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a b s t r a c t 

Counterparty Credit Risk (CCR) represents one of the major sources of uncertainty in many financial con- 

tracts. The role of credit value adjustment (CVA) is, in fact, that of rewarding the parties for the exposure 

to such risk. A key driver of CVA is the recovery risk, generated by the variability of recovery rates. In this 

paper, we develop a framework to assess the CCR accounting for the recovery risk that arises from the 

introduction of stochastic recovery rates. Adopting the structural model for the time to default that ex- 

ploits a time-changed Lévy process for the risk driver of the equity value, we provide a complete picture 

to monitor the CCR and gauge the effects of the stochastic recovery rates. The model extracts informa- 

tion on the creditworthiness of the parties in the OTC contract combining Fourier Cosine Expansion and 

Monte Carlo simulations methods to price CDS spreads, the related underlying, and to retrieve the de- 

fault barrier. We apply the model proposed to a business case analyzing the CCR of two parties involved 

in the OTC contract with underlying energy commodities. Low average recovery rates reveal to be asso- 

ciated with high implied volatility and depart from the fixed value of 40%, especially during periods of 

market distress. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

The global financial crisis has unveiled several weaknesses of 

the financial system within the derivatives market. This prompted 

financial regulators to strengthen the assessment of the Counter- 

party Credit Risk (CCR) which has contributed to the disruption of 

the stability of the financial system during the crisis ( Basel Com- 

mittee on Banking Supervision, 2018 ). CCR affects the creditwor- 

thiness of the counterparties and exacerbates fluctuations of the 

underlying risk factors, addressing both the credit and the mar- 

ket risk. Moreover, the incorporation of CCR metrics such as Credit 

Value Adjustments (CVA) and Debt Value Adjustment (DVA) into 

the determination of capital requirements has encouraged aca- 

demics and practitioners to investigate the drivers of CCR. One 

of the major challenges for risk managers and regulators becomes 

the development of models that unravel the links of the CCR with 

other sources of uncertainty and promote risk mitigation. Our pa- 

per tackles this issue. 
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The increasing attention to the CCR hinges on the exponential 

growth of the Over the Counter (OTC) market over the last fif- 

teen years which has highlighted the difference between the tra- 

ditional credit risk and the CCR arising from the stochastic nature 

of derivative payoffs. For this purpose, regulators have introduced 

Central Clearing Counterparts to foster market transparency and 

mitigate the risk of occurrence of large insolvencies. Chief among 

the risks that contribute to the CCR is the recovery risk, defined as 

the risk that the contracts of the defaulting institution cannot be 

fully honored. In general, market participants tend to assume con- 

stant recovery rates of around 40% within the pricing models ( Das 

and Hanouna, 2009 ). However, in real market conditions, recovery 

rates reveal to be stochastic ( Schläfer and Uhrig-Homburg, 2014 ). 

The impact of the recovery risk on the CCR is mostly captured by 

the weight that recovery rates assign to the CVA, therefore rele- 

vant deviations of the predicted recovery rate from the observed 

counterpart lead to highly biased models that consequently affect 

the capital requirements ( Altman et al., 2005 ) and the solvency of 

financial institutions. 

In this paper, we propose a novel framework to assess the CCR 

allowing recovery rates to be stochastic. We model the risk driver 

of the asset price underlying the OTC contract with a time-changed 

Lévy process ( Ballotta et al., 2019 ) obtained subordinating the 

Brownian motion to a Normal Inverse Gaussian (NIG) process. This 

approach yields a superior capability in replicating non-null short- 
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term default probabilities compared to Geometric Brownian mo- 

tion. We adopt the structural approach of Black and Cox (1976) to 

identify the condition of default of either one of the two parties in 

the contract. That is, we study the first time the equity value hits 

the default barrier. This set-up is in line with the regulatory recom- 

mendations of the Fundamental Review of the Trading Book ( Basel 

Committee on Banking Supervision, 2013 ) which strongly encour- 

ages the adoption of the structural approach for purposes of credit 

risk management along with the consideration of stochastic recov- 

ery rates. We link CCR to stochastic recovery rates building a ratio 

that quantifies the distance of the equity value to the default bar- 

rier. In particular, we conveniently model stochastic recovery rates 

adopting the Beta distribution which ranges in [0,1] and captures 

the typical skewness and kurtosis of the recovery rates ( Chen et al., 

2013 ). In this way, we account for the variability of the recovery 

rates empirically detected for instance in Acharya et al. (2003) . 

The methodology allows us to price counterparty risk claims un- 

der two perspectives. The first is strictly dependent on determin- 

istic recovery rates, while the second includes stochastic recovery 

rates sampled from the Beta distribution that directly act upon the 

estimated CVA. 

We apply our modeling framework to study the role of the CCR 

combined with stochastic recovery rates for two financial institu- 

tions committed in the OTC contract with underlying energy com- 

modities. We select energy derivatives since they represent the 

largest asset class in terms of market participants, according to 

the European Securities and Markets Authorities (2017) . The cho- 

sen financial institutions are BNP Paribas, dealer of the contract, 

and Enel, the counterpart. Concerning the underlying commodities, 

we rely on Vanilla options on Brent Crude Oil and Natural Gas. 

The analysis is carried out through a hybrid approach that com- 

bines Monte Carlo simulations with the standard Fourier-Cosine 

Expansion (COS) method ( Fang and Oosterlee, 2008 ) and the re- 

cursive COS method ( Fang et al., 2010 ) to calibrate the parame- 

ters of the NIG process and the default barriers. More explicitly, 

we price Vanilla options on the two energy commodities using the 

COS method to retrieve the parameters, kurtosis, skewness, and 

implied volatility for the stochastic representation of the risk driver 

through the NIG process. Then, we price the CDS spread for BNP 

Paribas and Enel with the recursive COS method to estimate the 

related default barriers. The use of such a hybrid model is justified 

by the proposal of the Basel Committee of hybrid applications of 

the Internal Ratings-Based (IRB) approach for the CCR ( Basel Com- 

mittee on Banking Supervision, 2016 ) 2 . 

The following findings can be gathered from our analysis. From 

the theoretical point of view, we provide a semi-analytical expres- 

sion for the no-arbitrage price of the counterparty risk derivative 

claim. Overall, we find that Enel shows higher stochastic recovery 

rates. This suggests that on average the corporate firm contributes 

less to the CCR with respect to the dealer, BNP Paribas. The dis- 

crimination between the two distributions of stochastic recovery 

rates is probably related to the difference in the magnitude of the 

implied volatility. The higher degree of uncertainty in the equity 

value of the dealer implies that the proportion of the asset value 

compared to the default losses that are likely to be recovered is 

lower. Hence, volatility exacerbates the CCR. Moreover, analyzing 

the effect of the negative shock on the volatility of BNP Paribas, 

we observe that the distribution of the stochastic recovery rates is 

closer to the theoretical distribution parametrized on the standard 

fixed recovery rate equal to 40% ( Das and Hanouna, 2009 ). Thus, 

stochastic recovery rates reveal to be more appropriate during pe- 

riods of high volatility. 

2 Possibly, with the introduction of an exogenous floor for the estimation of the 

risk weighted assets, in order to balance their excessive variability. 

The major element of novelty that differentiates our paper from 

the existing literature in this field is the theoretical assessment 

of the counterparty credit risk within a framework that considers 

stochastic recovery rates 3 . As pointed out in Szegö (2002) , current 

market conditions call for the need for a complex and thorough 

modeling set-ups to provide proper support to the regulators for 

the design of quantitative policies. However, most of the previous 

works have separated the study of the CCR ( Brigo and Tarenghi, 

2005 ; Brigo and Bakkar, 2009; Lipton and Sepp, 2009; Bielecki 

et al., 2011; Arora et al., 2012; Albanese et al., 2013; Brigo et al., 

2013; Ballotta and Fusai, 2015; Bo and Capponi, 2015; Kim and Le- 

ung, 2016; Cohen and Costanzino, 2017; Ballotta et al., 2019; Li and 

Zhang, 2019 ) to that of stochastic recovery rates ( Chiang and Tsai, 

2010; Amraoui et al., 2012; Schläfer and Uhrig-Homburg, 2014 ). 

Concerning the instruments of the methodology, we accommo- 

date market incompleteness including the time-changed pure jump 

Lévy process which, unlike pure diffusion models, succeeds to re- 

produce frequent spikes in the asset price and the non-null short- 

term CDS quotes observed in the market. Moreover, the NIG pro- 

cess reflects the non-zero skewness and kurtosis featured by en- 

ergy commodities used in the application. We mainly contribute to 

the strands of the literature that exploit COS related methods for 

pricing exposure to default ( Ballotta and Fusai, 2015; Lian et al., 

2017; Alonso-García et al., 2018; Tour et al., 2018 ) and Monte Carlo 

simulations in the context of structural models for credit risks 

( Merton, 1974; Black and Cox, 1976; Brigo et al., 2011; Ballotta 

et al., 2019 ). Differently from the most commonly used reduced- 

form models of default risk (also known as intensity-based mod- 

els ), we derive the distribution of the random default time through 

Monte Carlo simulations. According to this approach, the occur- 

rence of the credit event can be explained by the economic process 

that leads the firm to the condition of not honoring its obligations. 

Moreover, the information set available to the policy maker is the 

same as that of the firm’s manager ( Jarrow and Protter, 2004 ), 

thus making the default time predictable on the basis of the asset- 

liability profile of the firm. In line with this view, we believe that 

it is a suitable choice to model stochastic recovery rates as a func- 

tion of the severity of the default of the firm or, equivalently, in 

terms of the distance of the equity from the barrier. 

The paper is organized as follows. Section 2 delineates the 

theoretical model for the assessment of the CCR combined with 

stochastic recovery rates. Section 3 discusses the simulation anal- 

ysis through the calibration of the CCR metrics and the role of 

stochastic recovery rates. Section 4 provides conclusive remarks. 

2. A model for the pricing of the counterparty credit risk 

In the following, we outline the framework to model the CCR. 

Consider the filtered probability space (�, Q , G t ) with sample 

space �, risk-neutral martingale measure Q , and enlarged filtration 

{G t } 0 ≤t≤T defined as: 

G t ≡ F t ∨ H t . 

Such synthetic filtration jointly collects the information on the 

market available at time t , given in {F t } 0 ≤t≤T , and the information 

on the default history of the two counterparts involved in the con- 

tract, contained in {H t } 0 ≤t≤T 
4 . In particular, the latter is generated 

by the G-stopping time τ which represents the first time that the 

creditworthiness of either one of the two parties is compromised. 

We denote by B and C the dealer of the OTC derivative contract 

and its counterpart, respectively. Following the structural approach 

3 This is also suggested in Brigo and Vrins (2018) and Ballotta et al. (2019) . 
4 We assume that the filtrations {F t } 0 ≤t≤T , {H t } 0 ≤t≤T , and {G t } 0 ≤t≤T satisfy the 

usual conditions of completeness and right-continuity. 
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Fig. 1. Simulation of one possible path of the asset prices described by equation 1 , setting S 0 = 100 . The simulation is run so to generate weekly observations of S t over five 

years. 

in Black and Cox (1976) , the equity value, S t , and the related risk 

driver, X t , are described by: 

S t = S 0 e 
[ r−q −ϕ X (−ı )] t+ X(t) , (1) 

where X(t) is a Lévy process with characteristic exponent ϕ X (·) , 
r > 0 is the proxy of risk-free rate, q > 0 is the continuous conve- 

nience yield paid for holding the underlying inventories prior to the 

maturity of the contract, μ̄ = r − q − ϕ X (−ı ) is the mean-correcting 

drift needed to allow S t to be an exponential martingale. The risk 

driver X t of the price of the underlying is described with the 

Normal Inverse Gaussian (NIG) process introduced in Barndorff- 

Nielsen (1997) . This process results in pure jump Lévy process ob- 

tained subordinating the Brownian motion, W t , with drift μ and 

volatility σ to an independent Inverse Gaussian process, z t . In 

other words, the NIG process results in the time-changed Lévy pro- 

cess indexed to a stochastic clock : 

X t = μz t + σW z t . (2) 

The underlying distribution of the process is in general featured by 

skewness, kurtosis, and it is infinitely divisible. The characteristic 

exponent ϕ X (u ) is defined for any u ∈ R : 

ϕ X (u ) = 

1 − √ 

1 − 2 ıθκ + u 

2 σ 2 κ

κ
, (3) 

where ı is the imaginary unit, θ ∈ R describes the sign of the 

skewness, and κ > 0 controls the excess kurtosis of the distribu- 

tion. 

The rationale for the use of time-changed processes lies in the 

economic application that concerns the switch from calendar time 

to business time . This implies that the asset price is mainly driven 

by relevant news with both random arrival time and impact on the 

market 5 . Moreover, the successful adaptability of Lévy processes to 

model asset prices that exhibit systematic spikes and high volatil- 

ity (see Figure 1 for an example) endorses our choice for the em- 

ployment of this class of processes. 

Among all the possible financial events likely to occur during 

the history of the price process, we are interested in the first time 

that the firm’s equity value crosses the fixed default barrier M: 

τ i = inf { t ∈ (0 , T ] : S i t ≤ M 

i } with i ∈ { B, C} . (4) 

According to the structural approach used for CCR, we model the 

first-passage time τ i as in Black and Cox (1976) . Moreover, through 

the unpleasant event { S i t ≤ M 

i } , we assume that we can also extract 

the information on the state of creditworthiness of the financial 

institutions B and C6 . 

2.1. Bilateral counterparty credit risk pricing 

The arising of the CCR calls for the need to quantify the eco- 

nomic value of the derivative contract with two different measures. 

The default-free economic value of the contract, V (S t ) , and the cor- 

respondent value of the counterparty risk claim, ˆ V (S t , D 

B 
t , D 

C 
t ) , es- 

timated when the probability of default for either B or C is consid- 

ered. 

The state processes {D 

i 
t } 0 ≤t≤T indicate the occurrence of the 

credit events: 

D 

i 
t ≡ 1 { τi ≤t} with i ∈ { B, C} . 

In the case of no default before the maturity T , the buyer will be 

paid back the derivative payoff �(S [ t,T ] ) , while the dealer will earn 

the opposite cash flows −�(S [ t,T ] ) . According to International Swap 

Dealers Association (2002) , if premature default verifies when the 

surviving party is out of the money , it has to settle all the debt. 

Conversely, it can claim just a recovery fraction of the credit if in 

the money . 

5 Interestingly, gaussianity seems to be recovered under such trading time. Lévy 

processes are able to replicate implied volatility surfaces without over stressing 

model parameters and can accommodate for jumps ( Cont and Tankov, 2004 ). 
6 The convenience yield in the dynamics of the assets is assumed to be zero. 

3 



R. Castellano, V. Corallo and G. Morelli Journal of Banking and Finance 140 (2022) 106512 

Proposition 1. Let ε + t denote the Positive Exposure (PE) at time t, 

ε −t the Negative Exposure (NE) at time t, V (S t ) the default-free value 

of the contract, δ(t, τ ) the risk-free discount factor, R B and R C the 

client and the bank’s recovery functions upon default. Suppose that 

the following border conditions hold at the stopping times τ B and τC : 

ˆ �(τB ) = ε + τB 
+ R B (ε 

+ 
τB 

) and 

ˆ �(τC ) = R C (ε 
+ 
τC 

) − ε + τC 
, (5) 

then the no arbitrage price ˆ V (S t ) of the counterparty risk derivative 

claim is: 

ˆ V (S t , D 

B 
t , D 

C 
t ) = V (S t ) − E 

Q 
t [ 1 { τ= τC } δ(t, τC )(ε 

+ 
τC 

− R C (ε 
+ 
τC 

))] ︸ ︷︷ ︸ 
CVA 

+ E 

Q 
t [ 1 { τ= τB } δ(t, τB )(ε 

−
τB 

− R B (ε 
−
τB 

))] ︸ ︷︷ ︸ 
DVA 

. (6) 

Setting the border conditions in compliance with the close-out 

agreements in International Swap Dealers Association (2002) and 

assuming that both the recovery functions take values between 0 

and 1, the CVA can be seen as a call option on the uncollateralized 

exposure with zero strike and random maturity which represents 

the expected loss on the credit due to counterparty default risk. 

Contrariwise, the DVA can be regarded as a put option issued on 

the uncollateralized exposure with zero strike and random matu- 

rity, thus representing the expected debt saving due to the own 

default risk. 

2.2. State-dependent stochastic recovery rates 

Recovery risk plays a crucial role in the assessment of the CCR. 

It mainly concerns the risk that, after the credit default event, the 

contracts of the defaulting party cannot be fully honored, thereby 

exacerbating the financial losses of the counterparty. In real market 

conditions, stochastic recovery rates are differentiated according to 

the claims issued by the defaulted company. More precisely, the 

holders of senior bonds or other secured instruments have priority 

in collecting their credits during the liquidation process. As a con- 

sequence, unlike the junior creditor, the senior creditor is likely to 

collect a higher fraction of the distressed assets of the defaulted 

company. Besides, the funds’ availability to manage likely adverse 

financial events changes with the degree of distress in the market 

which affects the likelihood of valuable amounts of recovered as- 

sets after default. Hence, neglecting the volatility of the recovery 

risk can be harmful even for the most sophisticated models since 

it would directly impact the stability of the company through in- 

correct calculation of the required capital buffers. 

One possibility to provide a quantitative modeling framework 

for stochastic recovery rates is to assume an explicit statistical dis- 

tribution of the recovery rates basing on the bankruptcy of the 

company. We choose the Beta distribution, B(α, β) , a continuous 

distribution taking values in [0,1], a suitable domain for recovery 

rates, which captures both skewness and kurtosis with respect to 

e.g, the Uniform[0,1] distribution. 

Our goal is to relate stochastic recovery rates to the severity of 

credit events. We incorporate the volatility of stochastic recovery 

rates into the monitoring of CCR building a random variable which 

depends on the relative Gaussian distance of the equity value upon 

simulated defaults with respect to the default barrier M. Let ητ = 

f (S τ ) be such random variable defined as: 

ητ = 

φM, 1 (S τ ) 

φM, 1 (M) 
, (7) 

where φM, 1 (·) is the cumulative distribution function ( cdf ) of a 

normal distribution with mean M and unit variance. The stochas- 

tic recovery rate is therefore defined as the inverse cdf of a Beta 

distribution calculated in ητ : 

R (ητ ) = B 

−1 (α∗, β∗) (ητ ) , (8) 

where B 

−1 (α, β) is the Beta quantile function and α∗ and β∗

are the distribution parameters. According to the magnitude of ητ

which proxies the probability of default in terms of distance to the 

barrier, M, we retrieve the related quantile corresponding to the 

stochastic recovery rate. Stochastic recovery rates are thus vested 

by the state-dependent nature captured in the distance ratio from 

the barrier. 

Accounting for the recovery risk within the history of the con- 

tract between the two counterparties, the formula for bilateral 

CCR adjustments extended to stochastic recovery rates modifies 

Proposition 1 as follows: 

ˆ V (S t , D 

B 
t , D 

C 
t ) = V (S t ) 

+ − E 

Q [ 1 { τ= τC } δ(t, τC )[1 − R (ητC )] V 

+ 
τC | G t ] ︸ ︷︷ ︸ 

CVA 

+ E 

Q [ 1 { τ= τ B } δ(t, τ B )[1 − R (ητ B )] V 

−
τ B | G t ] ︸ ︷︷ ︸ 

DVA 

, (9) 

where R ( ητC ) and R ( ητ B ) are the stochastic recovery rates of the 

firm and the bank upon simulated default, respectively. The effect 

of the variability of stochastic recovery rates on the CVA is thus 

formally captured in (9) where stochastic recovery rates directly 

act upon the CVA. 

2.3. The fourier cosine expansion method for plain vanilla options 

For the purpose of the application, we briefly recall the Fourier 

Cosine Expansion (COS) method introduced in Fang and Ooster- 

lee (2008) that we employ in this paper to compute the value of 

the options when default occurs and to calibrate the parameters of 

the underlying. The approach guarantees higher efficiency than the 

Fast Fourier Transform (FFT) proposed in Carr and Madan (1999) or 

the Convolution method (CONV) discussed in Lord et al. (2008) . In 

addition, the COS method handles more general dynamics for the 

underlying compared to other approaches. 

Through inverse Fourier integrals, the procedure succeeds to re- 

cover the unknown conditional pdf of the price of the derivative 

using the expansion of the cosine series. This method is proved to 

adapt well to smooth densities, a property which holds for Lévy 

processes defined on a finite support. The COS method yields the 

following general pricing formula for the derivative claim: 

v (x, t) = e −r(T −t) 
N−1 ∑ 

k =0 

′ 	 

{
e −

ikπa 
b−a φy | x 

(
kπ

b − a 
; x 

)}
V k , (10) 

where r is the risk-free rate, 	{·} is the real part function, φy | x is 

the characteristic function of the model 7 , V k is the payoff series 

coefficients, and a and b are constants chosen such that the trun- 

cated integral well approximates the infinite counterpart. For Plain 

Vanilla Call and Put options the k-th coefficient V k of the derivative 

payoff is given by: 

V Call 
k = 

2 

b − a 

∫ b 

0 

K(e y − 1) cos 

(
kπ

y − a 

b − a 

)
dy = 

2 

b − a 
K(χk (0 , b) − ψ k (0 , b)) 

V Put 
k = 

2 

b − a 

∫ 0 

a 

K(1 − e y ) cos 

(
kπ

y − a 

b − a 

)
dy = 

2 

b − a 
K(−χk (a, 0) + ψ k (a, 0)) , 

(11) 

where K is the strike price and y represents the log-asset price at 

maturity time T 8 . 

7 As previously discussed, we adopt the NIG model. 
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2.4. The recursive COS method for CDS 

Under the structural modelling perspective, the information set 

available to the policy-maker is the same as the firm’s manager 

which includes complete knowledge on the asset-liability manage- 

ment ( Jarrow and Protter, 2004 ). To recover information provided 

by the market on the creditworthiness of the firms, we apply the 

recursive COS method ( Fang et al., 2010 ) to CDS. Indeed, these con- 

tracts hedge the buyer against the default of the financial insti- 

tution, therefore parameters calibrated to CDS spreads reflect the 

necessary information on default probabilities. For the application 

of the COS method for CDS, we explicit the risk-neutral survival 

probability at time t as: 

Q { τ > t} = Q 

{ 

Y s > log 

(
K 

S 0 

)
, ∀ 0 ≤ s ≤ t 

} 

= Q 

{ 

min 

0 ≤s ≤t 
Y s > log 

(
K 

S 0 

)} 

= E 

Q 

[ 
1 

{ 

min 

0 ≤s ≤t 
Y s > log 

(
K 

S 0 

)} ] 
, (13) 

where Y t = log 

(
S t 
S 0 

)
. Define ϒ = log 

(
K 
S 0 

)
the reference value for 

the bankruptcy and suppose that the time interval (0 , T ] can be 

split into L time-frames, T ≡ { T 0 , T 1 , . . . , T L } , such that �T = 

T 
L and 

T l = l�T . The generic time T l is the default monitoring date which, 

considered along with the others, allows us to write the survival 

probability as: 

Q { τ > T } = E 

Q 

[ 
1 { Y T 1 ∈ [ϒ, ∞ ] } 1 { Y T 2 ∈ [ϒ, ∞ ] } ... 1 { Y T L ∈ [ϒ, ∞ ] } 

] 
. (14) 

The probability in (14) corresponds to the pricing formula for dis- 

crete digital options without discounting. The integral form devel- 

ops into: 

Q { τ > T } = 

∫ ∞ 

ϒ ... 
∫ ∞ 

ϒ ... 
∫ ∞ 

ϒ f Y T L | Y T L −1 
(y T L | y T L −1 

) ×
× f Y T l | Y T l−1 

(y T l | y T l−1 
) dy T l ... f Y T 1 | Y T 0 (y T 1 | y T 0 ) dy T 1 . 

(15) 

The computation of the survival probabilities can therefore be per- 

formed via a backward loop of the COS scheme applied to the con- 

ditional pdf of the equity value f Y T l | Y T l−1 
(y | x ) : 

f Y T l 
| Y T l−1 

(y | x ) = 

2 

b − a 

N ∑ 

k =0 

′ 	 

{
e 

−ikπ x −a 
b−a φy | x 

(
kπ

b − a 
, �T 

)}
cos 

(
kπ

y − a 

b − a 

)
. 

(16) 

The theoretical fair CDS spread at the start date, T 0 , for a running 

CDS 9 with maturity T, given the recovery rate, R , is the one which 

makes equal the premium leg and the protection leg. Applying 

the composite trapezoidal rule, a good approximation of the CDS 

spread, s , is obtained: 

s = (1 − R ) 

(
1 − e −rT Q { τ > T } ∑ L 

l=0 w l e 
−rT l Q { τ > T l } �T 

− r 

)
with w 0 = 

1 

2 
and w L = 1 . 

(17) 

The calibration in the numerical analysis is generated by (17) . The 

theoretical CDS spread depends on a stream of survival probabili- 

ties, which have been computed within the structural approach in 

(15) . 

8 The functions χk and ψ k are defined for the general arguments c and d with 

[ c, d] ⊂ [ a, b] as: 

χk (c, d) := 

∫ d 
c e y cos 

(
kπ y −a 

b−a 

)
dy 

ψ k (c, d) := 

∫ d 
c cos 

(
kπ y −a 

b−a 

)
dy. 

(12) 

9 Running CDS are characterized by no upfront payment at inception. 

Table 1 

Calibration results based on the CDS quotes and on Plain Vanilla options data for 

the underlying energy commodities. RMSEs are measured in basis points. 

Parameters Calibration 

M 

i κ∗ θ ∗ σ ∗ RMSE 

ENEL 0.65033 0.23639 -0.20818 0.18073 1.5445 

BNP 0.63839 0.24519 -0.20520 0.23570 1.1972 

BR - 0.86128 -0.14939 0.19686 0.5373 

NG - 0.87215 -0.13590 0.21107 0.4565 

3. Numerical analysis 

We implement the theoretical framework so far described to 

assess the creditworthiness of two firms within the OTC deriva- 

tive contract as measured by the relationship between the stochas- 

tic recovery rates and the CCR. The chosen representative bank is 

BNP Paribas (BNP) while Enel (ENEL) is the corporate firm. The OTC 

derivatives are issued on the two most liquid energy commodities, 

Brent Crude Oil (BR) and Natural Gas (NA), traded on the NYMEX. 

Since BNP Paribas and Enel belong to different market sectors, we 

assume a minor degree of connection between the two equities 

which translates into a null correlation between S BNP 
t and S E NE L 

t . 

Following Black and Cox (1976) , the first passage time of the 

equity value under the barrier is obtained via Monte Carlo simula- 

tions. At the first default of either one of the two parties, the sim- 

ulation stops, the default is registered, and the algorithm moves 

on to the next iteration. Both S BNP 
t and S E NE L 

t evolve according to 

(1) with the parameters of the NIG process calibrated using the 

recursive COS for CDS, which is also exploited to estimate the de- 

fault barriers M 

i . The exposure at default is priced using (10) for 

Plain Vanilla options, discounted at t 0 and then multiplied by the 

stochastic recovery rate. 

3.1. Calibration results - CDS 

We rely on CDS spreads data available from the iTraxx series for 

the European CDS market, and perform the calibration minimizing 

the root mean square error (RMSE) of the theoretical fair spread 

produced by the difference between market quotes and the model 

counterparts. Define ξ = (M, κ, θ, σ ) as the vector of the param- 

eters required to describe the dynamics of the bank, of the firm, 

and of the underlyings considered, then the optimal calibration is: 

ξ ∗ = arg min 

ξ

√ ∑ 

CDS 

(market CDS spread - model CDS spread ) 2 

Number of benchmark CDS 
. 

(18) 

The energy commodities selected are assumed to be non- 

defaultable, thus the default barrier is not estimated. The other pa- 

rameters are calibrated using available Plain Vanilla option prices 

listed in the Chicago Mercantile Exchange (CME). Regarding BNP 

Paribas and Enel, we have collected up to 5 years of CDS quotes 

to calibrate ξ . In the application of the recursive COS method for 

the pricing of CDS, the Fourier summation has been truncated 

to N = 2 10 terms in order to reach a satisfying level of accuracy. 

For Brent Crude Oil and Natural Gas Plain Vanilla options, we set 

N = 2 8 . 

Table 1 reports the results of the calibration of ξ for BNP 

Paribas, Enel, Brent Crude Oil, and Natural Gas 10 . 

10 Regarding the computational time, relying on 210 terms in the iterative COS for 

the pricing of CDS, the algorithm takes on average 67.5 seconds. Moreover, 28 terms 

are applied in the calibration of the standard COS which in this work is used for the 
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Table 2 

CVAs and DVAs for ATM Plain Vanilla Call on Brent Crude Oil and Natural Gas incorporating state-dependent stochastic recovery rates. 

Relative valuation adjustments are expressed in basis points. 

Counterparty Credit Risk Valuation Adjustments 

Contract type V 0 CVA CVA/ V 0 DVA DVA/ V 0 ˆ V 0 

ATM Call Oil 5.82103 0.93075 1598.940 0 0 4.89028 

ATM Call Gas 0.41155 0.06477 1573.876 0 0 0.34677 

Fig. 2. Simulated distribution of Enel recovery rates under the baseline calibration. 

The similarity between the CDS spreads of Enel and BNP Paribas 

is reflected in the estimation of the default barrier and distribu- 

tion parameters. The most pronounced difference concerns implied 

volatility which is remarkably higher for BNP Paribas suggesting an 

overall increased risk exposure. The lower default barrier is proba- 

bly related to the propensity to reach highly variable magnitudes. 

The calibrated distributions are negatively skewed and slightly fat- 

tailed, especially for the two energy commodities. 

3.2. Calibration results - stochastic recovery rates 

We estimate the distribution of the stochastic recovery rates pa- 

rameterizing α and β so that the Beta distribution possesses small 

variance and it is centered around 40%, the historical average of 

corporate recovery rates. 

The rationale for this procedure lies in two major issues: i) 

there are no historical series of recovery rates upon default and 

ii) there are not sufficiently liquid markets that allow the calibra- 

tion for risk-neutral stochastic recovery rates ( O’Kane and Turnbull, 

2003 ). Following this criteria, we obtain the optimal parameters: 

α∗ = 10 . 464 and β∗ = 15 . 696 . 

computation of EAD for the plain vanilla claims taken into account. For the latter, 

the computational time is of the order of a few seconds. 

Table 2 shows the results for bilateral CCR adjustments com- 

puted through the hybrid COS-MC model which is extended in or- 

der to allow for state-dependent recovery rates upon simulated de- 

faults. The parameters are calibrated using the COS method and 

MC is exploited for the joint simulation of defaults. The param- 

eter η is calculated only when the default occurs and it yields 

the stochastic recovery rate through the Beta quantile function. 

Figures 2 and 3 show the goodness of fit of the sampling distribu- 

tion of the recovery rates to the theoretical Beta (dashed red line), 

B (α∗, β∗) , for BNP Paribas and Enel 11 . Flat recovery rates reveal an 

acceptable assumption for the distribution of the recovery rate of 

BNP Paribas where the mode is close to 40% and the distribution is 

featured by light tails that suggest weak exposure to extreme val- 

ues. On the contrary, the sample distribution of the stochastic re- 

covery rate of Enel remarkably departs from the theoretical due to 

the right-shifting of the distribution. This suggests that overall the 

default of Enel leads to a higher propensity of recovery of the re- 

sulting losses. Such evidence is probably anchored to the fact that 

equity values of BNP Paribas are remarkably more volatile than 

Enel. As a consequence, the relative Gaussian distance of the equity 

11 Focusing on the Monte Carlo simulations for the proposed hybrid approach, the 

computational time with 10 0,0 0 0 iterations is modified, on average, from 2,477 to 

2,484 seconds when activating the sampling from the inverse cdf of the Beta distri- 

bution for the computation of stochastic recoveries. 
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Fig. 3. Simulated distribution of BNP Paribas recovery rates under the baseline calibration. 

Fig. 4. Simulated distribution of BNP Paribas recovery rates in case of a negative 25% shock on volatility. 
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Table 3 

Descriptive statistics of the recovery rates relative to the simulation of the CCR measures of the Plain Vanilla Call option on 

Natural Gas. 

Stochastic Recoveries Descriptive Statistics 

Firm Min Max Mean Variance Skewness Kurtosis 

ENEL 0.47762 0.78154 0.58083 0.00218 0.69119 0.59477 

BNP Paribas 0.01008 0.72569 0.36009 0.01390 0.02283 -0.38029 

Table 4 

Average stochastic recovery rates and CVAs for the Plain Vanilla Call option on Oil 

as a consequence of α-shifts (for fixed β). 

α-shift Recovery Rate CVA 

-50% 0.21589 1.19436 

-25% 0.29601 1.02486 

-10% 0.33219 0.96775 

+ 10% 0.37934 0.90627 

+ 25% 0.41147 0.87570 

+ 50% 0.45876 0.80633 

Table 5 

Average stochastic recovery rates and CVAs for the Plain Vanilla Call option on Oil 

as a consequence of β-shifts (for fixed α). 

β-shift Recovery Rate CVA 

-50% 0.51696 0.67555 

-25% 0.42850 0.85702 

-10% 0.38527 0.91130 

+ 10% 0.33735 0.97825 

+ 25% 0.31115 0.99610 

+ 50% 0.27611 1.02569 

value from the default barrier increases as the simulated stochastic 

recovery rates decrease. Thus, the adoption of constant recoveries 

requires careful attention by the regulators because it may lead to 

either over or underestimation of the recovery risk, and hence the 

expected severity of the default. 

Figure 4 shows the effect of a multiplicative negative shock of 

25% on the volatility of BNP Paribas. The simulated distribution 

of stochastic recovery rates results closer to the theoretical Beta 

indicating that the 40% recovery rate is a suitable choice during 

periods of markedly low volatility for BNP Paribas. Moreover, the 

CVA reduces the default-free value of the Natural Gas Plain Vanilla 

option by 7.07%, highlighting the possible implicit leverage effect 

triggered by volatility easing. Therefore, the lack of consideration 

of the stochastic nature of recovery rates can severely affect the 

estimation of CVA and the ensuing determination of the capital re- 

quirements. 

We perform the sensitivity analysis on the CVA/DVA obtained 

using stochastic recovery rates and on the parameters, α and β , to 

gauge the degree of influence of the value of the CVA on the dis- 

tribution of the stochastic recovery rates. For this purpose, we ob- 

serve the recovery rates and related CVA for the following values 

of α: ±10% , ±25% , ±50% . Results show that with increasing vales of 

α, the recovery rate increases and the CVA decreases. Conversely, 

increasing values of β amplify the CCR leading to the reduction 

of recovery rates and to the growth of the CVA. Furthermore, CVA 

shows slightly more sensitivity to the parameter β . Results are re- 

ported in Tables 4 and 5 . 

4. Conclusions 

In this paper, we develop a quantitative framework for the as- 

sessment of Counterparty Credit Risk (CCR) accounting for the in- 

troduction of stochastic recovery rates. Recovery risk affects CCR, 

calling for the need for considering models that reflect the stochas- 

tic nature of recovery rates ( Acharya et al., 2003; Das and Hanouna, 

2009 ). The lack of a framework that fully incorporates this feature 

is harmful to the promotion of the stability of the financial sys- 

tem, since recovery rates directly enter into the computation of 

the Credit Value Adjustment (CVA) used in the determination of 

capital requirements. 

The framework devised exploits the Beta distribution to model 

stochastic recovery rates of the two parties involved in the Over 

the Counter (OTC) derivative contract. In particular, we compute 

the stochastic recovery rate building a ratio that gauges CCR in 

terms of the distance of the equity value to default. We proxy the 

creditworthiness of the two parties of the contract with the related 

equity value and model the risk driver by a time-changed Lévy pro- 

cess obtained subordinating the Brownian motion to an indepen- 

dent Inverse Gaussian process. Then, pricing Plain Vanilla options 

on energy commodities and CDS spreads of the parties in the con- 

tract through Fourier-Cosine Expansion (COS) methods ( Fang and 

Oosterlee, 2008; Fang et al., 2010 ), we calibrate the parameters 

that allow us to describe the time-varying evolution of the asset 

price. We empirically identify the first time to default adopting the 

structural approach of Black and Cox (1976) and exploiting Monte 

Carlo simulations. 

Our main finding concerns the relationship between the im- 

plied volatility of the equity value of the parties in the contract 

and the expected value of stochastic recovery rates. We observe 

that deterministic recovery rates are not appropriate to capture the 

correct exposure to the CCR during high volatility periods. 

The theoretical model delineated in this paper is especially 

valuable to risk managers and investors for daily monitoring ac- 

tivities and trading operations. For instance, given the spreading 

of the Covid-19 pandemic, many corporate defaults have occurred. 

Relevant bias in the assessment of the CCR through improper cal- 

culation of capital requirements may be due to the use of flat re- 

covery rates which we have proved to be not appropriate during 

periods of financial distress. 

Inspired by the lesson in Szegö (2002) , this framework corrobo- 

rates the need for complex analytical and numerical techniques to 

depict objective macro-economic landscapes of the stability of the 

financial system and promote the safeguard of market participants. 

CRediT authorship contribution statement 

Rosella Castellano: Conceptualization, Supervision, Writing –

review & editing. Vincenzo Corallo: Methodology, Software, Writ- 

ing – original draft. Giacomo Morelli: Writing – original draft, 

Writing – review & editing. 

References 

Acharya, V.V., Bharath, S.T., Srinivasan, A., et al., 2003. Understanding the Recovery 
Rates on Defaulted Securities. Centre for Economic Policy Research . 

Albanese, C., Brigo, D., Oertel, F., 2013. Restructuring counterparty credit risk. Int. J. 
Theoretic. Appl. Finance 16 (02), 1350010 . 

Alonso-García, J., Wood, O., Ziveyi, J., 2018. Pricing and hedging guaranteed min- 

imum withdrawal benefits under a general Lévy framework using the COS 
method. Quant. Finance 18 (6), 1049–1075 . 

Altman, E.I., Brady, B., Resti, A., Sironi, A., 2005. The link between default and 
recovery rates: theory, empirical evidence, and implications. J. Bus. 78 (6), 

2203–2228 . 

8 

http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0001
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0002
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0003
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0004


R. Castellano, V. Corallo and G. Morelli Journal of Banking and Finance 140 (2022) 106512 

Amraoui, S., Cousot, L., Hitier, S., Laurent, J.-P., 2012. Pricing CDOs with state-depen- 
dent stochastic recovery rates. Quant. Finance 12 (8), 1219–1240 . 

Arora, N., Gandhi, P., Longstaff, F.A., 2012. Counterparty credit risk and the credit 
default swap market. J. Financ. Econ. 103 (2), 280–293 . 

Ballotta, L., Fusai, G., 2015. Counterparty Credit Risk in a Multivariate Structural 
Model with Jumps. Finance 36 (1), 39–74 . 

Ballotta, L., Fusai, G., Marazzina, D., 2019. Integrated structural approach to credit 
value adjustment. Eur. J. Oper. Res. 272 (3), 1143–1157 . 

Barndorff-Nielsen, O.E., 1997. Normal inverse gaussian sistributions and stochastic 

volatility modelling. Scand. J. Stat. 24 (1), 1–13 . 
Basel Committee on Banking Supervision, 2013. Fundamental review of the trading 

book: a revised market risk framework. 
Basel Committee on Banking Supervision, 2016. Instructions for Basel III monitoring. 

Technical report. Basel Committee on Banking Supervision . 
Basel Committee on Banking Supervision, 2018. Counterparty credit risk in Basel III 

- executive summary. Technical report. Basel Committee on Banking Supervi- 

sion . 
Bielecki, T., Brigo, D., Patras, F., 2011. Credit risk frontiers: subprime crisis, pricing 

and hedging, CVA, MBS, ratings, and liquidity, Vol. 101. John Wiley & Sons . 
Black, F., Cox, J.C., 1976. Valuing corporate securities: some effects of bond indenture 

provisions. J. Finance 31 (2), 351–367 . 
Bo, L., Capponi, A., 2015. Counterparty risk for CDS: default clustering effects. J. 

Bank. Finance 52, 29–42 . 

Brigo, D., Bakkar, I., 2009. Accurate counterparty risk valuation for energy-commodi- 
ties swaps. Energy Risk . 

Brigo, D., Morini, M., Pallavicini, A., 2013. Counterparty Credit Risk, Collateral and 
Funding: with Pricing Cases for all Asset Classes. John Wiley & Sons . 

Brigo, D., Morini, M., Tarenghi, M., 2011. Credit calibration with structural models 
and equity return swap valuation under counterparty risk. Credit risk frontiers: 

Subprime crisis, pricing and hedging, CVA, MBS, ratings, and liquidity 101, 457 . 

Brigo, D., Tarenghi, M., 2005. Credit default swap calibration and counterparty risk 
valuation with a scenario based first passage model. Available at SSRN 683160 . 

Brigo, D., Vrins, F., 2018. Disentangling wrong-way risk: pricing credit valuation ad- 
justment via change of measures. Eur. J. Oper. Res. 269 (3), 1154–1164 . 

Carr, P., Madan, D., 1999. Option Valuation using the Fast Fourier Transform. J. Com- 
put. Finance 2 (4), 61–73 . 

Chen, R., Wang, Z., et al., 2013. Curve fitting of the corporate recovery rates: the 

comparison of beta distribution estimation and kernel density estimation. PLOS 
ONE 8 (7), 1–9 . 

Chiang, S.-L., Tsai, M.-S., 2010. Pricing a defaultable bond with a stochastic recovery 
rate. Quant. Finance 10 (1), 49–58 . 

Cohen, A., Costanzino, N., 2017. A general framework for incorporating stochastic 
recovery in structural models of credit risk. Risks 5 (4) . 

Cont, R., Tankov, P., 2004. Nonparametric calibration of jump-diffusion option pric- 
ing models. J. Comput. Finance 7, 1–49 . 

Das, S.R., Hanouna, P., 2009. Implied recovery. J. Econ. Dyn. Control 33 (11), 
1837–1857 . 

European Securities and Markets Authorities, 2017. EU derivatives markets - a first 
time overview. Technical report. European Securities and Markets Authorities . 

Fang, F., Jönsson, H., Oosterlee, C.W., Schoutens, W., 2010. Fast Valuation and Cali- 

bration of Credit Default Swaps under Lévy Dynamics. J. Comput. Finance 14(2) 
(2), 1–30 . 

Fang, F., Oosterlee, C.W., 2008. A novel pricing method for European options based 
on fourier-cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 . 

International Swap Dealers Association, 2002. Master agreement. Technical report. 
International Swap Dealers Association . 

Jarrow, R., Protter, P., 2004. Structural versus reduced form models: A new informa- 

tion based perspective. J. Invest. Manag. 2 (2), 1–10 . 
Kim, J., Leung, T., 2016. Pricing derivatives with counterparty risk and collateraliza- 

tion: a fixed point approach. Eur. J. Oper. Res. 249 (2), 525–539 . 
Li, G., Zhang, C., 2019. Counterparty credit risk and derivatives pricing. J. Financ. 

Econ. 134 (3), 647–668 . 
Lian, G., Zhu, S.-P., Elliott, R.J., Cui, Z., 2017. Semi-analytical valuation for dis- 

crete barrier options under time-dependent Lévy processes. J. Bank. Finance 75, 

167–183 . 
Lipton, A., Sepp, A., 2009. Credit value adjustment for credit default swaps via the 

structural default model. J. Credit Risk 5 (2), 123–146 . 
Lord, R., Fang, F., Bervoets, F., Oosterlee, C.W., 2008. A fast and accurate FFT-based 

method for pricing early-exercise options under Lévy processes. SIAM J. Sci. 
Comput. 30 (4), 1678–1705 . 

Merton, R.C., 1974. On the pricing of corporate debt: the risk structure of interest 

rates. J. Finance 29 (2), 449–470 . 
O’Kane, D., Turnbull, S., 2003. Valuation of credit default swaps. Lehman Brothers 

Quant. Credit Res. Q. 2003, Q1–Q2 . 
Schläfer, T., Uhrig-Homburg, M., 2014. Is recovery risk priced? J. Bank. Finance 40, 

257–270 . 
Szegö, G., 2002. Measures of risk. J. Bank. Finance 26 (7), 1253–1272 . 

Tour, G., Thakoor, N., Khaliq, A., Tangman, D.Y., 2018. COS method for option pric- 

ing under a regime-switching model with time-changed Lévy processes. Quant. 
Finance 18 (4), 673–692 . 

9 

http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0005
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0006
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0007
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0008
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0009
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0011
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0012
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0013
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0014
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0015
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0016
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0017
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0018
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0019
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0020
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0021
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0022
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0023
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0024
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0025
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0026
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0027
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0028
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0029
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0030
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0031
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0032
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0033
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0034
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0035
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0036
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0037
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0038
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0039
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0040
http://refhub.elsevier.com/S0378-4266(22)00108-X/sbref0041

	Structural estimation of counterparty credit risk under recovery risk
	1 Introduction
	2 A model for the pricing of the counterparty credit risk
	2.1 Bilateral counterparty credit risk pricing
	2.2 State-dependent stochastic recovery rates
	2.3 The fourier cosine expansion method for plain vanilla options
	2.4 The recursive COS method for CDS

	3 Numerical analysis
	3.1 Calibration results - CDS
	3.2 Calibration results - stochastic recovery rates

	4 Conclusions
	CRediT authorship contribution statement
	References


