defined as

M = (m1m2)3/5

(m1 +m2)−1/5 , (1.57)
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where m1 and m2 are the two component masses. As the orbit shrinks, relativistic
effects related for example to spin-orbit and spin-spin couplings become increasingly
relevant.

The details about the internal structure of the two objects become important as
the orbit separation approaches the size of the bodies. For neutron stars, the tidal
field of one of them induces a mass-quadrupole moment on the companion, which in
turn generates the same effect on the other one, accelerating the coalescence. This
effect is quantified by the ratio of the induced quadrupole moment to the external
tidal field, that is proportional to the tidal deformability

Λ = 2
3k2

(
c2R

Gm

)5

, (1.58)

where R and m are respectively the radius and the mass of the star, whereas k2 is
the second tidal Love number. For any given stellar mass m, R and k2 are uniquely
determined by the EOS of neutron-star matter. Tidal effects are predicted to become
relevant near frequencies fGW ≃ 600Hz, being potentially observable even if, at
these frequencies, the stars are close to merge and the sensitivity of the instruments
has begun to decrease. Experimentally the properties of the GW sources are inferred
by matching the data with predicted waveforms.

We will not go into details about how tidal deformations affect the waveform of
the measured GW signals. We are much interested in the definition and calculation
of the tidal Love number and its relation to the underlying microscopic dynamics.

1.3.1 Newtonian theory

A tide is a deformation effect induced on a body because of the variation of the
gravitational force acting on it. If we consider a quadrupolar tidal field its effect on
a given body is characterized by the quantity Eij , known as tidal momentum and
defined as

Eij = − ∂2Φext
∂xi∂xj

∣∣∣∣∣
x=xc

(1.59)

where i and j range from 1 to 3, Φext in the Newtonian external potential and xc
labels the position of the center of mass of the body.

Let’s consider a non rotating spherical object A, under the gravitational field of a
point-like source B, at distance a from the center of mass of A. We are interested in
the force acting on a point P, with mass mP , on the surface of A. We can therefore
write the equation of motion of P in a generic reference frame as

mP aP = −gAmP · ûP + FAB = −gAmP · ûP −mP ∇Φ(rP ). (1.60)

In the above equation gA is the surface gravity acceleration of A, rP is the position
of P, Φ(rP ) is the gravitational potential of B in the point rP and ûP is given by

ûP = rP − rc

|rP − rc|
(1.61)
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with rc being the position of the center of mass of A. We can now expand the
gradient of Φ(x) around x = rc and keeping only the first two terms we find

∂Φ
∂xi

≈ ∂Φ
∂xi

∣∣∣∣
rc

+ ∂2Φ
∂xj∂xi

∣∣∣∣∣
rc

(x − rc)j = ∂Φ
∂xi

∣∣∣∣
rc

− Eji (x − rc)j . (1.62)

If we now put ourselves in the center-of-mass frame of A and neglect the effect of
rotations (both around the symmetry axis of the body and around the center of
mass of the system A+B) we find that the tidal force acting on P —that is the force
not ascribed to the own gravity of A —is given by

F tidal
i = mPxjEji. = −mP

∂Φtidal

∂xi
(1.63)

where we labeled as xi the position in the center-of-mass frame and we defined a
tidal potential, whose minus gradient gives rise to the tidal force F tidal, as

Φtidal = 1
2xixjEij . (1.64)

The tidal moment Eij is a symmetric tensor, and since the gravitational potential
satisfies the Laplace equation in vacuum it is also traceless. We call it a symmetric
traceless (STL) tensor. Since we have a quadrupolar external tidal potential we
expect that the body will develop a quadrupolar deformation, i.e. it will acquire a
mass quadrupole moment Qij . The quadrupole moment is given by

Qij =
∫
d3x ρ(x)

(
xixj − 1

3r
2δij

)
, (1.65)

where ρ is the mass density, xi is the i-th coordinate with respect to a reference
frame set in the center of mass of the body, and r2 = (δijxixj). We also remark that
Qij is another STL tensor.

In the case of a weak tidal field we will have a linear relation between Qij and
Eij i.e.

Qij = −λEij , (1.66)

and by dimensional considerations follows that

λ = 2
3k2R

5G−1, (1.67)

where R is the star radius, the factor 2/3 is a convention and the adimensional
constant k2 is the second tidal Love number that quantifies the quadrupolar tidal
deformation.

Using these expressions we can write the potential outside the body as a sum
between the body and the external potentials, yielding

Φtot = −M

r
− 3
r5Qijxixj + 1

2Eijxixj . (1.68)

In this last equation the total potential was truncated to the leading, quadrupole
order in a Taylor expansion of both the external and the body potential. The first
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two terms account for the potential generated by the deformed object, indeed we
can see a monopole and a quadrupole term, whereas the third contribution accounts
for the external tidal potential. Substituting (1.66) and (1.67) into (1.68) we finally
find

Φtot = −M

r
+
[

2k2
G

(
R

r

)5
+ 1

2

]
Eijxixj . (1.69)

1.3.2 Relativistic theory

In the previous section we derived the expression of the total gravitational potential
generated by a body under a quadrupolar tidal field, expressed by Eq. (1.68). Since
we are interested in neutron star physics we have to transpose the previous discussion
in the framework of general relativity. To this purpose we recall that in the weak
field limit holds the identity

Φ = −(1 + g00)
2 , (1.70)

which can be used to define the quantities Qij and Eij in general relativity. Indeed
by combining (1.68) and (1.70) we find

−(1 + g00)
2 = −M

r
− 3
r5Qijxixj +O

( 1
r3

)
+ 1

2Eijxixj +O
(
r3
)

(1.71)

where Qij and Eij are given respectively by (1.65) and (1.59). Nevertheless we are
interested in fully relativistic stars. In the strong field case the equations (1.65) and
(1.59) are no longer valid, but the expansion (1.71) still holds in the asymptotically
flat region in the star local rest frame and can still be used to define the momenta
Qij and Eij . In the following we follow the approach of [12, 83] in order to carry out
the relativistic expression of the tidal Love number k2.

First of all we notice that since Qij and Eij are STL tensors, we can decompose
them into

Qij =
2∑

m=−2
EmY2m

ij , (1.72)

Eij =
2∑

m=−2
QmY2m

ij , (1.73)

where Y2m
ij are defined as the symmetric traceless tensors satisfying

Y2m(θ, ϕ) = Y2m
ij ninj (1.74)

with n being the unit vector of a generic point in the three-dimensional space
n = (sin θ cosϕ, sin θ sinϕ, cos θ). Equation (1.66) can therefore be written as:

Qm = −λEm (1.75)

and without any loss of generality we can assume that only one Em is nonvanishing.
This is sufficient to compute λ.
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In order to find the expression for k2 we start by examining the behaviour of the
equilibrium configuration under linearized quadrupolar perurbations [12,84]. The
full metric of the spacetime is given by

gαβ = g
(0)
αβ + hαβ, (1.76)

with |hαβ| << 1 being a metric perturbation, and g
(0)
αβ is the metric of a stationary

and spherically symmetric spacetime given by (1.41). The angular dependence of
hαβ is decomposed into spherical armonics and we take into consideration only
l = 2, static and even-parity perturbations in the Regge-Wheeler gauge. Under these
hypothesis hαβ can be written as

hαβ = Y2m(θ, ϕ)


−e2ν(r)H0(r) 0 0 0

0 e2λ(r)H2(r) 0 0
0 0 r2K(r) 0
0 0 0 r2 sin2 θK(r)

 . (1.77)

We want to solve the linearized Einstein equations

δGµ
ν = 8πδTµ

ν . (1.78)

The variation of the stress-energy tensor can be written as

δTµ
ν = diag (−δϵ, δP, δP, δP ) , (1.79)

and since P = P (ϵ) we have

δϵ =
(
dP

dϵ

)−1
δP. (1.80)

By using equations (1.76) and (1.77) one can compute the components of δGµ
ν and

finally solve Eq. (1.78). After some calculations one finds that all the radial functions
in the metric perturbation hαβ can be related to a unique function H(r) ≡ H0(r)
which satisfies the following differential equation

H ′′ +H ′
{2
r

+ e2λ
[2M(r)

r2 + 4πr(P − ϵ)
]}

+

+H

[
−6e2λ

r2 + 4πe2λ
(

5ϵ+ 9P + ϵ+ P

dP/dϵ

)
− (2ν ′)2

]
= 0

(1.81)

where we refer to d/dr with the prime index. We can find the boundary conditions
for the previous differential equation requiring regularity of H at r = 0. Solving for
H near r = 0 yields

H(r) = a0r
2
{

1 − 2π
7

[
5ϵ(0) + 9P (0) + ϵ(0) + P (0)

(dP/dϵ)(0)

]
r2 +O(r3)

}
(1.82)

where a0 is a constant that can be eliminated using continuity of H and its derivative
across r = R. We remind that our purpose is to define the quantities Qij and Eij

through the asymptotic expansion of Eq. (1.71). Therefore we want to find the
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expression of H(r) outside the star. In this region the metric of the unperturbed
spacetime is given by the Schwarschild solution and the components of the stress-
energy tensor are all zero. In this region Eq. (1.81) becomes

H ′′ +
(2
r

− λ′
)
H ′ −

(
6e2λ

r2 + (2λ′)2
)
H = 0. (1.83)

In the Schwarzschild solution λ and ν satisfy

e2ν = 1 − 2M
r

(1.84)

and
e2λ = 1

1 − 2M
r

. (1.85)

With the change of variable x = (r/M − 1), Eq. (1.83) can be cast into the form of
a Legendre equation with l = m = 2(

x2 − 1
)
H ′′ + 2xH ′ − 6

(
6 + 4

x2 − 1

)
H = 0. (1.86)

The general solution of the above equation is written in terms of the associated
Legendre functions Q2

2(x) and P 2
2 (x) as

H = c1Q
2
2(x) + c2P

2
2 (x), (1.87)

where c1 and c2 are two coefficients to be determined. After substituting the
explicit form of the associated Legendre functions into Eq. (1.87), and performing
an asymptotic expansion for large r, we obtain

H(r) = 8
5

(
M

r

)3
c1 +O

((
M

r

)4
)

+ 3
(
r

M

)2
c2 +O

(
r

M

)
, (1.88)

where the coefficients c1 and c2 can now be determined by matching Eq. (1.88) with
the asymptotic expansion (1.71). Using also (1.75) we find that the coefficients c1
and c2 are given by

c1 = 15
8

1
M3λE , c2 = 1

3M
2E . (1.89)

Finally one can find λ in terms of H and its derivative at the star’s surface from the
explicit form of Eq. (1.87). By using Eq. (1.67), the expression for the second tidal
Love number k2 can be carried out

k2 = 8C5

5 (1 − 2C)2 [2 + 2C(y − 1) − y]

×
{

2C [6 − 3y + 3C(5y − 8)] + 4C3
[
13 − 11y + C(3y − 2) + 2C2(1 + y)

]
+

+3(1 − 2C)2 [2 − y + 2C(y − 1)] log (1 − 2C)
}−1

,

(1.90)

where the quantities C and y are defined as

C = M

R
, y = RH ′(R)

H(R) . (1.91)
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This result tells us that the ingredients we need in order to evaluate the tidal Love
number k2 are the star compactness and the quantity y which can be computed
by integrating Eq. (1.81) in the region 0 < r < R. We notice that (1.81) depends
only on quantities that can be determined by solving the unperturbed problem.
Therefore in order to numerically evaluate y and C we only need to integrate the
TOV equations together with Eq. (1.81).

1.4 The equation of state of cold nuclear matter
We have already said that the equation of state of a given system is a non-trivial
relation linking the thermodynamic quantities. The most iconic example of EOS is
the perfect gas law

P = kBϱT (1.92)

which account for a good description of very dilute systems. A more general
expression can be achieved by considering the previous equation as the leading order
of a Taylor expansion in powers of the number density ϱ

P = kBϱT
[
1 + ϱB(T ) + ϱ2C(T ) + . . .

]
, (1.93)

which is known as virial expansion. We have just mentioned that in the particular
case of neutron stars we are looking for an EOS of the form

P = P (ϵ), (1.94)

with ϵ being the energy density of the system. Such a relation can be carried out by
knowing the expression ϵ = ϵ(ϱ) and then applying the thermodynamic definition of
pressure

P = − ∂E

∂V

∣∣∣∣
N,T

= ϵ(ϱ) − ϱ
∂ϵ

∂ϱ
. (1.95)

In principle if we have a microscopic description of core matter, which gives us this
ϵ(ϱ) relation, we will be able to compute the NS properties predicted by such a model,
and compare such predictions with astrophysical observations. Actually the picture
is slightly more complicated. The description we have carried out before refers to a
single component fluid, or at least to a system where the chemical composition is
always the same. Nevertheless, the NS core is believed to be composed of a uniform
fluid of neutrons, protons, electrons and muons. The chemical composition, i.e.
the relative fraction of all these particle species is determined by the conditions
of β−equilibrium2, charge neutrality and baryon number conservation. Such re-
quirements will produce a chemical composition which changes with density. The
chemical composition of β-stable matter can be obtained by minimizing the energy
density ϵ with respect to the densities of all the particle species contributing to
the β−equilibrium, with the additional constraints of charge neutrality and baryon
number conservation. In other words we have to minimize the quantity

F (ϱ, ϱn, ϱp, ϱe, ϱµ) = ϵ(ϱ, ϱn, ϱp, ϱe, ϱµ) −λB(ϱ− ϱn − ϱp) −λQ(ϱp − ϱe − ϱµ), (1.96)
2β−equilibrium is referred to the balance between the two processes of neutron decay,

n → p + e−(µ−) + ν̄e(ν̄µ) and electronic (muonic) capture e−(µ−) + p → n + νe(νµ).
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where ϱα, with α = n, p, e, µ, labels respectively the density of neutrons,protons,
electrons and muons, whereas λB and λQ are two Lagrange multipliers. By solving
the equations

∂F

∂ϱα
= 0, ∂F

∂λB
= ∂F

∂λQ
= 0, (1.97)

we find the conditions
ϱ = ϱp + ϱn, ϱp = ϱe + ϱµ, (1.98)

and
µn = µp + µe, µµ = µe, (1.99)

where µα is referred to the chemical potential of the particle α, defined through

µα = ∂ϵ

∂ϱα

∣∣∣∣
ϱ,ϱβ ̸=ϱα

. (1.100)

Since the interaction energy contribution, coming from the lepton sector can be
neglected with respect to nuclear interactions, the energy density of such a system
is usually written as

ϵ = ϵB(ϱ, xp) + ϵl(ϱe, ϱµ), (1.101)

where the term ϵl represents the energy density coming from a degenerate lepton
gas, whereas the term ϵB accounts for all the nuclear interactions, and its expression
should be in principle carried out from a consistent theoretical framework describing
nuclear matter. We notice that in Eq. (1.101) we have introduced the proton fraction
xp, through which the neutron and proton density are expressed as

ϱp = xpϱ, ϱn = (1 − xp)ϱ. (1.102)

We also stress that in the above discussion we have always neglected neutrinos. This
approximation is justified by theoretical calculations of neutrino mean free path
inside the neutron star core, which have shown how neutron star matter becomes
transparent to neutrinos as soon as the temperature drops below T ∼ 1010K.

The quantity ϵB(ϱ, xp) is the main object of theoretical calculations aimed at
carrying out an accurate description of nuclear matter properties. Very different
frameworks, as well as a broad set of EOSs have been developed so far. In Fig. 1.4
we can see the mass-radius diagram (a) and the tidal deformabilities (b) predicted
by some of these models. We can see how different models account for different NS
observables. In this respect the occurrence of more and more accurate measurements
of NS properties is expected to have the potential, in the upcoming future, to strongly
improve our knowledge about the behavior of ultra-dense and cold nuclear matter.

As a final remark we underline that all the EOSs considered in Fig. 1.4, as well
as the discussion we have undergone so far, take into consideration only nucleonic
EOSs, i.e. EOSs that are derived by assuming matter to be composed by only
nucleons and leptons. When the density increases very much, however, it is also
possible the appearance of other degrees of freedom, such as the production of
strange baryons as the result of weak processes. In recent years also the possibility of
a phase transition to deconfined quark matter, leading to the so-called hybrid stars
was seriously explored [50, 87–89]. Besides, representing a very intriguing possibility,
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almost every model developed so far results in a sizable softening of the EOS. Such
a soft matter content is little compatible with the recent mass-radius measurements
performed by the NICER collaboration, suggesting that ∼ 1.4 and ∼ 2M⊙ NSs have
essentially comparable radii.
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(a)

(b)

Figure 1.4. Mass-radius diagram (a) and tidal deformability as function of the NS mass (b)
predicted by different EOSs models. The APR1, APR2 and BL EOSs are derived within
non-relativistic nuclear many-body theory [62, 67]. The GM3 EOS is derived within the
framework of the relativistic mean field [85]. Finally the LS model is a phenomenological
model derived starting from the liquid drop model and imposing constraints from nuclear
phenomenology [86]. Constraints coming from the GW observation of the GW170817
event are also shown. The picture is taken from Ref. [48].
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Chapter 2

Nuclear Hamiltonian

The existence of atomic nuclei, as well as a lot of other nuclear phenomena, are a
manifestation of the fundamental force known as strong interaction. Although the
fundamental theory of strong interactions is today well established as the Quantum
Chromo-Dynamics (QCD), a direct application of such a formalism to nuclear physics
involves insurmountable difficulties, other than being conceptually unnecessary.
Indeed because of the confinement of quarks and gluons inside hadrons, the relevant
degrees of freedom described by QCD are always hidden in nuclear interactions.
Nuclear phenomena are therefore more efficiently described in terms of residual
forces between hadrons, similar to the van der Waals interactions occurring between
molecules. In addition, because of the particular behavior of the strong coupling
constant, a direct application of QCD is only possible through non-perturbative
approaches involving lattice calculations. Such techniques other than being limited
by current computational resources, are also affected by the occurrence of the so
called sign-problem, which limits its applicability only to a limited region of the QCD
phase diagram. However, it is worth to mention that, besides its non-perturbative
nature at the typical NS densities, some studies have recently shown how QCD
perturbative calculations, performed in the regime of asymptotic freedom, can still be
used to infer indirect information on the nuclear matter EOS [90,91]. In light of these
considerations the study of nuclear systems has to rely upon phenomenological and
effective approaches as much as possible constrained by the large set of experimental
data. In this chapter, and in the rest of this Thesis, we will explore an approach
where nucleons are the relevant degrees of freedom. In this framework —known
as Nuclear Many Body Theory (NMBT) —nucleons are treated as non-relativistic
point-like particles whose dynamics is described by the Hamiltonian

H =
∑

i

p2
i

2m +
∑
i<j

vij +
∑

i<j<k

Vijk, (2.1)

where pi labels the momentum of the i-th nucleon, m is the average nucleon
mass ∼ 939 MeV/c2 and finally vij and Vijk represent respectively nucleon-nucleon
(NN) and three-nucleon (NNN) interaction potentials.

Since this formalism is based upon two crucial assumptions, it is important to
comment a little about them. A comprehensive discussion about the non-relativistic
approximation is postponed to the section concerning relativistic corrections. Here
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we are going to focus on the principal experimental evidences allowing the treatment
of nucleons as point particles, even if they have an internal structure. First of all
the measured proton charge radius, inferred from elastic scattering of electrons on
hydrogen, suggests that at typical nuclear densities the wave functions of two nucleons
exhibit a negligible overlap [92]. This feature is observed up to inter-particle distances
of ∼ 1.0 fm where the overlap becomes significant and the point-like approximation
could be no longer justified. Moreover, as also stated in the discussion of Ref. [63],
the observation of the y-scaling in electron scattering off a broad set of different
targets shows that the beam particles can couple to nucleons carrying momenta up
to ∼ 700MeV , strongly suggesting that even in presence of a significant overlap
between nucleons their internal quark structure is largely unaffected.

2.1 Nucleon-nucleon interaction

Phenomenological potentials are derived by imposing a very general analytical and
operatorial structure, as much as possible inspired by theoretical considerations.
They involve a set of free parameters, which are fitted in order to reproduce a large
body of observations regarding two-nucleon systems, both in bound and scattering
states.

Some important features of a realistic NN interaction can be deduced by very
general considerations coming from empirical observations about atomic nuclei.

• The observation that the central density of atomic nuclei tends to a constant
value ϱ0 = 0.16 fm−3, independently on the mass number A, suggests that
nuclei are almost incompressible i.e. that nucleons cannot be put arbitrarily
close to each others. A comparison between the charge-density distributions of
nuclei with different A is reported in Fig. 2.1. This general feature of atomic
nuclei is known as the saturation of nuclear density. Strictly speaking, this is
a clear manifestation that NN interactions should exhibit a strong repulsive
core at short distances. Therefore the interaction potential v(r) shall obey

v(r) > 0, |r| < rc, (2.2)

with rc being the radius of the repulsive core.

• The evidence that the nuclear binding energy per nucleon is roughly the same
for all nuclei with mass number A ≥ 20 can be ascribed to a finite interaction
range r0. Indeed, the fact that after a certain size the nucleus binding energy
doesn’t change anymore by adding further nucleons, implies that the interaction
doesn’t affect the constituents that are too far apart, yielding

v(r) = 0, |r| > r0. (2.3)

• The strong similarities that can be found in the spectra of the so called mirror
nuclei1 are a strong evidence that protons and neutrons have similar nuclear
interactions, i.e. that nuclear forces are charge symmetric.
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Figure 2.1. Radial dependence of the charge-density in atomic nuclei with different mass
number A, inferred from elastic electron-nucleus scattering experiments [93].

Charge invariance of nuclear forces is a manifestation of a more general symmetry
of nature known as isospin symmetry. The observation that protons and neutrons
have nearly the same mass is a natural insight about the existence of an underlying
approximate symmetry, which we know to be explicitly broken by the mass difference
between up and down quarks. By assuming protons and neutrons as the fundamental
degrees of freedom, the dynamics of free nucleons would be described by a Lagrangian
density of the form

L = ψ̄N (iγµ∂µ −m)ψN , (2.4)

where the index i runs over the type of nucleon and m is the average nucleon mass.
We can identify the quantity ψN as a two-component object

ψN =
(
ψp

ψn

)
, (2.5)

with ψp and ψn labeling proton and neutron spinors respectively.
The Lagrangian of Eq. (2.4) is clearly invariant under the global SU(2) transfor-

mation group

ψN
i → ψ′N

i = Uijψ
N
j (2.6)

with
Uij = eigaτa

ij , (2.7)

where the ga are three continuous parameters (a = 1, 2, 3) and the τa are the
generators of the group, that in the case of SU(2) can be identified with the three
Pauli matrices (σ1, σ2, σ3) acting on the isospin space. The Pauli matrices are 2 × 2
hermitian matrices satisfying the commutation relations

[σa, σb] = 2iϵabcσc. (2.8)
1Mirror nuclei are nuclei with the same mass number A but with Z differing by one unit.
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These considerations show that a nucleon can be described by a doublet in a spin-like
space, named isospin space. Proton and neutron therefore represent the two isospin
projections, that for convention are chosen as the eigenstates corresponding to the
eigenvalues +1/2 and −1/2 of the τ3/2 operator respectively. Using the classical
composition rules the two nucleon states can be organized in the total isospin basis
|T, T3⟩, as follows

|1, 1⟩ = |p, p⟩
|1, 0⟩ = 1√

2 (|p, n⟩ + |n, p⟩)
|1,−1⟩ = |n, n⟩
|0, 0⟩ = 1√

2 (|p, n⟩ − |n, p⟩) .

(2.9)

We can observe that proton-proton and neutron-neutron pairs always have total
isospin T = 1, whereas a proton-neutron pair may have either T = 0 or T = 1.
Isospin invariance implies that the interaction between two nucleons depends on
their total isospin T but not on T3, because T3 doesn’t commute with a generic
SU(2) isospin transformation. Therefore two protons, as well as a couple of neutrons,
will interact in the same way as a proton and a neutron in the T = 1 isospin-state
(provided that they are coupled to the same spin channel).

Other important details of the NN interaction are provided by the study of the
two-nucleon systems. In nature it is observed only one NN bound state: the nucleus
of deuterium, or deuteron (2H), composed by a proton and a neutron with total spin
and isospin S = 1 and T = 0 respectively. This is a clear manifestation that nuclear
forces possess a strong spin-isospin dependence. Another important information is
that the deuteron exhibits a non-vanishing electric quadrupole moment, implying
that its charge distribution is not spherically symmetric. This reflects a noncentral
behavior of the NN interaction.

2.1.1 Phenomenological potentials

A first theoretical description of the interactions between two nucleons was attempted
by Yukawa in 1935 [94]. He made the hypothesis that such a force was mediated by
a particle corresponding to an energy quantum of the nuclear field (on the same line
of the well understood theory of electromagnetic interactions). The observation that
nuclear interactions have a finite range r0 ∼ 1 − 2 fm, leads Yukawa to estimate the
mass m of the mediator to be

m ∼ 1
r0

∼ 100 − 200MeV. (2.10)

The idea of Yukawa was successfully implemented identifying the exchanged
particle with the π-meson (pion) whose mass is mπ ∼ 139.6MeV . Experiments show
that the pion is a spin zero pseudoscalar particle that comes in three charge states
denoted π+, π−, and π0. Let’s see how to build a Lagrangian that embodies the
Yukawa’s idea, accounting in addition for the observation that nuclear interactions
conserve parity. Our starting point is the free Lagrangian of Eq. (2.4) supplemented
with an interaction term fulfilling all the symmetry properties of the system. The
most simple case is the interaction with a scalar boson Π yielding

L = ψ̄N (iγµ∂µ −m)ψN + LΠ + gψ̄N ΠψN , (2.11)
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where we have also included the term LΠ containing the Π kinetic terms and all its
self interactions.

We know that the total Lagrangian must be SU(2) invariant. This requirement
leads the field Π to fulfill the following transformation rule

Π → Π′ = UΠU †. (2.12)

The above relation implies the field Π to be an object of the adjoint representation
of SU(2). We can therefore write

Π = πaτa (2.13)

where τa are the SU(2) generators in the fundamental representation. Since a runs
from 1 to 3 we have found that the field mediating the interaction must be a triplet of
isospin with components πa. Since the pion turns out to be a pseudoscalar particle 2

the interaction becomes
LI = igπaτa

ijψ̄
N
i γ

5ψN
j , (2.14)

where the γ5 matrix is added in order to still conserve parity.
Armed with this Lagrangian we can now study the nucleon-nucleon scattering at

the leading order in perturbation theory. The one-pion-exchange (OPE) process is
described by the Feynman diagram in Fig. 2.2.

Figure 2.2. Feynman diagram describing the one pion exchange process between two
nucleons. Time goes from bottom to top.

We have an initial state |i⟩ = |p1, s1; p2, s2⟩, made by two nucleons with mo-
mentum p1, p2 and spin polarization s1, s2 respectively, which goes into a final
state |f⟩ = |p1′ , s1′ ; p2′ , s2′⟩. Actually we have to assign to each nucleon a further
quantum number which labels if it is a proton or a neutron, i.e. its isospin projection.

From Eq. (2.14) follows that we can take as the interaction vertex the quantity
igγ5τa

ij . We can now evaluate the invariant amplitude of this process using the
standard Feynman diagram techniques, obtaining

iM = −g2 ū(p2′ , s2′)γ5u(p2, s2) 1
k2 −m2

π

ū(p1′ , s1′)γ5u(p1, s1)⟨τa
1 ⟩⟨τa

2 ⟩, (2.15)

2Observing the process π− + d → n + n it was established that the intrinsic parity of the pion is
negative.
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where
⟨τa

1 ⟩ = η†
1′τ

aη1; ⟨τa
2 ⟩ = η†

2′τ
aη2 (2.16)

with ηi being the two component Pauli spinor defining the isospin state of the i-th
nucleon.

The invariant amplitude of Eq. (2.15) in the non-relativistic limit allows to define
a NN interaction potential that can be written in coordinate space as

vπ(r) = g2

4m2 (τ 1 · τ 2) (σ1 · ∇) (σ2 · ∇) e
−mπr

r
=

= g2

(4π)2
m3

π

4m2
1
3(τ 1 · τ 2)

{[
(σ1 · σ2) + S12

(
1 + 3

x
+ 3
x2

)]
e−x

x

− 4π
m3

π

(σ1 · σ2) δ(3)(r)
}
,

(2.17)

where x = mπr, τ i are the isospin generators acting on the i-th particle and

S12 = 3
r2 (σ1 · r) (σ2 · r) − (σ1 · σ2) , (2.18)

accounts for the non-central part of the interaction.
For g2/4π = 14, the above potential provides an accurate description of the long

range part (r > 1.5 fm) of the NN interaction, as shown by the very good agreement
with NN scattering data in states of high angular momentum. In these states,
because of the strong centrifugal barrier, the probability of finding the two nucleons
at small relative distance is negligible. At intermediate and short range other more
complicated processes, such as the exchange of two pions or heavier mesons can occur.
Moreover when the relative distance becomes very small, ∼ 0.5 fm, nucleons, are
expected to overlap and the dynamics of their internal degrees of freedom becomes
relevant. In this regime the interaction should be in principle dictated by QCD.

Because of all these effects a good description of the full NN interaction requires
the definition of a phenomenological potential, whose general form can be written as

v = ṽπ + vR, (2.19)

where ṽπ is the potential given by Eq. (2.17) stripped of the δ-function contribution
and vR describes the interactions at medium and short range. If we look at the
general expression of Eq. (2.17), we notice that the ṽπ contribution can be written
in the general form

vij =
∑

p

vp(rij)Op
ij (2.20)

where the quantities Op are a set of six operators defined as

Op
ij = 1, (τ i · τ j), (σi · σj), (σi · σj)(τ i · τ j), Sij , Sij(τ i · τ j), (2.21)

where the indices i and j are referred to the general i-th and j-th nucleons.
This operator structure can be derived also by more general considerations. If

we keep in mind what we said in the previous section, we know that a generic NN
interaction should have a strong spin-isospin dependence, it should be invariant
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under the SU(2) isospin transformations and it should exhibit a non-central behavior.
We can therefore write the NN potential in the general form

v =
∑
S,T

[vT S(r) + δS1vtT (r)S12]PSΠT . (2.22)

In the above equation S and T run over the possible total spin and isospin of the
interacting pair, r is the distance between the two particles, S12 is given by (2.18)
and PS and ΠT are two projection operators. The operator PS is the projector onto
the subspace identified by total spin S, with S = 0, 1, and take the form

P0 = 1
4(1 − σ1 · σ2) , P1 = 1

4(3 + σ1 · σ2). (2.23)

It is easy to show that these operators satisfy

P0 + P1 = 1 , PS |S′⟩ = δSS′ |S′⟩ , PSPS′ = δS′SPS . (2.24)

The projector ΠT is defined in the same way but in the isospin space i.e. by
substituting σa with τa. It is easy to show that by combining Eq. (2.22) and
Eq. (2.23) we can write the NN potential in the form appearing in Eq. (2.20).

After all these considerations a general form of the phenomenological potential
of Eq. (2.19) can be written as

vij =
∑

p

[ṽp
π(rij) + vp

I (rij) + vp
S(rij)]Op

ij , (2.25)

with vI and vS labeling the intermediate and short range interaction components
respectively. In more sophisticated potentials the set of operators is expanded from
the six ones of Eq. (2.21) and can reach even eighteen components, as in the case
of the Argonne v18 (AV18) potential [95]. Operators with p = 7, ..., 14 account
for spin-orbit interactions and other non-static terms, whereas the p = 15, ..., 18
account for small charge symmetry violations. The shapes of the radial functions
is determined by means of a parametrization inspired by theoretical considerations
about meson exchange potentials. For example the intermediate range components
are usually assumed to come mainly from two-pion-exchange processes [96]. Finally
the parameters involved in their definition are determined by fitting the large body
of existing data coming from two-nucleon systems. We shall just mention that the
forty parameters involved in the definition of the AV18 potential, are determined
by an accurate fit of the proton-proton (pp) and neutron-proton (np) scattering
phase shifts up to the pion production threshold, low-energy neutron-neutron (nn)
scattering parameters and deuteron binding energy.

The first six operators Op≤6
ij , other than providing the dominant contribution

in nuclear matter among all the eighteen components, benefit from another crucial
property. They are a closed set under the usual composition rule and form an
algebra. Indeed we have that

Op
ijO

q
ij =

∑
l

Kpql Ol
ij . (2.26)

These considerations have motivated the development of an interaction potential
labeled as Argonne v′

6 (AV6P) in which the full AV18 is projected onto the first six
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operators only [97]. This potential reproduces remarkably well the NN scattering
phase shifts in the 1S0 channel (l = 0, S = 0 and T = 1), as well as the deuteron
binding energy with an accuracy of 1%.

In Fig. 2.3 is illustrated a comparison between the radial dependence of the
components vp(rij), with p = 1, 3, 5, for the AV18 and AV6P potentials. We can
see that in the basis represented by the first six operators of Eq. (2.21), the two
potentials appear to be quite different. This is just to further remark that the AV6P
is not just a simple truncation of the AV18 potential. Anyway, we can see in Fig. 2.4
that the two potentials are exactly the same in the 1S0 channel, which is related to
the components written in the six-operator basis through

vS=0,T =1 = v1 + v2 + 3(v3 + v4). (2.27)

Figure 2.3. Comparison between the radial dependence of the potentials AV6P (solid lines)
and AV18 (dot-dashed lines). The different contributions coming from the first (blue),
third (red) and fifth (green) component are shown for both potentials.

Figure 2.4 clearly shows the specific features of nuclear forces. We can see that the
interaction is attractive at inter-particle distances between one and two femtometers,
typical in atomic nuclei. Then with increasing distance the potential rapidly goes
to zero, in accordance with the observation of a finite interaction range. Finally a
very strong repulsion can be observed when the interacting particles become closer
than ∼ 1 fm. This feature of the NN interaction is crucial because it prevents a
perturbative treatment of the nuclear Hamiltonian and motivated the development of
more and more sophisticated approaches in order to achieve a satisfactory description
of nuclear systems, by solving the nuclear many-body problem.



2.2 Three-nucleon potential 37

Figure 2.4. Radial dependence of the NN potentials AV6P and AV18 in the state
characterized by relative angular momentum l = 0, and total spin and isospin respectively
S = 0 and T = 1. We can see how the two potentials perfectly overlap in this channel.

2.2 Three-nucleon potential
The introduction of NNN interactions in the nuclear Hamiltonian turns out to be
necessary in order to correctly reproduce the properties of three nucleon systems,
such as 3H and 3He, which are missed by only considering NN potentials. Since we
are used to dealing with point-like particles the meaning of three-body interactions
may appear a little obscure. Actually NNN potentials are just a way to introduce the
effects related to the internal structure of nucleons in our point-particle formalism.
By considering the example represented by the Feynman diagram in Fig. 2.5 their
nature will be evident. This diagram describes a two-pion-exchange process between
three nucleons, with the excitation of a ∆−resonance (with M∆ ≈ 1232MeV ) as
an intermediate state. Because of the presence of the ∆−resonance, this Feynman
diagram cannot be reduced to a combination of two OPE processes and must be
included in the Hamiltonian as a NNN contribution V 2π

ijk .
In their pioneering work J. Fujita and H. Miyazawa [98] argued that the dominant

three-body force among nucleons should just come from processes described by the
Feynman diagram of Fig. 2.5. Therefore commonly used phenomenological NNN
potentials, such as the UIX model [97], are written as

Vijk = V 2π
ijk + V R

ijk, (2.28)

where V 2π
ijk is the Fujita Miyazawha two-pion-exchange potential, which provides an

attractive interaction, and the V R
ijk is a purely phenomenological repulsive term.

The explicit expression of these two contributions is given by

V 2π
ijk = A2π

∑
cycl

{
{Xij , Xjk} {τ i · τ j , τ j · τ k} + 1

4 [Xij , Xjk] [τ i · τ j , τ j · τ k]
}

(2.29)
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Figure 2.5. Feynman diagram representing the two-pion-exchange process described by
the Fujita-Miyazawa interaction potential.

and
V R

ijk = U0
∑
cycl

T 2(mπrij)T 2(mπrjk), (2.30)

where the sums are extended to all cyclical permutations of the particle indices i, j
and k. In the above equations the operators Xij are defined as

Xij = Y (mπrij)σi · σj + T (mπrij)Sij , (2.31)
where the radial functions Y (x) and T (x) have the form

Y (x) = e−x

x
ξ(x), (2.32)

T (x) =
(

1 + 3
x

+ 3
x2

)
Y (x), (2.33)

with ξ(x) being a short range cutoff that can be written as ξ(r) = 1 − e−cr2 , while
the parameter c is usually fixed at ∼ 2.0 fm.

The coupling constants A2π and U0, entering the definition of V 2π
ijk and V R

ijk

respectively, are two free parameters that are adjusted in order to correctly reproduce
the binding energy of 3H and 4He, together with the correct value of the equilibrium
density of isospin-symmetric nuclear matter (SNM) ϱ0 = 0.16 fm−3.

It is worth to mention that the ground state expectation value of the NNN
interaction ⟨Vijk⟩ is usually much smaller than the corresponding one coming from
NN potential ⟨vij⟩. For instance in 3H and 4He it turns out to be ⟨Vijk⟩/⟨vij⟩ ∼ 3%.
However, because of the large cancellations between the kinetic and the two-nucleon
potential energy, the contribution coming from ⟨Vijk⟩ is not negligible, indeed it
accounts for ∼ 15% of the total ground state energy in 3H and 4He [70,99]. Since
the ratio between NN and NNN potentials appears to be very small, by extending
this argument to three- and four-body interactions we can assume the contribution
coming from more-than-three-body forces to be negligible3. This conclusion is

3This is certainly true at nuclear densities, but to which extent this argument can be extended
to the typical neutron star densities is not completely clear.
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Figure 2.6. Comparison between the energies of the ground end excited states computed
by Carlson et al and the experimental data. The calculation was performed with and
without three-body forces. In both cases the NN potential is the AV18 model whereas
for the NNN potential it employed the advanced model referred to as IL7. The picture
is taken from [99]

supported by the very good predictive power of Hamiltonians comprising up to
three-body potentials, when used to compute the properties of atomic nuclei with
more than three nucleons. The results of the exact calculations of ground and
low-lying excited states, performed by Carlson et al [99], for atomic nuclei with
A ≤ 12 is reported in Fig. 2.6. We can see that the introduction of a NNN potential
improves by a large extent the agreement with the experimental data.

2.3 Relativistic corrections

The treatment of nucleons as non-relativistic particles has proved to allow for a
satisfactory description of both atomic nuclei and of a great variety of nuclear matter
properties. Anyway, the reliability of the description of nucleons as non-relativistic
objects, when dealing with matter at the high densities typical of the neutron
star core, may be questionable. Indeed all the equations of states derived within
the framework of non-relativistic theories predict a speed of sound that becomes
superluminal when the density increases too much. Moreover, additional care is
required by noting that with increasing density, also the validity of the point-like
approximation may start to blunder. Therefore one should also be aware of which
assumption breaks down first.

A rough estimate of the relevance of relativistic effects in nuclear matter can be
carried out by comparing the Fermi momentum of nucleons with their rest mass
at different densities. We know that an infinite system of particles benefits from
translation invariance which makes the momentum a good quantum number in
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order to classify its energy states. Because of the fermionic nature of nucleons the
Pauli exclusion principle forbids two particles to occupy the same quantum level.
Therefore in the ground state we can imagine fermions to occupy higher and higher
momentum states, uniformly distributed in a sphere whose radius is referred to as
the Fermi momentum kF . If we enclose the system in a cubic volume the average
distance between two subsequent states will be 2π/L where L is the side of the box.
Therefore we can define a unit volume in the momentum space as (2π)3/V , with
V = L3, as the average k−space volume surrounding each state. The number of
states Ns can be carried out as the ratio between the volume of the sphere and the
unit volume, yielding

Ns = V

6π2k
3
F . (2.34)

The number of states is closely related to the number of particles N through the
degeneracy of the momentum states ν, and together with the previous equation allows
to define a relation between the density of particles ϱ and the Fermi momentum of
the system

ϱ = N

V
= 1

6π2 νk
3
F . (2.35)

At this point we can compute the values of the ratio k2
F /m

2 at different densities as

k2
F

m2 =
(

6π2ϱ

νm3

) 2
3

. (2.36)

The previous equation provides k2
F /m

2 ∼ 0.1 − 0.3 for densities ranging between
once and four times the nuclear saturation density ϱ0, suggesting that some kind
of relativistic corrections may contribute as a small fraction of the average single
particle energy. Conversely we have that the condition kF /m ∼ 1 is achieved by
considering densities as large as ϱ ∼ 40ϱ0, very well above the typical values expected
inside a neutron star.

A somewhat similar discussion can be addressed also to atomic nuclei. Instead of
using arguments based on the Fermi momentum we can invoke the indetermination
principle in order to estimate the average momentum of bounded nucleons. It turns
out that for ∆x ∼ 1.6 fm, which is the average measured nucleon-nucleon distance in
nuclei like oxygen and carbon, we have ⟨p2⟩/m2 ∼ 0.05. According to what argued
by Carlson et al in Ref. [70] this is an indication that relativistic corrections could
be comparable to the contribution coming from three-body forces and should be
taken into account.

The problem of considering relativistic corrections in nuclear matter is a highly
non-trivial task and can be approached in different manners. The first thing one could
think is to develop an effective field theory in which the relevant degrees of freedom
are nucleons. This kind of theory will be relativistic by construction, being based on
the formalism of quantum field theory. A model of nucleons interacting by means of
scalar and vector mesons was first proposed by Walecka [100]. Unfortunately this
kind of theory can be solved only in the mean field approximation, i.e. by replacing
the meson fields in the equation of motion with their ground state expectation
values. This approximation is not fully justified at the typical densities of neutron
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star matter and turns out to produce an oversimplified dynamics which is unable to
capture the strong correlations between nucleons.

Here we are going to discuss an alternative approach, formalized by Krajcik and
Foldy [68, 101], referred to as Relativistic Hamiltonians. This formalism attempts to
obtain a covariant description of a system with a fixed number of particles within
the framework of non-relativistic quantum mechanics. This description is achieved
by imposing the commutation relations of the Poincarè group on the Hilbert space
of the system, whose generators are defined through an expansion in 1/c, with c
being the speed of light. Foldy and Krajcik have shown that there exists a way to
define the generators of the Poincarè group up to every order in 1/c.

Before going on it is important to clarify what is intended by "covariant descrip-
tion" in the context of a system with a fixed number of particles. To this purpose
we want to resume some points highlighted in the brilliant discussion performed
by Leslie L. Foldy in one of his works [101]. We want to introduce the concept of
relativity in the description of a quantum system of particles, whose interactions
are expressed in terms of a potential depending on their dynamical variables, rather
than being mediated by a field. In this context it is known that we can’t invoke
the classical concepts of relativity as related to Lorentz transformations between
the spacetime coordinates of a given particle, in a given position and at a given
time instant. Anyway we can just notice that the necessity to connect the concept
of relativity to the symmetry of an underlying spacetime continuum is only an
additional requirement that is needed by classical theory but that is unnecessary
in a quantum description. In other words we are not interested in finding a theory
perfectly describing every aspect of nature, for which the description of the spacetime,
as well as the possibility of creating and destroying particles will be mandatory, but
we just want to carry out a relativistic covariant description of a quantum system.
In this sense by directly citing Foldy our viewpoint should be that "if we wish to
examine the basic implications or demands of relativistic covariance stripped of all
extraneous ideas and free of all preconceptions, we stand on more secure ground in
retreating to the position that the Lorentz group expresses the relationship between
physical phenomena viewed by different observers". Strictly speaking relativistic
covariance is just meant as the equivalence between different observers describing
the same physical phenomena. Such an equivalence will be established by means of
the Lorentz transformation group.

Let us suppose to have two different observers A and B. A given abstract state
of the system, referred to as Ψ, will be described by the observer A with a state
vector |ψ⟩A, in its ’private’ Hilbert space HA. In the same way the observer B will
describe the system with a vector |ψ⟩B belonging to the Hilbert space HB. Since
the vectors |ψ⟩A and |ψ⟩B describe the same abstract state Ψ, we can establish a
one-to-one correspondence between the Hilbert spaces of the two observers. In order
for the physics to be the same as described by different observers, the transition
probabilities to a given state Φ should be the same in every private Hilbert space.
Therefore we should have the identity

|A⟨ϕ|ψ⟩A|2 = |B⟨ϕ|ψ⟩B|2 (2.37)

for every couple of state vectors and equivalent observers. The equality of the
transition probabilities implies that the one-to-one correspondence between the
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Hilbert spaces of different observers should be an isomorphism. Since all the
observers are isomorphic between each other we can define a unique ’public’ space Ω,
which all the other spaces are isomorphic to. This means that two states |ψ⟩A and
|ψ⟩B, describing the same abstract state, but belonging to different Hilbert spaces,
will be represented by two different state vectors in the public Hilbert space Ω. In
this sense the isomorphism between different spaces becomes an automorphism in
the public space Ω. Let us take the two observers A and B to be connected by the
Lorentz transformation Λ. If we label |ψA⟩ and |ψB⟩ the state vectors respectively
representing |ψ⟩A and |ψ⟩B, in the public space Ω, we will have that the isomorphism
between A and B, will be represented by a linear operator U(Λ), such that

|ψB⟩ = U(Λ)|ψA⟩. (2.38)

The equality of the transition probabilities, together with the previous definition
leads to

|⟨ϕB|ψB⟩|2 = |⟨ϕA|U †(Λ)U(Λ)|ψA⟩|2 = |⟨ϕA|ψA⟩|2, (2.39)
which implies that the operator U(Λ) should be unitary. Since the previous discussion
can be applied to any couple of equivalent observers, we can take a third observer C
which is related to A by the transformation ΛAC . We can also define the Lorentz
transformation ΛBC connecting B and C, and rename the transformation Λ between
A and B as ΛAB. At this point we have

|ψC⟩ = U(ΛBC)|ψB⟩ = U(ΛBC)U(ΛAB)|ψA⟩ = U(ΛAC)|ψA⟩, (2.40)

yielding to
U(ΛAC) = U(ΛBC)U(ΛAB). (2.41)

Since the Lorentz transformations form a group under the composition rule

ΛAC = ΛBC ◦ ΛAB, (2.42)

the set of linear operators U(Λ) defines a representation of the Lorentz group on
the public Hilbert space Ω. In conclusion we can define a relativistic system as a
quantum mechanical system, whose state vectors form a representation space for
the Lorentz group.

2.3.1 Boost corrections: classical description

In this section a very pedagogical and intuitive discussion of a given type of relativistic
correction, referred to as boost corrections, is presented. Boost corrections are
additional interaction terms arising when we observe a two-particle system in a
reference frame different from its center of mass. Strictly speaking we have to be
careful when we use a non-relativistic potential in order to describe the relativistic
system. Indeed because the Lorentz transformation between different reference
frames involves also the Hamiltonian of the system, we have no guarantee that
an interaction potential defined within a non-relativistic framework, in a specific
reference frame, will not be affected by that Lorentz transformation. Let us consider
a two-particle system with the Hamiltonian

H = p2
1

2m1
+ p2

2
2m2

+ v(r) (2.43)
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where r = r2 − r1. At this point we can define the center-of-mass variables

P = p1 + p2

q = 1
2(p2 − p1),

(2.44)

with which the Hamiltonian can be written as

H = P2

2M + q2

2µ + v(r), (2.45)

with M = m1 +m2 and µ = m1m2/(m1 +m2). This expression for the Hamiltonian
holds in every reference frame within non-relativistic mechanics. If we make a
Galileian transformation to another inertial frame we will have

r → r′ = r
q → q′ = q
P → P′ = P +MVT ,

(2.46)

where VT is the relative velocity between the two reference frames. It is straightfor-
ward to see that under this transformation the part of the Hamiltonian describing
the relative motion remains unchanged.

Let us move to a relativistic picture and consider two particles, with the same
mass m, interacting through a potential v(r) in their center of mass frame. In this
frame, where P = 0, we can label the Hamiltonian as H(q, r). We are interested in
carrying out the Hamiltonian in a generic reference frame, H ′(P′,q′, r′). In order to
avoid unnecessary complications we can also take the two particles to be at rest with
respect to their center of mass and consider a boost to a frame where p′

1 = p′
2 = P′/2.

This implies q = q′ = 0. Under all these assumptions the Hamiltonian in the center
of mass takes the form

H(r) = M + v(r). (2.47)

We can define the 4-vector P such that

P ν = (H,0). (2.48)

If we now perform a boost transformation defined by the velocity v = βû between
the two frames, we have that the 4-vector P will transform according to

P → P ′ = (H ′,P′) (2.49)

with

H ′ = γH,

P′ = βγHû,
(2.50)

where γ is defined in the usual way as γ = (1 − β2)− 1
2 .

Since P is a 4-vector it’s magnitude should be a Lorentz scalar, yielding

H2 = H ′2 − P′2, (2.51)
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which implies

H ′ =
√
H2 + P′2 = H

√
1 + P′2

H2 ≈ H

(
1 + P′2

2H2 − P′4

8H4

)
. (2.52)

In the last step of the previous equation we have expanded in powers of P′2/H2. We
are assuming that all the momenta are very much smaller than the rest mass of the
particles m. Since the leading term in the Hamiltonian H is M = 2m this justifies
the expansion. If we now assume that the potential energy v(r) is of the same order
of the non-relativistic kinetic energy p2/2m, we can treat it as an O(1/m) term.
With this additional condition, by inserting the explicit expression of H into the
previous equation and keeping only terms up to order 1/m3, we have

H ′ = H + P′2

2M − P′2

2M2 v(r) − P′4

8M3 +O

( 1
m4

)
. (2.53)

In the previous equation we can identify the second and fourth terms in the right
hand side as those coming from the kinetic contribution of the center of mass motion,
whereas the third term is a relativistic correction to the interaction potential that
depends on the total momentum of the interacting particles. We have still to express
the Hamiltonian H ′ in terms of the distance r′ in the boosted frame. Indeed we
notice that the interaction potential appearing in the previous equation is still
written in terms of the relative distance in the center of mass frame r, which is
related to that in the boosted frame through Lorentz contraction. Therefore if we
define the component of the vector r along the direction of the boost as ru ≡ r · û,
we have

ru = γr′
u. (2.54)

Since
γ = H ′

H
= 1 + P′2

2M2 +O

( 1
m3

)
, (2.55)

we have that
r ≈ r′ + P′2

2M2 (û · r′)û = r′ + 1
2M2 (P′ · r′)P′ (2.56)

Substituting into the expression for the potential we have

v(r) = v(r′) + 1
2M2 (P′ · r′)P′ · ∇v(r′) +O

( 1
m4

)
. (2.57)

Putting all the pieces together we finally have the expression for the Hamiltonian in
the boosted frame up to order 1/m3

H(P, r) = 2m+ P2

4m − P4

64m3 + v(r) − P2

8m2 v(r) + 1
8m2 P · rP · ∇v(r), (2.58)

where the prime indices have been suppressed in order to lighten the notation.
An additional contribution to the boost correction can be also provided by

Thomas precession, a purely relativistic effect which is related to the non-commutativity
of two non-collinear Lorentz boosts. The fact that the commutation relations between
different boosts doesn’t form a sub-algebra of the Lorentz group turns into the fact
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that the rest frame of a particle following a curved trajectory rotates. This rotation
will cause the precession of the spin of the particle. From classical mechanics we
know that the time derivatives of a vector in two reference frames which rotate with
respect to each other are related by

dS
dt

=
(
dS
dt

)′
+ ωT × S (2.59)

where the angular velocity of the rotating frame was shown by Thomas to be

ωT = −∇v(r) × P
4m2 (2.60)

up to order 1/m2. The Thomas precession potential for the first particle is given by

δv1
T P = s1 · ωT = 1

8m2 σ1 · P × ∇v(r). (2.61)

In the moving frame the two interacting particles have the same velocity but opposite
accelerations. Therefore the total Thomas potential of the couple will be

δvT P (P, r) = 1
8m2 (σ1 − σ2) · P × ∇v(r). (2.62)

In summary, what emerges from this first discussion is that for a given interaction
potential v(r) defined in the rest frame of two interacting particles, its generalization
to a generic reference frame involves the appearance of contributions depending
on the total momentum P = p1 + p2 of the interacting pair. Such terms can be
collected together into the correction δv(P, r).

2.3.2 Relativistic Hamiltonians

Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic
energies, two- and many-body interactions, and their boost corrections. The explicit
form can be written as

HR =
∑

i

√
m2

i + p2
i +

∑
i<j

[ṽij + δvij(Pij)] +
∑

i<j<k

[
Ṽijk + δVijk(Pijk)

]
(2.63)

where ṽij and Ṽijk label two- and three-body potentials in the rest frame of the
interacting particles. In such frames we have that

Pij = pi + pj = 0 (2.64)

and
Pijk = pi + pj + pk = 0. (2.65)

respectively. The terms δvij and δVijk are the aforementioned boost corrections and
are related to the motion of the center of mass of the interacting particles. These
corrections will therefore vanish in the particle center of mass frame yielding

δvij(Pij = 0) = 0,
δVijk(Pijk = 0) = 0.

(2.66)
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We have already seen how the meaning of the two-body boost correction can be
understood in terms of classical considerations. In this section we are going to review
their formal derivation obtained by just imposing the symmetry of the system under
the Poincarè group. In their pioneering works Krajcik and Foldy have derived such
corrections through an expansion in powers of v/c or alternatively P/m, showing
that they are defined to all orders in such an expansion. In the present discussion
we are going to review only the calculation up to the leading order P 2/m2, following
the approach of Ref. [69].

We’re not going to discuss the three-body boost correction δVijk because there
exist some arguments, based on exact calculation of light nuclei, according to which
this kind of correction should be much smaller than its two-body counterpart, and
could safely be neglected. A very heuristic argument confirming this point could
be that, since δvij is found to account for a very small fraction of the two-nucleon
potential energy, consequently the correction δVijk should account for a small part
of the three-body one. Additionally, since the ratio between three- and two- nucleon
interaction energies in light nuclei is tiny, the contribution of three-body boost
corrections should be negligible with respect to its two-body counterpart at nuclear
densities.

The potential ṽij is determined by the details of the interaction between particles
and should in principle embody some relativistic effects. In practical uses it is usually
obtained by fitting a given model upon the NN scattering data in their center of mass
rest frame and the relativistic effects are therefore buried into this fitting procedure.

In order to carry out the expression for the boost correction we are going to
impose relativistic covariance on a system of two interacting particles. As already
discussed before, our requirement of relativistic covariance means that our system
should be symmetric under the Poincarè group. According to the Wigner theorem
we can build up a unitary representation of the group by imposing the commutation
relation of the Poincarè algebra between the group generators

[P i, P j ] = [H,P i] = [J i, H] = 0,
[Ki, H] = iP i, [J i, J j ] = iϵijkJ

k,

[Ki, P j ] = iδijH, [J i,Ki] = iϵijkK
k,

[J i, P j ] = iϵijkP
k, [Ki,Kj ] = −iϵijkJ

k.

(2.67)

Let us consider two interacting particles with mass m and spin s. We can define the
generators of translations and rotations in the usual way as

P = p1 + p2, (2.68)
J = r1 × p1 + r2 × p2 + s1 + s2, (2.69)

which satisfy their commutation relations by construction. Then we can define

H = H0 +HI (2.70)

where H0 labels the Hamiltonian of two free particles, and HI contains all the
interaction terms. In order for the commutation relations to be satisfied we must
impose

[P i, HI ] = [J i, HI ] = 0, (2.71)
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therefore the interaction should be translationally and rotationally invariant. As we
introduce an interaction term in the Hamiltonian we have to modify also the boost
generator according to

K = K0 + KI (2.72)

with
[J i,Kj

I ] = iϵijkK
k
I , (2.73)

which tells us that KI is actually a vector. Moreover we have that KI has to satisfy

[Ki
0,K

j
I ] + [Ki

I ,K
j
0 ] + [Ki

I ,K
j
I ] = 0 (2.74)

[Ki
I , P

j ] = iHIδij (2.75)
[Ki

I , H0] = [HI ,K
i
0] + [HI ,K

i
I ]. (2.76)

At this point, since we are interested into relativistic corrections, we can expand H
and K in powers of 1/m2 and keep only the first terms. The expansions of H0 and
K0 yield

H0 = 2m+ 1
2m

(
p2

1 + p2
2

)
+O

( 1
m3

)
, (2.77)

and

K0 = tP + 2mR

+ 1
2m

[1
2
(
r1p

2
1 + p2

1r1 + r2p
2
2 + p2

2r2
)

− s1 × p1 − s2 × p2

]
+O

( 1
m3

)
.

(2.78)

We can expand HI according to

HI = v + δv + ... (2.79)

where we can assume that v is of order 1/m since in systems like nuclei the interaction
energy is about the same order as the non-relativistic kinetic energy. The correction
δv is of order 1/m3 and the ellipsis represents terms of order 1/m4 or higher. Finally
we also assume that the non-relativistic potential v is independent of P. At this
point we can impose the commutation relations (2.75) and (2.76) and keeping only
the leading terms we find

KI = vR +O

( 1
m3

)
(2.80)

and

2m[R, δv] = 1
2m

[(
p2

1 + p2
2

)
, vR

]
+ 1

4m
[(

r1p
2
1 + p2

1r1 + r2p
2
2 + p2

2r2
)

− σ1 × p1 − σ2 × p2
]
.

(2.81)

Evaluating the commutators one obtains the basic equation for δv

[R, δv] = − i

4m2 vP − 1
4m2 [rP · p, v] + 1

16m2 [(σ1 + σ2) × P, v]

+ 1
8m2 [(σ1 − σ2) × p, v],

(2.82)
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where p is the relative momentum. This equation can not determine δv uniquely,
since we can always write

δv = δv′ + δv(P) (2.83)

where δv′ commutes with R. In this respect we can therefore define

ṽ = v + δv′ + higher order terms independent of P. (2.84)

The quantity ṽ collects all the interaction terms that are independent of P i.e. it
represents the interaction in the center of mass frame embodying also relativistic
corrections. Conversely δv(P) represents the relativistic corrections related to the
motion of the center of mass of the interacting pair, and it can be derived by
Eq. (2.82) whose simplest solution can be written as

δv(P) = − P 2

8m2 ṽ + 1
8m2 [P · rP · ∇, ṽ] + 1

8m2 [(σ1 − σ2) × P · ∇, ṽ]. (2.85)

It is sufficient to use ṽ up to order 1/m to have δv(P) up to order 1/m3. If
the potential is an independent function of the spin of the two particles, we find a
simplified version of the previous equation

δv(P) = − P 2

8m2 v(r) + 1
8m2 P · rP · ∇v(r) + 1

8m2 (σ1 − σ2) · P × ∇v(r). (2.86)

We can immediately recognize how the previous equation coincides with the expres-
sion carried out in the previous section by only classical considerations. A further
simplification comes by neglecting the last term coming from Thomas precession.
Indeed it was shown from calculations of the binding energy of 3H and 4He that such
a contribution is smaller than the other two. Moreover the appearance of additional
terms, arising from the fact that the interaction potential could in principle depend
on the spin and relative momentum of the interacting particles, were proved to be
even smaller [102].

2.3.3 Relativistic corrections to meson exchange potential

A very instructive example in order to further understand the different contributions
of relativistic corrections, is provided by studying relativistic effects in meson
exchange potentials. Meson exchange potentials are derived from the non-relativistic
limit of an interaction Hamiltonian defined in the QFT framework. In this sense we
can consider relativistic corrections by taking into account higher order terms in the
non-relativistic expansion. Let us consider two fermions interacting through a scalar
boson field ϕ with mass µϕ, as described by the interaction Hamiltonian

HI = GSϕψ̄ψ. (2.87)

The invariant amplitude for a scattering process between two nucleons at leading
order, represented by the Feynman diagram of Fig. 2.7, can be written as

iM = G2
S ū1(p′

1)u1(p1) −1
q2 − µ2

ϕ + iϵ
ū2(p′

2)u2(p2), (2.88)
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Figure 2.7. Feynman diagram of one boson exchange process.

Where we have defined a 4-vector qµ = (ω,q), with

ω = E′
1 − E1 = E2 − E′

2,

q = p′
1 − p1 = p2 − p′

2.
(2.89)

It is also useful to define the relative momenta p and p′ according to

p = 1
2(p1 − p2),

p′ = 1
2(p′

1 − p′
2) = p + q.

(2.90)

Using the same arguments as in Appendix A we can relate the interaction
potential to the invariant amplitude M by means of

−iM = ⟨v(p,q,P)⟩ +O

( 1
m4

)
, (2.91)

providing we adjust the spinor normalization according to

ui(pi) →
√
m

Ei
ui(pi), (2.92)

with

ui(pi) =

√
Ei +m

2m


χi

σ · pi

Ei +m
χi

 . (2.93)

At this point we can expand the different contributions to the invariant amplitude
in powers of 1/m.

Since the leading term in ω is of order 1/m2, the propagator can be expressed as

1
ω2 − q2 − µ2

ϕ

= −1
q2 + µ2

ϕ

(
1 − ω2

q2 + µ2
ϕ

)−1

≈ −1
q2 + µ2

ϕ

(
1 + ω2

q2 + µ2
ϕ

)
. (2.94)

Moreover, the terms ūu gives a contribution of the kind

ūu = 1 +O

( 1
m2

)
, (2.95)
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therefore we can define the non-relativistic potential, which is the leading order term
in the expansion of −iM, as

v0(q) = − G2
S

q2 + µ2
ϕ

. (2.96)

By assuming v0(q) to be of order 1/m, we find that it is sufficient to write down the
expansion for the spinors only up to order 1/m2 in order to carry out the expression
of the potential v(p,q,P) up to order 1/m3.

Spinors normalized according to Eq. (2.92) give rise to

ui(pi) =
(

1 − p2
i

8m2

)
χi

σi · pi

2m χi

+O

( 1
m3

)
, (2.97)

whereas the final expression for the propagator yields

G2
S

−1
ω2 − q2 − µ2

ϕ

= v0(q)
[
1 + (P · q)2

4m2(q2 + µ2
ϕ)

]
+O

( 1
m4

)
, (2.98)

where we have substituted the explicit expression of ω

ω = (P · q)2

4m2 +O

( 1
m3

)
. (2.99)

Since χ†
iχi = 1, we have that

ūi(p′
i)ui(pi) =

(
1 − p2

i

8m2 − p′2
i

8m2

)(
1 − σi · p′

i σi · pi

4m2

)
. (2.100)

By using the commutation relations of the Pauli matrices and after some algebraic
manipulations we obtain that the spinor sector contributes to the invariant amplitude
as

ū1(p′
1)u1(p1)ū2(p′

2)u2(p2) = 1 − (p + p′)2

4m2 − i(σ1 + σ2) · q × p
4m2

− P2

4m2 − i(σ1 − σ2) · P × q
8m2 +O

( 1
m3

)
.

(2.101)

Putting all the pieces together we can finally write the interaction potential up
to order 1/m3 as

v(p,q,P) = ṽ(p,q) + δv(q,P), (2.102)

with
ṽ(p,q) = v0(q) −

[
(p + p′)2

4m2 + i(σ1 + σ2) · q × p
4m2

]
v0(q), (2.103)

and

δv(q,P) =
[
− P2

4m2 + (P · q)2

4m2(q2 + µ2
ϕ)

− i(σ1 − σ2) · P × q
8m2

]
v0(q). (2.104)
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In Eq. (2.102) we have grouped together the terms depending on the total momentum
P in order to underline the different nature of relativistic corrections. In accordance
with what discussed in the previous section, the first term ṽ(p,q), accounts for
the interaction potential in the center-of-mass frame, and it is written as the non-
relativistic potential v0 plus some corrections that are independent of P. These
corrections should in principle depend on the nature of the interaction and could not
be inferred by general considerations. Conversely the term δv(q,P) represents the
widely discussed boost corrections and embodies all the effects related to motion of
the full two-particle system. Indeed it could have been inferred by simply applying
Eq. (2.86), which is related to Eq. (2.104) through a Fourier transform. Relativistic
corrections to NN potential in its center-of-mass frame had been studied by Forest
et al in Ref. [71]. In this work the authors had shown how the introduction of such
effects result to be negligible with respect to the contribution coming from boost
corrections.

2.4 Chiral potentials
A valuable alternative to phenomenological Hamiltonians is provided by a class of
potentials derived within the framework of Chiral Effective Field Theory (χEFT).
This approach was originally developed by Weinberg in 1990s [103], who proposed to
derive nuclear interactions from an effective field theory where the relevant degrees of
freedom are low momentum nucleons and pions, whose interactions are constrained
by the chiral symmetry of strong interactions. Chiral symmetry is an approximated
symmetry of nature, both explicitly and spontaneously broken. It accounts for the
symmetry of massless quarks under the SU(2)L ⊗ SU(2)R symmetry group.

The basic idea of χEFT is to build up the most general Lagrangian, where the
chosen degrees of freedom are pions an massless nucleons, symmetric under the group
SU(2)L ⊗ SU(2)R, and compatible with all the other basic symmetries, such as
Lorentz invariance, parity conservation and baryon and lepton number conservation.
The mass of the nucleons appears as a result of the spontaneous symmetry breaking
and the pions can be identified with the Goldstone bosons of the model. Within this
theory the interaction between nucleons occurs only by pion exchanges, accounting
for long- and intermediate-range processes. All the heavier degrees of freedom are
integrated out in contact terms, in a similar way to what happens in the Fermi
theory of weak interactions with respect to the W and Z bosons. These contact
interactions are responsible for the short range behavior of nuclear interactions, and
their strength depends on unknown low-energy constants (LECs), to be determined
by fitting nuclear data. Being an effective theory the Lagrangian potentially contains
an infinite number of terms and must be truncated using a given power-counting
scheme. Within the approach proposed by Weinberg, an expansion in powers of a
typical momentum scale p, over a breakdown energy scale Λb is performed. The
chiral Lagrangian can be therefore written as

L = L(0) +
(
p

Λb

)2
L(2) +

(
p

Λb

)3
L(3) + . . . (2.105)

The breakdown scale can be identified with the typical energy scale where the
occurrence of heavier degrees of freedom can no longer be accounted by contact
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Figure 2.8. Chiral contributions to NN and NNN interactions based on Weinberg power
counting scheme. The figure is taken from Ref [104].

interactions, and they should be explicitly considered within the theory. For this
reason this Λb is usually set ∼ 1 GeV, a typical scale where the exchange of heavier
mesons, such as the ρ could play a significant role in nuclear interactions.

First derived chiral interactions were expressed in momentum space, and included
only nucleons and pions. State-of-the-art models have been extended to include also
∆ degrees of freedom, and a consistent procedure has been developed in order to
obtain coordinate space representations, needed for the employment in Quantum
Monte Carlo (QMC) calculations. See Ref [104] and references therein for an
extensive review on this topic. In Fig. 2.8, taken from Ref [104], we can see how the
Feynman diagrams, contributing to different orders in the chiral Lagrangian, are
organized according to the Weinberg power counting scheme, both in the ∆ and
∆-less theories.

Chiral potentials have proved to be extremely accurate in reproducing the binding
energies and charge radii of nuclei with mass number A ≤ 16, as well as the saturation
properties of SNM. Moreover, in recent years they have also benefited from a great
attention in the context of neutron star structure [105,106].

The main and remarkable advantage of χEFT lies in the capability of the
formalism to carry out two- and many-nucleon interaction potentials in a fully
consistent fashion. Moreover it also allows for improving the potential by adding
higher order terms and to estimate the theoretical uncertainty. However, being
based on a low momentum expansion its applicability is inherently limited when
it comes to describe high density nuclear matter. Indeed recent analysis either
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based on nuclear systematics, such as the analysis of NN scattering phase shifts and
deuteron momentum distribution [63], or by astrophysical constraints [64], suggest
that their applicability is limited up to ϱ ∼ 2ϱ0. However, because of the possibility
to estimate the theoretical uncertainty χEFT has proved to be very powerful in
further constraint the EOS of nuclear matter at supranuclear. In several works,
calculations of low density properties (up to 2ϱ0) performed within χEFT, with their
uncertainty, have been used in combination with astrophysical data to constraint
the free space of the nuclear matter EOS at the density relevant for NS physics.
In particular it was shown how this kind of inference benefits with the addition of
χEFT calculations to the employed dataset [43–45,91].
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Chapter 3

Nuclear Matter Theory

In the previous chapter we discussed realistic expressions for the nuclear Hamiltonian.
We introduced different ways to carry out an interaction potential suited to describe
nucleon-nucleon scattering and few nucleon systems. The main goal of the theory
of nuclear matter is the development of a complete framework able to carry out
predictions of systems with an arbitrary number of constituents, starting from such
a nuclear Hamiltonian. This means practically to solve the many-body Schrödiger
equation

H|Ψn⟩ = En|Ψn⟩, (3.1)
which involves severe difficulties even for the determination of the ground state
energy E0. In order to circumvent the difficulties arising from the non-perturbative
behavior of the nuclear potential, we have to rely upon approximated techniques.
The first proposed approach, originally developed by K. Brueckner in the 1950s, is
based on the replacement of the bare nucleon-nucleon potential with a well-behaved
effective interaction, describing NN scattering in the nuclear medium and suitable
to carry out calculations in perturbation theory [59,107].

A different approach relies on exploiting the variational principle associated
with the Schrödinger equation. It is known that the ground state of any quantum
mechanical system is a lower bound for the energy expectation value over any other
quantum state. Indeed every quantum state |ψ⟩ can always be expressed as a linear
combination of energy eigenstates

|ψ⟩ =
∑

n

⟨En|ψ⟩|En⟩, (3.2)

yielding
⟨ψ|H|ψ⟩

⟨ψ|ψ⟩
=
∑

nEn|⟨En|ψ⟩|2∑
n |⟨En|ψ⟩|2

≥ E0
∑

n |⟨En|ψ⟩|2∑
n |⟨En|ψ⟩|2

= E0 (3.3)

Therefore we can define a trial ground state |ΨT ⟩ such that

EV = ⟨ΨT |H|ΨT ⟩
⟨ΨT |ΨT ⟩

≥ ⟨Ψ0|H|Ψ0⟩, (3.4)

and performing a functional minimization of the variational energy EV we can ideally
find a good approximation for the ground state |Ψ0⟩. In the following sections we
will see how to build up a reliable variational state by means of the Correlated Basis
Function (CBF) approach.
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3.1 Correlated Basis Function approach
In order to find a good choice for the trial ground state |ΨT ⟩ we can define a
correlation operator F such that

|ΨT ⟩ = F|Φ0⟩, (3.5)

with |Φ0⟩ labeling the ground state of a nucleon Fermi gas. Realistic correlation
operators are build up as a symmetric product of pair correlation operators

F = S
∏
i<j

Fij , (3.6)

where Fij is usually defined resembling the operatorial structure of the NN potential

Fij =
∑

p

fp(rij)Op
ij . (3.7)

The symmetrization operator S is necessary in order to obtain a trial ground state
that is anti-symmetric under the exchange of different particles. Indeed, since in
general we have that [Oij , Ojk] ̸= 0, the product of more operators acting on different
pairs could be not symmetric under particle exchanges. At this point we can in
principle determine the radial pair correlations fp(r), thanks to the variational
principle

δEV

δfp
= 0. (3.8)

Nevertheless the computation of the expectation value of the many-body Hamiltonian
on the correlated state |ΨT ⟩, as well as its normalization, involves 3A−dimensional
integrations that are practically impossible already at the level of nuclei like carbon
and oxygen. In order to overcome the difficulties associated with the large number
of degrees of freedom we need to rely on some approximations. The short range
nature of the nuclear interaction makes possible the so-called cluster expansion of
the expectation values. Roughly speaking, since the correlation operator accounts
for interaction effects, it is reasonable to think that when we move a subset of
particles very far away from the others, the two ’clusters’ will be uncorrelated among
themselves. Mathematically this means that if we move m nucleons, labeled by
i1...im, very far away from the remaining A−m, the correlation operator F(1...A)
factorizes according to

F(1...A) = Fm(i1...im)FA−m(im...iA). (3.9)

The above property is referred to as the cluster decomposition property. Without
loss of generality we can therefore impose F1 ≡ 1 and F2(i, j) ≡ Fij with

lim
rij→∞

Fij = 1. (3.10)

3.1.1 Cluster expansion

The cluster expansion of the matrix elements over a correlated state can be seen
as reminiscent of the cluster expansion of the partition function of a classical fluid.
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Following the treatment of J. Clark in Ref [108] we can define a partition function
G(β) as

G(β) = log I(β) (3.11)

with
I(β) = ⟨Ψ|eβ(H−TF )|Ψ⟩. (3.12)

These definition allow us to write the energy of the system in the state |Ψ⟩ as

E = TF + ∂

∂β
G(β)

∣∣∣∣
β=0

. (3.13)

We have defined I(β) as a normalization integral of the full system of A particles.
However, by invoking the cluster decomposition property we can also define the
normalization integral for any sub sustem on an arbitrary number of n < A particles.
We can therefore write

Ii(β) = ⟨i|F †
1 (1) eβ(t1−ϵF

1 )F1(1)|i⟩

Iij(β) = ⟨ij|F †
2 (12)eβ(t1+t2+v12−ϵF

1 −ϵF
2 )F2(12)|ij⟩a

...
I1...A(β) = ⟨Φ|F†eβ(H−TF )F|Φ⟩,

(3.14)

where we have labeled with ti the kinetic energy operator of the particle i, whereas
ϵFi labels the kinetic energy of the particle i in the Fermi gas approximation. We
can see that, in the approximation of weak interaction and weak correlations, we
can approximate Iij ≈ IiIj . Since we are not interested in this scenario, we need to
correct the product of the one particle integrals with a term that depends on the
pair correlation effects. This correction can be implemented in two ways, either by
an additive term

Iij = IiIj +Xij , (3.15)

or with a moltiplicative factor
Iij = IiIjYij . (3.16)

The second prescription exhibits a very powerful property. Since we know that
F1 = 1, it is straightforward that Ii = 1 and Iij = Yij . With these definition the
three-particle normalization integral Iijk can be written as

Iijk(β) = YijYjkYikYijk. (3.17)

Therefore for the A-particle term we can write

I(β) =
∏
i<j

Yij

∏
i<j<k

Yijk · · · Y1...A. (3.18)

Thanks to the previous equation we obtain the following expression for the partition
function G(β)

G(β) = log I(β) =
∑
i<j

log Yij +
∑

i<j<k

log Yijk + · · · + log Y1...A (3.19)
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By combining the previous equation with Eq. (3.13) we can write the energy of
an A-body system as a sum of terms involving an increasing number of connected
particles

E = TF + (∆E)2 + (∆E)3 + · · · + (∆E)A. (3.20)

This is the very nature of cluster expansion, i.e. the possibility of expanding an
observable of an N−body system into a sum of terms describing the behavior of
subsystems (clusters) involving an increasing number of correlated bodies.

3.2 Jastrow variational approach

The main features of cluster expansion are better understood within the Jastrow
variational approach, which correspond to a simpler choice of the correlation operator.
Let us take a correlated state of the form

|Ψ⟩ = F |Φ0⟩ ≡
∏
i<j

f(rij)|Φ0⟩. (3.21)

In the previous equation |Φ0⟩ is the ground state of a nucleon Fermi gas, that can be
expressed as a Slater determinant of all the single particle states ϕni(xi) according
to

|Φ0⟩ = 1√
A!

det

∣∣∣∣∣∣∣∣∣∣
ϕn1(x1) ϕn1(x2) · · · ϕn1(xA)
ϕn2(x1) ϕn2(x2) · · · ϕn2(xA)

...
... . . . ...

ϕnA(x1) ϕnA(x2) · · · ϕnA(xA)

∣∣∣∣∣∣∣∣∣∣
, (3.22)

where the index ni labels the set of all quantum numbers of a single particle state,
whereas xi collects all the degrees of freedom of such a quantum wavefunction, both
continuous and discrete. If we enclose the system in a finite volume V we can write

ϕna(xi) = 1√
V
e−ika·riχaηa (3.23)

with χa and ηa being respectively the spinor and isospinor of the particle i in the
a-th orbital. Within the variable xi are collected the variable ri together with the
discrete indices of the two spinors. In the following we will employ the symbolic
writings ∫

dxi ≡ Tri

∫
dri, (3.24)

where Tri indicates the trace over the spin and isospin indices associated with the
i-th particle. With these definitions we can see what happens to the normalization
of the variational state

⟨Ψ|Ψ⟩ = ⟨Φ0|
∏
i<j

f2(rij)|Φ0⟩. (3.25)

By defining the quantity
h(rij) = f2(rij) − 1 (3.26)
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we have
⟨Ψ|Ψ⟩ =⟨Φ0|

∏
i<j

[1 + h(rij)]|Φ0⟩

=⟨Φ0|Φ0⟩ +
∑
i<j

⟨Φ0|X(2)(ri, rj)|Φ0⟩ +
∑

i<j<k

⟨Φ0|X(3)(ri, rj , rk)|Φ0⟩ + ...

(3.27)

From the previous expression it is clear that the normalization of the correlated state
can be expressed as a sum of terms involving an increasing number of correlated
particles. Because of the symmetry properties of the ground state Φ0 the previous
expression can be written as

⟨Ψ|Ψ⟩ = 1 +
(
A

2

)
⟨Φ0|X(2)(r1, r2)|Φ0⟩ +

(
A

3

)
⟨Φ0|X(3)(r1, r2, r3)|Φ0⟩ + ... (3.28)

with
X(2)(r1, r2) = h(r12) (3.29)

and
X(3)(r1, r2, r3) =h(r12)h(r13) + h(r12)h(r23) + h(r23)h(r13)

+ h(r12)h(r13)h(r23).
(3.30)

We can define a diagrammatic representation which helps to visualize the expan-
sion of Eq. (3.28)

⟨Ψ|Ψ⟩ = 1 + �

+ � + � + � + � + ...

(3.31)

From the previous equations we have seen that it’s possible to express any
amplitude between the correlated state |Ψ⟩ as a sum of terms involving an increasing
number of correlated particles, named clusters. Moreover we have mentioned that in
principle we could derive a diagrammatic representation for each term of such an
expansion. Indeed it is possible to carry out some general rules, through which we
can write down the contribution of different cluster terms starting by their pictorical
representation. In the following we are going to demonstrate these rules.

Let’s consider the expectation value of an Hamiltonian H

H =
∑

i

p2
i

2m +
∑
i<j

v(rij) (3.32)

over the correlated state |Ψ⟩. Since the Hamiltonian can be written as a kinetic part
T plus a potential part V , we will discuss these two contributions separately. Let’s
start with the potential contribution. We can write it as

⟨V ⟩ = ⟨Φ0|F †V F |Φ0⟩
⟨Φ0|F †F |Φ0⟩

= N
D
. (3.33)
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We are going to separately discuss the contribution of the numerator N and the
denominator D.

N = ⟨Φ0|F †V F |Φ0⟩ =
∑
i<j

⟨Φ0|F †v(rij)F |Φ0⟩ = A(A− 1)
2 ⟨Φ0|F †v(r12)F |Φ0⟩.

(3.34)
By explicitly writing the internal product we have

N = A(A− 1)
2

∫
dr1dr2v(r12)Tr1Tr2

∫
dx3 · · · dxAF

2|Φ0|2. (3.35)

The quantity F 2 can be written as

F 2 =
∏
i<j

f2(rij) = f2(r12)
∏

i<j ̸=1,2
1 + h(rij), (3.36)

which allows to move the contribution coming from f2(r12) out of the integral over
x3...xA. We notice that F 2 can be now expressed as

F 2 = f2(r12)

1 +
∑

i ̸=1,2
X(3)(r1, r2; ri) +

∑
i<j ̸=1,2

X(4)(r1, r2; ri, rj) + · · ·

 . (3.37)

We define as active particles the ones appearing in the interaction potential, i.e.
those labeled by the indices 1 and 2 in the previous equations. The other A − 2
particles will be referred to as background particles. With this notation the term
X(n)(r1, r2; ri1 , ..., rin−2), with 3 ≤ n ≤ A involves all the contributions arising by the
correlations between either the active particles and the remaining n− 2 background
particles, or among the background particles alone. By substituting this expression
for the F 2 operator and exploiting the symmetry properties of the Fermi gas ground
state function, we can write

N =1
2

∫
dr1dr2v(r12)f2(r12)Tr1Tr2

[
A(A− 1)

∫
dx3 · · · dxA|Φ0|2

+
A∑

n=3

(
A

n− 2

)∫
dx3 · · · dxnX

(n)(r1, r2; r3, . . . , rn)
∫
dxn+1 · · · dxA|Φ0|2

]
.

(3.38)

We can define the n-body distribution function associated with a nucleon Fermi
gas as

gF G
n (r1 . . . rn) ≡ A!

(A− n)!ϱ
−n Tr1 · · · Trn

∫
dxn+1 · · · dxA|Φ0|2. (3.39)

With the above definition, our expression for the numerator of the potential energy
contribution can be written as

N =1
2

∫
dr1dr2v(r12)f2(r12)

[
ϱ2gF G

2 (r1, r2)

+
A∑

n=3

ϱn

(n− 2)!

∫
dr3 · · · drnX

(n)(r1, r2; r3, . . . , rn)gF G
n (r1, . . . , rn)

]
.

(3.40)
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In the previous equation we can recognize the cluster decomposition of the numerator.
Indeed we have written its contribution as a sum of terms involving an increasing
number n of correlated particles. Moreover we can see that the general n-th term of
this expansion involves two different contributions, coming from the X(n) and the gF G

n

factor respectively. This underlines the different nature of the correlations involved
in a system of fermions. In fact while X(n) accounts for dynamical correlations
through the cluster expansion of the correlation operator F 2, the gF G

n is responsible
for statistical correlations arising from the Pauli exclusion principle. This kind of
correlations are present also in a non-interactive Fermi gas.

In order to carry out the diagrammatic rules we have to look in the eyes the
Fermi distribution function gF G

n . But before doing this we are going to qualitatively
introduce an important feature of diagrammatic expansions. This property is the
cancellation of disconnected diagrams between the denominator and the numerator.
Following a similar procedure as what we did for N , we can write the denominator
as

D = 1 +
A∑

n=2

ϱn

n!

∫
dr1 · · · drnX

(n)(r1, . . . , rn)gF G
n (r1, . . . , rn), (3.41)

with X(2) and X(3) defined as in Eqs. (3.29) and (3.30). For the purpose of this qual-
itative discussion let’s consider gF G

n = 1. We can define a pictorical representation
for N and D as

N = � + � + � + � + · · · (3.42)

and

D = 1 + � + � + · · · . (3.43)

In the previous diagrams we have indicated with empty circles the active par-
ticles and with full circles the background particles. The dashed lines are referred
to elementary pair correlations h(rij) and the bold line stands for the operator
v(r12)f2(r12), connecting the active particles. We underline that for pedagogical
reasons we have not included all the three and four body terms, but just some
representative examples. We can see that the numerator can be factorized as

N =

� +� +� + · · ·


1 +� + · · ·

 (3.44)

explicitly showing that the second factor can be simplified with the denominator,
leading to an expression involving only connected diagrams

N
D

=� +� +� + · · · . (3.45)
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3.2.1 Pair distribution function

The expansion we have carried out for the expectation value of the potential energy,
is completely independent of the radial shape of the particular NN potential. Indeed
we could have derived it in terms of the pair distribution function

p(2)(r1, r2) = A(A− 1)Tr1Tr2
∫
dx3 · · · dxA|Ψ(x1 . . . xA)|2∫

dx1 · · · dxA|Ψ(x1 . . . xA)|2 , (3.46)

which expresses the probability to find two particles in the position r1 and r2. It’s
easy to see that we can write the expectation value of the operator V =

∑
i<j v(rij)

as
⟨V ⟩ = 1

2

∫
dr1dr2v(r12)p(2)(r1, r2). (3.47)

By looking at the expressions we have previously derived for N and D, and comparing
them with Eq. (3.47), we can write

Np =ϱ2f2(r12)
[
gF G

2 (r1, r2)

+
A∑

n=3

ϱn−2

(n− 2)!

∫
dr3 · · · drnX

(n)(r1, r2; r3, . . . , rn)gF G
n (r1, . . . , rn)

]
.

(3.48)

and

Dp = 1 +
A∑

n=2

ϱn

n!

∫
dr1 · · · drnX

(n)(r1, . . . , rn)gF G
n (r1, . . . , rn), (3.49)

where we have labeled as Np and Dp respectively the numerator and the denominator
appearing in the definition of p(2)(r1, r2) (obviously D ≡ Dp).

In a translationally invariant system the pair distribution function will depend
only on the relative distance between the two particle, therefore we can define a
quantity g2(r) with r = |r1 − r2| such that

p(2)(r1, r2) = ϱ2g2(r). (3.50)

The distribution g2(r) satisfies the following normalization condition

ϱ

∫
dr [g2(r) − 1] = −1. (3.51)

The previous identity can be easily obtained by means of the definition of the one
particle distribution function

p(1)(r1) = 1
A− 1

∫
dr2p

(2)(r1, r2), (3.52)

and its normalization
1
A

∫
dr1p

(1)(r1) = 1. (3.53)
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3.2.2 Statistical correlations

In order to derive the set of diagrammatic rules governing our expansion we still
need to analyze the quantity gF G

n (r1, . . . , rn). First of all we are going to recall one
property of the Slater determinant, according to which we can always express a
function Φ0 defined as in Eq. (3.22) in the form

Φ0(x1 . . . xA) =

√
(A− k + 1)!

A!

A∑
n1<···<nk=1

(−1)n1+···+nk+1A [ϕn1(x1) · · ·ϕnk
(xk)]

× Φm̸=n1...nk
0 (xk+1 . . . xA).

(3.54)

In the previous equation the operator A implements the antisymmetrization over
the single particle states ϕni , whereas the quantity Φm̸=n1...nk

0 stands for a Slater
determinant of A − k single particle states, where we have excluded the orbitals
{n1, . . . , nk} from the set ni = {1, . . . , A}. Thanks to this property, together with
the orthogonality of the single particle wave functions, we can write

gF G
n (r1, . . . , rn) = ϱ−n

∑
n1,...,nn

Tr1 · · · Trnϕ
∗
n1(x1) · · ·ϕ∗

nn
(xn)A [ϕn1(x1) · · ·ϕnn(xn)] .

(3.55)
By tracing over the spinorial indices and summing over all the spin and isospin
quantum states we can write

gF G
n (r1, . . . , rn) = νn

ϱn
V −n

∑
k1,...,kn<|kF |

eik1·r1 · · · eikn·rnA
[
e−ik1·r1 · · · e−ikn·rn

]
.

(3.56)
The antisymmetrization operator can be written as a series of terms involving

an increasing number of combinations of pair-exchange operators P̂ij , as

A = 1 −
∑
i<j

P̂ij +
∑

i<j<k

P̂ijP̂jk + P̂ikP̂jk + · · · . (3.57)

We recall that the exchange operator is defined as

P̂ij |ki⟩|kj⟩ = |kj⟩|ki⟩. (3.58)

In the wave function representation, the pair exchange operator acting over two
momentum eigenstates with degeneracy ν, can be written as

P̂ij = 1
ν
ei(ki−kj)·rij . (3.59)

Finally we can define the Slater function l(kF rij) according to

l(kF rij) = ν

ϱ

∑
k<|kK |

1
V
eik·(ri−rj), (3.60)

with
l(x) = 3

(sin x− x cosx
x3

)
. (3.61)
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The identity in Eq. (3.60) can be easily demonstrated by means of the substitution
1
V

∑
k<|kF |

→ 1
(2π)3

∫
k<|kF |

dk. (3.62)

With all these definition it’s easy to believe that the contribution of the Fermi
distribution function to the n-body cluster term will involve a sum of an increasing
number of Slater functions

gF
n = 1 − 1

ν

n∑
i<j

l2(kF rij) +
n∑

i<j<k

2
ν2 l(kF rij)l(kF rjk)l(kF rik) + · · · . (3.63)

By applying the former properties we can easily carry out the expression for the
Fermi distribution function at two- and three-body cluster level as

gF G
2 (r12) = 1 − 1

ν
l2(kF r12), (3.64)

and

gF G
3 (r12, r13, r23) =1 − 1

ν
l2(kF r12) − 1

ν
l2(kF r13) − 1

ν
l2(kF r23)

+ 2
ν2 l(kF r12)l(kF r23)l(kF r13).

(3.65)

We can define a diagrammatic representation also for these statistical correlations

�
1 2

= −1
ν
l2(kF r12) (3.66)

�
3

1 2
= 2
ν2 l(kF r12)l(kF r23)l(kF r13). (3.67)

3.2.3 Diagrammatic rules

By putting together all the things we have introduced so far, we can finally write
down a series of diagrammatic rules that can be used to express each contribution
in the cluster expansion of the numerator and denominator of the pair distribution
function.

• Each diagram contains as much vertices as the order n of the cluster term.
These vertices can be connected by both dynamical and statistical correlations.
In the numerator expansion, open circles labels the active particles, whereas
filled circles are associated to the background ones. To each background
particle i is associated an integral over the coordinate ri contributing as a
factor ϱ.
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• A dashed line between vertices i and j represents dynamical correlations h(rij).
Dynamical correlations cannot be superimposed.

• Solid oriented lines are associated with statistical correlations, and contribute
as a factor l(kF rij)/ν. Statistical lines appear only in closed loops and such
loops cannot have a common vertex.

• Statistical loops between two particles contribute as a factor l2(kF rij)/ν,
whereas loops involving more than two particles are multiplied by a factor
−2ν.

• Vertices associated with background particles must be reached by at least one
dynamical correlation line.

In the following we can see two examples of diagrams contributing to Np

�
3

1 2
=h(r12)

[
− l(kF r12)

ν

]
(−2ν)

× ϱ

∫
dr3h(r13)

[
− l(kF r13)

ν

] [
− l(kF r23)

ν

]
(3.68)

�
3

1 2
=ϱh(r12)

∫
dr3h(r13)

[
− l2(kF r13)

ν

]
. (3.69)

For comparison in Fig 3.1 we can see two forbidden diagrams. Fig 3.1 (a) is not
allowed because there are two loops sharing a common vertex, whereas in diagram (b)
we have a background particle that is not reached by any dashed line.

As a final remark let’s discuss what happens to the combinatorial coefficients
multiplying each cluster term, respectively 1/(n− 2)! for the numerator and 1/n! for
the denominator. These factors account for diagrams that are topologically equal,
but differing only by permutations of the n− 2 background particles. In Fig. 3.2 we
can see two diagrams of this kind. We can account for this degeneracy by taking
only one of them without any prefactor. On the other hand a prefactor is needed
when considering diagrams that are invariant under the exchange of background
particle indices. This is the case of the diagram in Eq. (3.70) where we have put a
prefactor s−1 with s = 2 accounting for the symmetry under the exchange 3 ⇌ 4



66 3. Nuclear Matter Theory

Figure 3.1. Two diagrams that are forbidden and therefore do not contribute to the
diagrammatic expansion.

Figure 3.2. Two cluster diagrams with the same topology yielding identical cluster
contributions

�
43

1 2
= 1

2ϱ
2
∫
dr3dr4h(r13)h(r14)h(r23)h(r23)h(r24). (3.70)

Diagrams in which from each vertex we can reach any others by following a
series of correlation lines, are said to be linked, Fig. 3.3 (a). Otherwise they are
called unlinked diagrams, Fig. 3.3 (b). Finally diagrams in which the integrals
over background particles can be factorized are said to be reducibles. Now we can
formally demonstrate that all unlinked diagrams are simplified out between the
numerator and denominator in the cluster expansion. Indeed we can always write
the numerator Np as a sum of diagrams expressed as the product between linked
and unlinked sub-diagrams

Np =
∑

n<m

Ln × Um−n, (3.71)

where we have labeled with Ln the sum over all linked diagrams involving n particles,
and with Um−n the sum over all the unlinked ones involving n−m particles. The
set of unliked diagrams is defined in such a way that Um−n = 0 for m < n, yielding

∑
n<m

Ln Um−n =
A∑

m=2

m∑
n=2

Ln Um−n =
A∑

n=2
Ln

A∑
m=n

Um−n =
A∑

n=2
Ln

A−n∑
m=0

Um−n. (3.72)
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At this point we can notice that the denominator can be expressed as

Dp =
A∑

m=0
Um, (3.73)

therefore in the limit A → ∞ we have

Np

Dp
=
∑∞

n=2 Ln
∑∞

m=0 Um∑∞
m=0 Um

=
∞∑

n=2
Ln. (3.74)

The above demonstration, that holds in general for a system of an infinite number
of constituents, is still valid in the case of a system with a finite number of fermions.
Indeed thanks to a property of the Fermi gas distribution function, according to
which

gF G
n = 0 for n > A, (3.75)

we can extend the summations from A to ∞ without necessarily taking into account
an infinite number of constituents. Because of this cancellation property we can
finally write the general expression for the pair distribution function

g2(r12) = f2(r12)
[
gF G

2 (r12) +
∑
n>2

X
(n)
L (r1, r2)

]
, (3.76)

where the term X
(n)
L indicates the sum of all linked cluster diagrams involving n par-

ticles. The cancellation of the unliked diagrams is a general feature of diagrammatic
expansions, and continues to hold even in the case of spin and isospin dependent
correlations.

Figure 3.3. Here we can see an example of linked (a) and unlinked (b) cluster diagrams.

3.2.4 Kinetic energy

The expectation value of the kinetic energy on the correlated ground state yields a
contribution

⟨T ⟩ =⟨Φ0|F †TF |Φ0⟩
⟨Φ0|F 2|Φ0⟩

= 1
N (Ψ)

(
− 1

2m

)∑
i

∫
dx1 · · · dxAΦ∗

0(x1 . . . xA)F †∇2
iFΦ0(x1 . . . xA), (3.77)
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where we have indicated as N (ΨT ) the normalization of the variational state. Because
of the symmetry of the trial ground state we have that

A∑
i=1

⟨Ψ|∇2
i |Ψ⟩ = A⟨Ψ|∇2

1|Ψ⟩. (3.78)

Since we have that

∇2
i (FΦ0) = 2∇iF · ∇iΦ0 + (∇2

iF )Φ0 + F∇2
i Φ0. (3.79)

the kinetic energy contribution can be easily rewritten as

⟨T ⟩ ≡ TP B = TF − 1
2m

1
N (Ψ)

∑
i

∫
dx1 · · · dxAΦ∗

0F
†
(
∇2

iF + 2∇iF · ∇i

)
Φ0,

(3.80)
where we have used the identity

− 1
2m

∑
i

⟨Φ0|F 2∇2
i |Φ0⟩ = N (Ψ)TF . (3.81)

The subscript PB in Eq. (3.80) stands for Pandharipande-Bethe from Ref. [109].
Indeed there exist other ways to express the kinetic energy contribution, which
are related to the PB representation throughout an integration by parts. These
expressions are in principle equivalent, but they will produce different contributions
at a finite order in the cluster expansion. The Clark-Whesthaus (CW) [110] rep-
resentation can be carried out integrating by parts the contribution coming from
∇2

iFΦ0 + ∇iF · ∇iΦ0 and exploiting the identity∑
i

[
(∇iΦ∗

0) · F † (∇iF ) Φ0 − Φ∗
0(∇iF

†)F · ∇iΦ0
]

= 0, (3.82)

yielding

TCW = TF + 1
2m

1
N (Ψ)

∑
i

∫
dx1 · · · dxAΦ∗

0(∇iF
†) · (∇iF ) Φ0. (3.83)

Finally we report also the Jackson-Feenberg (JF) expression whose derivation does
not involve any additional difficulty

TJF = − 1
4m

1
N (Ψ)

∑
i

∫
dx1 · · · dxA

[
Φ∗

0F
†(∇2

iFΦ0)

−2(∇iΦ∗F †) · (∇iFΦ0) + (∇2
i Φ∗

0F
†)FΦ0

]
.

(3.84)

In the Jastrow case, where the correlation operator is given by

F =
∏
i<j

f(rij) (3.85)

we have that
∇iF =

∑
j ̸=i

∇if(rij)
f(rij) F. (3.86)
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In the CW expression of the kinetic energy we have

∇iF · ∇iF =F 2∑
k ̸=i

∇if(rik)
f(rik) ·

∑
j ̸=i

∇if(rij)
f(rij)

= F 2

∑
j ̸=i

∇if(rij) · ∇if(rij)
f2(rij) + 2

∑
j<k ̸=i

∇if(rij) · ∇if(rik)
f(rij)f(rik)

 .
(3.87)

Summing over i and exploiting
∑

i,j ̸=i = 2
∑

i<j we have

1
2m

∑
i

∇iF · ∇iF = F 2∑
i<j

T
(2)
ij + F 2 ∑

i<j<k

T
(3)
ijk (3.88)

with
T

(2)
ij = 1

m

[
∇if(rij) · ∇if(rij)

f2(rij)

]
(3.89)

and
T

(3)
ijk = 2

m

[
∇if(rij) · ∇if(rik)

f(rij)f(rik)

]
. (3.90)

Equation (3.88) shows that the kinetic energy contribution can be expressed as
the sum of a two- and a three-body operators, T (2)

ij and T
(3)
ijk respectively, whose

cluster expansion can be obtained by applying the diagrammatic rules we have
discussed in the previous section. Indeed, collecting together the two-body operators
in the Hamiltonian, we can define an effective interaction as

w(r) = 1
m

[∇f(r)
f(r)

]2
+ v(r). (3.91)

The expectation value of w(r) over the correlated ground state can be written in
term of the pair distribution function g2(r) according to Eqs. (3.47),(3.50) as

1
A

∑
i<j

⟨wij⟩ = ϱ

2

∫
drw(r)g2(r), (3.92)

with wij ≡ w(rij). On the other hand, evaluating the expectation value of the
operator T (3)

ijk requires the introduction of a three-body distribution function, whose
definition does not involve any conceptual difficulty beyond the discussion of the
previous section.

3.2.5 Fermi Hypernetted Chain summation scheme

The Jastrow variational approach, used in combination with central spin-isospin
independent potentials, has been applied to obtain low order approximation of the
nuclear matter ground state. Unfortunately the uncostrained minimization of the
variational energy turns out to be unbounded from below when computed at any
finite order in the cluster expansion. In order to circumvent this problem, some
constrained minimization procedures have been attempted, for example by imposing
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the additional requirement for the pair distribution function g2(r) to fulfill the
normalization condition imposed by Eq. (3.51). This approach, while assuring a fast
convergence of the cluster expansion has no guarantee to provide an accurate upper
bound to the ground state energy. From the benchmark calculations performed by
comparing finite order variational approaches and BHF results for different models
of nucleon-nucleon potentials [111, 112], it was clear that an accurate description
of the nuclear matter properties would have required the inclusion of many-body
cluster contributions.

In order to improve finite order calculations a series of techniques have been
developed, enabling the infinite summation of successive many-body clusters through
integral equations. Indeed it is well known that an integral equation accounts for
the summation of an infinite series of terms with the same topological structure.
For example we can consider the two point green function in a generic field theory,
G(x, y), satisfying

G(x, y) = G0(x, y) +
∫
dx′dy′G0(x, x′)Σ(x′, y′)G(y′, y) (3.93)

By consecutive iterations of the previous equation we get

G(x, y) = G0(x, y) +
∫
dx′dy′G0(x, x′)Σ(x′, y′)G0(y′, y) + . . . (3.94)

By defining the following diagrammatic rules

G0(x, y) = �
x y

(3.95)

G(x, y) = �
x y

(3.96)

∫
dxdyΣ(x, y) = �

x y
(3.97)

(3.98)

We can write a pictorical expression of Eq. (3.94) as

�
x y

= �
x y

+ �
x y

+�x y+ . . . (3.99)

In a similar manner there exist some techniques allowing to sum together different
cluster diagrams with a similar topology. The first such analysis was performed at
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the end of the 1950s regarding the pair distribution function of classical liquids [113].
The starting point is the identification of elementary structures that can be used to
construct more complex diagrams by successive series and parallel connections. The
contributions of the resulting diagrams can be summed up to all orders by means
of an integral equation, referred to as Hyper-Netted-Chain (HNC) equation. The
HNC summation method was later extended to quantum Bose and Fermi liquids.
In the case of Fermi systems described using spin and isospin independent Jastrow
correlation functions, the result is a system of coupled integral equations, dubbed
Fermi Hyper-Netted Chain, or FHNC, equations [114]. A detailed description of
such techniques is beyond the purpose of this Thesis. For the interested reader an
extensive review on this subject can be found in Ref. [93]. The FHNC equations
are solved numerically by iterations. For dense systems like liquid helium or nuclear
matter, however, achieving convergence is difficult, and often requires the use of an
algorithm to smooth out oscillations occurring in the iterative process.

3.3 Extension to operatorial correlations

In order to obtain more accurate results, state-of-the-art calculations of nuclear mat-
ter properties require the introduction of more complicated forms of the correlation
operator, which has to resemble the operatorial structure of the nucleon-nucleon
interaction. This consideration leads to the definition of a pair correlator Fij as
in Eq. (3.7). When extending the formalism of cluster expansion to spin-isospin
dependent operators we face a set of difficulties related to the non-commutative
nature of two subsequent pair correlations, and a direct extension of the FHNC
equations is usually not possible. In order to overcome this problem an approximated
technique referred to as Single Operator Chain (FHNC/SOC) summation scheme,
was developed by Pandharipande and Wiringa [115]. Within this approach it is
derived a set of coupled integral equations allowing to sum over the hypernetted
chains of central links (FHNC) and single chains of operator links.

In order to extend the cluster expansion formalism of the Jastrow approach, we
can introduce a set of pair distribution functions gp

2(r) defined as

gp
2(r12) = A(A− 1)

ϱ2
Tr1Tr2

∫
dx3 · · · dxA Φ∗

0(X)F†Op
12FΦ0(X)∫

dx1 · · · dxA Φ∗
0(X)F†FΦ0(X) = N p

D
, (3.100)

where we have introduced the compact notation X ≡ x1, . . . , xA. With this definition
we can write the expectation value of any operator V ≡

∑
i<j vij with vij ≡∑

p v
p(rij)Op

ij as

⟨V ⟩ = A
ϱ

2

∫
dr vp(r)gp

2(r). (3.101)

The cluster expansion of the operatorial pair distribution function can be analyzed
in a similar manner to what we did for the Jastrow case, but paying attention to
some additional subtleties. First of all we have to introduce other diagrammatic
elements. We can split the pair correlation operator F12 according to

F12 =
∑

p

fp(r12)Op
12 = f c(r12) +

∑
p>1

fp(r12)Op
12, (3.102)
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where we have defined the central correlation f c(r) as the one associated with the
identity operator, conventionally chosen corresponding to the component p = 1.
Now we can define the quantity h(r12) as

f c(r12)f c(r12) = 1 + h(r12). (3.103)

With this definition we can identify the following elementary contributions connecting
a pair of correlated particles

hij = f c(rij)f c(rij) − 1 = �
i j

(3.104)

f c(rij)fp(rij)Op
ij = �

pi j
p > 1 (3.105)

f q(rij)fp(rij)Op
ijO

q
ij = �

p

q
i j

p, q > 1. (3.106)

F †
12O

p
12F12 = �

1 2
. (3.107)

In the same way as for the Jastrow approach, we can define a cluster expansion
for the operator F†Op

12F as

F†Op
12F = X(2)(x1, x2) +

∑
i ̸=1,2

X(3)(x1, x2;xi) +
∑

i<j ̸=1,2
X(4)(x1, x2;xi, xj) + . . .

(3.108)
where the general X(n) term accounts for an n-body cluster involving dynami-
cal correlation. Its explicit form can be expressed through a combination of the
diagrammatic elements of Eqs. (3.104)-(3.107).

X(2)(x1, x2) = F †
12O

p
12F12 (3.109)

X(3)(x1, x2;xi) = S(F12F1iF2i)†Op
12S(F12F1iF2i) − F †

12O
p
12F12, (3.110)

By defining the gF G
n as

gF G
n = A!

(A−N)!
1
ϱn

∫
dxn+1 · · · dxA Φ0(X)∗Φ0(X) (3.111)

we can finally write the expression for the numerator of the pair distribution function
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as

N p =
A∑

n=2

ϱn−2

(n− 2)!

∫
dr3 · · · drnCTr1 · · · CTrn

{
X(n)(x1, x2;x3, . . . xn)

×
[
1 −

∑
i<j

P στ
ij l

2(rij) +
∑

i<j<k

(P στ
ij P

στ
jk + P στ

ik P
στ
ij )l(rij)l(rik)l(rjk) + . . .

]}
(3.112)

The main difference between the previous equation and its counterpart in the Jastrow
theory is provided by the presence of the CTr[ . ] operator. This operator returns
the normalized trace over the spin and isospin matrix elements of the spin-isospin
dependent operators. The trace is normalized such that CTr [ I ] = 1. Moreover,
because of the operatorial nature of the correlations, and therefore of the cluster
contributions X(n), we can see the presence of the exchange operators P στ

ij acting
on the spin-isospin degrees of freedom. They are defined as

P στ
12 = 1

4(1 + σ1 · σ2)(1 + τ 1 · τ 2). (3.113)

Because of the scalar nature of the dynamical clusters X(n) in the Jastrow approach,
the CTr operators were directly applied on these exchange operators, yielding the
normalization factor 1/4 appearing in combination of the Slater functions.

As a final remark we report the expression of the pair distribution function
computed at two-body cluster

gp
2(r12)|2b = CTr

{
F †

12O
p
12F12

[
1 − P στ

12 l
2(r12)

]}
, (3.114)

where we have defined CTr[ . ] ≡ CTr1CTr2[ . ].

3.4 Monte Carlo methods
An alternative approach to cluster expansion and FHNC summation scheme in order
to evaluate many-body multidimensional integrals, is represented by computational
techniques based on Monte Carlo methods.

Monte Carlo (MC) methods are usually addressed to all that kind of numerical
techniques aiming at solving mathematical problems by means of (pseudo- ) random
processes. As a first example suppose we are interested in evaluating the integral of
a given function f(x) in the interval [a, b]

I =
∫ b

a
f(x)dx, (3.115)

with only a uniform random number generator available. One way to numerical
compute I is to uniformly sample a large number of random points in a rectangle that
contains the full function f(x), and then evaluate the area Af under the function f
by means of the approximation

Af ∼ Nf

N
AR. (3.116)
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In the above equation Nf is the number of points sampled inside the contour of
the function f , and N is the number of the total sampled points. Eq. (3.116) is
equivalent to assign to each sampled point the same little area dA = AR/N , and
then compute the area we are interested in, by summing all the contributions coming
from points lying under the contour of f . Obviously as the number of samples
grows-up the area dA will be smaller and the approximation works better. Usually
MC methods are largely applied in problems related with probability, where one is
interested in evaluate expectation values such as

Ep[f(x)] =
∫
f(x)p(x)dx (3.117)

where p(x) can be in principle any given probability distribution. Usually we don’t
know the actual p(x), but we know its form only up to a constant. Eq. (3.117)
therefore becomes

Ep[f(x)] =
∫
f(x)p̃(x)dx∫
p̃(x)dx . (3.118)

This kind of integrals could be analytically very difficult, especially when the
dimension of the problem increases. Suppose we can independently sample any
number N of points distributed according to p(x). Then we can always compute
the sample mean of these points according to

f̄ = 1
N

N∑
i=1

f(xi). (3.119)

At this point we can invoke the Law of Large Numbers stating that, forN independent,
equally distributed points, as N approach to infinity, we can approximate

f̄ = 1
N

N∑
i=1

f(xi) ∼ Ep[f(x)]. (3.120)

This is essentially the basis of Monte Carlo integrations. Indeed, if we are able
to independently sample a very large number of points, distributed according to a
certain probability distribution p(x), then the evaluation of a complicated integral
reduces to the calculation of a simple sum. The Variational Monte Carlo (VMC)
method in nuclear physics is based exactly on this tenet.

Let us take the expectation value of a generic operator O, over a trial wave
function |ΨT ⟩. We can always express the trial wave function in terms of its discrete
degrees of freedom as

ΨT (x1, . . . , xA) =
∑

n

ψn(r1, . . . , rA)|n⟩, (3.121)

In the previous equation the index n is related to a given configuration of the discrete
quantum numbers characterizing the A particles. For example given A = 3, we will
have the following configurations

n =1 → |n ↑, n ↑, p ↑⟩ (3.122)
n =2 → |n ↓, n ↑, p ↑⟩ (3.123)

... (3.124)
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At this point we can write

⟨ΨT |O|ΨT ⟩ =
∑
mn

∫
dRψ∗

m(R)Omn(R)ψn(R), (3.125)

where we have introduced the compact notation {r1, . . . , rA} ≡ R. Now we can mul-
tiply and divide the integrand by a probability density function Pmn(R), according
to

⟨ΨT |O|ΨT ⟩ =
∑
mn

∫
dR

ψ∗
m(R)Omn(R)ψn(R)

Pmn(R) Pmn(R) ≡
∑
mn

∫
dR ÕmnPmn(R).

(3.126)
Once the probability is chosen we can easily compute the integral trough∫

dR ÕmnPmn(R) → 1
Nc

∑
{R}

Õmn(R), (3.127)

where Nc is the number of different configurations of the R variables, randomly
sampled according to the probability Pmn(R). Within the VMC approach the
probability distribution is chosen to be

Pmn(R) = ψ∗
m(R)ψn(R). (3.128)

Besides overcoming the approximations involved in the cluster expansion and
FHNC approach, this method is still plagued by the uncertainty coming from the
choice of the variational wave function (other than by the uncertainty introduced by
the numerical procedure). With the Diffusion Monte Carlo (DMC) method we are in
principle able to get over this problem. This approach is based on the premise that
the evolution of a generic state to infinite imaginary time is basically a projection
onto the ground state of the system. Indeed we have that

U(τ)|ΨT ⟩ = e−τH∑
n

Cn|Ψn⟩ (3.129)

= e−τE0

C0|Ψ0⟩ +
∑
n̸=0

Cne
−τ(En−E0)|Ψn⟩

 −−−→
τ→∞

e−τE0C0|Ψ0⟩. (3.130)

The evolution of the trial wave function is performed by dividing the time interval
τ in short time intervals ∆τ , and then computing Ψ(R, t + ∆τ) by means of the
integral equation

Ψ(R, t+ ∆τ) =
∫
dX ′G(R,R′, t, t+ ∆τ)Ψ(R′, t), (3.131)

where G(X,X ′, t, t′) is the Green function of the Schrödiger equation at imaginary
time, and the 3A integral involved in Eq. (3.131) is solved via Monte Carlo meth-
ods. In order to deal with the additional complexity arising from the treatment
of spin-isospin degrees of freedom the formalism of DMC was extended in two
different approaches, the Green’s Function Monte Carlo (GFMC) and the Auxiliary
Field Diffusion Monte Carlo (AFDMC) methods [116, 117]. The main difference
between these two approaches lies in the treatment of the spin-isospin degrees of
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freedom within the Green’s Function. While in the GFMC is performed an explicit
summation over the spin-isopsin states, in the AFDMC spin-isospin configurations
are stochastically sampled, as well as the particle coordinates allowing for a faster
convergence. The extension of this formalism to uniform nuclear matter is carried
out considering a finite number of nucleons in a periodic box. Numerical results
for PNM have been obtained using both GFMC and AFDMC [66,116,118,119]. In
particular the recently performed benchmark calculations of PNM with different
Hamiltonians, both with [66] and without [118] NNN forces, have shown how the
main degree of uncertainty in the EOS of nuclear matter is associated with the
description of nuclear dynamics rather than to the particular many-body approach.

3.5 The equation of state of Akmal Pandharipande and
Revenhall

All the techniques we have discussed so far have found their application in the
development of the equations of state of Akmal Pandharipande and Revenhal
(APR) [62]. In this work the authors proposed four different models for the EOS
of nuclear matter. The first two models do not include any three-nucleon force in
the nuclear Hamiltonian, resulting in the incapability to describe neutron stars with
masses as large as ∼ 2M⊙. Moreover, the inclusion of three nucleon forces has
proved to be necessary in order to account for a large set of nuclear systematics, such
as the binding energies of light nuclei and the saturation properties of nuclear matter.
Therefore it is clear that ab initio models that do not involve NNN interactions
are inherently inadequate to describe nuclear matter at high density, where the
contribution of many-body interactions is expected to become more and more
important. For this reason, in the following we will consider only the two APR
models which are based on an Hamiltonian as the one of Eq. (2.1). The difference
between these two models presented by APR, that from now on will be referred to
as APR1 and APR2, is the introduction in APR2 of relativistic boost corrections to
the NN potential. The starting point of the APR1 model is the nuclear Hamiltonian
of Eq. (2.1) comprising the Argonne v18 NN potential and the UIX NNN potential
discussed in Chapter 2. Once the Hamiltonian is defined, the authors have performed
variational calculation of the ground state energy for both isospin SNM, and Pure
Neutron Matter (PNM) at different densities, ranging from ϱ = 0.04 fm−3 to ϱ =
0.96 fm−3. We recall that the nuclear saturation density corresponds to ϱ0 =
0.16 fm−3. The trial ground state is chosen as a correlated state

|ΨT ⟩ = F|Φ0⟩√
⟨Φ0|F†F|Φ0⟩

(3.132)

with
F = S

∏
i<j

Fij (3.133)

and

Fij =
8∑

p=1
fp(rij)Op

ij . (3.134)
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The set of the 8 operators entering the pair correlation is the following

[1,σ1 · σ2, S12, (L · S)12] ⊗ [1, τ 1 · τ 2] . (3.135)

The variational energy
EV = ⟨ΨT |H|ΨT ⟩ (3.136)

is computed by means of the cluster expansion and FHNC/SOC summation tech-
niques. The functional form of the radial correlation functions fp(r) is found by
solving the Euler-Lagrange equations associated to the functional minimization of
the two-body cluster energy computed with a quenched NN potential

ṽij =
∑

p

αpv
p(rij)Op

ij . (3.137)

In the previous equation the αp are the so called quenching parameters, which are
introduced in order to account for medium effects. The correlation functions are
computed under the requirement of the following boundary conditions

fp(r ≥ dp) = δ1p

dfp(r)
dr

∣∣∣∣
dp

= 0.
(3.138)

The definition of the quenching parameters αp and the relaxation distances dp is
chosen in agreement with Ref. [96], yielding d1 = d2 = d3 = d4 = d7 = d8 = dc,
d4 = d5 = dt, α1 = 1 and αp>1 = α. Finally the upper-bound for the ground state
energy at any given density is found by the minimization of the variational energy
EV , computed within the full FHNC/SOC summation scheme, with respect to the
relaxation distances dc and dt, and the quenching parameter α. The results for the
energy per nucleon of both SNM and PNM, together with the associated variational
parameters are shown in Fig. 3.4.

The second model proposed by APR, and referred to as APR2 within this Thesis,
is based on a slightly modified Hamiltonian in order to account for the contribution
of relativistic boost corrections. Such an Hamiltonian can be written as

H∗ =
∑

i

p2
i

2m +
∑
i<j

[vij + δv(Pij)] +
∑

i<j<k

V ∗
ijk. (3.139)

The first thing that should be noticed by looking at Eq. (3.139) is that it is slightly
different from the relativistic Hamiltonian we introduced in Chapter 2. First of
all there is no relativistic correction to the kinetic energy expression. Moreover,
the NN potential in the center of mass frame of an interacting pair of nucleons vij

is the actual AV18 potential. This choice for the Hamiltonian is justified by the
authors with the following argument. The Argonne v18 phenomenological potential
is based on a fit of the NN scattering phase shifts, and such fit depends also on the
choice of the kinetic energy expression. Therefore introducing a modification in the
kinetic energy term should be complemented with a new fit of the NN scattering
data, leading to a modified version of the AV18 NN potential. Because of the large
cancellation occurring between NN and kinetic energy contributions, it turns out
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(a) (b)

Figure 3.4. In the left panel we can see the energy per nucleon as a function of the matter
density ϱ of both SNM and PNM for the APR1 model. The right panel shows the
variational parameters at different densities.

that in light nuclei most of the difference between a non relativistic Hamiltonian
and a fully relativistic one is provided by the presence of the boost corrections δv.
For this reason the authors argued that H∗ represents a significant improvement
with respect to a non-relativistic Hamiltonian.

Last but not least, we notice the presence of a modified the NNN potential,
labeled by V ∗

ijk in the H∗ Hamiltonian. Indeed, as stressed by the authors, the
accurate calculations of the binding energies of 3H, 3He and 4He with a relativistic
Hamiltonian [69,70] have shown that the boost corrections account for a large part of
the repulsive contribution to the nuclear binding energy. Because of this additional
repulsion the strength of the repulsive V R

ijk must be rescaled by a factor α0 = 0.63.
The resulting NNN potential employed for the derivation of the APR2 EOS can be
written as

V ∗
ijk = V 2π

ijk + α0V
R

ijk (3.140)
and referred to as UIX*. Finally in order to carry out the energy per nucleon
associated to H∗, the authors have not recomputed the variational parameters. The
energy per nucleon of the APR2 EOS is then obtained by adding the contribution

δe = 1
A

⟨ΨT |
∑
i<j

δv(Pij)|ΨT ⟩ + (α0 − 1)⟨ΨT |
∑

i<j<k

V R
ijk|ΨT ⟩

 (3.141)

to the energy per nucleon of the APR1 EOS. Once again we want to stress that
the variational ground state |ΨT ⟩, appearing in the previous expression, is the same
correlated state emerging after the minimization of the APR1 variational energy.
Therefore within the above procedure the authors of Ref. [62] are treating the term
[δv + (α0 − 1)V R] at first order in perturbation theory.

In Fig. 3.5 a comparison between the energy per nucleon of the APR1 and APR2
models is shown. By looking at Fig. 3.5 we can see that the energy associated with



3.5 The equation of state of Akmal Pandharipande and Revenhall 79

Figure 3.5. Comparison between the APR1, filled markers, and the APR2, empty markers,
energy per nucleon as a function of the density ϱ.

the APR2 model is lower with respect to APR1, suggesting that the overall effect of
the correction (3.141) provides a lower repulsion. Since the boost correction turns
out to be always repulsive, this effect has to be ascribed to the softening of the NNN
repulsion that dominates over the boost corrections when the density increases.

The energy-density of nuclear matter at arbitrary baryon density ϱ and proton
fraction xp has been obtained with the following parametrization, derived according
to the procedure discussed in Refs. [120,121]

ϵ(ϱ, xp) =
[
ℏ2

2m + f(ϱ, xp)
]
τp +

[
ℏ2

2m + f(ϱ, 1 − xp)
]
τn + g(ϱ, xp), (3.142)

where
g(ϱ, xp) = g(ϱ, 1/2) + [g(ϱ, 0) − g(ϱ, 1/2)] (1 − 2xp)2. (3.143)

The explicit expressions of the functions appearing in Eqs. (3.142) and (3.143)
can be found in Appendix C. They involve a set of parameters which were determined
by fitting the energy per nucleon of SNM and PNM computed within the FHNC/SOC
variational approach.

The first two terms of Eq. (3.142) correspond to the proton and neutron kinetic
energy respectively, whereas the function g(ϱ, xp) describes the contribution arising
from interactions. The assumption of quadratic dependence of the interaction energy
on the neutron excess δ = 1 − 2xp is routinely employed in the literature to obtain
the EOS of β-stable matter from those of SNM and PNM, and has been shown to
be remarkably accurate over a broad range of values of the proton fraction xp; see,
e.g. Ref. [67].

Using the analytic expression of the energy density of nuclear matter at arbitrary
proton fraction, composition and energy density of β-stable matter can be easily
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Figure 3.6. In the above figure we can see the difference between the UIX and UIX* models
(in MeV) for both SNM and PNM.

determined by minimizing with respect to xp, with the additional constraints of
conservation of baryon number and charge neutrality. Finally, the matter pressure
P , derived from standard thermodynamic relations, is used to obtain the EOS P (ϵ).

3.5.1 Interplay between boost and NNN interaction

The impact of the relativistic boost corrections on the determination of the potential
describing three-nucleon forces is illustrated in Fig. 3.6. It is apparent that the dif-
ference between the potential energies per particle of the UIX and UIX* interactions
begins to be appreciable just above the equilibrium density of SNM ϱ0 = 0.16 fm−3

and grows steeply with ϱ. The inclusion of relativistic boost corrections to the NN
potential and the associated modification of the NNN potential result in a softening
of the EOS at high density, leading to a sizable change in the mass-radius relation
determining the compactness, as we can see from Fig. 3.7. It is apparent that the
introduction of relativistic boost corrections remarkably affect the predicted neutron
star properties. We outline once again that the main effect on the EOS is not directly
associated to boost corrections themselves but rather to the induced modification on
the NNN repulsion, which plays a pivotal role in determining the behavior of nuclear
matter at high densities. For this reason we strongly believe that a systematic study
of the interplay within boost corrections and NNN potential have to be undergone.
It could be a two-way road, because the development of EOS models comprising
relativistic effects could lead to different interpretations of NS observed data. On
the other hand, the increasing set of astrophysical observations could strongly help
to constrain the high density behavior of the EOS, having the potential to shed new
light on the interconnection between relativistic corrections and NNN forces.
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(a)

(b)

Figure 3.7. Mass-radius diagram for the APR1 and APR2 models (a), and tidal deforma-
bility Λ as a function of the stellar mass (b).
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Chapter 4

CBF Effective Interaction

In the previous chapter we have discussed some approximated techniques used to carry
out a reliable estimation of the ground state properties of nuclear matter. Because
of the strong repulsive core of NN interactions and the consequent impossibility
of relying upon standard perturbation theory techniques, some other approaches
have been developed in order to compute corrections to the variational calculations.
The Correlated Basis Perturbation Theory was developed for this purpose. Under
the assumption that the correlation structure of ground and excited states is the
same, we can build up a complete set of correlated states by means of the correlation
operator F , resulting from the minimization of the variational energy EV . Our set
of correlated states will be

|Ψn⟩ = F|Φn⟩√
⟨Φn|F†F|Φn⟩

, (4.1)

where the state |Φn⟩ labels a generic Fermi gas state. Once the correlated basis is
defined we can split the nuclear Hamiltonian H in two pieces

H = H0 +H1 (4.2)

where H0 and H1 are defined as the diagonal and off-diagonal part of H between
correlated states

⟨Ψm|H0|Ψn⟩ = δmn⟨Ψm|H|Ψn⟩ (4.3)
⟨Ψm|H1|Ψn⟩ = (1 − δmn)⟨Ψm|H|Ψn⟩. (4.4)

If we have made a good choice for the correlation functions, or in other words, if the
value EV is close to the actual ground state energy of the system E0, then the states
|Ψn⟩ will have a great overlap with the real eigenstates of the nuclear Hamiltonian
H. This implies that the braket of H1 between these states will be very small with
respect to H0, suggesting that a perturbative treatment of H1 could be efficiently
performed.

In the approach discussed above, one has to evaluate the matrix elements of
H between the new set of states, facing all the non-trivial difficulties arising when
dealing with a non-orthogonal basis set. However the same results could be in
principle obtained by transforming the Hamiltonian and using the Fermi gas basis.
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Figure 4.1. Comparison between the S=0, T=1 component of the AV6P NN potential and
the corresponding effective interaction.

This procedure leads to the definition of an effective interaction embodying the
effects of correlations. We will see how the inclusion of such effects turns into an
appreciable softening of the strong repulsive core characterizing the NN potential,
leading to an interaction which can be safely treated in perturbation theory with
respect to the Fermi gas basis. This effect is clearly exposed in the example of
Fig. 4.1.

The effective interaction is defined through the expectation value of the Hamilto-
nian over the correlated ground state

⟨Ψ0|H|Ψ0⟩ = TF + ⟨Φ0|
∑
i<j

veff
ij |Φ0⟩ (4.5)

where |Φ0⟩ labels the Fermi gas ground state and the correlated state |Ψ0⟩ is defined
as

|Ψ0⟩ = F|Φ0⟩√
⟨Φ0|F†F|Φ0⟩

(4.6)

with
F = S

∏
i<j

Fij , Fij =
∑

p

fp(rij)Op
ij . (4.7)

The expectation value on the right hand side of Eq. (4.5) has the form

⟨Φ0|
∑
i<j

veff
ij |Φ0⟩ = A

ϱ

2

∫
dr12 CTr

[
veff

12

(
1 − P̂ στ

12 l
2
12

)]
. (4.8)

A cluster expansion of the left-hand side of Eq. (4.5) leads to

⟨Ψ0|H|Ψ0⟩ = TF + (∆E)|2b + ... (4.9)
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where the two-body term has the form

(∆E)|2b = A
ϱ

2

∫
dr12 CTr

[(
F12v12F12 − 1

m
∇F12 · ∇F12

)(
1 − P̂ στ

12 l
2
12

)]
(4.10)

By equating Eqs. (4.8) and (4.10) we can define the effective interaction at the
two-body level as

veff
ij = FijvijFij − 1

m
∇Fij · ∇Fij . (4.11)

The functional form of the correlation functions fp(r) is found by solving the
Euler-Lagrange equations associated to the the minimization of the two-body cluster
ground state energy with a quenched NN potential

ṽij =
∑

p

αpv
p(rij)Op

ij , (4.12)

where αp are the so-called quenching parameters. The correlation functions obtained
have to satisfy the boundary conditions

fp(r ≥ dp) = δ1p

dfp(r)
dr

∣∣∣∣
dp

= 0.
(4.13)

For the definition of the quenching parameters αp and the relaxation distances dp

we adopt the same convention of Ref. [96] yielding

dp̸=5,6 = dc, dp=5,6 = dt,

αp=1 = 1, αp>1 = α.
(4.14)

The effective interaction defined by Eq. (4.11) for any given density still depends
upon the relaxation distances dc, dt and the quenching factor α. These are usually
variational parameters which in ab initio calculations are fixed by minimizing the
energy computed with accurate many-body techniques, such as the FHNC/SOC
summation scheme or Monte Carlo methods. Within the effective interaction, which
is derived at a finite order in the cluster expansion, such parameters are optimized
in order to reproduce some target values. Such target values can be chosen to be
both the SNM and PNM energy per nucleon, computed by means of a complete
variational approach. This procedure can be seen as a sort of renormalization of
the NN interaction which allows to account for screening effects induced by the
presence of the nuclear medium. Basically we are fixing an observable, computed
with non-perturbative and accurate methods (the energy per nucleon of SNM and
PNM in this case), and then we are defining an effective Hamiltonian whose free
parameters are tuned in order to reproduce such target observable at a finite order
in the perturbative expansion.

First derived effective interactions included only up to two-nucleon potentials
in their expression [122]. This approach, besides being extremely simple and pow-
erful, produces an effective interaction which is unable to capture some important
dynamical aspects related to the presence of three-nucleon forces. For this reason
state of the art effective interactions, as the one derived by Banhar and Lovato (BL)
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(a)

(b)

Figure 4.2. Energy per nucleon of SNM (a) and PNM (b) computed with the BL
effective interaction (dashed line), taken from [67]. For comparison also the FHNC/SOC
calculations for both SNM and PNM are shown as yellow shaded regions. The width of
such regions is associated with the discrepancy arising from the employment of different
kinetic energy prescriptions. This uncertainty can be used to gauge the precision of the
FHNC/SOC procedure. For the PNM the authors reported also the values computed
within the AFDMC approach.

in Refs. [67, 123] include also three-body cluster terms, coming from both NN and
NNN interactions. The effective interaction derived in this way can be schematically
represented as

⟨T − TF ⟩|2b+3b + ⟨vNN ⟩|2b+3b + ⟨VNNN ⟩|3b ≡ A
ϱ

2

∫
dr12 CTr

[
veff

12

(
1 − P̂ στ

12 l
2
12

)]
.

(4.15)
We will not discuss in details the expression of the terms ⟨T ⟩|3b, ⟨vNN ⟩|3b and
⟨VNNN ⟩|3b, for which a comprehensive treatment can be found in Refs. [93,123,124].
In Fig. 4.2 we can see the energies per nucleon of both SNM and PNM computed with
this effective interaction, together with their target values. Such results have been
obtained with an Hamiltonian comprising the AV6P+UIX interaction potentials.
The many-body problem was solved by means of the FHNC/SOC summation scheme
for SNM, and with the AFDMC for PNM. The relaxing distances and quenching
parameters for the BL effective interaction are shown in Fig. 4.3.

The effective interaction formalism has proved to be remarkably powerful in
computing several nuclear matter properties as for example the energy per nucleon
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Figure 4.3. Relaxation distances and quenching parameters for the effective interaction
derived by Benhar and Lovato.

of non-polarized matter at arbitrary proton fraction. Let’s consider nuclear matter
at baryon density

ϱ =
∑

λ

ϱλ =
∑

λ

= ϱxλ (4.16)

where λ = 1, 2, 3, 4 labels spin-up protons, spin-down protons, spin-up neutrons and
spin-down neutrons respectively, with the corresponding densities being ϱλ = ϱxλ.
In SNM x1 = x2 = x3 = x4 = 1/4, while in PNM x1 = x2 = 0 and x3 = x4 = 1/2.
We can write the energy per nucleon as

E

A
= 3

5
∑

λ

xλ

k2
F,λ

2m + ϱ

2
∑
λµ

xλxµ

∫
d3r [veff,d

λµ (r) − veff,e
λµ (r) l(kF,λr)l(kF,µr)] (4.17)

with

veff,d
λµ (r) =

∑
p

veff,p(r)⟨λµ|Op
12|λµ⟩ (4.18)

veff,e
λµ (r) =

∑
p

veff,p(r)⟨λµ|Op
12|µλ⟩. (4.19)

The derivation of the above equation can be found in Appendix D. Another re-
markable property of the effective interaction formalism is the possibility to extend
the treatment to finite temperature nuclear matter in a simple and elegant way.
Indeed in a recent work, the BL effective interaction has been applied to study the
temperature dependence of average and single-particle properties of nuclear matter
relevant to astrophysical applications in Ref. [125]. A comprehensive treatment and
discussion about this subject can be found in Ref. [126].

Since the BL effective interaction is carried out from a non-relativistic Hamil-
tonian, one of the goal of this Thesis is to study the effect of introducing boost
corrections within this formalism. We are interested in studying both the impact of
such relativistic effects in the functional form of the effective interaction, and in the
employment of the modified UIX* NNN potential. Strictly speaking the main goal
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of such a study will be the definition of an effective interaction ṽeff by means of

⟨T − TF ⟩|2b+3b + ⟨vNN ⟩|2b+3b + ⟨δv⟩|2b+3b + ⟨V ∗
NNN ⟩|3b

≡ A
ϱ

2

∫
dr12 CTr

[
ṽeff

12

(
1 − P̂ στ

12 l
2
12

)]
.

(4.20)

This definition will require in principle to re-optimize the free parameters of the
effective interaction over ab initio calculations performed with the H∗ Hamiltonian.
In order to develop a simplified procedure we investigated the possibility of defining
the ṽeff interaction employing the same variational parameters obtained in the BL
one. In order to justify this procedure we have performed some exploratory studies
defining an effective interaction optimized over the APR variational energies. We
have chosen to employ the APR energies as our target values because they are
the only available ab initio calculations performed over a broad density range and
including both boosts and the modified UIX NNN interaction. In the next sections
the results of this study are presented. We have seen that the employment of
the same free parameters for both the ṽeff and veff models appears to reproduce
remarkably well the APR variational energies. Actually our model is based on a
slightly simplified version of Eq. (4.20). Since the three-body cluster contribution
coming from kinetic energy and NN potential appears to be smaller than their
NNN counterpart, we have neglected such terms in the cluster expansion of the
Hamiltonian H∗. Our model for ṽeff can be therefore expressed as

A
ϱ

2

∫
dr12 CTr

[
ṽeff

12

(
1 − P̂ στ

12 l
2
12

)]
≡ ⟨T − TF ⟩|2b + ⟨vNN + δv⟩|2b + ⟨V ∗

NNN ⟩|3b .

(4.21)

4.1 Boost corrections

The boost correction implemented in our effective interaction is the same employed
by APR in their work. It is a simplified version of Eq. (2.85) yielding

δv(P, r) = − P 2

8m2 v(r) + (P · r)
8m2 P · ∇v(r). (4.22)

In the above expression we are neglecting the terms arising from Thomas Preces-
sion and from the commutators with the spin-dependent parts of the NN potential.
The impact of these effects on the binding energy of 3H and 4He was proved to be
very small with respect to the contribution coming from Eq. (4.22) [102].

By choosing a NN potential with the form

v(r) =
6∑

p=1
vp(r)Op

12 (4.23)

we have

δv(P, r) =
∑

p

[
− P 2

8m2 v
p(r) + (P · r̂)2

8m2 r
dvp

dr

]
Op

12 +
∑

p

(P · r)
8m2 vp(r)P ·∇Op

12. (4.24)
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The last term in the previous equation involves the gradient of the tensor operator
∇S12 whose expectation value on non-polarized matter is zero, therefore we are
considering only the expression

δv(P, r) =
∑

p

[
− P 2

8m2 v
p(r) + (P · r̂)2

8m2 r
dvp

dr

]
Op

12 (4.25)

for the boost correction.
We are interested in calculating the two-body cluster contribution of the expec-

tation value

⟨Ψ0|H|Ψ0⟩
⟨Ψ0|Ψ0⟩

= ⟨Φ0|F †HF |Φ0⟩
⟨Φ0|F †F |Φ0⟩

= TF +⟨Φ0|F
†[T, F ]

2 +adj+F †V F |Φ0⟩/⟨Φ0|F †F |Φ0⟩

(4.26)
with

T =
∑

i

p2
i

2m, V =
∑
i<j

vij + δvij . (4.27)

Evaluating the energy at two body cluster level yields

⟨E⟩ ≈ TF + (∆E)2b, (4.28)

and

(∆E)2b = 1
2
∑

n1,n2

⟨n1 n2|F12 [t1, F12] + F12(v12 + δv12)F12|n1 n2 − n2 n1⟩, (4.29)

with t1 = −∇2
1/2m.

We choose F12 to have the form

F12 =
∑

p

fp(r)Op
12, (4.30)

where the sum over p runs over the first 6 operators Op
12 = [1,σ1 ·σ2, S12]⊗ [1, τ 1 ·τ 2].

We have already mentiond that such a set of operators forms an algebra, indeed we
have

Op
ijO

q
ij =

∑
l

KpqlOl
ij , (4.31)

with Kpql a set of scalar coefficients. The expectation value of any operator A12 =∑
p a

p(r)Op
12 over the state |Ψ⟩ = F12|Φ⟩ can always be written as

⟨A12⟩ = ⟨Ψ|A12|Ψ⟩ = ⟨Φ|F12A12F12|Φ⟩ = ⟨Φ|B12|Φ⟩, (4.32)

with
B12 =

∑
p

bp(r)Op
12 (4.33)
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and
bp(r) =

∑
mnlq

KmnlKqlpf q(r)am(r)fn(r). (4.34)

Since the part of the boost correction we are interested in can be expressed in the
form

δv(P, r) = − P 2

8m2

∑
p

wp(r)Op
12 + (P · r̂)2

8m2

∑
p

gp(r)Op
12 (4.35)

with
wp(r) ≡ vp(r), gp(r) ≡ r

dvp

dr
, (4.36)

we can carry out the two-body cluster expectation value ⟨Φ0|F12 δv F12|Φ0⟩ by simply
computing the expectation value on the uncorrelated ground state, ⟨Φ0|δv|Φ0⟩, and
then performing the substitutions

wp(r) →
∑

mnlq

KmnlKqlpf q(r) vm(r) fn(r),

gp(r) →
∑

mnlq

KmnlKqlpf q(r) rdv
m

dr
fn(r).

(4.37)

In order to carry out the explicit expression of ⟨Φ0|δv|Φ0⟩ we can define

⟨δv⟩
A

= 1
A

∑
i<j

⟨Φ0|δvij |Φ0⟩ (4.38)

which can be written as

⟨δv⟩
A

= ⟨δv⟩d

A
− ⟨δv⟩e

A
. (4.39)

The explicit expression of ⟨δv⟩d and ⟨δv⟩e turns out to be

⟨δv⟩d

A
= 1

5
ϱ

16m2

∑
p

∑
λµ

xλxµ(k2
F λ + k2

F µ)⟨λµ|Op|λµ⟩
∫
d3r

[
r
dvp(r)
dr

− 3vp(r)
]

(4.40)

⟨δv⟩e

A
= ϱ

16m2

∑
p

∑
λµ

xλxµ⟨λµ|Op|µλ⟩
∫
d3r

[
r
dvp(r)
dr

I2 − vp(r)I1

]
(4.41)

with

I1 = 2l′(kF λr)l′(kF µr) − l(kF λr)∇2l(kF µr) − l(kF µr)∇2l(kF λr) (4.42)
I2 = 2l′(kF λr)l′(kF µr) − l(kF λr)l′′(kF µr) − l(kF µr)l′′(kF λr) (4.43)

where the prime indicates the derivative with respect to r and
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∇2 ≡ 1
r

∂2

∂r2 r. (4.44)

As a final comment it should be useful to stress that for both SNM and PNM the
Fermi momentum kF λ is the same for all different values of the index λ. Therefore
if we want to use the same notation of the previous section, explicitly figuring the
CTr operator, we can define a unique kF (which is different if we are considering
SNM or PNM) and then substitute1

∑
λµ

xλxµ → CTr [ · ] . (4.45)

If we consider an Hamiltonian of the form

H =
∑

i

p2
i

2m +
∑
i<j

(vij + δvij) (4.46)

a natural question could be: is it possible to introduce boost corrections in the
functional form of the effective interaction? The answer is yes we just need to add
another term to (∆E)|2b yielding

⟨Φ0|
∑
i<j

veff
ij |Φ0⟩ = (∆E)|2b + ⟨Ψ0|

∑
i<j

δvij |Ψ0⟩|2b. (4.47)

In order to carry out an effective interaction of the form

veff
ij =

∑
p

vp
eff(ϱ, rij)Op

ij (4.48)

we need to cast the expectation value of the boost correction into the form

⟨Ψ0|
∑
i<j

δvij |Ψ0⟩|2b = ϱ

2

∫
dr12 CTr

[∑
p

δvp
eff(ϱ, r)Op

12

(
1 − P̂ στ

12 l
2
12

)]
. (4.49)

Roughly speaking this can be achieved by introducing in the explicit expression of
⟨Ψ0|

∑
i<j δvij |Ψ0⟩|2b the identity

1 =
(
1 − P̂ στ

12 l
2
12

)−1 (
1 − P̂ στ

12 l
2
12

)
. (4.50)

The final expression for δvp
eff can be written as

δvp
eff(kF , r) ≡ 1

1 − l4(kF r)
∑
m

[
δpm + l2(kF r)Mpm

]
ξm(kF , r). (4.51)

The definition of the quantities Mpm and ξm, as well as a detailed derivation of the
above expression can be found in Appendix E.

1Actually we have also to introduce the exchange operator performing the substitution
⟨λµ|Op|µλ⟩ → ⟨λµ|OpP̂12|λµ⟩.
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4.2 Analysis with a density dependent NN interaction
As a first exercise we included the two-body cluster boost correction in an effective
interaction derived from a simplified Hamiltonian, which does not include any NNN
interaction potential. The effect of NNN repulsion is taken into account by equipping
the NN interaction with an additional density dependence. This Hamiltonian is
written as

H =
∑

i

p2
i

2m +
∑
i<j

vij (4.52)

where we have chosen as the NN potential the Argonne v6’ model, opportunely
modified in order to account for NNN repulsion. This correction is implemented
by reducing the intermediate range attraction of NN potential with the addition
of a density dependent term according to the procedure developed by Lagaris and
Pandharipande [96]. Since the NN potential can be written as

v = vπ + vI + vS (4.53)

within the approach of [96] the NNN repulsion is introduced by means of the
substitution v → v′ with

v′ = vπ + vI(1 − γ1ϱ) + vS . (4.54)

An higher value of the parameter γ1 means a greater reduction of the NN attraction
and therefore accounts for a larger NNN repulsion.

The effective interaction is then computed by means of a cluster expansion of the
correlated ground state energy and truncating at the two-body term. This ground
state energy depends upon the correlation functions through the relaxation distances
dc, dt and the quenching parameter α, that can be considered as free parameters.
These parameters are adjusted in order to simultaneously reproduce the energy per
nucleon of both PNM and SNM computed in the original work of APR [62] within a
full FHNC/SOC approximation scheme. It turns out that with this approach we are
able to reproduce the EOSs of APR with an effective interaction which can be easily
derived without computational or technical efforts.

An interesting observation is that with this effective interaction we are able
to reproduce both the APR1 and APR2 equations of state provided we use two
different values of γ1. The EOS APR2 is reproduced with γ1 = 0.2 whereas APR1
is reproduced with γ1 = 0.3. This behavior is expected because in the APR2
equation of state the NNN repulsion is softened by the introduction of relativistic
boost corrections. It is remarkable that the treatment of the NNN repulsion, which
accounts for the main difference between the APR1 and APR2 EOSs, has the same
impact on the results derived within this simplified approach.

Finally the relevance of introducing boost corrections in the effective interaction
was studied. Since their contribution is repulsive we have checked if their inclusion
would have altered the value of γ1 that must be used to reproduce the APR2 EOS.
It turns out that boost corrections do not affect the choice of γ1. This effect has
to be ascribed to the fact that boost interactions yield a small correction to the
energy per nucleon, if compared to the correction introduced by a modified NNN
repulsion. Indeed, because of their different density dependence NNN repulsion
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turns out to have a very stronger effect on the high density behavior of the EOS,
with respect to boost corrections, even if they account for comparable contributions
around saturation density.

In Fig. 4.4 we can see the energies per nucleon of APR1 (a) and APR2 (b),
together with the results computed with the effective interaction veff discussed above.
The free parameters of the effective interaction of Fig. 4.6(a), referred to as veff

1 are
optimized to reproduce the APR1 energies per nucleon of both PNM and SNM with
a NNN repulsion parametrized by γ1 = 0.3. Conversely the effective interaction of
Fig. 4.6(b), referred to as veff

2 , is obtained by optimizing the free parameters over
the APR2 variational energies with γ1 = 0.2. The free parameters resulting from
this optimization procedure are shown in Fig. 4.5. The results of Fig. 4.4 show that
the optimization procedure works very well even with this simplified dynamics.

Fig. 4.6 shows the results for an effective interaction obtained with the parameters
optimized to reproduce APR1, i.e the ones of Fig. 4.5(a), but with the NNN repulsion
parameter re-scaled from γ1 = 0.3 to γ1 = 0.2 (black dashed line in the figure). We
can see how with this effective interaction, we obtain an energy per nucleon which
lies close to the actual values of APR2 (although there seems to be a significant
discrepancy at ϱ > 0.64 fm−3) without redoing the optimization procedure. This
effect underlines the pivotal role of the NNN repulsion over the optimization of the
other free parameters.

(a) (b)

Figure 4.4. Energy per nucleon of both SNM and PNM for the effective interaction
optimized to reproduce APR1 (a) and APR2 (b). Circular blue and red points represent
the values of the energy per nucleon computed in [62]. The dashed purple and dot-dashed
green lines refer to the results obtained with the effective interactions derived in this
work.

Finally once we have an effective interaction defined as in Eq. (4.47), i.e. ac-
counting for boost corrections, we can either add their contribution perturbatively,
or redo the optimization procedure with the boost corrected effective potential. In
the following we will explore both these scenarios. The interaction involving boost
corrections is labeled as ṽeff.

From Fig. 4.7 we can see how adding perturbatively the boost corrections to the
potential veff

1 with γ1 = 0.2 of Fig 4.6, remarkably helps the results to get closer to
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(a) (b)

Figure 4.5. Optimized relaxation distances and quenching parameters for both APR1 (a)
and APR2 (b).

(a) (b)

Figure 4.6. Same as Fig. 4.4 but with the addition of the effective interaction derived using
the variational parameters reproducing APR1 but with γ1 = 0.2 (black dashed line).

the APR2 target values (dark red dot-dashed lines), providing an improvement in
the accuracy of the results.

In Fig 4.8 we can see the effects that different values of γ1, as well as the
perturbative introduction of boost corrections, have on the radial shape of the
central component of the effective interaction at different densities. In the figures
we can see the central component of the three models previously described. All
these models have been derived with the same set of free parameters, Fig 4.5(a). We
can see how the discrepancies between these models become more important with
increasing density. In particular we can see that the dominant effect is the softening
of NNN repulsion, accounting for the difference between the red dashed line and
the blue dot-dashed line. The inclusion of boost corrections, which account for the
difference between the green solid line and the blue dot-dashed one, appears to have
a very small effect.

The introduction of the boost corrections in the definition of the effective inter-
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(a) (b)

Figure 4.7. (a) Energy per nucleon obtained with an effective interaction with (dark red
dashed line) perturbatively added boost corrections. (b) Comparison of the effective
interaction of panel (a) with the one of Fig. 4.6. We can see how with the introduction
of boost corrections the results get closer to the APR2 values.

action doesn’t introduce relevant changes, as shown in panel (a) of Fig. 4.9. The
optimization procedure works in the same way as without boost corrections, and
there is no impact on the value of γ1 that we have to choose in order to reproduce
the APR2 EOS. The optimization parameters obtained with the boost corrected
effective interaction are shown in Fig. 4.9(b). However, since the functional form
of the effective interaction is different, the introduction of boost corrections could
in principle affect the values of observables directly related to it. In this respect
Fig. 4.10 shows the radial dependence of the central component of two effective
interactions, both of them optimized to reproduce the APR2 variational energies.
The four panels show the results at four different densities. Orange dashed lines rep-
resent the effective interaction obtained with the parameters of Fig. 4.5(b), γ1 = 0.2
and without boost corrections. The purple solid line refers to the boost corrected
effective interaction, obtained with the parameters of Fig. 4.9(b) and γ1 = 0.2. We
can see that at high density the difference in the radial shape of the effective potential
becomes appreciable and it could in principle affect some observables such as the
effective mass or the single particle energy.
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(a) (b)

(c) (d)

Figure 4.8. Radial dependence of the central component of three effective interactions at
different densities. The density is written on top of each panel (in units of fm−3). The
three models are derived with the same free parameters. The red dashed line is obtained
by setting γ1 = 0.3. The blue dot-dashed line by setting with γ1 = 0.2 and the green
solid line by adding boost corrections to the blue one.

4.3 Calculation with a realistic NNN interaction
Here we are going to discuss the results of an analysis similar to the one of the
previous section, but performed with an effective interaction derived from a more
realistic Hamiltonian. The Hamiltonian we have considered has the form

H =
∑

i

p2
i

2m +
∑
i<j

vij +
∑

i<j<k

Vijk. (4.55)

We can see that in this case we are explicitly considering a realistic three-nucleon
interaction. The chosen interaction potentials are the AV6P NN potential and
the UIX model for the NNN interaction. The effective interaction was derived by
including a two-body cluster contribution for the kinetic energy and NN interaction,
and a three-body cluster contribution for the NNN potential. It is defined as
ϱ

2

∫
dr12 CTr

[
veff

1

(
1 − P̂ στ

12 l
2
12

)]
≡ ⟨T − TF ⟩|2b + ⟨vNN ⟩|2b + ⟨VNNN ⟩|3b . (4.56)
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(a) (b)

Figure 4.9. (a) Energy per nucleon of SNM and PNM obtained with an effective interaction
optimized over the APR2 variational energies and including boost corrections in its
definition (purple solid line). For comparison the APR2 variational energies as well as
the effective interaction obtained without boost corrections (orange dashed lines) are
also shown. In panel (b) we can see the parameters resulting from the optimization
of the ṽeff

2 interaction. For comparison also the values corresponding to the model veff
2 ,

already reported in Fig. 4.5(b), are shown with lighter colors.

As in the previous section the free parameters were determined by an optimization
procedure in order to reproduce the APR1 energies per nucleon. The resulting
potential is labeled as veff

1 in the above equation, where the subscript "1" is referred
to the APR1 optimization and the particle indices "12" have been suppressed in
order to simplify the notation. In Fig. 4.11 are shown the free parameters (a) and
the resulting energies (b) for this model. We can see that differently from the case
discussed in the previous section, the relaxation distances show a more regular
behavior, probably associated with the choice of a more realistic dynamics. The
same procedure was also performed defining an interaction veff

2 as

ϱ

2

∫
dr12 CTr

[
veff

2

(
1 − P̂ στ

12 l
2
12

)]
≡ ⟨T − TF ⟩|2b + ⟨vNN ⟩|2b + ⟨V ∗

NNN ⟩|3b , (4.57)

which have been optimized over the APR2 energies per nucleon. We stress once again
that the only difference between the VNNN and V ∗

NNN is in the coupling constant
U0 of the repulsive term, which is chosen to be U0 = 0.0048 and U0 = 0.00302
respectively for the two models. The results for this effective interaction are reported
in Fig. 4.12. We can see that the relaxation distances exhibit a slightly more irregular
behavior. The jump around ϱ = 0.2 fm−3 can be probably associated with the phase
transition induced by the appearance of a pion condensate in PNM, as discussed in
the APR original work [62]. In principle the same transition is expected to occur
also in SNM but at densities around ϱ = 0.32 fm−3.

We have repeated the same optimization procedure with the boost corrected
effective interaction, referred to as ṽeff

2 . The tilde over the potential indicates the
inclusion of boosts, whereas the subscript "2" indicates that the free parameters have
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been optimized to reproduce the APR2 energies. This ṽeff
2 has the form

ϱ

2

∫
dr12 CTr

[
ṽeff

2

(
1 − P̂ στ

12 l
2
12

)]
≡ ⟨T − TF ⟩|2b + ⟨vNN + δv⟩|2b + ⟨V ∗

NNN ⟩|3b .

(4.58)
The results for ṽeff

2 are presented in Fig. 4.13. We can see that the inclusion of boost
corrections has only a marginal impact on the determination of the free parameters,
and the energies per nucleon are still very accurately reproduced. In particular
from Fig 4.13(a) we can see that the relaxation distances, as well as the quenching
parameter α, exhibit a little kink around ϱ = 0.32 fm−3, which should be probably
ascribed to pion condensation in SNM. We indeed recall that we are optimizing the
free parameters of the effective interaction in order to simultaneously reproduce
both SNM and PNM energies.

Finally in Fig. 4.14 we can see the result of an effective interaction ṽeff
1 which

is defined according to Eq. (4.58), but with the free parameters that are not re-
optimized over the APR2 variational energies. We have used instead the same
values arising from the optimization procedure over APR1, i.e. the ones reported in
Fig. 4.11(a). The ultimate goal of such a procedure is to see if we can account for
the differences between the APR1 and APR2 EOSs, by only changing the functional
form of the effective interaction, i.e. by introducing a perturbative correction
directly in the effective potential. The remarkable agreement that is shown in
Fig. 4.14 between the APR2 variational energies and the ṽeff

1 model, suggests that
such a treatment is possible. This could be seen as a signal that the higher cluster
contributions are somehow buried inside the correlation functions obtained after the
optimization procedure. Therefore the modification of the NNN repulsion, as well as
the introduction of boost corrections can be implemented as a perturbative correction
of the effective interaction veff

1 . Because of these considerations the inclusion of
the boost corrections within the BL effective interaction should not involve any
particular difficulty, and the development of such a model is currently in progress.

Finally, as we have done in the previous section, we also report the radial
dependence of the central component of the effective potentials derived so far. In
Fig. 4.15 we can see the radial shape of the interactions optimized over the APR1
energies but figuring both different values of the coupling constant U0, (accounting
for the difference between red dashed lines and blue dot-dashed lines), and the
perturbative inclusion of boost corrections (responsible for the difference between
the blue dot-dashed lines and the green dashed lines). We can see that also in this
case the difference between these curves becomes more important as the density
increases, even if it seems to be less remarkable than in the analysis with a density
dependent NN interaction.

Figure 4.16 shows the radial dependence of the central component of the veff
2

and ṽeff
2 potentials. We can see that the effect of boost corrections on the radial

dependence of the effective interaction is even smaller than in the case of the previous
section. This may suggest either that the effect of boosts is negligible when NNN
forces are consistently considered, or maybe that three-body cluster contributions of
the boost interaction part could be important and should be also taken into account.

As a final remark we want to stress that these results are still on a preliminary
level and further investigation is necessary in order to understand every aspect of
the described procedure. Anyway what emerges from this study is surely the fact
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that, as expected, the contribution of the boost corrections alone on the effective
interaction, even being in some sense appreciable at high density, is quite smaller
than the one coming from the modification of the NNN repulsion. Slightly similar
modifications of the UIX potential could turn into large discrepancies in the EOS
of nuclear matter at high density. We also recall that the softening leading from
the UIX to the UIX* model occurs in order to balance the repulsion introduced
by boost corrections in the binding energies of three- and four- nucleon systems.
This is a low density property that has a very strong impact on the high density
behavior predicted by the model. Because of the phenomenological nature of the
UIX potential, which is constrained only by the physics at saturation, there is no
guarantee that it is suited to describe nuclear matter at very high density. In this
respect the occurrence of observables that have the potential to constrain the shape
of the NNN repulsion at density ϱ > ϱ0 will represent a fundamental breakthrough.
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(a) (b)

(c) (d)

Figure 4.10. Radial dependence of the central component of two effective interactions
at different densities. The density is written on top of each panel (in units of fm−3).
The two models are derived with (purple solid line) and without (orange dashed line)
including boost corrections in the functional form of the effective Hamiltonian. Also the
free parameters are different since they are obtained by optimizing different effective
interactions over the same variational energies. The value of γ1 is the same for both the
models and set to γ1 = 0.2.
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(a) (b)

Figure 4.11. (a) Relaxation distances and quenching parameter obtained optimizing the
effective interaction to reproduce APR1. (b) Energy per nucleon of both SNM and PNM
for the effective interaction optimized to reproduce APR1. Square and circular points
represent the values of the energy per nucleon computed in [62].

(a) (b)

Figure 4.12. (a) Relaxation distances and quenching parameter obtained optimizing the
effective interaction to reproduce APR2. (b) Energy per nucleon of both SNM and PNM
for the effective interaction optimized to reproduce APR2. Square and circular points
represent the values of the energy per nucleon computed in [62].
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(a) (b)

Figure 4.13. (a) Relaxation distances and quenching parameters obtained optimizing the
effective interaction to reproduce APR2 including also boost corrections in its definition.
(b) Energy per nucleon of both SNM and PNM for such effective interaction. Square
and circular points represent the values of the energy per nucleon computed in [62].

(a) (b)

Figure 4.14. (a) Energy per nucleon with the effective interaction computed with the
parameters of Fig. 4.11(a) but with an effective interaction ṽ including boost corrections
and a different values of the coupling of the NNN repulsion U0. (b) Comparison between
the results obtained with different values of U0 with and without boost corrections.
Square and circular points represent the values of the energy per nucleon computed
in [62].



4.3 Calculation with a realistic NNN interaction 103

(a) (b)

(c) (d)

Figure 4.15. Radial dependence of the central component of three effective interactions at
different densities. The density is written on top of each panel (in units of fm−3). The
three models are derived with the same free parameters. The red dashed line is obtained
by setting U0 = 0.0048. The blue dot dashed line by setting with U0 = 0.00302 and the
green solid line by adding boost corrections to the blue one.
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(a) (b)

(c) (d)

Figure 4.16. Radial dependence of the central component of two effective interactions
at different densities. The density is written on top of each panel (in units of fm−3).
The two models are derived with (purple solid line) and without (orange dashed line)
including boost corrections in the functional form of the effective Hamiltonian. Also the
free parameters are different since they are obtained by optimizing different effective
interactions over the same variational energies. The strength of the NNN repulsion U0
is the same for both the models and set to U0 = 0.00302.
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Chapter 5

Constraining Three-nucleon
Forces with Multimessenger
Astronomy

In the past chapters we have underlined several times the strong effect of NNN
interactions on the high density behavior of nuclear matter EOS. We have seen how
the inclusion of boost corrections accounts for a large part of the repulsion provided
by the NNN interaction in the full non-relativistic framework. However, the form of
the NNN repulsion employed in the UIX interaction is purely phenomenological and
constrained only at saturation density. We can not exclude that the UIX could be
not perfectly suited to describe nuclear matter at high density. Indeed, unlike the
nucleon-nucleon NN potential, the models of irreducible NNN interactions are totally
unconstrained beyond nuclear density. In most models the strength of the isoscalar
repulsive term—which plays a pivotal role in determining the stiffness of the nuclear
matter EOS in the region relevant to neutron stars—is determined in such a way as to
reproduce the empirical equilibrium density of isospin-symmetric matter [97,127]. In
this context, the availability of additional information constraining the three-nucleon
potential at larger density would be a major breakthrough.

Over the past decade, the availability of astrophysical data collected by elec-
tromagnetic (EM) observatories and GW interferometers, supplemented by the
information obtained from Earth-based laboratory experiments, has opened a new
era for the investigation of NS structure and dynamics.

The studies aimed at constraining the EOS of NS matter have recently benefit
from measurements of the tidal deformabilities [12–17]—encoding the footprint of
tidal interactions on the signal emitted by a binary system—performed within the
GW band. Because the tidal deformability depends on the internal composition of
the stars, any information on its value is potentially a source of novel insight into
the EOS. The discovery of GW170817 has triggered a large number of efforts aimed
at constraining the NS structure, also exploiting multimessenger approaches based
on joint GW-EM analyses [26–30,32–41,46–48,128].

In this chapter we present the result of a study aimed at exploring the possibility of
inferring direct information about the NNN repulsion from NS observations [72, 74].
We will see how the data set comprising the GW observation of the binary NS
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event GW170817, the spectroscopic observation of the millisecond pulsars PSR
J0030+0451 performed by the NICER satellite, and the high-precision measurement
of the radio pulsars timing of the binary PSR J0740+6620, can, in fact, be exploited
to infer quantitative insight on the strength of repulsive three-nucleon interactions
in dense matter. Finally this analysis is extended to consider a near-future scenario,
using current interferometers at design sensitivity and stacking multiple binary NS
observations characterized by different masses and distances. In addition, we apply,
for the first time, the Bayesian approach to gauge the sensitivity of the Einstein
Telescope (ET), a proposed third-generation ground-based GW observatory [129–131]

5.1 Modeling nuclear dynamics beyond nuclear density
In this study, we have considered purely phenomenological Hamiltonians, which are
expected to be best suited to describe the properties of nuclear matter in the density
region extending up to ∼ 5ϱ0, relevant to NS applications. The reference line of our
analysis is the Hamiltonian comprising the Argonne v18 NN potential [95] and the
Urbana IX NNN potential [97,127], which has been employed to obtain the APR
EOS [62,65].

The AV18 potential is written as a sum of eighteen terms, needed to describe
the complex operator structure of nuclear forces. It provides an accurate fit of the
NN scattering phase-shifts for laboratory-frame energies up to ∼ 600 MeV, a value
typical of NN collisions in strongly degenerate matter at density ϱ ∼ 4ϱ0 [63]. A
comparison with the central densities obtained from the solution of the Tolman-
Oppenheimer-Volkoff equations [79,80] with the APR EOS [48] suggests that this
phenomenological potential is adequate to describe NSs having masses as large as
∼ 2.1 M⊙.

Here are the main features of the UIX model of the NNN interaction, discussed
in Chapter 2. Such potential is written as the sum of an attractive potential first
derived by Fujita and Miyazawa [98]—describing two-pion exchange NNN processes
with excitation of a ∆-resonance in the intermediate state—and a phenomenological
repulsive potential; the resulting expression is

Vijk = V 2π
ijk + V R

ijk . (5.1)

The strength of the two-pion exchange contribution is adjusted to reproduce the
observed ground state energies of 3H and 4He, obtained from accurate Monte Carlo
calculations [97], whereas that of the isoscalar repulsive term is fixed to obtain the
empirical saturation density of SNM—inferred from nuclear data—from variational
calculations carried out using advanced many-body techniques [127].

It should be kept in mind that the repulsive term V R
ijk implicitly takes into

account relativistic corrections to the phenomenological two-nucleon potential vij ,
arising from the center of mass motion of the interacting pair.

The authors of Ref. [62] have modified the free-space AV18 potential to include
the boost correction δv, whose effect is an enhancement of the repulsive contribution
to the potential energy. As a consequence, using the boosted AV18 potential in
calculations of nuclear matter energy entails the introduction of a modified NNN
potential, referred to as UIX∗, which turns out to be considerably softer than the UIX.
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The impact of relativistic corrections to the nuclear Hamiltonian on the description
of NS properties has been recently discussed in Ref. [48].

Because of the unconstrained nature of the NNN interaction at high density we
have explored the possibility of inferring the strength of the repulsive term of the
UIX∗ potential from data collected by multimessenger astrophysical observations,
which carry information on nuclear dynamics at supranuclear density. Note that
to pin down the dynamics of NNN interactions it is essential that the analysis be
carried out using the the boost corrected NN potential.

Our study is based on the use of a set of Hamiltonians, obtained from the AV18
+ δv + UIX∗ model performing the replacement

⟨V R
ijk⟩ → α⟨V R

ijk⟩ . (5.2)

The energy-density of nuclear matter at arbitrary baryon density ϱ and proton
fraction xp has been obtained generalizing the parametrization employed in Ref. [62]
and reported in Eqs. (3.142) and (3.143). The explicit expressions of the functions
appearing in those equations involve a set of parameters which were determined by
fitting the energy per nucleon of SNM and pure neutron matter computed within the
FHNC/SOC variational approach [132] using the AV18+ δv + UIX∗ Hamiltonian.

Implementing the substitution of Eq. (5.2) is equivalent to add a term (α− 1)V R

at first order in perturbation theory. The corresponding change of energy density
turns out to be

g(ϱ, xp) → g(ϱ, xp, α) = g(ϱ, xp) + δg(ϱ, xp, α), (5.3)

with

δg(ϱ, xp, α) = δg(ϱ, 1/2, α)
[
1 − (1 − 2xp)2

]
+ δg(ϱ, 0, α)(1 − 2xp)2 . (5.4)

The functions δg can be readily expressed in terms of expectation values of V R in
the nuclear matter ground state using

δg(ϱ, 1/2, α) = ϱ

A
(α− 1)⟨V R

ijk⟩SNM (5.5)

δg(ϱ, 0, α) = ϱ

A
(α− 1)⟨V R

ijk⟩PNM. (5.6)

Tabulated values of ⟨V R
ijk⟩ as a function of density can be found in Ref. [62]. In

our analysis, we have employed a polynomial fit including powers up to ϱ3

⟨V R
ijk⟩ = a0 + a1 ϱ+ a2 ϱ

2 + a3 ϱ
3 , (5.7)

which turned out to be very accurate. The values of the parameters ai are reported
in Table 5.1.

Using the analytic expression of the energy density of nuclear matter at arbitrary
proton fraction, composition and energy density of β-stable matter can be easily
determined, by minimizing with respect to xp, with the additional constraints of
conservation of baryon number and charge neutrality. Finally, the matter pressure
P , derived from standard thermodynamic relations, is used to obtain the EOS P (ϵ).
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Table 5.1. Values of the parameters appearing in Eq. (5.7), corresponding to ⟨V R
ijk⟩ in MeV

and ϱ in fm−3.

a0 a1 a2 a3
[MeV] [MeV fm3] [MeV fm6] [MeV fm9]

SNM 0.754 -16.769 214.164 77.422
PNM 0.949 -27.403 241.407 64.995

Figure 5.1. Density dependence of SNM for different values of the three-nucleon repulsion
strength α. The minimum value of the curves, corresponding to the equilibrium density
of isospin symmetric matter is marked by a filled black circle.

It has to be kept in mind that changing the strength of V R
ijk affects the value of

the nuclear saturation density predicted by the AV18 + δv + UIX∗ Hamiltonian.
For this reason, we have limited the acceptable range of α to the interval [0.7, 2.0].
Within this range, the departure from the empirical value of ϱ0 turns out to be
∼ 15% at most, and the corresponding change of the energy per particle never
exceeds 3%. The displacement of the equilibrium density of SNM for different values
of α is shown in Fig. 5.1.

Moreover, because the contribution of the repulsive NNN potential becomes large
at supranuclear densities, the modification of its strength α marginally affect the
ground-state energy of atomic nuclei. Using the results reported in Ref. [99], obtained
from accurate Quantum Monte Carlo calculations, we have found that changing
α from 1 to 1.3 results in a change of 4% and 6% of the ground state energies of
4He and 12C, respectively. These discrepancies appear to be fully acceptable in the
context of our exploratory study. In Fig. 5.2 we can see the mass-radius diagram
(a) and the Λ1-Λ2 plane of a binary system for some significant values of α. These
curves are plotted together with the posterior distributions of the Mass-Radius
measurement of the NICER pulsar PSRJ0030+0451 and of the GW170817 tidal
deformabilities. Already at this stage we can see that there is strong sensitivity of
NS observables with respect to small variations of α.
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(a) (b)

Figure 5.2. (a) Mass-radius relations of NS obtained using EOSs corresponding to the
values of α specified on top of each curve. The shaded band identifies the most massive
pulsar observed so far, PSR J0740+6620 [5]. The closed contours show to the 68% and
95% confidence intervals derived for the NICER pulsar [7]. The dashed straight lines
correspond to constant compactness C = M/R. (b) NS models in the Λ1-Λ2 plane for
selected values of α, and corresponding to the masses measured for GW170817. The
50% and 90% confidence intervals derived using the GW170817 data [3] are also shown.

5.2 Methods and observations
We consider a family of EOSs for which the observables of a neutron star (mass,
radius and tidal deformability) depend uniquely on the three-body coefficient α and
on the central pressure pc:

{α, pc} → {M,R, λ} . (5.8)

Figure 5.3 shows the stable stellar configurations in the mass-radius plane and
the mass-tidal deformability plane. Given a set Oi=1,...,n of observations, we infer
{α, p(1)

c . . . p
(m)
c } 1 using a hierarchical Bayesian approach,

P(α, p⃗c|O⃗) ∝ P0(α, p⃗c)
m∏

i=1
L(Oi|θi) (5.9)

where p⃗c = {p(1)
c . . . p

(m)
c }, L(Oi|θi) is the likelihood of the i-th event (see Sec. 5.2.1

below) and θi denotes the set of relevant NS observables — mass and radius for
pulsars, symmetric mass ratio and effective tidal deformability for GW observations

— evaluated at {α, p(i)
c } via (5.8). We assume that the priors on α and on each central

pressure in Eq. (5.9) are uncorrelated.
The posteriors in Eq. (5.9) are sampled by means of Markov Chain Monte Carlo

(MCMC) simulations employing the emcee algorithm with stretch move [133]. For
1In general m ̸= n: for binary coalescence events, we must sample over the pressures of both

members of the binary.
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Figure 5.3. (Top) Representative ensemble of the mass-radius profiles for the family of
EOS considered in this work. Each gray curve corresponds to a specific value of α drawn
between the solid violet lines which refer to the lower and upper bounds of α assumed
in the analysis, i.e. α = 0.7 and α = 2, respectively. The dashed curve identifies the
baseline APR model with α = 1. We also show lines of constant compactness C = M/R.
(Bottom) Same as top panel but for the dimensionless tidal deformability λ/M5 as a
function of the NS mass.
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each observation we run 100 walkers of 106 samples with a thinning factor of 0.02.
The final distribution for α is obtained by marginalizing over the central pressures
p⃗c. When presenting results, we quote the median alongside the bounds of the 90%
symmetric posterior density intervals.

We sample the central pressures of each star uniformly in log-space between
ln10 p

min
c (α) ≃ 34.58, where pc is expressed in dyne/cm2, and ln10 p

max
c (α), where

pmax
c corresponds to the central pressure of the heaviest stable configuration for each

EOS specified by α. The lower value pmin
c is chosen such that the nuclear model

supports masses larger than 0.8M⊙. The values of α are drawn from a uniform
distribution in the range [0.7, 2]. We also impose a causality constraint, requiring
that the speed of sound cs =

√
dp/dϵ is subluminal at the center of each NS.

5.2.1 Astrophysical datasets

We considered three real datasets corresponding to (i) the binary coalescence
GW170817, (ii) the millisecond pulsar PSR J0030+0451 and (iii) the heaviest
NS observed so far PSR J0740+6620. We briefly summarize here the basic properties
of each dataset and the corresponding likelihood functions that enter Eq. (5.9).

(i) — GW170817 is the first binary neutron star system observed by LIGO and
Virgo. Under a low spin prior, the LVC analysis constrained the source component
masses (m1,m2) between ∼ 1.16M⊙ and ∼ 1.6M⊙. GW170817 provided the first
evidence that GW signals from coalescing systems are sensitive to matter effects
induced by the NS structure, yielding a measurement for the effective tidal parameter

Λ̃ = 16
13

[
(m1 + 12m2)m4

1Λ1
(m1 +m2)5 + 1 ↔ 2

]
(5.10)

of Λ̃ = 300+420
−230 within 90% of the highest posterior density interval, with Λ1,2 =

λ1,2/m
5
1,2 being the NS individual, dimensionless, tidal deformabilities [4].

We construct the likelihood L(OGW170817|η, Λ̃) from the joint posterior
P(M, η, Λ̃|OGW170817) for Λ̃, the chirp mass M = (m1m2)3/5/(m1 +m2)1/5, and the
symmetric mass ratio η = m1m2/(m1+m2)5. The calculation can be simplified by the
fact that the chirp mass in the source frame is measured with ∼ 0.1% precision, which
allows to fix it to its median value M⋆ = 1.186 M⊙ and restrict to the conditional
probability P(η, Λ̃|M⋆, OGW170817). Moreover, as shown in [35], the latter can be
replaced by the marginalized posterior P(η, Λ̃|OGW170817) to very good accuracy.
This choice reduces the number of parameters to be sampled, since the central
pressure p(2)

c of the secondary component is uniquely determined by {M⋆, p
(1)
c } and

α 2, and similarly for the individual masses m1,2 and tidal deformabilities Λ1,2. The
likelihood function is then obtained by re-weighting the posterior by the joint prior
on η and Λ̃ as derived from [4],

L(OGW170817|η, Λ̃) = P(η, Λ̃|OGW170817)
P0(η, Λ̃)

. (5.11)

2More specifically, we compute m2 from m1(α, p
(1)
c ) and M⋆ and then we solve m2 ≡ m2(α, p

(2)
c )

for p
(2)
c .
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Note that, although p(2)
c is not independently sampled, we still require it to lie within

its prior support.
(ii) — For the millisecond pulsar PSR J0030+0451 we use the joint mass-radius

posterior P(M,R|OJ0030) inferred by the NICER collaboration, which has carried
out two independent studies of the stellar spectroscopic observations, obtaining
consistent results. The mass-radius constraints provided by the two collaborations
led to M = 1.34+0.15

−0.16M⊙ and R = 12.71+1.14
−1.19km [7], and M = 1.44+0.15

−0.14M⊙ and
R = 13.02+1.24

−1.06km [8] respectively (68% credibility). Here we use the data publicly
available in [134], for which the likelihood can be derived straightforwardly from
P(M,R|OJ0030) because the joint prior on {M,R} is flat,

L(OJ0030|M,R) ∝ P(M,R|OJ0030) . (5.12)

(iii) — PSR J0740+6620 [9, 10] is the most massive pulsar discovered so far.
Previous observations of this source constrained its mass to M = 2.08+0.072

−0.069M⊙
(68.3% credibility) [6]. This measurement, combined with data obtained from the
XMM Newton European Photon Imaging Camera to improve the NICER background,
was used in [9, 135] and [10, 136] to infer the pulsar radius, with the two teams
obtaining R = 12.39+1.30

−0.98km and R = 13.7+2.62
−1.50km [10] respectively (68% credibility).

Here we use the data in [137], for which the likelihood can be immediately inferred
from the posterior due to uniform priors,

L(OJ0740|M,R) ∝ P(M,R|OJ0740) . (5.13)

5.2.2 Simulations for 2G and 3G detectors

We simulated3 30 binary neutron star events for two choices of the parameter α,
α = 1 and α = 1.3, either for a network (HLV) composed by the LIGO Hanford,
LIGO Livingston, and Virgo detectors at design sensitivity [139], or for the future
third-generation interferometer Einstein Telescope in its ET-D configuration [130].
The distribution of the source masses, luminosity distances and effective tidal
parameters are shown in Fig. 5.4. We injected 64-second long waveforms into a zero-
noise configuration as described in [140], with sky location and inclination uniformly
distributed over the sky. Posterior parameters are recovered using the bilby software
[141, 142] for GW injections and parameter estimation. For both injection and
recovery, we modeled binary neutron star signals with the IMRPhenomPv2_NRTidal
waveform template [143,144]. Injected binaries are nonspinning, while component
spins are recovered imposing a low-spin prior χ1,2 ∈ [−0.05, 0.05] and assuming that
spins are (anti-) aligned.

We assume that tidal parameters are recovered uniformly w.r.t. Λ̃ and the tidal pa-
rameter δΛ which contributes at higher post-Newtonian order in the waveform phase
expansion [145], with the additional constraint that the individual deformabilities
Λ1,2 of the binary components lie between 0 and 5000.

3We limit our catalog to 30 events because the recovery of the EOS is expected to be biased by
a mismodeling of the BNS population distribution if the number of sources exceeds ∼ 30 [138].
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Figure 5.4. Component masses, luminosity distance, chirp mass, and tidal parameter for
the catalogue of NS binaries simulated for HLV and ET observations. Full and empty
dots in the left bottom panel correspond to values of m1 and m2, with m1 ≥ m2. Full
and empty markers in the bottom right plot identify the tidal parameter for the two
values of α we considered, α = 1 and α = 1.3, respectively.

5.3 Results

We start the discussion of our results by focusing first on the the Bayesian analysis
applied to the three real observations described in the previous section.

The inferred probability distributions for α are summarized by the density plots
in the left column of Fig. 5.5, together with their median values and 90% confidence
intervals.

Interestingly the posterior densities of Fig. 5.5 show very similar results for
the two EM observations, with a nearly identical median around α ≃ 1.4. The
probability distribution for J0740+6620 peaks around a slightly larger value compared
to the lighter pulsar, J0030+0451, since larger values of α tend to support more
massive configurations. Moreover, even if P(α) shows support for the baseline model
α = 1, which lies within the 90% CL of the distributions, EM observations seem
to consistently favor larger values of the three-body repulsion. Moreover we can
observe that the distribution of α inferred by GW data alone is unconstrained, with
the posterior rallying against the lower prior at α = 0.7, while the multi-messenger
analysis is dominated by the pulsar measurements, and in particular by J0740+6620,
showing large support for α > 1.

Constraints on α, i.e on the underlying microscopic Hamiltonian, can be trans-
lated into bounds on the stellar macroscopic observables. The right column of
Fig. 5.5 shows, for example, the maximum mass density distributions predicted
by the values of α inferred for each dataset. All the observations lead to median
values of Mmax ≳ 2.2M⊙, with the multi-messenger analysis yielding a probability
distribution with large support for Mmax ∼ 2.5M⊙.
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Figure 5.5. (Left Row) Posterior probability densities for α inferred from different
astrophysical datasets. (Right row) Posterior densities for the maximum mass allowed by
the EOS corresponding to the inferred distribution of α. Bottom panels provide results
with all datasets stacked together. Vertical red and black lines identify the median and
the the 90% posterior density intervals of each distribution, respectively.
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In Fig. 5.6 we also show the M -R density distribution corresponding to the 90%
CL of α for the multi-messenger case. Light (dark) colors identify stellar profiles
with high (low) probability. Pulsar observations drive the profiles far from the α = 1
baseline, i.e. towards stiffer NS configurations, with an expected radius R ≳ 12 km
for a prototype NS with M = 1.4M⊙.

So far our analysis shows that, although the constraining power of current
measurements is still limited, astrophysical data are already sensitive to nucleon
dynamics. We will therefore explore the insights that can be inferred on three-nucleon
forces exploiting future GW observations of binary systems.

Figure 5.6. Mass-radius profile density corresponding to the 90% confidence interval of
α inferred for the GW-EM multi-messenger analysis. Dark (light) regions correspond
to stellar profiles with small (large) probability. As for Fig. 5.3 red curves identify
configurations with specific values of the three-body strength, while dashed black lines
correspond to configurations with constant compactness.

As discussed in Sec. 5.2.2 we have simulated two catalogs of 30 binary NS
mergers, observed either by 2G network or by ET, assuming two different values of
the three-nucleon repulsion. Source parameters, i.e. masses and tidal deformabilities,
are first recovered with Bilby, and then analyzed by our Bayesian pipeline which
samples the posterior distribution of α.

Figure 5.7 shows the posterior densities P(α) of each event, for injected NSs with
α = 1, detected by the HLV network. The ability of 2G detectors to discriminate the
actual value of the three-body repulsion substantially depends on both the SNR and
on the component masses of the binary. We find that observations with SNR smaller
than ∼ 25 lead α to be almost unconstrained, with the true value always lying
outside the 90% confidence interval of the distribution. However, even for strong
signals, accurate measurements only occur for low-mass systems with a chirp mass
M ≲ 1.4M⊙. This is particular evident for the event with the largest SNR (∼ 35)
in our set. Such binary features two heavy NSs with a chirp mass M ≃ 1.6M⊙,
and provides loose bounds on α. Moreover, Fig. 5.7 shows that, with the exception
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of four events with SNR> 30 and M < 1.4M⊙, the remaining posteriors always
prefer large values of α, at the edge of the upper prior boundary. This particular
behavior reflects a systematic bias we find in the posteriors of Λ̃ inferred by GW
observations for binaries with heavy components, which tend to favor large values of
the tidal parameter. Its effect on the marginal distribution of α becomes even more
pronounced in the high mass scenario where the tidal deformability becomes less
sensitive to variations of α. We believe such bias may be induced by our choice of
priors on the tidal parameters, which has strong support against the BBH hypothesis
Λ̃ = 0, and reflects the physical assumption that compact objects with m1,2 ≲ 3M⊙
are neutron stars. Moreover, the stack of multiple GW signals only partially alleviate
the bias in favor of large three-body strength. We have indeed combined different
observations with SNR larger than 20, finding a mild improvement of the posterior
support towards the true value of α. In particular we can see in Fig. 5.8 how the
combination of the six HLV best events, panel (b), slightly improves the results with
respect to the single observation, panel (a). Indeed the injected value of α = 1.3 is
excluded at 90% CL from the posterior associated with the α = 1 set of events, and
vice versa.

Figure 5.7. Posterior densities P(α) inferred from simulated GW data, assuming α = 1
(dashed horizontal line). Yellow (green) colors identify region with high (low) probability.
Signals are observed by a network HLV of three advanced detectors, with a combined
SNR given in the top axis of the plot. Labels in the bottom axis provide the values of
the binary chirp masses.

This picture changes dramatically when signals are observed by the Einstein
Telescope. Figure 5.9 shows indeed the distributions of the three-nucleon repulsion
strength inferred by the 3G detector, for both families of events simulated with
α = 1 and α = 1.3. The exquisite sensitivity of ET allows to gauge away the bias
arising from the 2G network. All the posteriors peak around the injected values of
α, showing no support on the prior boundaries. In the best (worse) case scenario we
find that α can be constrained with ∼ 2% (∼ 30%) of accuracy at 68% confidence
level. Such accuracy allows to disentangle the two values of α we considered. Even
in the most pessimistic cases, where the inferred P(α) are not narrow enough to
identify a specific value of α, stacking of few events would render the distributions
clearly distinguishable. Figure 5.10 shows the posteriors obtained by combining six
events of our catalog4 leading to loose constraints on α. The final posteriors for
α = 1 and α = 1.3 are clearly separated, with a negligible overlap on the tails.

4We choose the events number 7,15,16,18,19 and 25 of Fig. 5.9.
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(a) (b)

Figure 5.8. Marginal posterior distribution of α for a single HLV event (a) and for the
combination of the best six events having SNR > 20 (b). Blue posteriors are referred to
the dataset generated by injecting α = 1.0, whereas the red ones correspond to the case
α = 1.3. The vertical dashed lines identify the injected values of α.

Figure 5.9. Same as Fig. 5.7 but assuming that binary NS are observed by the Einstein
Telescope. We show results for signals simulated with both α = 1 and α = 1.3. Injected
values of α are identified by the horizontal dashed lines.

Such accuracy translates into very narrow constraints on the mass-radius (or
equivalently mass-tidal deformability) diagram. As an example, we show in Fig. 5.11
the M -R profile density computed from the values of α inferred from event number
17 of our dataset. A direct comparison with Fig. 5.6, where a similar plot was made
for data from current facilities, provides a clear hint on the possibility to use ET as
a new laboratory to study the dynamics of nucleon interactions in the stellar cores.
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Figure 5.10. Probability distribution P(α) obtained by stacking six events of our dataset
as measured by the Einstein Telescope. Empty histograms refer to the full stacked
posteriors for signals injected with α = 1 (blue) and α = 1.3 (red). Empty shaded
histograms on the background correspond to the individual posteriors. The vertical
dashed lines identify the injected values of α.

Figure 5.11. Same as Fig. 5.6 but for simulated events observed by the Einstein Telescope.
The values of α used to build the mass-radius profiles correspond correspond to event
number 17 of our catalogue. We show results for both α = 1 and α = 1.3. Solid and
dashed red curves identify the profiles corresponding to prior boundaries and to the
injected values of α, respectively.α
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Chapter 6

Summary and Outlook

In this Thesis we have explored the effect of including relativistic boost correc-
tions within the derivation of a nuclear effective potential—carried out from a
phenomenological Hamiltonian using the formalism of CBF and cluster expansion
techniques—describing the interactions between nucleons in the nuclear medium.
We have explored two complementary possibilities. Boost corrections can be im-
plemented either as a perturbation in the effective potential, without changing the
nuclear correlation functions, or directly in its functional form, before carrying out
the determination of the correlation parameters. In the first case boosts are mainly
responsible for introducing a correction to the computed ground state energies,
whereas with the second method they mainly affect the radial dependence of the
effective interaction. We have analyzed two different models. The first one, obtained
from a simplified Hamiltonian involving only a kinetic term and a NN interaction
potential. Such a potential is suitably modified with an additional density dependent
term in order to account for NNN repulsion, according to the procedure developed
in Ref. [96]. The main advantage of this Hamiltonian is to provide a very simple
and efficient framework allowing for fast computations. Anyway the oversimplified
treatment of NNN forces result in a not fully realistic dynamics, and even if such a
model is useful in order to understand some physical properties behind the formalism,
it should not be trusted to perform accurate calculations of nuclear matter properties.
Therefore, a more realistic interaction was studied, starting from an Hamiltonian
explicitly including a microscopic NNN potential. It is relevant that the introduction
of boost corrections appears to have very similar effects in both scenarios. The NN
potential employed in the derivation of our effective interaction is chosen to be the
AV6P in both the models analyzed. The NNN potential, when present, is chosen
as the UIX model. The correlation functions appearing in the effective interaction
are optimized in such a way as to reproduce the variational energies computed by
Akmal Pandharipande and Revenhal in Ref. [62]. The use of the AV6P NN potential
instead of the AV18 employed in the APR work is justified by the recent results of
Ref. [66], showing that the AV6P+UIX and AV18+UIX Hamiltonians yield very
similar results in calculations of nuclear matter energies.

Our results show that the perturbative correction introduced by boost interactions
alone is quite small, and likely to be negligible in the context of neutron star physics,
where the uncertainty on astrophysical observables is still significant. However it
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should be kept in mind that the introduction of such relativistic corrections must
be complemented with a softening of the isoscalar NNN repulsion. Because of the
different density dependence, even if responsible for comparable effects at typical
nuclear densities, a modification of the NNN force turns out to strongly affect
the high density behavior of the nuclear matter equation of state. In this sense,
within the phenomenological approach, the availability of empirical information
able to constrain nuclear dynamics in high density matter will be of fundamental
importance. This subject is discussed in Chapter 5 where we have presented the
results of a pioneering study aimed at inferring information on the NNN repulsion
from multimessenger NS observations.

We have investigated the sensitivity of NS observations to the strength of repulsive
NNN forces, which are known to be critical in determining the stiffness of the nuclear
matter EOS at supranuclear densities. Our analysis is based on the AV18 + δv +
UIX∗ nuclear Hamiltonian and involves a single free parameter, to be constrained
by data, determining the coupling constant appearing in the repulsive contribution
to the UIX∗ potential.

We have performed bayesian inference employing the currently available mul-
timessenger datasets in order to constrain this parameter. We have then repeated
the analysis with a set of simulated GW observations that could be performed
by both current (LIGO/Virgo) and future (Einstein Telescope) interferometers at
design sensitivity. This analysis has the main purpose to explore the potential of
next generation facilities into inferring crucial information about the microscopic
dynamics of nuclear matter.

Our results suggest that even if current facilities show a clear sensitivity to
small variations of the NNN repulsive potential, they are not accurate enough to
capture significant insights. This picture is cross-validated by the population analysis
performed with mocked LIGO/Virgo data, with binaries generated with two different
values of the NNN repulsion strength, α = 1 and α = 1.3. Only few, low-mass and
high signal-to-noise ratio events provide a meaningful constraint on α, with posterior
distributions correctly peaked around the injected values. Moreover, even for the
most constraining event, the inferred posteriors do not allow a clear disentanglement
between the two values of α we considered. The picture improves only slightly with
the stacking of multiple observations.

These results exhibit a striking upgrade when we assume that the the population
of binaries is observed by the Einstein Telescope. In most of the cases, the large SNRs
obtained by such events in combination with the 3G detector allow the posteriors
for the injected values of α to be clearly separated, and only a single observation is
needed to resolve them.

Moreover, in the few cases where posteriors overlap, stacking of ∼ 2 − 3 observa-
tions would allow to unambiguously distinguish between α = 1 and α = 1.3.

This analysis has confirmed once again that the upcoming future of multimes-
senger astronomy will bring fundamental insights on the behavior of nuclear matter,
having the potential to shed a completely new light on our knowledge of nuclear
dynamics.

It is important to remark that all the results derived within this Thesis are
obtained in the framework of non-relativistic NMBT. Such a framework, besides
being extremely consistent and with a remarkable predictive power has obviously
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some limitations. The most important one is linked to the non-relativistic nature of
the formalism. Indeed, having its roots in non-relativistic quantum mechanics, issues
related with causality violations are expected to occur when the density increases
too much. In particular the APR models predict a superluminal value of the speed of
sound in the innermost region of NSs with masses larger than ∼ 2.1M⊙. Moreover
at very high density also the appearance of degrees of freedom other than nucleons,
which are not present in the nuclear Hamiltonian, should be considered. Finally the
role of four- and many-body forces at high density is still unclear. In fact, even if it
is true that their contribution is negligible at typical nuclear densities, indeed they
turn out to be unnecessary in order to correctly describe the properties of nuclei
with a large number of constituents, their relevance can increase with density in a
similar way to what happen with the three-body forces. However, this formalism
appears to be perfectly suited to describe NSs in the mass range observed so far.

Regarding the effective interaction, in spite of being only an exploratory analysis,
our work highlighted the importance of developing a consistent treatment of boost
corrections and NNN forces.

Future perspectives of our study spans several possibilities. First of all it
could be useful to perform new calculations of the properties of 3H, 3He and 4He
including boost corrections with a set of different Hamiltonians. Indeed, the approach
presented within this Thesis is completely general and can be extended to any nuclear
Hamiltonian. In particular calculations performed within the χEFT framework would
be of great importance in order to further understand the relation between boosts
and NNN interactions. Once that the interplay between boosts and NNN interaction
is understood at nuclear density, accurate state-of-the-art ab initio many-body
calculations, involving both boost corrections and the corresponding NNN potential,
will be necessary. We recall that relativistic corrections are accounted in the APR
calculations only at first order in perturbation theory, but to which extent their
outcome at high density is actually a perturbation may be questionable. Such
many-body calculations will also serve as new target values in order to carry out a
fully consistent effective interaction accounting also for relativistic effects. Indeed
our results were derived by optimizing the effective interaction over the only existing
variational calculations including both the effects of boosts, and the consequent
modification of NNN repulsion. Since the effective interaction formalism provides
a very powerful and consistent framework to study properties of nuclear matter
well beyond the ground state ones, the development of a further refined model,
with respect to the one derived in this work, will be a prominent breakthrough.
However the effective interaction discussed within this Thesis can already be used
to perform some exploratory calculations and a work where it is used to compute
finite temperature properties is currently in progress.

Last but not least, formal improvements in our procedure are also possible.
Our effective interaction is developed by including boost corrections only at the
two-body level. Although higher order contributions have been estimated to be small,
fully quantitative assessment of their role—which does not involve any additional
conceptual difficulty—will certainly be needed.
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Appendix A

Derivation of One-Pion
Exchange Potential

Let us consider the invariant amplitude written in Chapter 2 regarding the OPE
contribution to NN scattering reported in Fig. 2.2

iM = −g2 ū(p2′ , s2′)γ5u(p2, s2) 1
k2 −m2

π

ū(p1′ , s1′)γ5u(p1, s1)⟨τa
1 ⟩⟨τa

2 ⟩. (A.1)

We remind that we are considering the states |i⟩ = |p1, s1; p2, s2⟩ and |f⟩ =
|p1′ , s1′ ; p2′ , s2′⟩ to be respectively the initial and final states. The S-matrix element
⟨f |S|i⟩ = Sfi is given by

Sfi =
√
m

E1

√
m

E2

√
m

E1′

√
m

E2′
(2π)4δ(4)(p2′ + p1′ − p2 − p1)

[
M − M′] , (A.2)

where M′ is the invariant amplitude associated with the diagram in which the index
1′ is replaced by 2′ and vice versa. It has the same shape as M, with the substitution
of the indices mentioned above and with k = p1′ − p2 instead of k = p2′ − p2. The
minus sign between the two invariant amplitudes comes from the Fermi exclusion
principle. In this section we will consider only the contribution coming from M
to the S-matrix element, because it is sufficient to derive the expression of the
one-pion-exchange potential. Therefore when we talk about the S-matrix element,
we will consider (A.2) without the contribution arising from M′. From now on we
label the generic spinor u(pi, si) with ui.

The matrix γ5 is defined as γ5 = iγ0γ1γ2γ3, where the gammas are 4×4 matrices
defined as

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.3)

with σi being the Pauli matrices. The spinors are normalized such that ūu = 1, i.e.
we have

ui =

√
Ei +m

2m


χi

σ · pi
Ei +m

χi

 . (A.4)
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Therefore, in the non-relativistic limit where we can take Ei ≈ Ei′ ≈ m, we have

ū2′γ5u2 = (E2 +m)1/2(E′
2 +m)1/2

2m

(
χ†

2′
σ · p2
E2 +m

χ2 − χ†
2′

σ · p2′

E2′ +m
χ2

)
≈ χ†

2′
σ · (p2 − p2′)

2m χ2 = −χ†
2′

σ · k
2m χ2

(A.5)

and similarly for ū1′γ5u1. Therefore in the non-relativistic limit we can approximate
k2 = (Ei′ − Ei)2 − |k|2 ≈ −|k|2. The meson propagator in this case becomes

i

k2 −m2
π

≈ − i

|k|2 +m2
π

. (A.6)

Substituting all these results into the expression of the S-matrix element (A.2) we
find

Sfi ≈ −i g
2

4m2 (2π)4δ(4)(p1′ + p2′ − p1 − p2)·

·⟨τa
1 τ

a
2 ⟩χ†

1′χ
†
2′

−(σ1 · k)(σ2 · k)
|k|2 +m2

π

χ2χ1.

(A.7)

We are interested into finding a non-relativistic nucleon-nucleon potential that
depends on the relative distance between the two nucleons vπ(r) with r = r2 − r1.
This potential is translationally invariant, thus its Fourier transform depends only
on the relative momentum k.

We can define the interaction potential through the relation

Sfi = −i(2π)4δ(4)(p1′ + p2′ − p1 − p2)⟨vπ(k)⟩, (A.8)

where the braket indicates that the potential vπ(k) is evaluated between the spinors
and the ispospin spinors of the initial and final states. Putting together Eqs. (A.7)
and (A.8) we have

vπ(k) = − g2

4m2
(σ1 · k)(σ2 · k)

k2 +m2
π

τa
1 τ

a
2

= −
(
fπ

mπ

)2 (σ1 · k)(σ2 · k)
k2 +m2

π

τa
1 τ

a
2

(A.9)

with g2/4π = 14 and

f2
π = g2 m

2
π

4m2 ≈ 4π · 14 (140)2

4 · (939)2 ≈ 4π · 0.08 ≈ 1. (A.10)

The expression of the potential in the configuration space can be found through

vπ(r) = − f2
π

m2
π

∫
d3k

(2π)3 τ
a
1 τ

a
2 (σ1 · k)(σ2 · k) 1

k2 +m2
π

e−ik·x

= f2
π

m2
π

τa
1 τ

a
2 (σ1 · ∇)(σ2 · ∇)

∫
d3k

(2π)3
1

k2 +m2
π

e−ik·x

= f2
π

m2
π

(τa
1 τ

a
2 ) (σ1 · ∇) (σ2 · ∇) e

−mπr

r
.

(A.11)
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We remark the fact that the Yukawa function

yπ(r) = e−mπr

r
=
∫

d3k

(2π)3
1

k2 +m2
π

e−ik·x, (A.12)

satisfies the equation
(−∇2 +m2

π) yπ(r) = 4πδ(r), (A.13)
that tells us that the laplacian of the Yukawa function involves a δ-function singularity
at the origin. The gradients in Eq. (A.11) must be evaluated taking this singularity
into account. We are dealing with an object of the form

(σi
1∂i) (σj

2∂j) yπ(r) = σi
1σ

j
2 [∂i∂j yπ(r)]. (A.14)

We said that the laplacian of the Yukawa function involves a δ-function singularity,
therefore we will have troubles with the trace of the operator ∂i∂j . We can therefore
split this operator in two pieces, isolating the contribution of the trace, through

∂i∂j =
(
∂i∂j − 1

3δij ∂k∂k

)
+ 1

3δij ∂k∂k, (A.15)

where the first term is clearly traceless. When we apply the first term on the right
hand side of the above equation to the Yukawa function, the δ-function will not
appear. We can therefore make usual derivatives, together with the substitution
∇2yπ = m2

πyπ. We obtain

(σ1 · ∇) (σ2 · ∇) yπ(r) =

=
(

σ1 · ∇ σ2 · ∇ − 1
3 σ1 · σ2∇2

)
yπ(r) + 1

3 σ1 · σ2∇2yπ(r). (A.16)

The first term on the right and side of the above equation gives rise to(
σ1 · ∇ σ2 · ∇ − 1

3 σ1 · σ2∇2
)
yπ(r) =

=
(

σ1 · r̂σ2 · r̂ − 1
3 σ1 · σ2

)(
m2

π + 3mπ

r
+ 3
r2

)
yπ(r), (A.17)

where r̂ = r/r. The second term on the right hand side of (A.16) satisfies
1
3 σ1 · σ2∇2yπ(r) = 1

3 σ1 · σ2
[
m2

πyπ(r) − 4πδ(r)
]
. (A.18)

Putting all these results together, and defining

S12 = 3
r2 (σ1 · r) (σ2 · r) − (σ1 · σ2) (A.19)

we finally find the expression of the one-pion-exchange potential

vπ(r) = 1
3

1
4πf

2
πmπ τ

a
1 τ

a
2

[
Tπ(r)S12 +

(
Yπ(r) − 4π

m3
π

δ(r)
)

σ1 · σ2

]
, (A.20)

with
Yπ(r) = e−mπr

mπr
, (A.21)

and
Tπ(r) =

(
1 + 3

mπr
+ 3
m2

πr
2

)
Yπ(r). (A.22)
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Appendix B

AV6 Algebra

Within this section we report some useful properties of the AV6 operators, i.e. the
set

Op
12 = (1,σ1 · σ2, S12) ⊗ (1, τ 1 · τ 2). (B.1)

Within this whole section we understood summation over repeated indices. The
standard notation usually employed in literature addresses with p = 1, 3, 5 the
isospin independent operators, i.e. (1,σ1 · σ2, S12) ⊗ 1, whereas p = 2, 4, 6 refer to
(1,σ1 · σ2, S12) ⊗ (τ 1 · τ 2). The tensor operator S12 has the form

S12 = 3
r2 (σ1 · r) (σ1 · r) − (σ1 · σ2) . (B.2)

We recall also the basic properties of the Pauli matrices{
σi, σj

}
= 2δij (B.3)[

σi, σj
]

= 2iϵijkσk, (B.4)

where the indices i, j, k run from 1 to 3. Their explicit expression is the following

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.5)

The τ matrices are defined in the same way as the σ but acting on the isospin space.
We have already mentioned that the Op operators form an algebra, i.e. they ex-

hibit closed composition relations (we suppress the subscript "12" from the operators
Op

12 from now on)
OpOq = KpqlOl. (B.6)

The coefficients Kpql can be easily computed with some algebraic manipulations. By
simply applying the commutation relations (B.3) and (B.4) it is straightforward to
see that

(σ1 · σ2)(σ1 · σ2) = 3 − 2(σ1 · σ2) (B.7)
S12(σ1 · σ2) = (σ1 · σ2)S12 = S12 (B.8)

S12S12 = 6 − 2S12 + 2(σ1 · σ2). (B.9)
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Another useful property regards the gradient of the tensor operator

∇S12 = 3
r2

[
σ1(σ2 · r) + σ2(σ1 · r) − 2 r

r2 (σ1 · r)(σ2 · r)
]
. (B.10)

Therefore we have that
r · ∇S12 = 0 (B.11)

and consequently for any given function g(r)

∇g · ∇S12 = 1
r

dg

dr
r · ∇S12 = 0. (B.12)

Finally we also have

∇S12 · ∇S12 = 6
r2 (6 + 2σ1 · σ2 − S12) . (B.13)

B.1 Projection operators
In this section we will briefly discuss the projectors PS onto the two invariant
subspaces with total spin S = 1 and S = 0, characterizing the composition of
two particles with spin 1/2. In a two dimensional vector space we can define the
representation of the spin operator s1 acting on particle 1 as

s1 ≡ 1
2σ1. (B.14)

Being S = s1 + s2 and therefore

s1 · s2 = 1
2(S2 − s2

1 − s2
2), (B.15)

it’s easy to prove that

4(s1 · s2)|S = 1, S3⟩ = 1 (B.16)
4(s1 · s2)|S = 0, 0⟩ = −3. (B.17)

Because of the above properties we can define the projectors

P1 = 1
4(3 + σ1 · σ2), P0 = 1

4(1 − σ1 · σ2). (B.18)

In the same way we can define the projector ΠT with T = 1, 0 for the total isospin
states by replacing the σ matrices with the τ ones.

B.2 Pair exchange operator
The projection operators derived in the previous section can be used to build up the
pair exchange operator in the spin space, defined as P σ. This operator has to fulfil
the following requirements

P σ| ↑↓⟩ = | ↓↑⟩ (B.19)
P σP σ = 1. (B.20)
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Since we have that

| ↑↓⟩ = 1√
2

(|1, 0⟩ + |0, 0⟩) (B.21)

| ↓↑⟩ = 1√
2

(|1, 0⟩ − |0, 0⟩) , (B.22)

we will have

P1| ↑↓⟩ = 1√
2

|1, 0⟩

P0| ↑↓⟩ = 1√
2

|0, 0⟩

⇒ (P1 − P0)| ↑↓⟩ = | ↓↑⟩. (B.23)

Since P1 +P0 = 1 it’s easy to prove that the definition P σ ≡ P1 −P0 ia a good choice
for the exchange operator. In the same way we can define the exchange operator on
the isospin space as P τ = Π1 − Π0. Finally the pair exchange operator on the full
spin-isospin space can be written as

P στ ≡ P σ ⊗ P τ = 1
4
(
1 + σ1 · σ2

)(
1 + τ 1 · τ 2

)
= 1

4

4∑
p=1

Op. (B.24)

As a final remark we also notice how the exchange operator works on the |S, S3⟩
basis

P σ|S, S3⟩ = (−1)S+1|S, S3⟩. (B.25)
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Appendix C

Parametrization of the APR
Energy Density

In this Appendix, we report the explicit expression of the energy density of nuclear
matter employed to carry out our analysis. This expression was originally derived
from a fit to the EOSs of SNM and PNM obtained by Akmal et al. [62] using the
AV18 + δv + UIX* nuclear Hamiltonian and the variational FHNC/SOC formalism.

The energy density of nuclear matter at baryon density ϱ and proton fraction xp

is written according to Eqs. (3.142) and (3.143)

ϵ(ϱ, xp) =
[ ℏ2

2m + f(ϱ, xp)
]
τp +

[ ℏ2

2m + f(ϱ, 1 − xp)
]
τn

+ g(ϱ, 1/2)
[
1 − (1 − 2xp)2

]
+ g(ϱ, 0)(1 − 2xp)2, (C.1)

with

τp = ϱxp
3
5(3π2ϱxp)2/3 , (C.2)

τn = ϱ(1 − xp) 3
5[(3π2ϱ(1 − xp)]2/3 . (C.3)

The explicit form of the functions f(ϱ, xp) and g(ϱ, xp) appearing in Eq. (C.1) are

f(ϱ, xp) = (a1 + xpa2) ϱe−a3ϱ (C.4)

and

g(ϱ, xp) =
{
gL(ϱ, xp) ϱ ≤ ϱ̄
gH(ϱ, xp) ϱ ≥ ϱ̄

, (C.5)

where

gL(ϱ, 1/2) = −ϱ2
[
a4 + a5ϱ+ a6ϱ

2 + (a7 + a8ϱ)e−a2
9ϱ2]

,

gL(ϱ, 0) = −ϱ2
(
a10ϱ

−1 + a11 + a12ϱ
)
, (C.6)

gH(ϱ, 1/2) = gL(ϱ, 1/2) − ϱ2a13(ϱ− a14)ea15(ϱ−a14),

gH(ϱ, 0) = gL(ϱ, 0) − ϱ2a16(ϱ− a17)ea18(ϱ−a17) .
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The density ϱ̄ ≲ 2ϱ0 corresponds to the onset of the high-density phase—featuring
spin-isospin density waves associated with neutral pion condensation—predicted by
the study of Ref. [62].

The values of the parameters appearing in the above equations are given in
Table C.1

Table C.1. Values of the parameters appearing in the definition of the energy density of
nuclear matter of Eqs. (C.1)- (C.6), expressed in MeV fm−3.

a1 a2 a3 a4 a5 a6
[MeV fm5] [MeV fm5] [fm3] [MeV fm3] [MeV fm6] [MeV fm9]

89.8 -59.0 0.457 337.2 -382. -19.1

a7 a8 a9 a10 a11 a12
[MeV fm3] [MeV fm6] [fm3] [MeV] [MeV fm3] [MeV fm6]

69.0 -33.0 6.4 0.35 214.6 -384.0

a13 a14 a15 a16 a17 a18
[MeV fm6] [fm−3] [MeV fm6] [MeV fm6] [MeV] [fm3]

175.0 0.32 -1.45 287.0 0.195 -1.54
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Appendix D

Energy Per Nucleon

The contribution of the interaction to the energy per nucleon is given by

eI = 1
A

∑
i<j

⟨Φ0|vij |Φ0⟩. (D.1)

Because of the symmetry property of the ground state we have

∑
i<j

⟨ϕ0|vij |ϕ0⟩ = A(A− 1)
2 ⟨ϕ0|v12|ϕ0⟩ (D.2)

yielding

⟨ϕ0|v12|ϕ0⟩ =(A− 2)!
A! ×∑

x1,x2

∫
d3r1d

3r2ϕ
∗
x1(r1)ϕ∗

x2(r2)v12 [ϕx1(r1)ϕx2(r2) − ϕx2(r1)ϕx1(r2)] .

(D.3)

The indices x1 and x2 label the set of all quantum numbers of the single particle
wave functions that we can identify with the momentum k and another discrete
quantum number λ. Since the potential can be written as v12 =

∑
p v

p(r12)Op
12 we

find∑
i<j

⟨ϕ0|vij |ϕ0⟩ = 1
2V 2

∑
λ,µ

∑
k1,k2

∫
d3r1d

3r2

×
∑

p

vp(r12)
[
⟨λµ|Op|λµ⟩ − ⟨λµ|Op|µλ⟩eik1·(r1−r2)e−ik2·(r1−r2)

]
= V

2
1

(2π)6

∑
λµ

∑
p

∫
d3r vp(r)

×
∫
d3k1d

3k2
[
⟨λµ|Op|λµ⟩ − ⟨λµ|Op|µλ⟩eik1·re−ik2·r

]
= V

2 ϱ
2∑

λµ

xλxµ

∫
d3r

∑
p

vp(r) [⟨λµ|Op|λµ⟩ − ⟨λµ|Op|µλ⟩l(kF,λr)l(kF,µr)] .

(D.4)
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Finally we have

1
A

∑
i<j

⟨ϕ0|vij |ϕ0⟩ = ϱ

2
∑
λµ

xλxµ

∫
d3r

∑
p

vp(r) [⟨λµ|Op|λµ⟩ − ⟨λµ|Op|µλ⟩l(kF,λr)l(kF,µr)]

= ϱ

2
∑
λµ

xλxµ

∫
d3r [⟨v⟩d − ⟨v⟩e l(kF,λr)l(kF,µr)],

(D.5)

with

l(x) = 3sin(x) − x cos(x)
x3 . (D.6)

D.1 Matrix elements

In this section we provide the explicit expression of the matrix elements for the
operators Op, appearing in the definition of the energy per nucleon. We define the
quantities

Ap(cos θ) = ⟨λµ|Op|λµ⟩ (D.7)
Bp(cos θ) = ⟨λµ|Op|λµ⟩, (D.8)

with cos θ = r/r. We have

A1 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , A2 =


1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

 ,

A3 =


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

 , A4 =


1 −1 −1 1

−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

 ,

A5 =A3(cos2 θ − 1),
A6 =A4(cos2 θ − 1). (D.9)
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Then

B1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B2 =


1 0 2 0
0 1 0 2
2 0 1 0
0 2 0 1

 ,

B3 =


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 , B4 =


1 2 2 4
2 1 4 2
2 4 1 2
4 2 2 1

 ,

B5 =


1 −1 0 0

−1 1 0 0
0 0 1 −1
0 0 −1 1

 (cos2 θ − 1),

B6 =


1 −1 2 −2

−1 1 −2 2
2 −2 1 −1

−2 2 −1 1

 (cos2 θ − 1). (D.10)
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Appendix E

Boost Calculation Details

In this section we are going to see how we can carry out the expression of Eq. (4.49)
starting from

1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ = ϱ

16m2

{2
5k

2
F

∫
d3r

(
r
dvp

dr
− 3vp

)
CTr[Op]

−
∫
d3r

(
r
dvp

dr
I2 − vpI1

)
CTr[OpP̂12]

}
.

(E.1)

In the previous equation and in the following of this section we understood summation
over repeated indices of the AV6 algebra. By defining

Ap(kF , r) ≡ 1
8m2

2
5k

2
F

[
dvp(r)
dr

− 3vp(r)
]

Bp(kF , r) ≡ 1
8m2

[
dvp(r)
dr

I2(kF , r) − vp(r)I1(kF , r)
] (E.2)

we have
1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ = ϱ

2

{∫
d3r Ap(kF , r)CTr[Op] −

∫
d3r Bp(kF , r)CTr[OpP̂12]

}
.

(E.3)
Since the exchange operator can be written as

P̂12 = 1
4

4∑
q=1

Oq (E.4)

employing the property of Eq. (4.31) we have

1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ = ϱ

2

∫
d3rCTr[Om]

Ap(kF , r)δpm − 1
4

4∑
q=1

KpqmBp(kF , r)

 .
(E.5)

At this point we define the following quantities

ξm(kF , r) =

Am(kF , r) − 1
4

4∑
q=1

KpqmBp(kF , r)


Mpm = 1

4

4∑
q=1

Kpqm.

(E.6)
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1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ =ϱ

2

∫
d3rCTr[Om]ξm(kF , r) (E.7)

=ϱ

2

∫
d3rCTr[Om]

[
δmn − l2(kF r)Mmn

]
×
[
δnp − l2(kF r)Mnp

]−1
ξp(kF , r). (E.8)

Since [
δmp − l2(kF r)Mmp

]−1
= 1

1 − l4(kF r)
[
δmp + l2(kF r)Mmp

]
, (E.9)

we can finally write
1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ = ϱ

2

∫
d3rCTr[Om]

[
δmp − l2(kF r)Mmp

]
δvp(kF , r) (E.10)

where we have defined

δvp(kF , r) ≡ 1
1 − l4(kF r)

[
δpm + l2(kF r)Mpm

]
ξm(kF , r). (E.11)

By recalling that the operator M is linked to the exchange operator, Eq. (E.10) can
be written as

1
A

⟨Φ0|
∑
i<j

δvij |Φ0⟩ = ϱ

2

∫
d3rCTr

[
Op
(
1 − l2P̂12

)]
δvp(kF , r) (E.12)

which is the expression we were looking for.
Finally I’m going to show how we can derive the expression of Eq. (E.9). Since

the operator we want to invert has the form

1 − l2M (E.13)

we have that (
1 − l2M

) (
1 + l2M−1

)
= (1 − l4)1 − l2M + l2M−1. (E.14)

Therefore if we show that
M = M−1 (E.15)

we have done. We start from the identity

OmOpOq = KmplK lqsOs (E.16)

and summing over p, q = 1, 4 we have
4∑

p,q=1
OmOpOq = Om

4∑
p=1

Op
4∑

q=1
Oq = Om(4P̂12)(4P̂12) = 16OmP̂ 2

12 = 16Om.(E.17)

Therefore we can write

Om = 1
16

4∑
p,q=1

OmOpOq =

1
4

4∑
p=1

Kmpl

1
4

4∑
q=1

K lqs

Os = MmlMlsO
s (E.18)

which implies
MmlMls = δms ⇒ M = M−1. (E.19)
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