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Abstract 
 
Molecular modeling is used in drug discovery in order to estimate 
molecular properties, to plan experiments and predict their 
outcomes, thus, to make decisions about them. Indeed, 
computational approaches are now key components in the drug 
discovery process and can help to speed up the release of new and 
improved active molecules.  
The application of molecular modeling techniques in the early 
stage of drug discovery is one of the topics of this thesis. Here I 
present some works concerning virtual screening studies to 
identify compounds able to modulate some proteins involved in 
certain diseases.  
AN-465-J137-985 shows an inhibiting binding capability and 
reduce the affinity of the C-SH3 domain for Gab2 (in s A549 and 
H1299 lung cancer cell line.) 
(S)-RS4690 proved promising as new therapeutic agent against 
WNT-dependent colon cancer selectively binding to DVL1 PDZ 
(with an EC50 of 0.49 ± 0.11 μM and the growth of HCT116 cells 
that did not present the APC mutation with an EC50 value 7.1 ± 
0.6 μM.)  
RS6212 was found to have potent anticancer activity inhibiting 
lactate dehydrogenase in the micromolar range in several cancer 
cell lines, (such as the aerobic glycolysis-dependent Med1-MB 
cell line, the CRC HCT116 and SW620, the lung cancer A549, 
and the pancreatic PANC-1 cancer cells.)  
All these inhibitors deserve to be further investigated as a starting 
point for the development of novel anticancer strategies. 
Moreover, another computational technique used in drug 
discovery is molecular dynamics. It helps the knowledge about 
the stability of a ligand-protein complex and allowed us to 
simulate the conformational change after binding. 
Co-solvent molecular dynamics was useful to identify a suitable 
binding site for AM-001, an allosteric inhibitor of EPAC1.  
Accelerated molecular dynamics let us the recognition of the 
putative hot-spot residues involved in CCRL2-Chemerin binding.  
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Introduction 
 

1. Ligand-protein binding 
 
The effects produced by a molecule arise from its specific and 
reversible interaction with a receptor. Such interaction can 
modify the biochemical processes in which the receptor 
participates, stimulating or inhibiting them.  
The driving forces of the association between protein and ligands 
are the result of various interactions and energy exchanges among 
the protein, ligand, water, and ions. Gibbs free energy is the most 
important thermodynamic quantity for the characterization of the 
driving forces; the protein-ligand binding occurs spontaneously 
only when the system free energy is negative. Moreover, the 
amount of the difference in free energy between the complex state 
and the unbound free state (i.e., the magnitude of the negative free 
energy change upon binding) determines the stability of the 
complex. The decrease in system free energy can be considered 
the force that drives the protein–ligand binding(1). 
The concept of receptors was introduced in 1900 by Paul Ehrlich, 
an immunologist who speculated that side chains on cells of the 
immune system combine with bacterial toxins in order to turn into 
antibodies. Later, these side chains were renamed receptors(2). 
Since those times, this term was used to indicate any 
macromolecule targeted by a ligand. The specificity of the ligand-
receptor link at the basis of the efficacy and manageability of 
most drugs was soon compared to the substrate-enzyme 
specificity, which is described through the key-lock model by 
Fisher. Fisher describes the interaction between enzymes and 
substrates as a recognition between a lock that receives its key: 
this can happen only when exact geometric complementarity 
between the substrate (key) and enzyme (lock) occurs(3). 
However, this theory didn’t explain the allosteric modulation or 
why different molecules can fit to the same receptor.  
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Later, Koshland presented the induced fit theory in which the 
interaction also required the specific orientation of catalytic 
groups but, in order for that to happen, the substrate needs to 
provoke a change in the three-dimensional relationship of the 
active site residues which is beneficial for their binding(4).  
On the contrary, Monod, Wytman and Changeux proposed the 
conformational selection model where proteins can adopt 
multiple conformational states (active, inactive, intermediate) and 
the protein subunit adopts the required conformation only when 
the ligand is bound to it(5).  
It is important to stress that all three mechanisms may exist all at 
once or in a consequential manner, covering a wide spectrum of 
binding events. Indeed, Csermely et al.(6) proposed a new theory 
that unified the induced fit and selection models, leading to an 
evolution of the selection model. These models were helpful for 
the understanding of biological mechanism. Thus, they paved the 
way for the beginning of new insight in drug discovery, for the 
development of new molecules that bind to a specific energy state 
of the protein (or to a site that influence the activation of the 
protein) and could work as inhibitors, activators or allosteric 
modulators.  
In my thesis I will discuss several computational techniques 
applied in drug discovery which are useful for understanding the 
behavior of some proteins and the discovery of proteins’ new 
inhibitors involved in specific diseases. 
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2. Computational approaches to predict 
ligand–protein binding  

 
Over the time, several methods have been used to study the 
ligand-protein binding. Among these methods, computational 
methodologies have become crucial components in drug 
discovery process. 
Computer Aided Drug Design (CADD) techniques can be used 
for three reasons: virtual screening, hit/lead optimization and 
design of novel compounds. 
A huge database of compounds is examined via virtual screening 
in order to search for binding capacity to a target and a subset of 
compounds is selected and suggested for in vitro testing. The 
purpose is to increase the hit rate of new drugs by reducing the 
number of compounds to test experimentally. Another application 
of CADD is the optimization of hit/lead compounds driven by the 
rationalization of the structure-activity relationship, by merging 
together fragments into new chemotypes or by improving drug 
metabolism and pharmacokinetics properties(7). 
We can classify CADD methods in structure-based and ligand-
based. The choice to use one or another is usually based on the 
availability of information about the target. Structure-based 
method is generally used when crystal structures are available, 
while ligand-based are used when few information are known 
about the structure.  
After the individuation of key elements to bind a target, design of 
new compounds may be attempted. 
In the following paragraphs I will convey about the main 
computational techniques in drug discovery and the application 
of those in our research. 
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2.1 Molecular Docking  
Molecular docking consists in the prediction of ligand 
conformation and orientation within a targeted binding site. The 
molecular docking requires that the 3D structure of the 
macromolecule is identified. It may be a X-ray crystal structure 
(or NMR) or a structure obtained by computational techniques 
from a known structure with high identity (such as homology 
modeling). 
Docking is featured by a sampling method and a scoring function 

(8,9,10). Sampling refers to both the ligand and the protein: ligand 
conformational sampling is an essential step that generates a 
ligand multiconformer database to be used in ligand sampling; 
protein sampling refers to the flexibility given to the binding site 
during the simulation. 
Secondly, scoring functions are used to estimate the binding 
affinities of ligand poses approximating the ligand-receptor free 
energy using parameters such as the number of hydrogen bonds, 
lipophilicity, ionic interactions or entropy penalties(109). 
Through docking we aim to predict the stable drug interactions 
by inspecting and modelling drug molecular interactions between 
drug and target receptor molecules.  
According to the classification of docking techniques(11), we can 
classify the method in: 
 
a. Rigid docking 

In this method, many possible ligand binding orientations 
can take place giving six degrees of freedom (three 
translational and three rotational) to the ligand.  
This approximation can conceptually approach the lock 
and key theory and is mainly used for protein-protein 
docking, where the number of conformational degrees of 
freedom is too high to be sampled(11). 
Generally, in these methods the binding site and the ligand 
are approximated by “hot” points and the superposition of 
matching points is evaluated(12).  
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b. Semi-flexible docking 

Another approach is to consider only the conformational 
space of the ligand, setting the protein as rigid. The ligand 
has more freedom degrees, but the semi-flexible docking 
assumes that the protein has the right conformation to 
accommodate the ligand. 

 

c. Flexible docking 
In this method the protein and the ligand are treated both 
as flexible. One of the simplest attempts in this case is to 
treat only some side chains of the protein as flexible, while 
backbones are kept fixed. In one of the earliest studies, 
Leach included side-chain flexibility using a rotamer 
library(13). From this on, researchers have tried to develop 
techniques that integrate an increase in the protein 
flexibility including the backbone atoms. However, 
compared to the side-chain flexibility methods, these 
techniques are more challenging for the scoring function 
and time-consuming. 

 
This classification can be systematically extended by describing 
sampling algorithms.  
 

2.1.1 Sampling  
 
Sampling consists of algorithms that generate ligand poses that 
match the space chosen for binding pocket. This step is 
complicated by the number of freedom degrees of the small 
molecule, increasing the conformational space to sample. There 
are three types of ligand sampling: shape matching, systematic 
search, and stochastic algorithms. 
 

a. Shape matching 
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Ligand and receptor interaction results from the 
complementary between the two surfaces. The 
conformational searching was made to find the best steric 
overlap between them by minimizing the angle between 
the surfaces of opposing molecules. The goal of the shape 
algorithm is to find the best shape in the shortest time 
possible, so the benefit of shape matching is its 
computational efficiency. However, a rigid body 
approximation of the ligand is given, ignoring any kind of 
conformational movement.  
 

b. Systematic search 
 
All freedom degrees are given to the ligand to allow 
binding conformations. Each degree of freedom is 
associated to a set of finite values and all the values of 
each coordinate are explored in a combinatorial way(14). 
There are three types of systematic search methods: 
exhaustive search, fragmentation and conformational 
ensemble. 
In the exhaustive search, flexible-ligand docking is 
carried out by methodically rotating all possible rotatable 
bonds of the ligand in a given interval, allowing the 
number of combinations to expand as the number of 
rotatable bonds increases. Thus, to work around this 
problem and make it easy, geometric/chemical constrains 
are applied to the initial ligand poses, and then the ligand 
conformations are further subject to more accurate 
refinement/optimization procedures. Glide(15) is an 
example of software that involves a stage of exhaustive 
search.  
Fragmentation is a method in which ligand binding 
conformation is increased using multiple rigid fragments 
docked in the binding cavity. Fragments will be rotated 
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and linked. Examples of softwares utilizing fragmentation 
are FlexX(16) and Hammerhead(17). 
The conformational ensemble usually performs a group of 
pre-generated ligand conformations docked into the 
protein and followed by a ranking of the docked poses 
from different docking runs according to their energy 
scores(18). Example of this docking methods are offered by 
EUDOC(19) or FLOG(20) . 

 
c. Stochastic search  

 
Stochastic algorithm search ligand conformation and 
orientation (translation/rotation) randomly, according to 
probabilistic criteria.  
There are four types of stochastic algorithms(8): Monte 
Carlo (MC) methods, evolutionary algorithms (EA), Tabu 
search methods, and swarm optimization (SO) methods. 
Monte Carlo method is based on Metropolis Monte Carlo 
algorithm based on Boltzmann probability function:  

P∼ exp[-(E1-E0)/kBT] 
 

where E1 and E0 are the energy score before and after the 
modification, kB the Boltzmann constant, and T the 
temperature of the system. In this method random 
changing of the ligand is accepted only if there’s an 
improving of the energy score.  
This algorithm was implemented by docking software 
such as Autodock(21), Autodock vina(22) or 
ROSETTALIGAND(23). 
Genetic algorithms are inspired by Darwin’s theory of 
evolution. The GA operates on a population of 
"individuals," each of them offers a potential resolution to 
the ligand-protein docking problem. Each “individual” is 
scored using a fitness function that takes into account both 
the intramolecular ligand energy and the total interaction 
energy between the protein and the ligand molecule(24). 
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The most popular type of EAs is the genetic algorithms 
(GAs). GOLD(25,26), Autodock 3 & 4(27), MolDock(28), 
rDOCK(29) are the examples that have implemented 
evolution algorithms. 
In Tabu algorithm the poses of the ligand are generated 
randomly, but we receive an output in which the ligand 
conformation will not be equal to others in order not to 
explore the same conformational space. This will be 
possible by measuring the rmsd of each new pose 
generated with respect to the previous one. 
Swarm optimization (SO) took inspiration from swarm 
pattern in which conformations of a ligand are influenced 
by the best position of its group’s components. For 
example, PLANTS(30) (Protein-Ligand ANTSystem) is 
based on ant colony optimization mimicking the behavior 
of ants who exchange information on where to find food 
by leaving pheromones. Each degree of ligand freedom is 
metaphorically associated to a pheromone vector.  
 
 
 
 

2.1.2 Scoring functions 
 

The scoring function is correlated to each conformation. This 
predicts the associated energy with a physical or empirical 
function. Generally, this can be related with the accuracy of the 
algorithm(31). Binding mode could be predicted by the 
conformation with the lowest energy score. We can assemble the 
scoring function into three group:  
 

a. Force field scoring function  
Force field (FF) scoring functions(31,32,33) usually derives 
from both experimental data and ab initio quantum 
mechanical calculations according to the principles of 
physics.  
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The energy of the interaction between a macromolecule 
and its ligand as well as the internal energy of the ligand 
(such as steric strain induced by binding) are often 
quantified by molecular mechanics force fields. 
This scoring function is composed by two energy 
components, the VDW term express by Lennard-Jones 
function and the electrostatic term express by Coulomb 
function.  
 

𝛦	 =%%&
𝐴!"
𝑟!"#$

−
𝐵!"
𝑟!"%
	+ 	

𝑞!𝑞"
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where 𝑟!" stands for the distance between protein atom i 
and ligand atom j, 𝐴!" and 𝐵!" are the VDW parameters, 
and 𝑞! and 𝑞!" are the atomic charges. The distance-
dependent dielectric constant 𝜀.𝑟!"/ in the Coulombic 
term is introduced to consider the effect of the solvent.  
Examples of force field based scoring functions are: 
GoldScore(34), AutoDock(27), GBVI/WSA (35). 
 

b. Empirical scoring functions 
 
Empirical scoring functions consider several weighted 
energy terms such as van der Waals, electrostatics, 
hydrogen bond, desolvation, entropy, hydrophobicity in 
order to estimate the affinity of the complex.  
 

∆𝐺	 = 	%𝑊!	. ∆𝐺!
!

 

where ΔGi represent individual empirical energy terms, 
and the corresponding coefficients Wi are obtained from 
regression analysis using experimentally determined 
binding energies and X-ray structural information (36-40). 
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The LUDI(41) scoring function was the first example of an 
empirical one. Other empirical scoring functions are: 
GlideScore (15,42), ChemScore(43), PLANTSCHEMPLP(30). 
 

c. Knowledge-based scoring function 
 
This model starts from known ligand-protein interactions 
and it converts experimental frequencies of atom-atom 
interactions into energies component. For protein–ligand 
studies, the potentials are calculated by  
 

𝑤(𝑟) = 	−𝑘'𝑇	𝑙𝑛[𝜌(𝑟) 𝜌∗(𝑟)⁄ ] 
 
where kB is the Boltzmann constant, T is the absolute 
temperature of the system, ρ(r) is the number density of 
the protein-ligand atom pair at distance r in the training 
set, and ρ*(r) is the pair density in a reference state where 
the interatomic interactions are zero. 
After the potential parameters w(r) are derived, the energy 
of ligand binding for a given complex is simply the sum 
of the interaction terms for all the protein-ligand atom 
pairs in the complex (44).  
Example of knowledge-based scoring functions are 
DrugScore(45,46) and GOLD/ASP(47). 
 

d. Consesus scoring functions 
 

This method is not really a function derived from equations, but 
it combines multiple scoring functions in order to minimize errors 
from different scoring functions(48). 
Molecular docking can be well applied at multiple stages of the 
drug design and discovery process for three main purposes: (1) 
predicting the binding mode of a known active ligand, (2) 
predicting the binding affinities of analogous compounds from a 
known active series, (3) and identifying new ligands using virtual 
screening (VS).  
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2.2. Virtual Screening  
 
The goal of VS is to find new bioactive compounds from huge 
chemical libraries by using information of the protein target 
(structure-based VS) or existing bioactive ligands (ligand-based 
VS)(49).  
Ligand-based approach use SAR (structure activity relationship) 
derived from known active ligands in order to identify new 
candidate molecules for experimental evaluation. Instead, 
structure-based VS largely use the docking approach, where the 
target protein or receptor is used to dock the candidate molecules 
and rank them based on their predicted binding affinity (docking 
score). Ligand- and Structure-based approaches can be used 
alone, in a consequential way, or with both approaches 
simultaneously, based on the necessities of the researchers.  
VS can be considered as the mining of chemical spaces with the 
aim of identifying molecules that possess a desired property(50). 
VS is highly dependent on the quantity and the quality of the 
resources and there’s no “official” workflow to follow; however, 
researchers have to apply their computational knowledge and 
experience to find the active drug candidate from drug databases 
and chemical libraries, applying the best possible source of tools.  
Generally, a VS workflow is featured by: 
 

1. Selection of chemical libraries  
Database libraries must fit the purpose of the experiment 
before its selection for screening. Many databases are 
publicly available, and researchers can choose to cover a 
particular class of compounds (structural or 
pharmacological) or diverse classes of molecules. 
 

2. Preprocessing of chemical libraries  
This step consists of selecting compounds from chemical 
libraries by removing the duplicate structures, tautomers, 
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charged molecules or select them in a specific range of 
molecular weights.  
 
 
 

3. Filtering of drug like properties  
One can also decide to select molecules for the screen 
relatively to drug like properties such as: 
a. ADMET filter  

This filter is useful for getting information about 
absorption, distribution, metabolism and excretion or 
toxicity. 
It’s important to consider, in the physical properties of 
the compound, the right compromise between its 
solubility and hydrophobicity. Generally, a drug needs 
to be soluble enough for reaching the blood stream, 
but also lipophilic enough for penetrating the cell 
membrane lipidic bilayer. These properties can be 
predicted in silico with the help of mathematical 
algorithms.  
For example, Lipinski’s rule of 5 is the most popular 
method for predicting the bioavailability of a 
compound (51). The rule is based on the ADME 
properties of known drugs, assuming that most of the 
orally active drugs for humans fulfill three of the 
following four criteria. 

b. Lipinsky rule of five 
It is a criteria for oral bioavailability. Generally, an 
orally bioavailable drug can violate at most one of 
these rules: (1) molecular weight 
(MW) is over 500, (2) calculated octanol/water 
partition coefficient (logP) is over 5, (3) presence of 
more than 5 HBDs, and (4) presence of more than 10 
HBAs.  
However, Lipinski’s rule of five fails to distinguish 
between drugs and nondrugs; it rather serves as a 
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method to predict compounds with poor absorption or 
permeability (except for antibiotics). 
Therefore, compounds in the screening library that 
fulfill Lipinski’s rule of five are more likely to be 
orally active and can be filtered either at early stages 
or at the end of the VS. 
 

4. Screening  
a. Ligand based approach 

Molecules with physical and chemical properties such 
as those of the known ligands are identified using, for 
example, QSAR models or pharmacophore-based 
search. The ligand-based approach is possible without 
protein information and can be employed for scaffold 
hopping. This method has its roots in the principle 
introduced by Johnson and Maggiora(52), which states 
that similar compounds have similar properties. Thus, 
compounds with high similarity to reference 
compounds are likely to behave in a similar manner. 
So, similarity can be computed with different methods 
such as: 
1. Molecular fingerprint methods 

Fingerprints are sequences of bits. Each bits 
involves certain features of a molecule. There are 
various types of fingerprints: sub-structure keys-
based fingerprints, topological fingerprints, 
circular fingerprints, or pharmacophore 
fingerprints. Bits allow us to compare two 
molecules and then quantify a similarity, using, 
for example, similarity metrics (tanimoto 
coefficient) or supervised machine learning.  

2. 3D shape similarity  
The basis of 3D-shape similarity lies in the fact 
that two molecules with a similar shape are likely 
to fit in the same binding pocket and exhibit 
similar biological activity(53). In this approach, the 
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3D shape of the compounds in the library is 
compared to those of known active compounds, 
that represent the reference structure. This method 
does not consider the specific structure or 
properties of the reference ligands and only relies 
on the shape of the molecules. 

3. Electrostatic potential similarity 
Electrostatic interactions are important factors that 
need to be considered, because the ligand has to 
match the target electrostatic environment for the 
binding to occur. Thus, electrostatic potential of 
different molecules could be compared to that of 
the reference ligand and could potentially match 
the electrostatic potential of the target to have 
activity on it. Also compounds with different 
chemical structure can have similar electrostatic 
distribution and can be chosen in order to obtain 
structural diversity.  

4. Pharmacophore based similarity  
A set of ligands are used to design a 
pharmacophore which includes common features 
between them that are required for the binding 
with the target protein. The creation of the 
pharmacophore can be also based on a single 
ligand. The compounds that match the 
pharmacophore are predicted to achieve the same 
interactions with the biological target and their 
binding is expected to result in the same biological 
response.  

  
b. Receptor-based approach:  

In this approach the protein structure of interest is 
available, and a compound library of small molecules 
(available via purchase or synthesis) is explored using 
techniques like protein ligand docking that is the 
most famous one in VS(54). Active-site-directed SBPs 
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for the molecular recognition between a ligand and a 
target protein can be utilized to choose compounds 
that bind to the active sites of physiologically 
significant targets with known 3D structures,  
Another approach used in this case is the generation 
of a pharmacophores structure-base that takes into 
account the distribution of features of the receptor, 
obtaining them in a way that differs from the ligand-
based method. The advantage is the discrimination of 
conformations of compounds that don’t fit the binding 
site using for example excluded volumes.  
 

c. A combination of ligand and receptor-based approach 
can also be used considering information from both. 
The two techniques are combined in a sequential or a 
parallel way. The sequential combination consists, in 
general, in the application of the fastest and less 
refined approaches in the first part, and the most 
computational expensive techniques in the second 
step. In the parallel combination method, selected 
compounds of both methods are compared either as a 
complementary selection (top ranked compounds 
from each method) or a consensual selection 
(compounds selected by both approaches) (55). 
 

d. Machine learning techniques: machine learning 
techniques like support vector machine (SVM) and 
binary kernel discrimination (BKD) can be applied in 
a few cases of VS. 

Many other theoretical approaches are in continuous elaboration 
and their applications are interesting for VS experiments. One of 
these approaches is the Relaxed Complex Scheme (RCS). The 
RCS uses Molecular dynamics simulations to explore an 
ensemble of low energy structures of the protein-ligand complex 
that will be used as starting point to dock small molecules 
libraries(56,57). It combines the advantages of docking algorithms 
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with dynamic structural information provided by MD 
simulations, explicitly accounting for the flexibility of both the 
receptor and docked ligands(55). 
 

5. Hit selection 
 

This is the most difficult and subjective step. It is crucial to select 
compounds that are different from one another: this can be 
achieved by grouping the hit compounds according to their 
structure. To do so, one of the methods is clustering structure 
using, for example, hierarchical clustering, k-means clustering or 
HDBSCAN.  
Compounds that showed the presence of a toxic group (e.g. nitro, 
aniline, hydantoin, alkyl halide peroxide, and carbazide), which 
are related with metabolism-mediated toxicity, are deleted from 
the result of the filter. Otherwise, compounds containing 
aldehydes and epoxides may be considered inappropriately 
electrophilic, whereas others such as thiols are redox active. Other 
compounds may be autofluorescent and others may aggregate(59) 
at certain concentrations and produce false positives in some 
assays. These molecules that include groups to be avoided, 
chemically reactive compounds, and assay-interfering 
compounds, are often referred to as PAINS (pan-assay interfering 
substances) or frequent hitters(60).  
Once hits are selected from the final screening process, the 
researcher has to synthesize or buy the hits for further study. The 
selected hits have to go through different in vitro/in vivo 
bioassays for final confirmation of their pharmacological actions. 
Compounds showing hopeful pharmacological activity are 
considered as the leading ones for further preclinical and clinical 
studies to establish them as the final drug candidates.  
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2.2.1 Pharmacophore concept and types 
 
In this section I will discuss about the concept of pharmacophore, 
which is a crucial part of the virtual screenings carried out during 
my years of PhD.  
Introducing the term pharmacophore in the year 1909, Ehrlich(61), 
named the “father of drug discovery,” defined it as “a molecular 
framework that carries (phoros) the essential features 
responsible for a drug’s ( pharmacon) biological activity.” 
Although the first definition of the term was credited to Ehrlich, 
it was Kier who introduced the physical chemical concept in the 
late 1960s and early 1970s when describing common molecular 
features of ligands of important central nervous system receptors. 
This was labeled as “muscarinic pharmacophore” by Kier(62,63). In 
the past, pharmacophore models were mainly worked out 
manually, assisted using simple interactive molecular graphics 
visualization programs. Later, the growing complexities of 
molecular structures required refined computer programs for the 
determination and use of pharmacophore models. In the evolution 
of computational chemistry, the initial definition of a 
pharmacophore model, conceived as an essential geometric 
representation of the key molecular interactions, remains 
unchanged. With the advances in computational chemistry, 
various automated tools for pharmacophore modeling and 
applications were developed(64). 
There are two ways to generate a pharmacophore model. The 
first method is ligand-based modeling, where a set of active 
molecules are superimposed and common chemical features 
which are necessary for their bioactivity are extracted; the 
second is structure-based modeling performed by searching 
potential interaction points between the macromolecular target 
and ligands. 

A. Ligand-based pharmacophore model: if 
macromolecule structure is not available this model 
can be one of the solutions to screen compounds. The 
ligand-based pharmacophore model usually starts by 
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the extraction of common chemical features from the 
structures of a known set of ligands, that are 
representative of fundamental interactions between 
the ligands and a specific macromolecular target.  
Firstly, a set of active ligands will represent a training 
set; they are docked to generate multiple 
conformation of ligands and exemplify their 
flexibility. This conformational analysis can also be 
done in the pharmacophore modeling process 
(generating conformers during the screening). 
Multiple ligands of the test set will be aligned to the 
training set; then, essential common chemical 
features will be created to build the pharmacophore 
model. In the generation of the pharmacophore 
models, it is important to consider the type of ligand 
molecules, the size of the data set and its chemical 
diversity(65). Features are chosen based on interaction 
with the target (H-bond acceptor or donor, negative 
or positive charge, hydrophobic and aromatic 
features) and information from the SAR can be 
included. The pharmacophore must be validated to 
understand if it can differentiate active compounds 
from inactive compounds. A screening of a set of 
actives and a set of decoys (compounds with similar 
structure but inactive against the target) is useful in 
this step. 

 
B. Structure-based pharmacophore model: Structure-

based pharmacophore modeling is directly dependent 
on the 3D structures of macromolecular targets or 
macromolecule ligand complexes. A general protocol 
can involve the selection of complementary chemical 
features of the active site, their spatial relationships, 
and then the developing of a pharmacophore model 
assembled with chosen features(66).  



Introduction 

 19 

Structure-based pharmacophore modeling can be 
further classified into two subclasses: 
macromolecule-ligand complex based and 
macromolecule (without ligand) based. The first is 
based on the identification of key interaction between 
ligand and target protein (for example, 
LigandScout(67) or Phase in Maestro Schrodinger 
Suites(68,69) are the most famous programs that 
incorporate this scheme). 
The main limitation of this process is the requirement 
for the 3D structure of the macromolecule-ligand 
complex. Consequently, it cannot be applied when no 
ligands targeting the binding site of interest are 
known. This can be solved by the macromolecule-
based approach. 
The identification of too many chemical features, or, 
on the contrary, the selection of few features could 
inconveniently occur when using structure-based 
pharmacophore modeling. A pharmacophore model 
consisting of too many chemical features (for 
example, more than eight) is not suitable for practical 
applications. Instead, the identification of few 
features could lead to the screening of too many 
compounds and therefore to insufficient structural 
selectivity. Thus, I think it is always beneficial to pick 
usually from five to eight features to create a reliable 
pharmacophore hypothesis.  
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3. Molecular dynamics simulations 
 

Molecular dynamics (MD) simulations, first developed in the late 
1970s(70), is a computational technique that reproduce the 
movement of macromolecule and ligands over the time. 
Simulations can show biological processes such us protein 
folding, conformational change or ligand binding using physic 
model that rule interatomic interactions. 
The first application study on a simple system was carried out to 
study collisions among hard spheres(71); later, McCammon et. 
al(70) were the firsts that published MD of a biomolecule. In 
particular, they reproduce the motion of a 58-residues Bovine 
Pancreatic Trypsin Inhibitor (BPTI) in 9.2 ps simulation carried 
out in vacuum with a crude molecular mechanics potential. 
The movement of the system and his trajectory is generated by 
the integration of Newton’s law motion (F = ma):  

 
𝑑𝑥!$

𝑑𝑡$ 	= 	
𝐹)!
𝑚!

 

 
This equation describes the acceleration of a mass 𝑚! under a 
force 𝐹)! in a specific direction 𝑥𝑖.  
The integration is divided into many small stages, each separated 
in time by fixed δt. The total force on each particle in the 
configuration at a time t is calculated as the vector sum of its 
interactions with other particles. Accelerations can be determined 
from the force and then they are combined with velocities at a 
time t + δt. The force is assumed to be constant during the time 
step(72,73).   
Several integration algorithms, which derive Newton’s equations 
by a discrete time numerical approximation, are available.  
The velocity-Verlet integrator is reported in the following 
equations as an example to compute position and velocity of an 
atom i at the time step t+δt, starting from the previous step, r(t-
dt).   
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𝑟!(𝑡 + 	𝛿𝑡) = 	 𝑟!(𝑡) +	𝑣!(𝑡)𝛿𝑡 +	
1
2 𝑎!(𝑡)𝛿𝑡

$ 

𝑣!(𝑡 + 	𝛿𝑡) 	= 	 𝑣!(𝑡) +	
1
2 [𝑎!

(𝑡) +	𝑎!(𝑡 + 	𝛿𝑡)]𝛿𝑡 
 
where 𝑟! (t), 𝑣! (t) and 𝑎!(t) are respectively position, velocity and 
acceleration of atom i at time t, and 𝑟!(𝑡 + 	𝛿𝑡), 𝑣!(𝑡 + 	𝛿𝑡)	 and 
𝑎!(𝑡 + 	𝛿𝑡) are respectively position, velocity and acceleration of 
atom i at time t+δt. 
The most demanding part of molecular dynamics simulations is 
the calculation of the force on each particle of the system.  
Acceleration is calculated from the forces acting on atom i 
according to Newton’s second law, and forces are computed from 
the force field, according to the following equation: 
 

𝑎!(𝑡) = 	
𝑑$𝑟!(𝑡)𝑦
𝑑𝑡$ =	

𝐹!(𝑡)
𝑚!

	= 	−	
𝑑𝑉(𝑟(𝑡))
𝑑𝑟!(𝑡)

 

 
where V(r(t)) is the potential energy function retrieved by the 
force field.  
The force-field, which is the sum of the bonded (intramolecular) 
and nonbonded energy components, is a straightforward function 
that approximates the potential energy. The basic form of the 
function comprises, in the bonded portion, bond stretching and 
bending described by harmonic potential, and torsional potential 
described by a trigonometric function. Nonbonded terms consist 
of van der Waals and Coulomb electrostatic interactions between 
couples of atoms. A successful force field in drug design should 
work well both for biological molecules and the organic 
molecules that interact with them(73).  
The most used force field in molecular dynamics are CHARMM 
(74), AMBER(75,76), OPLS(77) and GROMOS(78). 
As an example, the components of AMBER force field are 
reported(76): 
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Where the first term represents the energy between covalently 
bonded atoms; the second term represents the energy due to the 
geometry of electron orbitals involved in covalent bonding; the 
third term represents the energy for twisting a bond due to bond 
order (e.g., double bonds) and neighboring bonds or lone pairs of 
electrons; and the fourth term represents the non-bonded energy 
between all atom pairs. 
MD simulate an isolated system by solving the Newton’s 
equation in a system featured by constant temperature and 
pressure, thus energy, and number of particles. Constant 
temperature is conserved by thermostat(79) which allows for 
changes in kinetic energy and also pressure is maintained with 
barostat algorithms through the regulations of the volume(80). 
Periodic boundary condition is used to simulate a finite system 
and create a cell of a certain size, where coordinates and speeds 
are repeated in space directions(80) in a periodic way. Thus, a 
spherical cutoff with a radius of at least 10 Å can be used and it 
is employed in the calculation of the short-ranged van der Waals 
terms. Instead, the calculation of the long-range electrostatic 
interactions is extended to all the periodic cells; usually, the 
Ewald sum methods is used for this calculation, but to reduce 
computational cost Particle Mesh Ewald (PME) could be used(81) 
to take advantage of the Fast Fourier transform(82). 
Molecular dynamics simulations are useful when we have to 
consider protein motion. Indeed, in static models (like X-RAY 
crystallography or NMR) we can obtain much information about 
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the macromolecule structure, but, when a small molecule binds to 
its target in solution, it faces to a macromolecule in constant 
motion. Upon binding, the ligand may induce conformational 
changes that are not always sampled when the ligand is absent(83). 
Information on the binding mode of a protein and ligand can be 
obtained by molecular docking; however, the predicted position 
and orientation of ligands, and the observation of some 
interactions also depends on additional optimization of the 
complementarity between protein and ligand. The use of MD 
simulations can not only optimize the local steric clashes between 
protein and ligand but also correct and optimize the initial binding 
mode of the ligand during molecular docking. So, MD trajectories 
can be considered as sampling engines that reproduce protein 
conformations usable for Multiple Protein Conformations 
docking applications. For example, McCammon et al. developed 
the so called Relaxed-Complex Scheme (RCS): mini-libraries of 
compounds are docked by AutoDock(27) against a large ensemble 
of snapshots derived from unliganded protein MD trajectories. 
This approach is founded on the conformational selection binding 
model(84,85,57).  
Alternative conformers obtained through MD can also give 
insights into cryptic or allosteric binding sites(86). For example, 
Schame et al. identified an alternative binding site named 
“trench”, close to the active site of the HIV-1 integrase(87). 
MD has further applications as a docking-coupled technique. In 
particular, it can be used for the assessment of the stability and 
for the refinement of docking poses: incorrect poses are likely to 
be unstable and dissociate from the complex, while realistic ones 
will be stable(88). 
Simulations in explicit solvent may allow to estimate the 
contribution of water during binding. 
Additionally, by using MD, we can examine the entire binding 
process, which may shed light on the metastable states that the 
ligand reached during the simulation, on alternative binding sites, 
on the function of water during binding, and on conformational 
rearrangements that come before, during or after binding. 
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However, the observation of a binding event during a classical 
MD simulation is very rare and a high number of MD steps is 
required to simulate slow processes, such as large domains 
motions and binding (μs-ms). These processes, in particular, 
demand the overcoming of a high energy barrier, which 
corresponds to sparsely populated states in the conformational 
energy landscape; in this scenario, the simulated system becomes 
trapped in a local minimum, making classical MD insufficient to 
extensively explore the conformational space(89).   
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3.1. Enhanced sampling technique  
 
These methods add a bias force/potential to the system to let it 
overcome limitations of classical MD and escape from local 
minima, implying an acceleration of conformational sampling. 
These methods have been conceived primarily to study folding, 
binding or unbinding processes, sharing the principal idea of 
sampling enhancement and overcoming high energy barriers.  
Enhanced sampling techniques can be divided into methods that 
make use of collective variables to introduce the bias and methods 
that do not. The employment of a collective variable (CV) is 
based on the idea that a complex system can be decomposed into 
one or a combination of reaction coordinates describing the 
process of interest(90). 
 

3.1.1. Enhanced sampling that does not use CVs  
 

a. Replica exchange molecular dynamics 
Replica exchange is also known as Parallel tempering (PT) and 
its first application was in 1999(91). This method is featured by the 
replication of parallel simulations that starts with the same 
configuration but carried out with different temperatures. At 
defined time intervals multiple copies with similar T are 
exchanged in temperature with a probability determined by the 
energy (E) and temperature (T) of the system. The exchanges are 
calculated based on Metropolis criterion:  
 

𝑃(𝑇# → 𝑇$) = 	 [
1 𝑓𝑜𝑟	[𝛽$−𝛽#](𝐸#−𝐸$) ≤ 0	

𝑒8[:!8:"](="8=!) 𝑓𝑜𝑟	[𝛽$−𝛽#](𝐸#−𝐸$) > 0
c 

 
where β=1/kBT (with kB the Boltzmann constant). 
Temperatures are updated by rescaling the velocities of the parent 
simulations (v1 and v2 to v1’ _and v2’) according to the following 
equation: 
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It’s important to select the range of temperatures and various 
strategies have been proposed to guide the choice(92).  
The exchange of temperature or Hamiltonian(93) can lead the 
system to the convergence of MD simulation, thus REMD has 
been extensively adopted in various ensemble simulations, both 
to study protein folding and ligand binding(94). 
 

b. Accelerated molecular dynamics 
Accelerated MD (aMD) is a simulation method that doesn’t 
require the selection of reaction coordinate or CVs; thus, aMD 
can be useful for investigating the biomolecular conformational 
space without a priori knowledge or restraints. It was proposed by 
McCammon(95) and it is applied to the system to let it exit from 
the local minimum. This is possible by adding a bias energy to 
the potential energy function according to the set of variables (a 
threshold energy (E) and a boosting constant (α)) to reduce the 
potential energy barrier and thus accelerate transitions between 
different low-energy states. This allows aMD to sample 
distinctive biomolecular conformations and uncommon barrier-
crossing events that are not obtainable in cMD simulations. 
In particular, when the potential energy (V(r)) is lower than a 
certain cutoff (E), the bias is added giving a modified potential 
(V*(r)=V(r)+ ΔV(r)); otherwise, the simulation continues in the 
true-unbiased potential (V*(r)=V(r)).  
The bias function is reported as follows: 
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Δ𝑉(𝑟) = 	
(𝐸 − 𝑉(𝑟))$

𝛼 + (𝐸 − 𝑉(𝑟)) 

 
where E is the potential energy cutoff and α is a tuning parameter 
determining the depth of the modified potential energy basin. 
The choice of E and 𝛼 is crucial since they control how quickly 
the molecular dynamics will accelerate. One guideline for 
selecting E is that it should be higher than the minimum of V(r), 
𝑉min, close to the starting structure. If E is smaller than 𝑉min, the 
simulation will always be conducted using the true potential and 
will therefore be a classic MD simulation. At higher values of E 
α has to be set higher than 0, in order to retain the basic shape of 
the potential energy surface, indeed when α=0 the system goes 
through a random walk as most of the changed potential becomes 
isoenergetic. When α = E - Vmin, this will allow to maintain the 
primary shape of the landscape(95). 
There are two type of boosts, the “dihedral-boost” (95) and “dual-
boost” (96). 
In dihedral-boost aMD, boost potential is applied to all dihedrals 
in the system with input parameters (Edihed, αdihed). In dual-boost 
aMD, a total boost potential is applied to all atoms in the system 
in addition to the dihedral boost, i.e., (Edihed, αdihed; Etotal, αtotal): 

𝐸0!620 =	𝑉0!620_,A5 +	𝛼# 	× 	𝑁.21, 													𝛼# =	𝛼$ 	×
𝑁.21
5  

𝐸*+*,- =	𝑉*+*,-_,A5 +	𝑏# 	× 	𝑁,*+B1, 													𝛼# =	𝑏$ 	× 	𝑁,*+B1 
 
where Nres is the number of protein residues, Natoms is the total 
number of atoms, and Vdihed_avg and Vtotal_avg are the average 
dihedral and total potential energies calculated from short cMD 
simulations, respectively. 
Originally, aMD was only applied to torsional angles(83) but was 
subsequently extended to all force field terms including explicit 
solvent(97). 
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3.1.2. Enhanced sampling that uses CVs 
 

a. Steered molecular dynamics (SMD) 
The SMD method was introduced in 1997 by Klaus Schulten(98). 
In this technique an external force is applied to drive out the 
ligand from the binding site to investigate how the molecule 
reacts to mechanical stress and to clarify structure–function 
relationship of a macromolecular complex involving either 
protein–ligand or protein–protein interactions. The added force is 
assumed to be related to the binding strength and it is correlated 
with conformation changes of proteins or molecules in the system 
under investigation(99). Usually, this force is applied to only one 
term of the molecule, instead the other terminus is free to move; 
it can be fixed or it can change during the simulation. Other 
possibilities involve constant forces or application of forces on 
different CVs, such as nonlinear coordinates that can help to 
explore conformational rearrangement of protein domains(98). It 
is important to choose the direction of the force because the ligand 
might crash with “obstacle” during the way out from the protein. 
Moreover, integration with the targeted molecular dynamics 
(TMD) are reported: in TMD a bias force is applied to conduct 
the system from an initial to a desired final configuration(100), 
leading to the individuation of a path that can be used as set of 
directions for a SMD simulation(98). 
 

b. Random acceleration molecular dynamis (RAMD) 
It is an extension of SMD and it was developed to study the exit 
of a ligand from its target binding site. The difference between 
them consists in the application of a randomly oriented force to 
drive out the ligand; in this case, we don’t choose the direction of 
the force and, when the ligand meets an “obstacle” during the exit 
pathway, the escape direction is changed automatically. In 
particular, the direction of the force is chosen stochastically and 
maintained for a set number of MD steps. If during this time 
interval the average velocity of the ligand is lower than a specified 
cut-off (or, in other terms, if the distance covered by the ligand is 
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lower than a cutoff distance, meaning that probably a rigid 
“obstacle” has been met), a new force direction is assigned to 
allow the ligand to search for alternative exit pathways. This 
process is repeated until the ligand displacement exceeds a 
predefined distance from its starting position, then it is considered 
to have been dissociated from the macromolecule(101) . 
 

c. Umbrella sampling  
In umbrella sampling(102), the energy potential is modified to 
allow for an easier transition over the energy barrier. The 
additional energy term is applied along one or a combination of 
CVs. This is carried out in separate windows that overlap with a 
CV reference value (ξref). Bias potentials should be chosen to 
ensure that sampling along the reaction coordinate is as uniform 
as possible, and this is usually a harmonic biasing potential. The 
strength of the bias must be high enough to allow the energy 
barriers to be crossed, but sufficiently low to let system 
distributions of different windows overlap. The sampling in each 
individual window can be performed using conventional 
molecular dynamics (cMD) or employing enhanced sampling 
techniques such as Hamiltonian replica exchange(103). The post-
processing analyses is carried out using techniques such as the 
weighted histogram analysis method WHAM(104). 
 

d. Metadynamics 
Metadynamics is another technique designed to accelerate rare 
events and reconstruct the free energy profile. Here, the bias 
potential is introduced in the form of a Gaussian function to one 
or more collective variable in order to avoid that the system revisit 
configurations already sampled(105). Indeed, bias-Gaussians are 
deposited in the CV space with a given frequency, and at each 
iteration the bias is the sum of the already deposited Gaussians. 
During the simulation, the system, instead of being trapped in the 
bottom of a “well”, is moved away from the hill of deposited 
Gaussians, and enters a new minimum. The process continues 
until all the minima are counterweighed by the bias potential(106).  
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Metadynamics can be used to explore binding/unbinding 
processes(107) and, with the application of funnel 
metadynamics(108), can also be used for the estimation of binding 
free energy. 
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Aim of the work 
 
A drug development project usually begins with a 
pharmacological hypothesis, which states that the modulation of 
a certain molecular biological mechanism might be helpful in 
treating diseases in which it is involved. In a project like this the 
next step is to identify hits, for example small molecules that can 
affect this modulation. These hit compounds are then developed 
into hit series using medicinal chemistry. Series could be also 
optimized having regard to pharmacological and pharmacokinetic 
qualities. At the end, the drug candidate could be turned into new 
medicine through clinical development. The application of 
structure-based virtual screening in the hit identification stage of 
drug discovery is one of the subjects of this thesis.  
A protocol developed in our research group that consist of 5 steps 
(identification of the target, validation of docking software, 
docking of compounds libraries, pharmacophore generation and 
filter, visual inspection) was applied on several targets, among 
which I focused my work on the identification of small molecules 
that block, for example, a protein-protein interaction or the 
overexpression of proteins overexpressed in some type of 
cancers. In particular, the protein-protein interaction between 
Gab2 and Grb2, the PDZ domain of DVL1 protein and the lactate 
dehydrogenase enzyme.  
Another important tool used for the theoretical investigation of 
biological processes is molecular dynamics simulations that study 
a system’s evolution through time and provides insight into 
atomic-scale processes that take place in biological systems, such 
as the function of protein flexibility in ligand binding. 
It is a useful method to have an ideal way to obtain multiple 
conformations of macromolecular targets.  Indeed, molecular 
dynamics simulations were used to probe the stability of 
complexes between some proteins under study and new 
compounds selected from Virtual Screening. Also, the behavior 
of some scaffold proteins after ligand or protein binding could be 



Aim of the work 

 45 

study using implemented approach of classical molecular 
dynamics simulations, which let us to investigate about their 
possible conformational landscape.  
Specifically, co-solvent molecular dynamics was useful in the 
identification of a suitable binding site for a known allosteric 
inhibitor of the EPAC1 (exchange protein activated by cAMP) 
protein. Furthermore, accelerated molecular dynamics was used 
to explore a larger conformational sampling for understanding the 
interaction between CCRL2 and one its ligand, chemerin, as a 
starting point in the discovery of new therapeutic agents.  
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Identification of new inhibitors using Virtual 
Screening techniques 
 
In this chapter I will present the application of a validated virtual 
screening protocol aimed to identify new modulators of protein 
target, validated as crucial effectors, in the development and 
progression of cancer diseases.  
The developed VS protocol was featured by 5 steps:  
 

1. Identification of the target  
An extensive study on biological function and essential pockets 
for biological activity of the protein is carried out. First, we check 
that the crystal structure of the protein is available, for example 
on protein data bank. Alternatively, we proceed with homology 
modeling starting from the amino acid sequence of the protein. If 
the target is part of a protein family, the protein showing the 
highest percentage of identity can be taken as reference. Even if 
the crystal structure is available, its quality needs to be carefully 
evaluated. If the target is not already studied the presence of 
known ligands of the same chosen pocket will help in the 
identification of new ones. This will be useful especially for the 
validation of the chosen binding site. When no ligands are found 
we can proceed with the recognition of essential amino acid for 
the activity (for example those observed from mutagenesis 
studies or involved in the interaction with another domain of the 
target or another protein).  
 

2. Validation of the docking software 
The presence of known ligands in the crystal structure will be also 
useful for the validation of the docking program. These will be 
docked in the binding site and the software that gives a binding 
pose with the lowest Root Mean Square Deviation (RMSD) 
relative to the crystal structure ligand could be used. 
RMSD is the measure of the average distance between the 
observed heavy atom positions of the ligand and those predicted 
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by the program (more specifically, the top-ranked solution from 
the program). This is calculated with the following formula, and 
it is expressed in Å: 
 

𝑅𝑀𝑆𝐷 = 	u
1
𝑁%𝛿!$

C

!D#

 

 
 
Where 𝛿i is the distance between atom i and either a reference 
structure or the mean position of the N equivalent atom. 
Generally, an RMSD lower than 3 Å is defined as an acceptable 
value1,2.  
We used many different programs like PLANTs, GOLD, Glide, 
Autodock 4 or Smina. 
It could be that information about co-crystallized inhibitors are 
not available, and it was not possible to run RMSD computation. 
Then, in our approach, the visualization and the analysis of the 
main interactions between the ligand and the receptor, and the 
comparison with literature was used to validate the docking 
procedure.  
 

3. Docking of in-house and commercial compounds libraries  
At this point compounds from our in-house database (around 
7000 molecules) and compounds from commercial libraries are 
downloaded and docked. Before this step databases are prepared 
deleting compounds with molecular weight lower than 200 and 
higher than 550 and filtered based on Lipinski rule of five. The 

 
1 Vieth M, Hirst JD, Kolinski A, Brooks CL. Assessing energy functions for 
flexible docking. J Comput Chem. 1998;19:1612–1622  
2 Bursulaya BD, Totrov M, Abagyan R, Brooks CL 3rd. Comparative study of 
several algorithms for flexible ligand docking. J Comput Aided Mol Des. 2003 
Nov;17(11):755-63 
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pre-processing could also involve removal of duplicates, 
elimination of counter ions, filtering chemically reactive groups 
(e.g., electrophiles, metal chelators, Michael acceptors), 
undesirable atoms (e.g., organometallic complexes); and other 
such groups, dissociation/protonation equilibria of acids and 
bases, protomeric equilibria, tautomeric equilibria (or 
predominant tautomers). Overall, libraries are prepared and 
revised relative to the studied target and adapted on the 
electrostatic nature of the pocket.  
 
 
Pharmacophore generation and filter 
 
Based on the availability of the information about the target 
and/or ligands, a pharmacophore is created using a ligand-based 
or a structure-based method previously described in the 
introduction.  
All docked compounds are filtered with the generated 
pharmacophore. 
Features are chosen and a tolerance is attributed; some features 
are selected to be mandatory or permitted based on the 
importance in the studied target.  
 

4. Visual inspection 
 
The resulted compounds from the filter are checked over. During 
examination, hydrogen bonding networks that take place with 
binding site residues were taken into account, frequently in 
relation to co-crystallized ligands or other ligands with a similar 
chemotype. According to general principles, the environment can 
have a substantial impact on the strength, stability, and 
consequently final contribution of hydrogen bonds to binding 
affinity. Hydrogen bonds established with side chain atoms are 
typically weaker and frequently more susceptible to side chain 
mutations than hydrogen bonds made to the protein backbone. 
Also salt bridge, p-p cation and hydrophobic interaction are 
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considered. In particular, molecules with solvent exposed 
hydrophobic groups, twisted amide or ester groups, or 
unfavorable cis-trans isomery are not considered. Chemical 
diversity, novelty, and commercial availability are usually criteria 
that drive the selection too. 
 
The reported procedure was applied mainly to protein target 
involved in cancer diseases such as: 
1) Grb2 
2) DVL 
3) LDH5A 
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1) Grb2 protein 
 
GAB2 (GRB2-associated binding protein2) is a scaffold protein 
featured by a variety of structural domains and docking sites that 
act as a basis for the assembly of signaling networks.  
The association between GAB proteins and their binding partners 
is mediated by several structural motifs that are highly conserved, 
such as an N-terminal Pleckstrin homology (PH) domain, a 
central proline-rich region, and multiple phospho-tyrosine 
residues. The PH domain participates in the membrane 
localization of GAB2 by binding to phospholipids in cell 
membranes, particularly phosphatidylinositol phosphates(1,2). 
Numerous PXXP motifs found in the proline-rich region act as 
docking sites for proteins bearing the Src homology 3 (SH3) 
domain.  
In lung(3), stomach(4) and breast(5) malignancies, gab2 was 
discovered to be overexpressed. Its significance in hematological 
tumors, including juvenile myelomonocytic leukemia(6), chronic 
myelogenous leukemia (CML)(7), acute leukemia(8), and acute 
lymphoblastic leukemia(9), is also undeniably established. BCR-
ABL binds Gab2, which subsequently activates several pathways 
like RAS-RAF-MEK-ERK, PI3K-AKT, and JAK-STAT that are 
implicated in increasing leukemogenesis(10). Therefore, Gab2 is 
necessary for BCR-ABL-induced cell transformation.  
GAB2 binds to the Grb2 adaptor protein through the SH3 domain 
using a "canonical" (PXXPXR) and "atypical" (PXXXRXXKP) 
binding motif (11). GRB2 is the main upstream regulator of GAB2 
and indirectly recruits it to the activated plasma membrane 
receptors. These include RTKs (EGFR, KIT), cytokine receptors 
(IL-1, IL-3, IL-15, TPO, EPO, KITL, M-CSF, Flt310, gp130), Fc 
receptors (FcϵR1, FcγR1), T- and B-cell antigen receptors, and 
G-protein–coupled receptors(12). GRB2 binds GAB2 via its C-
terminal SH3 domain, and the complex binds to phosphorylated 
tyrosine residues on membrane receptors' intracellular domains 
(13). Some receptors, such as the -chain of IL-2 and IL-3 receptors, 
lack GRB2 binding sites. In this case, the GRB2-GAB2 complex 
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and tyrosine-phosphorylated receptors must be connected by a 
SHC protein in order to function for these signaling 
cascades(14,15).  
Grb2 is an adaptor protein widely expressed and required for 
several fundamental cellular processes, it also serves as a crucial 
downstream intermediary in a number of oncogenic signaling 
pathways. One SH2 domain is flanked by two SH3 domains in 
the modular structure of the mature 25 kDa Grb2 protein(16). Grb2 
is featured by three domains: SH2 domain, which is a conserved 
sequence of 100 amino acids, two Src homology 3 (SH3) 
domains, which have a conserved sequence of around 50 amino 
acids. Through its SH2 domain, Grb2 can interact directly with 
receptor tyrosine kinases (e.g., hepatocyte growth factor receptor, 
platelet derived growth factor receptor etc.) and non-receptor 
tyrosine kinases, such as focal adhesion kinase (FAK) and 
Bcr/Abl(17). It can interact also to substrates of tyrosine kinases, 
via preferential binding to the phosphopeptide motif pYXNX 
(where N is asparagine and X any residue). The carboxyl and 
amino-terminal SH3 domains bind proline-rich regions within 
interacting proteins. 
Grb2 is constitutively associated with Sos, a guanine-nucleotide 
exchange factor that promotes GDP–GTP exchange on Ras. Ras 
is activated along with the downstream MAPK cascade when the 
growth factor receptor is activated and tyrosyl phosphorylated by 
Grb2, which brings Sos1 close to membrane-bound Ras.(18). 
Grb2 signaling has been directly linked to the etiology of a 
number of distinct human cancers. Chromosome 17(q22), where 
the human grb2 gene is located, is known to be duplicated in 
leukemias and solid tumors(19).  
Disrupting the interaction between Gab2 and Grb2 that is 
implicated in the onset and progression of different types of 
cancers(20,21,22,23) could be valuable for potential anticancer drug 
target. 
It is tempting to hypothesize that blocking the interaction between 
the C-SH3 domain of Grb2 and Gab2 would be an effective 
chemotherapeutic approach given the role it plays in cell 
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proliferation and transformation. By keeping to these 
assumptions, we can successfully identify and characterize a lead 
compound that inhibits this important protein-protein interaction. 
The molecule was first chosen using virtual screening and then 
created using chemical synthesis. As outlined below, both in vitro 
and in cellular investigations support the lead compound's 
capacity to successfully block Grb2's C-SH3 domain's ability to 
bind to a peptide that mimics the 503 to 524 sequences of Gab2, 
and they also demonstrate how well it can stop the proliferation 
of cancer cell lines.  
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1.1) Materials and methods 
Compounds AN-153-I158560 and AN-465-J137-985 were 
purchased from Life Chemicals Europe GmbH (Unterhaching, 
Germany) (Figure S1, Supporting Information). Compounds 
F0526-1467, F2096-1321, F5030-1061, F5139-0164 and F6599-
2263 were purchased from Specs (Zoetermeer, The Netherlands). 
 
1.1.1) Molecular modeling studies  
The Grb2/Gab2 structures were downloaded from the PDB, pdb 
code 2W0Z and 2VWF(13). Hydrogen atoms were added to the 
protein, using Maestro protein preparation wizard.(24) Ligand 
structures were built with Maestro and minimized using the 
MMFF94x force field until a rmsd gradient of 0.05 kcal/(mol·Å) 
was reached. The docking simulations were performed using 
PLANTS. (25) We set a binding lattice of 12 Å radius using all 
default settings used. The pharmacophore model was obtained by 
Phase(26).  The polar features had a tolerance of 2 Å while the 
hydrophobic features had a tolerance of 2.5 Å. The commercially 
available compounds library (Maybridge, 
[www.Maybridge.com] Specs [www.SPECS.net] and 
Lifechiemical [www.lifechemicals.com] about 1,800,000 
derivatives) was firstly filtered out by the rule of five(27), then the 
obtained training set (about 1,400,000) was docked at the Grb2 
C-SH3 domain. All the docking proposed binding conformation 
(10 per molecule) were filtered out by the pharmacophore model 
and the 50 first ranked derivatives were visual inspected. The 
images in the manuscript were created with PyMOL(27). 
 

1.2) Identifying binding inhibitors by Virtual Screening 
 
We evaluated commercially available databases (Maybridge, 
Specs and LifeChemicals) using docking and pharmacophore 
models to find useful drugs that could disrupt the interaction 
between C-SH3 and Gab2. To guarantee that the chosen 
compounds have druglike properties, the entire training set (about 
2,000,000 variants) was first filtered by Lipinski Rule of Five(28) 



Identification of new inhibitors using Virtual 
Screening technique 

 54 

compliance. Plants was used to dock the obtained training set to 
the Grb2 C-SH3 domain.  
A pharmacophore model was created using the Gab2 core binding 
areas (Gab2a PRxxK pdb code 2W0Z and Gab2b VNRxxK pdb 
code 2VWF)(13) to collect the pharmacophoric interactions of 
Gab2 with its target. In Figure 1. The fitting to the pharmacophore 
model was used to rank all docking poses. The best compounds 
were visually inspected and seven derivatives (AN-153-I158560, 
F0526-1467, F2096-1321, F5030-1061, F5139-0164, F6599-
2263 and AN-465-J137-985) were chosen for the additional 
analyses.  
 

 
 

Figure 1. Pharmacophore model for Grb2 C-SH3:Gab2 complex. The Grb2 C-
SH3 domain is reported as gray surface. The Gab2 core binding regions are 
reported as lines, Gab2a PPPRPPKP cyan and Gab2b PPVNRNLKP magenta. 
The pharmacophore queries are depicted as sphere: green for hydrophobic, 
orange for H-bond acceptor and light blue for positive charge and H-bond 
donor. 
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As detailed below, out of these seven compounds, experiments 
confirmed an inhibiting binding capability only in the case of AN-
465-J137-985. Hence, to provide additional insights and to 
elucidate its properties, we resorted to characterize 
computationally the structural featured of its binding to C-SH3. 
In particular, the analyses of the docking proposed AN-465-J137-
985 binding mode led us to identify a series of crucial contacts 
with its cognate target, reported in Figure 2. We observed T-
shaped aromatic interactions between the chlorobenzyl ring with 
Phe7 and between the central phenyl ring with Tyr51. The Trp35 
and the methoxyphenyl moiety are engaged in another aromatic 
interaction. We also highlighted two polar contacts: one included 
the Glu16 carboxylic moiety and the secondary amine function, 
and the other was an H-bond between the C-SH3 Asn50 amide 
moiety and the ether oxygen atom that connected the two 
aromatic rings (Figure 2A). The superimposition of the AN-465-
J137-985 proposed binding and Gab2a core binding showed that 
the secondary amine moiety was in the same region of the Arg515 
side chain and was able to make similar contacts, and the three 
aromatic rings were superposable with Pro512 and Val513 side 
chains and the Arg515 backbone simulating the hydrophobic 
contact observed for the substrate. Lastly the ether oxygen atom 
between the aromatic rings is superimposable with the Pro512 
amide oxygen atom doing the same polar contact (Figure 2B).  
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Figure 2. AN-465-J137-985 proposed binding mode. (A) Proposed binding 
mode for derivative AN-465-J137-985. The Grb2 C-SH3 domain is reported 
as gray surface. AN-465-J137-985 is reported as cyan stick; residues involved 
in contacts are reported as orange. H-bond is depicted as yellow dot lines. (B) 
Superimposition of AN-465-J137-985 proposed binding and Gab2 core 
binding.  
  

A 

B 
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1.3) In Vitro test of the inhibitors 
 
They used equilibrium binding studies to determine 
experimentally whether the seven derivatives AN-153-I158560, 
F0526-1467, F2096-1321, F5030-1061, F5139-0164, F6599-
2263, and AN-465-J137-985 could effectively target the 
interaction between the C-SH3 domain of Grb2 and Gab2. 
Similar to their earlier research(29,30), they devised the procedures 
to test the C-SH3 domain using a peptide that mimicked a 
particular section of Gab2 between residues 503 and 524 
(Gab2*). By taking advantage of the two naturally occurring 
tryptophan residues of the C-SH3 domain in positions 35 and 36, 
the binding reaction was monitored by following the change of 
the intrinsic tryptophan fluorescence emission at increasing 
concentration of ligand. Experiments were conducted in buffer 
HEPES 50 mM, 0.5 M NaCl, pH 7.0 at 25 °C in the presence of 
20% v/v DMSO, to ensure the solubility of the potential 
inhibitory molecules. To calculate the affinity between C-SH3 
Grb2 and Gab2* in these experimental conditions we conducted 
a control experiment by challenging a constant concentration of 
C-SH3 (2 µM) versus increasing concentrations of Gab2* 
(ranging from 1 to 38 µM). The dependence of the normalized 
fluorescence signal at 330 nm at different concentration of Gab2* 
is reported in Figure 3. 
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Figure 3. Equilibrium binding titration monitored by change in intrinsic 
fluorescence emission of C-SH3 at different concentrations of Gab2* in 
absence (full circles) and in presence of 5 µM AN-465-J137-985 (empty 
circles). Continuous and broken lines are the best fit to a hyperbolic function. 
Inset panel. Titration of the complex between C-SH3 and Gab2*, a constant 
concentration of 1 µM and 25 µM respectively, with varying concentrations 
of AN-465-J137-985. 

Data were satisfactorily fitted with a hyperbolic equation, the 
calculated KD being 22 ± 2 µM (X2 = 0.9916). then, they turned 
to performing equilibrium binding studies in the presence of the 
various compounds in solution at constant concentrations of 5 M 
to test the inhibitory effect of the proposed molecules. While 
experiments with the molecules AN-153-I158560, F0526-1467, 
F2096-1321, F5030-1061, F5139-0164, and F6599-2263 did not 
show any discernible change in the C-SH3 domain's affinity for 
Gab2*, an equilibrium binding titration with the molecule AN-
465-J137-985 showed a definite effect on the binding reaction. 
The dependence of the normalized fluorescence signal at 330 nm 
at different concentration of Gab2* compared to the control 
experiment is reported in Figure 3. The calculated KD in the 
presence of AN-465-J137-985 at the concentration of 5 µM was 
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100 ± 15 µM (X2 = 0.9916), which corresponds to a decrease of 
affinity of C-SH3 for Gab2 of ~5 fold as compared to the data in 
the absence of inhibitor. This result clearly shows an inhibitory 
effect of the AN-465-J137-985 molecule on the binding between 
C-SH3 and Gab2. It should be noted that although it is obvious 
that the presence of AN-465-J137-985 causes a decrease in 
affinity between the C-SH3 domain and Gab2*, due to the low 
affinity between the interacting partners, interpretation of 
quantitative inhibition from equilibrium experiments alone is 
very challenging. To estimate the inhibition constant of AN-465-
J137-985, they resorted to titrate a constant concentration of a 
pre-incubated complex involving C-SH3 and Gab2* with varying 
concentrations of AN-465-J137-985 (Figure 3, inset panel). As 
expected, the observed fluorescence decreases with increasing 
concentrations of AN-465-J137-985, indicating a decrease in 
affinity with an apparent inhibition constant of about 5 ± 1 µM. 
To deduce the mechanism whereby AN-465-J137-985 affects the 
C-SH3:Gab2 binding reaction, they performed pseudo-first order 
kinetic binding experiments. By taking advantage of a stopped-
flow apparatus, a solution containing a constant concentration of 
the C-SH3 domain at the concentration of 2 µM was rapidly 
mixed with an excess of Gab2* at different concentrations 
ranging from 0 to 12 µM. All the traces recorded at different 
concentrations of Gab2* were satisfactorily fitted with a single 
exponential equation and the calculated observed rate constants 
kobs were plotted as a function of the concentration of Gab2* 
(Figure 4). The analysis of the linear dependence of the kon 
returned the value of the microscopic association rate 
constant kon = 40.3 ± 0.5 µM−1 s X−1, corresponding to the slope 
of the fitting line. 
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Figure 4. Observed rate constants measured through stopped-flow kinetic 
binding experiments by rapidly mixing a constant concentration of C-SH3 
versus different concentrations of Gab2* in absence (full circles) and in 
presence of 5 µM AN-465-J137-985 (empty circles). The data recorded in the 
absence of DMSO and AN-465-J137-985 are reported in gray diamonds. Lines 
are the best fit to a linear equation. 
 
The analysis of the data reported in Figure 4 allows in theory to 
extrapolate the microscopic dissociation rate constant by 
estimating the intercept on the y-axis. However, this process is 
typically prone to significant errors, which could result in an 
incorrect computation of koff. Thus, they turned to measure 
directly koff through displacement experiments(31). They 
specifically tested a preincubated complex of C-SH3 and a 
dansylated variant of Gab2* at molar ratio 1:1 and at fixed 
concentration of 2 µM versus a high excess of Gab2* (80 µM). In 
agreement with theory, the fluorescence change upon 
displacement displayed a single exponential behavior and was 
found insensitive to displacer concentration, with a calculated koff 
of 170 ± 10 s−1. 
To test the effect of the presence of the AN-465-J137-985 on 
binding kinetics they repeated stopped-flow binding and 
displacement experiments by adding the AN-465-J137-985 
molecule at the fixed concentration of 5 µM to the solution 
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containing C-SH3, for binding experiments, and to the solution 
containing the preincubated C-SH3: Gab2* complex for 
displacement experiments. 
The calculated observed rate constants were plotted as function 
of the concentrations of Gab2* (Figure 2) and fitted with a linear 
equation, the kon being 20.6 ± 1.5 µM−1 s−1. Microscopic 
dissociation rate constant koff was directly measure by 
displacement experiment, being 190 ± 20 s−1. Importantly, these 
values are consistent with what can be extrapolated from the 
pseudo-first order data reported in Figure 4. It is of interest to 
notice that while the koff values in absence and in presence of AN-
465-J137-985 are comparable, a decrease of kon by a factor of 2 
is clearly appreciable. Taken together our results clearly 
demonstrate that while the dissociation rate constant of Gab2 by 
the C-SH3 domain is mostly unaffected by the presence of the 
AN-465-J137-985 molecule, there is a clear effect on the 
recognition event between the two molecules that leads to a 
decrease in the binding affinity. 
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1.4) In Cellula tests of AN-465-J137-985  
 
Two lung cancer cell lines were employed to examine the effects 
of AN-465-J137-985 and determine whether it may have any anti-
cancer properties. They treated A549 and H1299 lung cancer cell 
lines with increasing doses of AN-465-J137-985 and evaluated 
cell survival using the trypan blue exclusion assay. The data in 
Figure 5A indicate that AN-465-J137-985 significantly inhibits 
the growth of both cancer cell lines indicating a lethal dose 50 
(LD50) value of about 5 and 7 µM for H1299 and A549, 
respectively. 
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Figure 5. Effect of AN-465-J137-985 in A549 and H1299 lung cancer cells. (A) 
Evaluation of cell numbers after 48 h treatment with increasing concentrations of AN-465-
J137-985 by trypan blue exclusion assay. B-C) PI staining of cells after 48 h incubation 
with increasing concentrations of AN-465-J137-985. (B) Representative experiments of 
A549 and H1299 treated or not with 10 µM AN-465-J137-985. The percentage of sub-G1 
population is reported in red. (C) Average +/− standard deviation of the percentage of the 
Sub-G1 population. (D) Annexin-V/PI staining of cells 24 h after treatment with 8 and 10 
µM AN-465-J137-985. (E) PI staining of cells 72h after transfection with the plasmid 
encoding for C-SH3 of GRb2 or a control plasmid (PCDNA) incubated for 48 h in presence 
or absence of AN-465-J137-985 8 µM. (F) Annexin-V/PI staining percentage of cells 48h 
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after transfection with the plasmid encoding for C-SH3 of Grb2 or a control plasmid 
(PCDNA) incubated for 24 h in the presence or absence of AN-465-J137-985 8 µM. * p < 
0.05, ** p < 0.01, *** p < 0.001. Each experiment have been repeated in triplicate. 
 
To better understand the mechanism that decreases cell survival 
they used propidium iodide (PI) and annexin-V/PI staining, in 
order to evaluate the possible activation of the apoptotic 
machinery. The cell cycle analysis reported in Figure 5B,C shows 
that AN-465-J137-985 at 10 µM concentration induces a strong 
accumulation of the cells in the sub-G1 population (around 50% 
for both cell lines) at 48 h after the treatment with respect to 
DMSO treated cells (Ctr), indicating the induction of a strong 
apoptotic effect. 
Figure 5D shows annexin-V/PI staining of A549 and H1299 cells 
after the treatment with DMSO as control or with AN-465-J137-
985 at 8 and 10 µM for 24 h. The drug-induced accumulation of 
the cells in the lower right quadrant (annexin-V positive/PI 
negative) confirm the hypothesis of the activation of the apoptotic 
mechanism. 
To validate the selectivity of AN-465-J137-985, we 
overexpressed the C-SH3 fragment of Grb2 in both cell lines; the 
overexpression in the cells transfected with the plasmid was 
confirmed by RT-PCR (data not shown). The effect of 8 µM AN-
465-J137-985 on cells transfected with the plasmid encoding for 
C-SH3 or a control plasmid (PCDNA) was evaluated 48 h after 
the transfection using PI (Figure 5E) and annexin-V/PI staining 
(Figure 5F) after 24 and 48 h treatment, respectively. Data in 
Figure 5E,F show that SH3 overexpression is able to rescue 
almost completely (~95%) the death effect induced in both cell 
lines by the treatment with AN-465-J137-985, indicating that C-
SH3 fragment of Grb2 is a direct target of AN-465-J137-985. 
 

1.5) Conclusions  
 
The effects of the interaction between the C-SH3 domains of 
Grb2 and Gab2 on cell physiology, as well as the start and 
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progression of cancer, are well documented(4,5). On the basis of 
these findings, it is crucial to create an anticancer 
pharmacological strategy that aims to prevent the binding of C-
SH3 and Gab2. A potent tool that can be used to find prospective 
compounds capable of interacting with macromolecular targets is 
structure-based drug design and screening. We describe here the 
successful identification of a compound with a notable effect on 
reducing the affinity of the C-SH3 for Gab2 by utilizing a synergy 
between computational work and in vitro and in cellula studies. 
We established a chemical synthesis methodology that provides 
the path for upcoming advancements and adjustments of the main 
molecule. The cellular tests on A549 and H1299, two different 
cancer cell lines, successfully validated the inhibitory impact 
discovered by the equilibrium and kinetic binding assay, 
confirming the molecule's anti-tumorigenic properties. While it is 
not yet feasible to rule out cross-reactivity with additional SH3 
domains, the in cellula tests carried out using cell lines that had 
been transfected with SH3 seem to validate the selectivity of AN-
465-J137-985. This hypothesis will be furthered by animal 
model-based studies in the future and by enhancing the observed 
KD through chemical modifications.  
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2) DVL1 
 
The Wnt pathway has an important role in development and 
oncogenic processes. The first level of regulation starts with the 
binding of a Wnt ligand which prefers specific types of Fzd and 
co-receptors(1). 
A ubiquitin-dependent proteasome degradation complex keeps β 
-catenin levels low in the cell in the absence of Wnts.(2). 
In the "canonical" WNT β-catenin pathway, recruitment of the 
PDZ family member Dishevelled (DVL) at the plasma membrane 
occurs when morphogens WNTs bind to Frizzled Receptors 
(FZDs). DVL recruits the Axin–GSK3 complex to the membrane 
by interacting with Axin. Once stabilized and accumulated in the 
cell, β-catenin moves to the nucleus where it interacts with and 
controls the activity of the T-cell factor (TCF) and lymphoid 
enhancer-binding factor (LEF) DNA-binding proteins to operate 
as a transcriptional co-activator.(3,4). When TCF/LEF proteins 
link to β -catenin, transcription of Wnt responsive genes is 
enabled. This promotes cell differentiation and proliferation 
throughout both developmental and neoplastic processes.(5,6). 
Non-canonical Wnt pathways or β-catenin independent pathways 
are those that do not depend on β-catenin/Tcf or β-catenin/Lef 
binding for modulating downstream signaling.  Examples of these 
are Wnt/PCP pathway, Wnt/Ca2+ pathway or Wnt–FYN–STAT3 
pathway(7). 
The inactivation of the APC destruction complex is possible 
thanks to the binding of DVL to Frizzled. DVL is a 736 amino 
acid long scaffold protein made of three consecutive domains, 
namely DIX, PDZ and DEP. The DIX domain is constituted by 
80-85 amino acid and contributes to DVL oligomerization. The 
80-90 amino acid long PDZ domain binds to: i) a PDZ binding 
site (a conserved KTXXXW signaling sequence) allocated at the 
C-terminal tail of the receptors; ii) a discontinuous domains 
spanning through the intracellular loops of the receptors. The 90-
100 amino acid long DEP domain binds to the C-terminal tail of 
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FZD and to its intracellular loops and it has been involved in the 
intracellular transduction of the WNT- β-catenin signaling(8).  
Thus, the WNT signal cascade, which is activated by DVL, leads 
to the transcription of oncogenes in pathological circumstances. 
The findings also indicates that RNA interference and DVL 
knockdown stop the growth of tumors(9,10). 
The three orthologs that belong to DVL proteins, DVL-1, DVL-
2, and DVL-3, are very similar to one another in terms of 
sequence and folding. Despite DVL-2 isoform is the most 
prevalent (representing 95% of the pool) variations in its 
expression have little impact on WNT signaling; however, 
canonical signaling was more responsive to variations in DVL-1 
or DVL-3 abundance(11). At the same time DVL-1 is one of the 
least abundant of the total DVL protein pool and play a crucial 
role in stimulating phosphorylation and activation of the WNT 
transcriptional activity of the LDL receptor-related protein 6 
(LRP6), an ortholog member of the LRP family(12,13). 
Additionally, the DVL-1 and DVL-3 proteins are crucial for 
cancer chemoresistance. Indeed, multidrug-resistant colorectal 
cancer cells have higher levels of both DVL-1 and DVL-3 
expression. Moreover, DVL-1 and DVL-3 increase the levels of 
multidrug resistance protein 1 (P-gp/MDR1), multidrug 
resistance-associated protein 2 (MRP2), breast cancer resistance 
protein (BCRP), Survivin and Bcl-2, which are correlated with 
multidrug resistance(14,15). 
PDZ domain of DVL proteins is able to bind the Frizzled receptor 
in order to allow the WNT signaling propagation(16). So, WNT 
pathway may be downregulated by molecules that target the PDZ 
protein domain of DVL, which would decrease cancer growth. 
FJ9 was the first non-peptide antagonist of DVL protein–protein 
interaction reported to suppress β-catenin–dependent tumor cell 
growth(17). Representative examples of small molecules include 
sulindac(18), CalBioChem-322338(19), N-benzoyl-2-
aminobenzoic acid(20), phenoxyacetic acid(21) and indole-3-
carboxamide(22) derivatives. Significant work is being done to 
create DVL PDZ domain-specific small molecules that could be 
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used as anticancer drugs.(23). Given the significant role DVL1 
plays in tumor development and chemoresistance, our research 
has focused on finding novel small compounds that can disrupt 
DVL1's ability to bind to FZD. Our team is heavily active in the 
search for WNT pathway modulators. We recently reported 
FzM1(24), which inhibits DVL binding to FZD4 by interacting to 
an allosteric site found in the intracellular loop 3 (ICL3). 
Furthermore, by specifically targeting the PDZ1 domain, we 
recently discovered that 3-benzyl-5-chloro-N-(4-
(hydroxymethyl)phenyl)-1H-indole-2-carboxamide (2) as an 
inhibitor of Na+/H+ exchanger 3 regulating factor 1 
(NHERF1)(25). The same C-terminal region that FZDs employ to 
make connections with DVL via the PDZ domains is involved in 
NHERF1's interactions with FZDs. Our aim was the research of 
DVL1 inhibitors that exhibit a high level of selectivity toward 
NHERF1. A specific DVL1 inhibitor might have increased 
activity since it was found that NHERF1 knock-out favors the 
DVL binding to FZDs(26). On the other hand, DVL inhibition may 
be reduced when NHERF1 and DVL are both inhibited. In this 
research, we carried out structure-based virtual screening studies 
to find DVL1 inhibitors that are selective toward NHERF1 
inhibitors. Through these investigations, the molecule RS4690 
(1), a powerful and specific inhibitor of DVL1, was successfully 
discovered. The (S)-1 pure enantiomer inhibited DVL1 more than 
the (R)-enantiomer. The WNT pathway block and the anticancer 
efficacy were confirmed by binding competition assays and 
biological testing in cells. 
 

2.1) Materials and methods 
 
The PDZ structure of DVL1 was obtained by homology 
modelling. The template structures, PDZ of DVL2, were 
available at the PDB (pdb code 3CBZ, 3CBY and 3CC0)(16), 
while the PDZ of DVL1 sequence was retrieved from UniProt 
database (Available online: https://www.uniprot.org/ accessed on 
9 February 2022) under the code O14640. The sequence 
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alignment labels showed 75% sequence identity and 85% 
sequence similarity (positives). The hydrogen atoms were added 
to the protein using Maestro protein preparation wizard(27) and 
minimized, keeping all the heavy atoms fixed until an rmsd 
gradient of 0.05 kcal/(mol·Å) was reached. Ligand structures 
were built with Maestro and minimized using the MMFF94x 
force field until a rmsd gradient of 0.05 kcal/(mol·Å) was 
reached. The docking simulations were performed using 
PLANTS(28). We set a binding lattice of 12 Å radius using all 
default settings. The pharmacophore model was obtained by 
Phase.(29) The pharmacophore features were fixed at the 
interaction points identified by compound 1 binding mode 
analyses. A hydrophobic query was also added in a sub-pocket 
lined by Leu12, Val75 and Ile81. The fitting to this query 
addressed the desired selectivity between DVL1 and NHERF1 
PDZ domain. The polar features had a tolerance of 2 Å while the 
hydrophobic features had a tolerance of 2.5 Å. The training set 
obtained by docking computations was scored by the fitting to the 
pharmacophore model; the selected compounds must match at 
least five features, and hydrophobic and aromatic queries were 
equivalent. Molecular dynamics was performed with the AMBER 
20 suite.(30) The inhibitors were parametrized by Leap of Amber. 
The structures of complexes were solvated in a periodic 
octahedron simulation box using TIP3P water molecules, 
providing a minimum of 10 Å of water between the protein 
surface and any periodic box edge. Ions were added to neutralize 
the charge of the total system. The water molecules and ions were 
energy-minimized, keeping the coordinates of the protein–ligand 
complex fixed (1000 cycles), and then the whole system was 
minimized (10,000 cycles). Following minimization, the entire 
system was heated to 298 K (20 ps). The production (10 ns) 
simulation was conducted at 298 K with constant pressure and 
periodic boundary conditions. Shake bond length condition was 
used (ntc = 2). Production was carried out on a Cineca Marconi 
100 supercomputer. Trajectory analysis was carried out by 
CPPTRAJ program.(31) The ADME evaluations were carried out 
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by swissADME server, a free web tool to evaluate 
pharmacokinetics, drug-likeness and medicinal chemistry 
friendliness of small molecules(32). The pictures reported in the 
manuscript were generated with PyMOL.(33) 
 
 

2.2) Virtual screening 
 
We used a virtual screening method with a pharmacophoric 
model set as the primary filter to find novel DVL1 inhibitors 
following the procedure mentioned before. We focused on the 
PDZ domain of DVL1 because PDZ domains are appealing 
targets for drug discovery due to to their critical involvement in 
the transmission of cellular signals and their abnormal activations 
in many human illnesses(34). Instead of focusing on complete 
signaling cascades, as is often accomplished by receptor 
antagonists, finding small molecules that can disrupt the protein-
protein interactions in which PDZs are implicated demonstrated 
to be quite advantageous(35). Our group developed an inhibitor of 
NHERF1 PDZ1 domain, compound 2. It was tested in HEK293 
cells transiently expressing both HA-tagged-FZD4 (HA-FZD4) 
and the chimeric construct DVL-GFP. DVL-GFP is localized in 
signalosomes, which are punctate intracellular structures, in the 
absence of HA-FZD4(36). When FZD-4 is expressed, DVL-GFP 
is attracted on the cell's PM, dramatically altering its location. 
Drugs that block FZD4/DVL binding decrease the quantity of 
DVL-GFP recruited on the PM, as was previously described(24). 
Compound 2 reduced DVL-GFP binding to HA-FZD4 in dose-
response experiments with an EC50 of 5.10 ± 0.09 μM. 
Starting from this information we thought that this compound 
could bind also to DVL PDZ domain, and we developed a 
pharmacophore model to aid in the discovery of new DVL1 PDZ 
binders using the knowledge we gathered from binding 
mechanism of compound 2. We compared the two PDZ structures 
and we found some differences between them. For NHERF1, the 
carboxylic binding loop's upper portion was defined by Tyr24, 
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Ile79, and Val86, whereas for DVL1, we observed Leu12, Val75, 
and Ile81. The DVL1 PDZ's smaller residues created a gap that 
might be able to hold a hydrophobic group. 
For this reason, the pharmacophore model also received a new 
hydrophobic query, set as required during filtering of poses, in 
order to clearly discriminate between the inhibitory effects of 
DVL1 and NHERF1 (Figure 6). At the end, the pharmacophore 
model is featured by seven queries: three aromatics, two 
hydrophobics, one H-bond donor, and one H-bond acceptor. As a 
training set, we used our in-house database of compounds of 
around 7000 molecules, and we docked them at the DVL1 PDZ 
binding site. We collected 10 conformations for each molecule 
that were then fitted to the pharmacophore model, in order to 
score all of the suggested binding poses. The hydrophobic query, 
which may have driven selection between NHERF1 and DVL1, 
was considered as a required feature. The top 10 compounds from 
among the 500 derivatives, that fit the pharmacophore model the 
best, were send to the biological assessment after being visually 
examined. The racemic derivative 1 had the highest EC50 value 
(0.74 ± 0.08 μM) among the investigated substances for blocking 
DVL binding to FZD4. 
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Figure 6. Map of the pharmacophore features superimposed with the 
RS5517 binding mode. The model has 7 features: aromatic (yellow), H-
bond acceptor (magenta), H-bond donor (cyan;) and hydrophobic (green). 
The PDZ domains are also reported: light blue for DVL1 PDZ and grey for 
NHERF1. The residues Leu12, Val75 and Ile81 that sized an additional sub-
pocket for DVL1 were depicted as light blue stick and surface (panel A). 
The counterpart for NHERF1 DVL1 (panel B) is reported in grey stick and 
surface. The picture reported a frontal view (left side) and to better 
appreciate the space sized by the smaller residues of DVL1 PDZ a rotated 
(90 degrees) view (right side).  

 
 
 

A 

B 
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2.3) HPLC separation of enantiomers  
 
The racemace of RS4690 (1) was separate in the two enantiomers 
using the Chiralpak AD chiral stationary phase (CSP), a 
procedure that improved substantially the enantioselective HPLC 
protocol based on the Chirapak IA CSP previously reported(37)  
 

2.4) Binding mode and molecular dynamics simulations 
The two enantiomer showed quite different binding mode, so we 
tried to understand the relative interaction with the PDZ domain. 
For the (S)-1 the dimethyl phenyl moiety was involved in π-cation 
interaction with Arg69 and Arg72, the indole ring formed 
hydrophobic interactions with Val68, the pyridine ring formed 
hydrophobic contacts with Ile14 and Val75; two H-bonds were 
also observed involving the indole and carboxamide NHs with the 
Ile16 and Ile14 backbones, respectively. The (R)-1 enantiomer 
showed different pattern of H-bonds and the pyridine moiety lays 
in a different sub pocket (Figure 7).  
 

 
Figure 7. In silico docking results of (S)-1 (cyan) and (R)-1 (orange) in 
complex with the DVL1 PDZ binding site. Residues involved in interactions 
are reported as white sticks. The PDZ is depicted as light blue cartoon. H-
bonds are reported as yellow dotted lines. 
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Molecular dynamics was also performed to explore the relative 
stability of the enantiomers. The analyses led us to observe two 
additional H-bond between the nitrogen atom of the first 
carboxamide group and Ile16 backbone and another involving 
and the oxygen atom of the second carboxamide and the same 
Ile16. Trying to explain the differences between the two 
molecules, about the chiral center, we noticed that the (S)-
enantiomer's methyl group created connections with Leu71 and 
Arg72 at the binding site, whereas the (R)-enantiomer's methyl 
group pointed toward the solvent-exposed region. Another 
significant distinction between the two enantiomers was that the 
(S)-enantiomer's pyridine nitrogen atom contacted the Leu12 
backbone via a water molecule bridge, but the (R)-enantiomer did 
not exhibit this type of interaction (Figure 8 A and B). 
 
 
 

 
Figure 8. A Snapshot of the trajectory of RS4690 S with DVL1 PDZ. The 
RS4690 docking pose is reported as grey lines; residues involved in 
interactions were reported as white stick; H-bonds are depicted as yellow 
dot lines. 
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Figure 8. B Snapshot of the trajectory of RS4690 R with DVL1 PDZ. The 
RS4690 docking pose is reported as grey lines; residues involved in 
interactions were reported as white stick; H-bonds are depicted as yellow 
dot lines. 

 
2.5) Binding assays 

 
Equilibrium binding tests were conducted between the DVL1 
PDZ domain and a peptide that mimicked the C-terminal region 
of the TMEM88 protein (TSGKVWV) and was dansylated at its 
N-terminus in order to validate the in-silico predictions. Both the 
(S)-and (R)-enantiomers eliminated the interaction between PDZ 
and TMEM88 at a concentration of 5 M. Only (S)-1 appeared to 
double the Kd of the complex at a concentration of 1 M (from 
11.5 ± 0.5 to 20.8 ± 0.5 μM), whereas (R)-enantiomer did not 
impair the binding reaction (Kd of 12.3 ± 0.6 μM) (Figure 9). 
Compounds (S)-1 or (R)-1 failed to exhibit inhibitory efficacy 
when evaluated as NHERF1 PDZ1 domain inhibitors (data not 
shown). These tests showed that (S)-1 and (R)-1 are DVL1 PDZ 
domain-selective inhibitors. 
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Figure 9. Equilibrium binding experiment between PDZ domain of DVL1 
and the C-terminal portion of TMEM88 in the absence and presence of (S)-
1 or (R)-1 at 1 µM (right panel) and 5 µM (left panel). Lines are the best fit 
for a hyperbolic function. 
 
 

2.6) In vitro assays  
 
The activity of racemic compound 1 and enantiomers (S)-1 and 
(R)-1 was assayed in HEK293 cells following DVL-GFP 
recruitment by FZD4. The racemic mixture of 
compound 1 reduced DVL-GFP recruitment at the PM with an 
EC50 of 0.74 ± 0.08 μM. Dose-response experiments revealed for 
(S)-1and (R)-1 an EC50 of 0.49 ± 0.11 μM and 29.5 ± 0.9 μM, 
respectively (Figure 10 and Table 1)  
 

 
Figure 10. The dose response curves are representative for DVL recruitment 
inhibition experiment (left panel) and WNT pathway activity measurement (right 
panel). 
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 EC50 mM EC50 mM 

Cmpd DVL binding 
Inhibition WNT Pathway Inhibition 

1 0.74 ± 0.08 3.46 ± 0.07 
(S-1) 0.49 ± 0.11 3.09 ± 0.05 
(R)-1 29.5 ± 0.9 19.49 ± 0.06 

2 5.10 ± 0.009 n.d. 
 

Table 1. DVL Binding and WNT Pathway Inhibition by 
Compounds 1, (S)-1, (R)-1 and 2 
 
 
Additionally, HEK293 cells transiently expressing both HA-
FZD4 and the WNT reporter construct WRE-GFP were used to 
test the activity of the drugs(38). The WNT reporter construct 
WRE-GFP exposed the coding sequence of GFP under the control 
of an optimized WNT responsive element (WRE-wt). WRE-GFP 
enhances GFP transcription and translation when it is transiently 
transfected in cells. The amounts of intracellular WNT pathway 
activity determine how much GFP each cell produces (and, 
consequently, how fluorescent the entire cell population is). The 
racemic mixture 1 reduced overall GFP fluorescence, confirming 
its inhibitory activity on the WNT/β-catenin pathway with an 
EC50 of 3.46 ± 0.07 μM. Dose-response experiments revealed for 
(S)-1 and (R)-1 an EC50 of 0.49 ± 0.11 μM and 19.49 ± 0.06, 
respectively (Figure 11 and Table 2). 
They tested 1, (S)-1, and (R)-1 on a panel of colon cancer cell 
lines known to rely on the activity of the WNT pathway for their 
survival in order to further demonstrate the WNT-inhibitory 
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activity. In vitro cultures of colon cancer cells often present 
mutations either in the APC gene or in the β-catenin gene. 

 
Figure 11. Confocal immunofluorescence showing the recruitment of 
DVL1-GFP (green) by HA-FZD4 (red) at the PM of HEK293 cells in the 
presence of 7 μM of compound 1 (racemic mixture), (S)-1, (R)-1 or the 
corresponding volume of vehicle (DMSO). (Magnification bar = to 14 μm). 

 
Colon cancer cells, SW480 and SW620, were used in dose-
response experiments and (S)-1 and (R)-1 showed an EC50 for cell 
growth inhibition in the high micromolar range demonstrating 
that in cells where WNT pathway activity is independent of the 
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DVL state, the three compounds do not exert their effect. They 
also examined their ability to prevent proliferation in the HCT116 
colon cancer cell line. In terms of APC and β-catenin, these 
represent the wt counterparts of SW480 and SW260. HCT116 
cells express wt APC and are heterozygous for β-catenin, 
harboring one wild type and one mutant (Ser45del) allele(39). 
WNT pathway activity and the survival of HCT116 cells thus 
depend on DVL and can be affected by FZD and DVL inhibitors. 
Interestingly, dose-response experiments on HCT116 cells 
revealed EC50 values of cell growth inhibition for compounds 1, 
(S)-1 and (R)-1 of 15.2 ± 1.1, 7.1 ± 0.6 and 28.3 ± 1.2 μM, 
respectively. These results confirm that the three compounds act 
on DVL to inhibit the WNT pathway. In vitro activities towards 
colon cancer cells further support our in vitro results for these 
compounds and point toward their eligibility as interesting lead 
compounds (Table 2).  
 
 

 
Table 2 Growth Inhibition of SW680, SW620 and HCT116 Human Colon 
Carcinoma Cell Lines by Racemate 1 and Enantiomers (S)-1 and (R)-1. 

 
2.7) ROS production 

 
Reactive oxygen species (ROS) production was also evaluated; 
Although the mechanism is still mostly unclear, high amounts of 
ROS are known to cause cell death but are also implicated in other 
pathways, including WNT signaling(40,41,42). 
Using the fluorescent probe 2′,7′-dichlorodihydrofluorescein 
diacetate DCFDA, the capacity of compounds (S)-1 and (R)-1 to 
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produce ROS in HCT116 cells was assessed. With increasing 
concentrations of (S)-1 or (R)-1, it was possible to calculate the 
ROS production (%) after a 48-hour treatment (Figure 12). The 
findings demonstrate that ROS generation of (S)-1 was superior 
to (R)-1 at any chemical concentration evaluated. At 10 μM, the 
most ROS were produced; at higher concentrations, ROS 
production drastically declined. The stimulation of the 
mitochondrial pathway during treatment with (S)-1 10 μM for 48 
h led to a large decrease in ROS generation, which may have 
contributed to the death of the HCT116 cells(43). 
 

 
Figure 12. ROS production in HCT116 cells upon treatment with different 
concentrations of (R)-2 or (S)-2 for 48 h. The asterisks show the differences 
between the effects induced by the two drugs. 

 
 

2.8) DVL1 binding interactions features 
 
We also sum up key interactions with the DVL1 PDZ domain: (i) 
the presence of a 6-membered terminal ring, instead of a 5-
membered ring, and (ii) the introduction of a methyl group at 
position 3 of the side chain (Figure 13). The interactions of both 
indole nucleus and 3,5-dimethylphenyl group were little affected 
by the modifications of the side chain. The terminal aromatic ring 
lay in a hydrophobic pocket surrounded by Leu12, Val75 and 
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Ile81 residues; the 6-member rings filled the binding pocket 
ensuring, more stable interactions compared to the 5-membered 
heterocycles, mainly due to steric rather than electrostatic 
reasons. The methyl group at the C3′ of the side chain was 
modeled for both (S) and (R) configurations. We observed that 
the methyl group of both enantiomers pointed toward the β2 
helix; only in the case of the (S)-configuration, the methyl formed 
hydrophobic contacts with Leu71 and Arg72, whereas the methyl 
of the (R)-enantiomer was too far from the closest residues to 
achieve positive contact. The absence of the pyridine basic 
nitrogen atom abolished the water-mediated H-bond with Leu12. 
 

 
Figure 13. Key contacts of compound (S)-2 in the DVL1 PDZ binding 
pocket. H-bonds are not shown for the sake of clarity. 

 
 

2.9) Conclusions  
Structure-based virtual screening investigations identified the 
racemic compound 1 with preferential inhibition of DVL1 
binding (EC50 of 0.74 ± 0.08 μM) toward NHERF1 and inhibition 
of the WNT pathway with an EC50 of 3.46 ± 0.07 μM. The 
molecular dynamic simulations revealed that enantiomer (S)-1 
had a higher affinity for DVL1 than the (R)-enantiomer (EC50 of 
0.49 ± 0.11 M). At micromolar concentrations, all substances 1, 
(S)-1, and (R)-1 inhibited colorectal cancer cells HCT116, 
SW480, and SW620. These compounds inhibited the growth of 
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HCT116, a cell line that depends on the activity of the WNT 
signaling pathway for its survival, expressing wild-type APC, 
with low micromolar EC50 values; compounds 1, (S)-1 and (R)-
1 showed EC50 values of 15.2 ± 1.1, 7.1 ± 0.6 μM and 28.3 ± 1.2, 
respectively. HCT116 cells produced more ROS after being 
exposed to (S)-1 at a 20 M concentration for 48 hours. These 
results highlight that compound (S)-1 could be a lead compound 
with drug-like properties for the development of new therapeutic 
agents in the treatment of Wnt-dependent colon cancer. 
Additional research targeted at enhancing the inhibitory 
concentration and evaluating potential synergistic effects with 
known β-catenin inhibitors or FZD modulators will be assessed 
and may constitute a new weapon in the arsenal for the fight 
against colorectal cancer. 
 
Coluccia A, Bufano M, La Regina G, Puxeddu M, Toto A, Paone A, Bouzidi A, Musto 
G, Badolati N, Orlando V, Biagioni S, Masci D, Cantatore C, Cirilli R, Cutruzzolà F, 
Gianni S, Stornaiuolo M, Silvestri R. Anticancer Activity of (S)-5-Chloro-3-((3,5-
dimethylphenyl)sulfonyl)-N-(1-oxo-1-((pyridin-4-ylmethyl)amino)propan-2-yl)-1H-
indole-2-carboxamide (RS4690), a New Dishevelled 1 Inhibitor. Cancers (Basel). 2022 
Mar 7;14(5):1358. doi: 10.3390/cancers14051358. 
  



Identification of new inhibitors using Virtual 
Screening technique 

 88 

2.10) References 
 

1. Niehrs C. The complex world of WNT receptor 
signalling. Nat Rev Mol Cell Biol. 2012 Dec;13(12):767-
79. doi: 10.1038/nrm3470. Epub 2012 Nov 15. PMID: 
23151663. 

2. Stamos JL, Weis WI. The β-catenin destruction complex. 
Cold Spring Harb Perspect Biol. 2013 Jan 
1;5(1):a007898. doi: 10.1101/cshperspect.a007898. 
PMID: 23169527; PMCID: PMC3579403..  

3. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, 
Grosschedl R, Birchmeier W. Functional interaction of 
beta-catenin with the transcription factor LEF-1. Nature. 
1996 Aug 15;382(6592):638-42. doi: 10.1038/382638a0. 
PMID: 8757136.  

4. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth 
A, De Palo M, Anti M, Van Gijn ME, Suijkerbuijk S, Van 
de Wetering M, Marra G, Clevers H. The Intestinal 
Wnt/TCF Signature. Gastroenterology. 2007 
Feb;132(2):628-32. doi: 10.1053/j.gastro.2006.08.039. 
Epub 2006 Aug 18. PMID: 17320548. 

5. Steinhart Z, Angers S. Wnt signaling in development and 
tissue homeostasis. Development. 2018 Jun 
8;145(11):dev146589. doi: 10.1242/dev.146589. PMID: 
29884654. 

6. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. 
Oncogene. 2017 Mar;36(11):1461-1473. doi: 
10.1038/onc.2016.304. Epub 2016 Sep 12. PMID: 
27617575; PMCID: PMC5357762. 

7. Li X, Ortiz MA, Kotula L. The physiological role of Wnt 
pathway in normal development and cancer. Exp Biol 
Med (Maywood). 2020 Mar;245(5):411-426. doi: 
10.1177/1535370220901683. Epub 2020 Jan 29. PMID: 
31996036; PMCID: PMC7082880. 

8. Sharma M, Castro-Piedras I, Simmons GE Jr, Pruitt K. 
Dishevelled: A masterful conductor of complex Wnt 



Identification of new inhibitors using Virtual 
Screening technique 

 89 

signals. Cell Signal. 2018 Jul;47:52-64. doi: 
10.1016/j.cellsig.2018.03.004. Epub 2018 Mar 17. PMID: 
29559363; PMCID: PMC6317740. 

9. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons 
DM. Activation of the Wnt pathway in non small cell lung 
cancer: evidence of dishevelled overexpression. 
Oncogene. 2003 Oct 16;22(46):7218-21. doi: 
10.1038/sj.onc.1206817. PMID: 14562050. 

10. Uematsu K, Kanazawa S, You L, He B, Xu Z, Li K, 
Peterlin BM, McCormick F, Jablons DM Wnt pathway 
activation in mesothelioma: Evidence of dishevelled 
overexpression and transcriptional activity of beta-
catenin. Cancer Res. 2003, 63, 4547–4551. 

11. Lee YN, Gao Y, Wang HY Differential mediation of the 
Wnt canonical pathway by mammalian Dishevelleds-1, -
2, and -3. Cell Signal.2008, 20, 443–452 

12. Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. 
Cell Signal. 2010 May;22(5):717-27. doi: 
10.1016/j.cellsig.2009.11.021. Epub 2009 Dec 13. PMID: 
20006983. 

13. Wharton KA Jr. Runnin' with the Dvl: proteins that 
associate with Dsh/Dvl and their significance to Wnt 
signal transduction. Dev Biol. 2003 Jan 1;253(1):1-17. 
doi: 10.1006/dbio.2002.0869. PMID: 12490194. 

14. Xu Y, Zhang C, Liang H, Hu S, Li P, Liu L, Duan X, Chen 
C, Zhang Y, Dai P. Dishevelled 1, a pivotal positive 
regulator of the Wnt signalling pathway, mediates 5-
fluorouracil resistance in HepG2 cells. Artif Cells 
Nanomed Biotechnol. 2018;46(sup2):192-200. doi: 
10.1080/21691401.2018.1453827. Epub 2018 Mar 27. 
PMID: 29583038. 

15. Luo K, Guc X, Liua J, Zenga G, Penga L, Huanga H, 
Jianga M, Yangc P, Lic M, Yanga Y et al. Inhibition of 
Disheveled-2 resensitizes cisplatin-resistant lung cancer 
cells through down-regulating Wnt/β-catenin 
signaling. Exp. Cell Res. 2016, 347, 105–113 



Identification of new inhibitors using Virtual 
Screening technique 

 90 

16. Zhang Y, Appleton BA, Wiesmann C, Lau T, Costa M, 
Hannoush RN, Sidhu SS. Inhibition of Wnt signaling by 
Dishevelled PDZ peptides. Nat Chem Biol. 2009 
Apr;5(4):217-9. doi: 10.1038/nchembio.152. Epub 2009 
Mar 1. PMID: 19252499. 

17. Fujii N, You L, Xu Z, Uematsu K, Shan J, He B, Mikami 
I, Edmondson LR, Neale G, Zheng J, Guy RK, Jablons 
DM. An antagonist of dishevelled protein-protein 
interaction suppresses beta-catenin-dependent tumor cell 
growth. Cancer Res. 2007 Jan 15;67(2):573-9. doi: 
10.1158/0008-5472.CAN-06-2726. Erratum in: Cancer 
Res. 2007 Mar 1;67(5):2389. PMID: 17234765. 

18. Lee HJ, Wang NX, Shi DL, Zheng JJ. Sulindac inhibits 
canonical Wnt signaling by blocking the PDZ domain of 
the protein Dishevelled. Angew Chem Int Ed Engl. 
2009;48(35):6448-52. doi: 10.1002/anie.200902981. 
PMID: 19637179; PMCID: PMC2978498. 

19. Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, 
Zhang Y, Alpatov I, Zhang XA, Lang RA, Shi DL, Zheng 
JJ. Discovery and characterization of a small molecule 
inhibitor of the PDZ domain of dishevelled. J Biol Chem. 
2009 Jun 12;284(24):16256-16263. doi: 
10.1074/jbc.M109.009647. Epub 2009 Apr 21. PMID: 
19383605; PMCID: PMC2713547. 

20. Hori K, Ajioka K, Goda N, Shindo A, Takagishi M, Tenno 
T, Hiroaki H. Discovery of Potent Disheveled/Dvl 
Inhibitors Using Virtual Screening Optimized With 
NMR-Based Docking Performance Index. Front 
Pharmacol. 2018 Sep 5;9:983. doi: 
10.3389/fphar.2018.00983. PMID: 30233369; PMCID: 
PMC6134994. 

21. Choi J, Ma S, Kim HY, Yun JH, Heo JN, Lee W, Choi 
KY, No KT. Identification of small-molecule compounds 
targeting the dishevelled PDZ domain by virtual 
screening and binding studies. Bioorg Med Chem. 2016 



Identification of new inhibitors using Virtual 
Screening technique 

 91 

Aug 1;24(15):3259-66. doi: 10.1016/j.bmc.2016.03.026. 
Epub 2016 Mar 16. PMID: 27112452. 

22. Kamdem N, Roske Y, Kovalskyy D, Platonov MO, 
Balinskyi O Kreuchwig A, Saupe J, Fang L, Diehl A, 
Schmieder P et al. Small-molecule inhibitors of the PDZ 
domain of Dishevelled proteins interrupt Wnt 
signalling. Magn. Reson. 2021, 2, 355–374 

23. Liu Z, Wang P, Wold EA, Song Q, Zhao C, Wang C, Zhou 
J. Small-Molecule Inhibitors Targeting the Canonical 
WNT Signaling Pathway for the Treatment of Cancer. J 
Med Chem. 2021 Apr 22;64(8):4257-4288. doi: 
10.1021/acs.jmedchem.0c01799. Epub 2021 Apr 6. 
PMID: 33822624. 

24. Generoso SF, Giustiniano M, La Regina G, Passacantilli 
S, Cassese H, Bruno A, Mallardo M, Silvestri R, Marinelli 
L, Bonatti S et al. Pharmacological folding chaperones act 
as allosteric ligands of Frizzled4. Nat. Chem. 
Biol. 2015, 11, 280–286 

25. Coluccia A, La Regina G, Naccarato V, Nalli M, Orlando 
V, Biagioni S, De Angelis ML, Baiocchi M, Gautier C, 
Gianni S, Di Pastena F, Di Magno L, Canettieri G, 
Coluccia AML, Silvestri R. Drug Design and Synthesis of 
First in Class PDZ1 Targeting NHERF1 Inhibitors as 
Anticancer Agents. ACS Med Chem Lett. 2019 Jan 
14;10(4):499-503. doi: 
10.1021/acsmedchemlett.8b00532. PMID: 30996786; 
PMCID: PMC6466550. 

26. Wheeler DS, Barrick SR, Grubisha MJ, Brufsky AM, 
Friedman PA, Romero G. Direct interaction between 
NHERF1 and Frizzled regulates β-catenin 
signaling. Oncogene 2011, 30, 32–42 

27. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, 
Sherman W. Protein and ligand preparation: parameters, 
protocols, and influence on virtual screening enrichments. 
J Comput Aided Mol Des. 2013 Mar;27(3):221-34. doi: 



Identification of new inhibitors using Virtual 
Screening technique 

 92 

10.1007/s10822-013-9644-8. Epub 2013 Apr 12. PMID: 
23579614. 

28. Korb O, Stützle T, Exner TE. Empirical scoring functions 
for advanced protein-ligand docking with PLANTS. J 
Chem Inf Model. 2009 Jan;49(1):84-96. doi: 
10.1021/ci800298z. PMID: 19125657. 

29. Dixon SL, Smondyrev AM, Rao SN. PHASE: a novel 
approach to pharmacophore modeling and 3D database 
searching. Chem Biol Drug Des. 2006 May;67(5):370-2. 
doi: 10.1111/j.1747-0285.2006.00384.x. PMID: 
16784462. 

30. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, 
Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods 
RJ. The Amber biomolecular simulation programs. J 
Comput Chem. 2005 Dec;26(16):1668-88. doi: 
10.1002/jcc.20290. PMID: 16200636; PMCID: 
PMC1989667. 

31. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: 
Software for Processing and Analysis of Molecular 
Dynamics Trajectory Data. J Chem Theory Comput. 2013 
Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 
Jun 25. PMID: 26583988. 

32. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity 
assays: the MTT assay. Methods Mol Biol. 2011;731:237-
45. doi: 10.1007/978-1-61779-080-5_20. PMID: 
21516412 

33. PyMOL, version 1.2r1; DeLanoScientificLLC: 
SanCarlos, CA, USA, 2021 

34. Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, 
Clemmensen LS, Haugaard-Kedström LM, Strømgaard 
K. PDZ Domains as Drug Targets. Adv Ther (Weinh). 
2019 Jul;2(7):1800143. doi: 10.1002/adtp.201800143. 
Epub 2019 Apr 24. PMID: 32313833; PMCID: 
PMC7161847. 

35. Wang NX, Lee HJ, Zheng JJ. Therapeutic use of PDZ 
protein-protein interaction antagonism. Drug News 



Identification of new inhibitors using Virtual 
Screening technique 

 93 

Perspect. 2008 Apr;21(3):137-41. PMID: 18560611; 
PMCID: PMC4055467. 

36. Riccio G, Bottone S, La Regina G, Badolati N, 
Passacantilli S, Rossi GB, Accardo A, Dentice M, 
Silvestri R, Novellino E, Stornaiuolo M. A Negative 
Allosteric Modulator of WNT Receptor Frizzled 4 
Switches into an Allosteric Agonist. Biochemistry. 2018 
Feb 6;57(5):839-851. doi: 10.1021/acs.biochem.7b01087. 
Epub 2018 Jan 19. PMID: 29293331.  

37. Famiglini V, La Regina G, Coluccia A, Masci D, Brancale 
A, Badia R, Riveira-Muñoz E, Esté JA, Crespan E, 
Brambilla A, Maga G, Catalano M, Limatola C, Formica 
FR, Cirilli R, Novellino E, Silvestri R. Chiral 
Indolylarylsulfone Non-Nucleoside Reverse 
Transcriptase Inhibitors as New Potent and Broad 
Spectrum Anti-HIV-1 Agents. J Med Chem. 2017 Aug 
10;60(15):6528-6547. doi: 
10.1021/acs.jmedchem.6b01906. Epub 2017 Jul 5. PMID: 
28628334.  

38. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu 
D, Mlodzik M, Shi DL, Zheng J. Direct binding of the 
PDZ domain of Dishevelled to a conserved internal 
sequence in the C-terminal region of Frizzled. Mol Cell. 
2003 Nov;12(5):1251-60. doi: 10.1016/s1097-
2765(03)00427-1. PMID: 14636582; PMCID: 
PMC4381837. 

39. Kaler P, Augenlicht L, Klampfer L. Activating mutations 
in β-catenin in colon cancer cells alter their interaction 
with macrophages; the role of snail. PLoS One. 
2012;7(9):e45462. doi: 10.1371/journal.pone.0045462. 
Epub 2012 Sep 21. PMID: 23029025; PMCID: 
PMC3448637. 

40. Korswagen HC. Regulation of the Wnt/beta-catenin 
pathway by redox signaling. Dev Cell. 2006 
Jun;10(6):687-8. doi: 10.1016/j.devcel.2006.05.007. 
PMID: 16740470. 



Identification of new inhibitors using Virtual 
Screening technique 

 94 

41. Caliceti C., Nigro P., Rizzo P., Ferrari R. ROS, Notch, and 
Wnt signaling pathways: Crosstalk between three major 
regulators of cardiovascular biology. Biomed. Res. 
Int. 2014;2014:318714. doi: 10.1155/2014/318714 

42. Rharass T, Lemcke H, Lantow M, Kuznetsov SA, Weiss 
DG, Panáková D. Ca2+-mediated mitochondrial reactive 
oxygen species metabolism augments Wnt/β-catenin 
pathway activation to facilitate cell differentiation. J Biol 
Chem. 2014 Oct 3;289(40):27937-51. doi: 
10.1074/jbc.M114.573519. Epub 2014 Aug 14. PMID: 
25124032; PMCID: PMC4183826. 

43. Redza-Dutordoir M, Averill-Bates DA. Activation of 
apoptosis signalling pathways by reactive oxygen species. 
Biochim Biophys Acta. 2016 Dec;1863(12):2977-2992. 
doi: 10.1016/j.bbamcr.2016.09.012. Epub 2016 Sep 17. 
PMID: 27646922. 

 
  



Identification of new inhibitors using Virtual 
Screening technique 

 95 

3) LDHA (lactate dehydrogenase A) 
 
Contrary to healthy cells, most cancer cells rely on an accelerated 
rate of glycolysis that frequently ferments glucose into lactate, 
even when the environment is aerobic. Otto Warburg, a German 
scientist, recognized the metabolic shift from oxidative 
phosphorylation (OXPHOS) to aerobic glycolysis (Warburg 
effect) and correlated it to the unusual glucose metabolism of 
cancer cells(1). Because cancer cells require more nutrients than 
healthy cells do, tumor glycolysis gives them a distinct advantage 
in terms of survival and growth(2,3,4). Given how significantly 
cancer cells rely on this metabolism, there has recently been a rise 
in interest in the field of tumor glycolysis. Thus, attractive targets 
including those involved in glycolysis's transporters and enzymes 
are seen as promising targets. One of these received much interest 
for the creation of anti-cancer drugs: the lactate dehydrogenase 
enzyme (LDH), which is essential for tumor glycolysis.  
The lactate dehydrogenase (LDH) enzyme produces lactate from 
pyruvate as the primary step in this glycolytic reprograming. 
Almost all bodily tissues contain this enzyme, which is 
responsible for interconversion of pyruvate-NADH to lactate-
NAD+. Structurally, LDH is a tetrameric enzyme composed of 
two main subunits, LDHA (muscle, M) and LDHB (heart, H), that 
are encoded by two distinct genes, ldhA and ldhB, respectively. 
These two subunits, LDHA and LDHB, combine into five 
different possible combinations, such as A4, A3B1, A2B2, A1B3, 
and B4, corresponding to five isoforms or isozymes, namely, 
LDH5 to LDH1, respectively. The homotetramer LDH5 (A4, 
LDHA) is assembled only from subunit A and is predominately 
found in skeletal muscle, whereas LDH1 (B4, LDHB), formed 
from only subunit B, primarily exists in heart muscle and other 
oxygenated (normoxia) tissues. The remaining three isoforms, 
LDH2 (A1B3), LDH3 (A2B2), and LDH4 (A3B1), are hybrid 
tetramers. An additional sixth isoform, LDH-X or LDH-C4, 
which is involved in male fertility, was identified in human testis 
and sperm. Pyruvate is converted to lactate by the A form, 



Identification of new inhibitors using Virtual 
Screening technique 

 96 

whereas the B form is responsible for the reverse conversion(5,6) 
(Figure 14). 
 

 
Figure 14. General reactions catalyzed by LDHA and LDHB. 

 
The overexpression of LDHA has been frequently reported in a 
variety of highly glycolytic human cancers, such as non-Hodgkin 
lymphoma(7), colorectal cancer(8,9), melanoma(10), pancreatic 
cancer(11), lung cancer(12,13), prostate cancer(14), gastric cancer(15) 
and endometrial cancer(16). Additionally, LDHA enzymatic 
activity lowers the extracellular pH by increasing lactate 
production and subsequent secretion outside the cells, favoring 
tumor invasion and metastasis(17,18).  
From a structural viewpoint LDH is featured by two domains: the 
larger (cofactor binding) domain formed by residues 20–162 and 
248–266 and the mixed α/β substrate binding domain (smaller) 
comprising residues 163–247 and 267–331. The NADH cofactor 
binds to LDH at one end of the central β-sheet with residues 
His195, Asp168, Arg171, and Thr246 in an extended 
conformation, and its nicotinamide group partially overlaps the 
substrate-binding site(19). 
Taking a look at the progress made over time on the discovery of 
inhibitors (Figure 15), we can start from sodium oxamate (1) that 
inhibits aspartate aminotransferase and LDH (AAT). It inhibits 
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the human LDHA in vitro in a pyruvate-competitive manner with 
a Ki of 136,3 μM(20). Analysis of a ternary complex (NADH-
LDH-oxamate) indicated that oxamate interacts with residues 
Gln99, Arg105, Asn137, Arg168, His192, and Thr247 via 
hydrogen-bonding, whereas Leu164 and Ala237 are engaged in 
hydrophobic contacts. The side chain of Arg168 interacts with the 
carboxylate group of the ligand(19,21). Sodium oxamate enhances 
the expression of the tumor suppressor p53 while inhibiting 
aerobic glycolysis and the development of cancer cells.  
The inhibition of 1 is observed only in glucose exposed cells, 
suggesting that this effect is related to the inhibition of aerobic 
glycolysis. Due to issues with its poor cellular absorption, weak 
efficacy, and restricted enzymatic selectivity, it has difficulty in 
being used clinically(22).  
Another inhibitor is gossypol (2), a natural product (a 
polyphenolic binaphthyl disesquiterpene) first discovered in the 
cotton seeds of gossypium. It has a variety of biological properties 
that are promising, including anticancer, antioxidant, antiviral, 
and antiparasitic properties(23). It exists in two enantiomeric 
forms, (R) and (S) and the (R)-(+) form of 1 is more effective than 
the (S)-(+) isomer for dose-dependent cytotoxic activity, with 
mean IC50 values of 20 M in melanoma, lung cancer, breast 
cancer, cervical cancer, and leukemia cell lines(24). It also showed 
an ability to inhibit various LDH isoforms in an NADH-
competitive manner(25,26). Due to its chemical structure, the two 
aldehyde groups and catechol hydroxyl groups generate toxic 
metabolites(27). So, because of its lack of selectivity and 
substantial side effects, further development of gossypol as an 
anticancer agent was unsuccessful. As a result, various 
compounds with chemical structures that were closely related to 
this compound were developed. For example, FX11 (3) inhibits 
LDHA selectively with a Ki value of 8 μM, causes cell death, and 
promotes apoptosis with a simultaneous decrease in lactate 
production(28,29). 
Quinolinesulfonamide (4), NADH-competitive LDHA inhibitors 
decrease lactate production rates in multiple cancer cell lines, 
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including hepatocellular and breast carcinomas. Lead 
optimization yielded QSA (4) with LDHA inhibitory potency as 
low as 2 nM and higher selectivity over LDHB(30). 
Galloflavin (5), a tricyclic flavone-like compound, was found to 
be a strong in vivo anticancer drug and to be a nonselective 
inhibitor of LDHA with a Ki value of 5.46 μM for pyruvate and 
15.06 μM for LDHB. The anticancer activity of 5 was observed 
in MCF-7, triple negative MDA-MB-231 and tamoxifen resistant 
MCF-tam cell lines(31,32).  
N-hydroxyindole (NHIs) (6) has been recently discovered as 
selective inhibitors; they are featured by a central indole scaffold 
contains a hydroxyl group on the nitrogen atom in the 1-position 
and a carboxyl group in the 2-position of the indole moiety. They 
showed inhibitory activity in the competition with both the 
cofactor NADH and the substrate pyruvate, with Kivalues in the 
low micromolar range(33). 
Compound NHI-1 (6) inhibited LDHA with Ki = 8.9 μM and 
Ki = 4.7 μM against cofactor NADH and pyruvate, 
respectively(34).  
With compound 7 started the pyrazole series and quantitative 
high-throughput screening and structure-based optimization of 
this compound enabled the development of compound 8 that 
showed inhibition of the LDHA and LDHB with IC50 values of 
0.032 and 0.027 μM, respectively(35). Compound 9 (NCI-006) too 
was generated as a further optimization of the pyrazole series 
which inhibited the LDHA with IC50 = 0.06 μM and LDHB with 
IC50 of 0.03 μM, and showed potent on-target in vivo activity(36). 
Similarly, 10 (NCATS-SM1441) inhibited both LDHA and 
LDHB with an IC50 of 0.04 μM, and showed desirable attributes 
for further studying the effect of in vivo LDH inhibition(37). 
Genentech 11 (Gen140) was identified as a promising LDHA 
inhibitor with IC50 of 8.9 nM. However, 11 did not appear to 
have progressed into clinical studies(38). Compound 12 inhibited 
the LDHA activity with an EC50 value of 0.090 μM and reduced 
MiaPaCa-2 cancer cell proliferation with an IC50 value of 2.1 
μM(39). 
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Although certain LDHA inhibitors are already available, they 
have all demonstrated limitations that call for additional research 
to find innovative LDH inhibitors with enhanced potency, 
selectivity, and dependable safety and tolerance.  
Here, we present the results of virtual screening investigations 
using docking and pharmacophore filters to find novel LDHA 
inhibitors.  
Starting from the available crystal structures, each monomer is 
made up of 330 amino acids and has two binding pockets: a 
cofactor-binding site (NADH-binding site) and a substrate-
binding site (pyruvate binding site), both of which are isolated 
from the solvent by a moveable "active-site loop" (residues 98–
110). Both academia and the pharmaceutical sector have reported 
several LDHA inhibitors, but none of them were successful in the 
clinical study, mostly due to insufficient cellular and in vivo 
activity and inadequate pharmacokinetics parameters(5). 
Pyrimidine derivatives showed, in preliminary tests, to 
significantly suppress the growth of either medulloblastoma or 
pancreatic tumor cells in vitro(40). Then, using molecular fitness 
techniques, more powerful pyrimidines have been found, 
including the patented tetrahydropyrimidine-5-carboxamide (41). 
Here, we discuss the computational experiments that led to the 
discovery of derivative 18 as a potential lead compound inhibitor 
with submicromolar in vitro activity and a good drug-likeness 
profile. 
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Figure 15. Chemical structures of LDHA inhibitors 1-12 
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3.1) Materials and methods 
3.1.1) Molecular modeling 
Compounds 14–22 were purchased from Life Chemicals. The 
LDHA structures were downloaded from the PDB, pdb code 
5W8K(35), 5W8I(35), 5IXS(38), 4QO7(42), 4ZVV(43) and 4M49(44). 
The proteins were prepared by adding hydrogen atoms, fixing 
ionization state and heteroatoms and removing crystallization co-
factors using Maestro protein preparation wizard(45). The 
hydrogen atoms minimization was carried out keeping all the 
heavy atoms fixed until a rmsd gradient of 0.05 kcal/(mol·Å) was 
reached. Ligand structures were built with Maestro and 
minimized using the MMFF94x force field until a rmsd gradient 
of 0.05 kcal/(mol·Å) was reached. The 5W8I LDHA structure 
was selected for the following docking simulation by a Cross-
docking approach. The docking simulations were performed by 
Plants(46). It was fixed a binding lattice of 12 Å radius, using all 
the default settings. The pharmacophore model was obtained by 
Phase(47,48). The polar features had a tolerance of 2 Å while the 
hydrophobic/aromatic features had a tolerance of 2.5 Å. The 
commercially available compounds libraries Maybridge 
[www.Maybridge.com], Specs [www.SPECS.net] and Life 
Chemicals [www.lifechemicals.com] of about 2,000,000 
derivatives were filtered out by the rule of five, and the obtained 
training set, about 1,400,000 compounds, was docked at the 
LDHA binding site. The docking simulations were used as a sort 
of tuned conformational search. All the docking proposed binding 
conformations (10 per molecule) were filtered out by the 
pharmacophore model and the 500 best ranked derivatives were 
visual inspected. The images in the manuscript were created with 
PyMOL(49). 
 
3.1.2) Molecular dynamics 
Molecular dynamics was performed with the AMBER 20 suite(50). 
Derivative 18 and NADH were parametrized by Leap of Amber. 
The structures of complex were solvated in a periodic octahedron 
simulation box using TIP3P water molecules, providing a 
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minimum of 10 Å of water between the protein surface and any 
periodic box edge. Ions were added to neutralize the charge of the 
total system. The water molecules and ions were energy-
minimized keeping the coordinates of the protein-ligand complex 
fixed (5000 cycle), and then the whole system was minimized 
(10000 cycles). Following minimization, the entire system was 
heated to 298 K (20 ps). The production (50 ns) simulation was 
conducted at 298 K with constant pressure and periodic boundary 
condition. Shake bond length condition was used (ntc = 2). A 
restraint (restraint_wt = 3) was applied on NADH in order to let 
it stay in the cofactor binding site during the simulation time. 
Trajectories analysis was carried out by CPPTRAJ program(51). 
 

3.2)  Virtual screening studies  
 
We performed virtual screening experiments using a structure-
based approach to find assessable inhibitors of LDH activity. 
Cross-docking was used to choose the 3-D structure of the 
enzyme from among those found in the Protein Data Bank 
(https://www.rcsb.org). The training set was created by 
combining the datasets Maybridge [www.Maybridge.com], 
Specs [www.SPECS.net], and Life Chemicals 
[www.lifechemicals.com], which are all commercially available 
until reaching a database of about 2.000.000 molecules. To 
guarantee that the examined compounds have drug-like 
properties, the Lipinski Rule of Five was used to pre-filter the 
training set(52).  
We used Plants to dock the obtained training set into the LDH 
catalytic site of the enzyme surrounded by the activation loop and 
the NADH pocket. A pharmacophore model was created using 
the binding conformations of LDH inhibitors that are reported in 
Protein Data Bank (PDB). This model collected the primary 
binding interactions of the investigated inhibitors to LDHA in 6 
queries, including 4 hydrophobic/aromatic, 1 H-bond acceptor, 
and 1 H-bond donor interactions. The proposed docking 
conformations (10 per molecule) were filtered out by the 
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pharmacophore model, and the 500 best scored compounds were 
visually inspected. Then, nine compounds with the greatest 
potential were sent to the biological examination (Table 3). 
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Compounds Structure Compounds Structure 

14 RS6208 

 

15 RS6209 

 

16 RS6210 

 

17 RS6211 

 

18 RS6212 

 

19 RS6219 

 

20 RS6220 

 

21 RS6221 

 

22 RS6110 

 

   

Table 3. Structures of compounds 14–22 selected by virtual screening studies 
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3.3) In vitro antitumor activity of the identified LDHA 
inhibitors 
 
Med1-MB, a cell line derived from Sonic Hedgehog (SHH) 
medulloblastoma (SHH MB), a pediatric tumor of the cerebellum 
characterized by dysregulation of the SHH signaling system, were 
used to conduct preliminary tests on the effects of the chosen 
drugs(53). In their earlier research, they discovered that through 
activating transcriptional targets, the anomalous activation of the 
Sonic Hedgehog pathway promotes a reprogramming of energy 
metabolism toward aerobic glycolysis. Because SHH MB cells 
rely on aerobic glycolysis, inhibitors of glycolysis such 
dichloroacetate, a PDK inhibitor, or bromopyruvate, a HK2 
inhibitor, drastically slow down their proliferation(54). They 
examined how the selected compounds 14-22 at various 
concentrations affected the rate of proliferation of Med1-MB 
tumor cells, which are defined by mutations in the Ptch1 receptor 
gene(55). 
The known LDHA inhibitor sodium oxamate inhibited the 
proliferation of these cells at millimolar doses, with an estimated 
IC50 of 15.94 mM, demonstrating their dependence on aerobic 
glycolysis (Figure 16). 
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Figure 16. Testing of LDHA inhibitor in cancer cells. (A) (Left) 
Proliferation assay in Med1-MB cells treated with increasing concentrations 
of sodium oxamate for 24 h. IC50 values of sodium oxamate were determined 
by generating a dose-response curves by non-linear regression (Right). (B) 
(Left) Med1-MB cells were treated with or without compounds 14–21 at the 
indicated concentrations, and cell proliferation was evaluated after 24 h of 
treatment. (Right). Graphical representation of IC50 values. (C) (Left) 
Proliferation assay in Med1-MB cells treated with compound 17 or 18 or 
control (DMSO) at the indicated concentrations for 24 h (Right) A dose 
response curve was generated and IC50 values were calculated for both 
compounds. Data are represented as the mean ± SD of three independent 
experiments, each performed in triplicate. *p < 0.05, **p < 0.01, 
***p < 0.001, n.s. = not significant as determined by ANOVA test. 
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Following a 24-hour incubation period with progressively lower 
concentrations of each of the nine compounds, the cells were 
stained with Trypan Blue before being counted. According to 
Figure 16B, at 10 mM, all compounds totally stopped cell 
proliferation, whereas at 1 mM, only compounds 13 and 20 had 
no meaningful effect. Only compounds 17 and 18 effectively 
suppressed cell proliferation at a dose of 100 μM; their IC50 
values were 29 μM and 81 μM, respectively (Figure 16 C). 
It should be noted that these values are significantly lower (534 
and 196 fold, respectively) than the concentrations required to 
suppress cell proliferation by the reference inhibitor sodium 
oxamate (IC50= 15.94 mM), demonstrating the efficacy of the 
found compounds (Table 4). 
 

Table 4 
Inhibition of growth of Med1-MB 
cell line by compounds 14-22.a 

Compd IC50 ± SDb (mM) 

 Med1-MB 

14 8.463 
15 1.510 

16 1.157 

17 0.0298 

18 0.08177 

19 1.295 

20 8.309 

21 0.964 

22 1.139 
Oxamate              15.94 

a Experiments were performed at 
least in duplicate. 
b SD: Standard deviations ranged 
from ± 5% to ± 10% of the 
indicated IC50 values. 

 Table 5 
Inhibition of LDHA by 
compound 18 and reference 
oxamate.a 

Compd IC50 ± SDb (mM) 

 LDHA 

18 0.01203 
Oxamate              16.47 

a Experiments were performed at 
least in duplicate. 
b SD: Standard deviations ranged 
from ± 5% to ± 10% of the 
indicated IC50 values. 
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3.4) Enzymatic assay 
 
By assessing the rate of NADH consumption at 340 nM after the 
addition of pyruvate by spectrophotometry, as previously 
described, they examined the capability of compounds 17 and 18 
to block LDHA enzymatic activity(56). 
Compound 18 showed a considerable inhibitory effect, with an 
IC50 of 12.03 μM (Table 5), in contrast to compound17, which 
was unable to inhibit LDHA activity (Figure 17A). When 
compared to compound18, the reference LDHA inhibitor sodium 
oxamate had an IC50 of 16.47 mM, which was 1396 times lower. 
Treatment with compound 18 resulted in a dose-dependent 
decrease in lactate as measured by extracellular acidification rate 
(ECAR), consistent with the inhibition of pyruvate reduction and 
NADH oxidation, and a significant rise in NADH levels in Med1-
MB cells (Figure 17B).  
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Figure 17. Measurement of LDH activity, glycolytic rate and NADH 
content after treatment with compound 18. (A) Med1-MB cells were treated 
with or without compounds 17 (30 μM) or 18 (80 μM) and cellular extracts 
were prepared for determination of LDH enzyme activity. LDH activity is 
represented as % of the activity of LDH in the control group, which 
corresponds to 100%. (B) Cells were treated with increasing doses of 
compound 18, as indicated, for 6 h. Analysis of glycolysis with the 
glycolysis rate assay test using the Seahorse extracellular flux analyzer 
revealed decreased levels of glycolysis (top) and ECAR (bottom) in 
compound 18-treated cells. ECAR: extracellular acidification rate. Data are 
the mean ± SD of six individual samples. (C) NADH content was 
determined in Med1-MB cells following treatment with compound 18 at its 
IC50 value for 6 h. Data are represented as the mean ± SD of three 
independent experiments, each performed in triplicate. *p <0.05, **p <0.01, 
***p < 0.001, n.s. = not significant as determined by ANOVA and unpaired 
t test. 
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3.5) Additional cancer cells 
 
Then, we looked at how this recently discovered compound 
affected the growth of additional cancer cell lines. Pancreatic 
cancer (PANC-1), lung cancer (A549), and colorectal cancer 
(HCT116 and SW620) cell lines were examinated, all of which 
have elevated glycolytic metabolism(57,58,59). Molecule 18 
considerably reduced the cell proliferation of all cancer cell lines 
examined, as shown in Figure 18A, indicating the potential 
therapeutic efficacy of this compound in a wide range of 
conditions. 
 

3.6) Effect in HCT116 CRC cells lacking LDHA 
 
In order to confirm the specificity of compound 18 even more, 
they examined its impact on HCT116 CRC cells deficient in 
LDHA. To achieve this, they generated an inducible LDHA-
deficient cell line, using a lentiviral vectorexpressing shRNA 
targeting LDHA mRNA, under the control of a doxycycline-
inducible promoter. 
The knockdown was induced with 10 g/mL doxycycline for 24 
hours after cells had been stably transduced with the lentiviral 
vector. Compound 18 was then applied to the cells for 24 hours. 
A robust 95% LDHA knockdown were achieved under these 
circumstances, as shown in Figure 18C, which was verified by 
quantitative RT-PCR. Notably, treatment of LDHA-deficient 
cells with compound 18 did not prevent cell proliferation, proving 
that the impact is only there when LDHA is present (Figure 18B). 
These findings show that compound 18 particularly suppresses 
LDHA activity and cancer cell growth. 
 

3.7) Effect on apoptosis and autophagy 
 
We assessed the cleavage of Poly (ADP-ribose) polymerase 
(PARP) and LC3B I conjugation to phophatidylethanolamine 
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(LC3B II), respectively, to establish whether the suppression of 
cell proliferation by compound 18 is connected to an increase in 
programmed cell death or an induction of autophagy. Compound 
18 does not alone cause apoptosis or autophagy in HCT116 CRC 
cells, as evidenced by the fact that exposure to compound 18 in 
increasing concentrations did not significantly alter either PARP 
cleavage nor LC3B-I lipidation. (Figure 18D) 
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Figure 18. Effect of compound 18 on cell proliferation and apoptosis. (A) 
Growth curves in colorectal cancer (HCT116 and SW620), lung cancer 
(A549) and pancreatic cancer (PANC-1) cell lines treated with or without 
compound 18 (80 μM) for the indicated time points. (B) Proliferation assay 
in HCT116 cells stably expressing shRNA targeting LDHA mRNA. Cells 
were pretreated with doxycycline (10 μg/mL) to induce knockdown, and 
then treated with compound 18 at its IC50 value for 24 h. (C) Knockdown 
levels of LDHA mRNA as described in (B) were determined by qPCR. (D) 



Identification of new inhibitors using Virtual 
Screening technique 

 113 

HCT116 cells were treated with compound 18 at the indicated 
concentrations for 48 h and cell lysates were analyzed by immunoblot for 
the indicated proteins. Actin was used as a loading control. (E) 
HCT116 cells were treated with compound 18 or rotenone at 50 or 100 nM 
alone or in combination for 24 h and cell proliferation was assessed. Lysates 
were analyzed by immunoblot for the indicated proteins. Data are 
represented as the mean ± SD of three independent experiments, each 
performed in triplicate. **p < 0.01, ***p < 0.001 as determined by ANOVA 
and unpaired t-test. 

 
3.8) Combined effect of compound 18 and complex I 

inhibition 
 
Inhibiting glycolysis in cells with respiration defects has been 
shown to accelerate apoptosis by lowering ATP levels, 
phosphorylating BAD at Ser112, and relocating Bax to the 
mitochondria, according to earlier research(60). Because HCT116 
cells do not have respiration defects, we hypothesized that 
compound 18 did not trigger apoptosis or autophagy because, 
upon LDHA inhibition, cells could transition their metabolism 
from glycolysis to mitochondrial respiration. We investigated the 
interaction of chemical 18 with the complex I and mitochondrial 
respiration inhibitor rotenone in order to test this hypothesis(61,62). 
Treatment with rotenone alone resulted in an increase in PARP 
cleavage and an inhibition of cell proliferation, which is 
consistent with the reported action of rotenone on triggering 
apoptosis due to increased ROS generation(61). Notably, the 
addition of rotenone and compound 18 together significantly 
increased the inhibition of cell proliferation and resulted in a 
significant cleavage of PARP (Figure 18E), showing that the 
combined inhibition of LDHA and Complex I result in robust 
activation of programmed cell death in these cancer cells. This 
robust activation of programmed cell death is most likely related 
to energy stress and excessive ROS production (Figure 19). 
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Figure 19. Schematic picture of the involvement of 18 and rotenone in apoptosis 

 
 

3.9) Computational studies  
3.9.1) Binding mode of compound 18 

 
The binding mode analyses revealed important interactions 
between compound 18 and the enzyme's catalytic site, including:  
1. the sulfone oxygen atom forming H-bonds with Arg168 
and Thr247 side chains; 
2. the benzo[d]isothiazole dioxide bicyclic ring forming 
hydrophobic contacts with Ala237 and His192 and being 
involved in aromatic interactions with Tyr238; 
3. the piperidine ring received hydrophobic stabilization by 
Asn137 side chain.  
4. the terminal cyclopenta[c]pyridazine ring formed 
hydrophobic interactions with Pro138 and Asn99 side chains 
(Figure 20) 
It is noteworthy that the nearest sulfonamide oxygen atom located 
at 3.4Å from the nicotinamide moiety to generate aromatic H-
bond interactions. 
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Figure 20. Proposed binding mode of 18. LDHA is reported as cartoon; compound 
18 is depicted as cyan stick, residues involved in interactions are reported as grey 
stick and NADH is represented as white stick. H-bonds contacts are reported as 
yellow dotted lines. 

 
Then, this proposed binding mode of derivative 18 was compared 
with the co-crystallized structures binding of three LDHA 
inhibitors: pyrazoles 7 (5W8I, LDHA IC50 = 29 μM) (35) and 10 
(6Q13, IC50 = 0.04 μM) (37) and dihydropyridinone 11 (4ZVV, 
IC50 = 8.9 nM) (38). The results of the investigations demonstrated 
that derivative 18 and the pyrazole-containing compounds 7 and 
10 had similar binding modes and occupied the same receptor 
sub-pockets. As opposed to18, the dihydropyridinone derivative 
11 showed a distinct binding mode that targeted various residues. 
However interactions with the catalytic residues Arg168, Thr247, 
Ala237, and Tyr238 remained the same. This investigation 
increased our confidence in the predicted binding mode and 
mechanism of action of derivative 18 (Figure 21 and 22). 
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Figure 21 The proposed binding mode of derivative 18 (cyan) was superimposed 
with the crystallographic binding modes of pyrazole containing derivatives 7 
(5W8I, green) (35) and 10 (6Q13, orange) (37) and dihydropyridinone 11 (4ZVV, 
magenta) (38). The enzyme is depicted as light blue ribbon and NADH structure is 
reported in white. Residues involved in interactions with 18 are shown. 

 

 
Figure 22.  Summary of the binding interactions of 

compound 18 into the LDHA binding site 
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3.9.2) Molecular dynamics simulations 
 
Molecular dynamics analysis was used to examine the suggested 
binding mode of 18. The 18 had a steady binding mode, as 
evidenced by the 50 ns trajectory, and the majority of suggested 
interactions persisted throughout the simulation period. For 
example, the piperidine ring and the 1,1-
dioxidobenzo[d]isothiazole ring both retained all of their 
connections, whereas the cyclopenta[c]pyridazin-3-one ring only 
kept its hydrophobic interactions with Asn99 (Figure 23). 
 

 
Figure 23. Snapshot of molecular dynamic simulations. LDHA is reported 
as cartoon, compound 18 is depicted as cyan stick, residues involved in 
interactions are reported as grey stick, and NADH is represented as white 
stick. H-bonds contacts are reported as yellow dotted lines. 

 
The RMSD calculated over the whole simulation period 
demonstrated the general stability of the system, with the NADH 
and 18 RMSD values always being lower than 1 and 3, 
respectively (Figure 24). The RMSD calculation were obtained 
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fitting the trajectories on the reference complex extracted from 
the last minimization step. NADH showed an RMSD close to 0 
due to the applied restraint. These molecular dynamics analysis 
underlined the consistency of the predicted binding mode and 
indicated that the change in the cyclopenta[c]pyridazin-3-one 
ring would result in more advantageous binding interactions. 
 

 
 

 
Figure 24. Calculated rmsd values during the whole simulation. The x axis 
reports the RMSD value in Å, the y axis reports the simulation time. NADH 
was always at lower distance of 1 Å; 18 was at lower distance of 3 Å; the 
jump of the distance values is related with the cyclopenta[c]pyridazine ring 
movements; the system (protein + NADH + 18) showed the higher values 
of RMSD, these higher distance values are mainly related with the C and N 
termini movements. 
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3.9.3) Drug-like properties 
 
We calculated drug-like properties of compound 18 using 
SwissADME server(63). 
Compound 18 does not violate the Lipinski rule of five(52) and 
Veber(64) rule and was predicted to have a good bioavailability 
after oral administration (Table 6 and Figure 25 A). The 3/75 rule 
(logP >3 and topological polar surface area (PSA) < 75 Å2) (65) 
evaluated compound toxicity and displayed a low probability of 
in vivo toxicological effects (Figure 25 B). 
 
Table 6. Drug like properties of compound 11. 

Comp LogPa MWb LogSwc tPSAd HBAe HBDf Rotg Lipinskih Veberi 3/75k 

18 1.30 398.48 -3.25 93.01 5 0 3 0 0 Low 

 
 

 

      

 

Figure 25. Estimated toxicity of compound 18. (A) Radar Plot of drug-like 
properties. The light green colored zone represents the suitable physicochemical 
space for oral bioavailability. -1 < LogP < 5; 150 < MW < 500; 20Å2 < tPSA < 
130Å2; -10 < LogSw < 0; 0 < HB D+A < 10; 0 < RotBonds < 9. The red line 
represents values for derivative 5. (B) 3/75 rule plot. Compounds locate in the red 
space are likely to cause toxicity; compounds locate in green space had a low 
likelihood of promiscuity and toxicity. The computed logP (horizontal axe) and 
tPSA (vertical axe) for derivative 5 (black circle) showed low likelihood of adverse 
effect and off-targets engagement. 
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3.10) Conclusions 
 
A novel, specific LDHA inhibitor 18 was found through 
structure-based virtual screening studies to have potent anticancer 
activity in the micromolar range in several cancer cell lines, 
including the aerobic glycolysis-dependent Med1-MB cell line, 
the CRC HCT116 and SW620, the lung cancer A549, and the 
pancreatic PANC-1 cancer cells. Compound 18 was 195 times 
more powerful than the reference inhibitor sodium oxamate at 
suppressing cell proliferation in the Med1-MB cell line, with an 
IC50 of 81 M. With an IC50 value that was 1396 times lower than 
sodium oxamate's, 18 at 100 M demonstrated substantial LDHA 
inhibition. As a result of LDHA inhibition, compound 18 
consistently increased NADH content and decreased lactate 
levels in tumor cells. Compound 18 was unable to stop the 
proliferation of LDHA-deficient HCT116 cells, proving that the 
impact seen in cancer cells is caused by a particular suppression 
of LDHA activity. Additionally, when coupled with the complex 
I inhibitor rotenone, 18 demonstrated synergistic suppression of 
cell growth and activation of programmed cell death. When 
considered collectively, the findings presented here support the 
idea that compound 18 deserves more research as a starting point 
for the creation of LDH inhibitors and for innovative anticancer 
approaches based on the targeting of critical metabolic processes. 
 
 
Di Magno L, Coluccia A, Bufano M, Ripa S, La Regina G, Nalli M, Di Pastena 
F, Canettieri G, Silvestri R, Frati L. Discovery of novel human lactate 
dehydrogenase inhibitors: Structure-based virtual screening studies and 
biological assessment. Eur J Med Chem. 2022 Oct 5;240:114605. doi: 
10.1016/j.ejmech.2022.114605.  
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Application of molecular dynamics 
techniques to the study of ligand-protein 
binding and protein-protein binding 
 
The use of molecular dynamics simulations is now an essential 
technique that let to observe relevant events for the 
rationalization of experimental data, indeed one of the aims of 
computer simulation is to “simulate” experiments to light up the 
invisible microscopic details and thus explain the results. Also, 
this technique could drive us though the investigations about 
rare events to notice.  
Here I will show the topics where I applied these approaches: 
the first examine the possible binding site for the AM-001 
allosteric inhibitor of EPAC1 using co-solvent molecular 
dynamics and the second uses another enhanced technique, 
accelerated molecular dynamics, to understand the CCRL2-
chemerin main interactions. 

 
1) Exploring Epac1 interactions with the 

allosteric inhibitor AM-001 
One of the most prevalent and ubiquitous second 
messengers, cAMP is produced when a series of 
extracellular ligands connect to Gs protein-coupled 
receptors. Following this activation, membrane-bound 
adenylyl cyclases (ACs) produce cAMP from adenosine 
triphosphate(1). cAMP regulates fundamental physiologic 
processes including metabolism, secretion, calcium 
homeostasis, muscle contraction, cell fate, and gene 
transcription. Four major downstream effectors, including 
the protein kinase A (PKA), exchange proteins directly 
activated by cAMP proteins (Epac), cyclic nucleotide 
gated (CNG) ion channels, and Popeye domain-
containing (POPDC) proteins, ensure the biological 
effects of cAMP(2,3,4,5). Additionally, the cellular activities 
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and specificity of this second messenger are controlled by 
a molecular scaffold, A-kinase anchoring proteins 
(AKAPs), which sequester PDEs and cAMP effectors into 
distinct subcellular compartments(6). cAMP effectors can 
be activated differently as a result of this 
compartmentalization. According to recent data, 
pathological cardiac remodeling and heart failure (HF), a 
significant cause of death globally, are influenced by 
abnormal cAMP signaling through dysregulation of 
cAMP compartmentalization(7).  
Guanine-nucleotide-exchange factors (GEFs) known as 
EPAC proteins were first identified 20 years ago by two 
separate research teams as new cAMP downstream 
effectors that regulated the PKA-independent activation 
of Rap1 and Rap2 small G-proteins.  
Two different genes, which result in a variety of 
transcripts, encode the Epac proteins, Epac1 and Epac2(5). 
Human kidney and heart have significant amounts of 
Epac1 mRNA expression, but Epac2 isoforms are mostly 
expressed in the brain and endocrine tissues(8,9). Indeed, 
EPAC1 is ubiquitously expressed whereas EPAC2 and its 
slice variants are localized in the brain (EPAC2A), 
pancreatic cells (EPAC2B) testis and liver (EPAC2C)(10). 
Epac1 and Epac2 are multidomain proteins and share a 
similar structural organization(11). They are featured by 
two main domains: an N-terminal regulatory region and a 
C-terminal catalytic domain. The amino-terminal 
regulation region contains a Disheveled/Egl-10/pleckstrin 
(DEP) domain followed by a cyclic nucleotide-binding 
domain (CNBD); in the absence of cAMP the N-terminal 
region serves as an auto-inhibitory domain to suppress 
Epac catalytic activity. The longer Epac2 isoform 
(Epac2A) has an extra CNB domain (CNBD-A) that binds 
cAMP with a low affinity, it is not necessary for Epac2 
activation by cAMP, but it is involved in the localization 
of Epac2A in the subcellular space. CNBD prevents Rap 
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proteins from accessing the Epac catalytic site. When 
cAMP binds to Epac, it causes the protein to undergo 
significant structural changes and loses its auto-inhibitory 
function, activating Rap1(12). 
The catalytic region consists of a Ras exchange motif 
(REM), a Ras association domain (RA) and a CDC25 
homology domain (CDC25HD). The CDC25HD 
catalyses GDP-GTP exchange for Rap, while the REM 
domain contributes to stabilize a catalytic helix, and the 
RA domain influences EPAC subcellular localization. 
The Ras-exchange motif (REM) domain is involved in the 
stabilization of the active conformation of Epac(12). The 
Ras-association (RA) domain is a protein interaction 
motif involved in the EPAC subcellular localization(12) 
and the cell division cycle 25 homology domain (CDC25-
HD) promotes the exchange of GDP for GTP on Rap 
GTPases. The relative orientations of the RR and CR with 
regard to one another are controlled by the regulatory 
CNBD at the RR C-terminus(13,14). The two areas acquire 
a closed conformation in the absence of cAMP, limiting 
the Rap GTPases' ability to enter the CR and causing 
constitutive inhibition. The two areas take on an open 
(active) configuration when cAMP binds to the conserved 
CNBD, allowing the Rap substrate to connect with the CR 
and induce GDP-GTP exchange(14,15,16). (Figure 26) 
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Fig 26 Graphical representation of EPAC activation upon cAMP binding. 
CNBD, DEP, REM, RA, and CDC25-HD domains are coloured in yellow, 
blue, cyan, orange and red respectively. cAMP is reported as white stick, 
RAP is reported as green cartoon. The cyclic nucleotide binding allows the 
regulatory domain to open leading the catalytic region exposed for binding 
of Rap 

 
The majority of biological action of cAMP in 
cardiomyoctes have traditionally been attributed to PKA, 
which facilitates the acute effect of the β-adrenergic 
receptor (β-AR) on heart contractility(17). Although β-AR 
activation is a crucial component of the fight-or-flight 
response in the heart, prolonged activation, as seen in 
heart failure (HF), leads to pathological cardiac 
remodeling, contractile failure, and arrhythmia(18). The 
negative effects of prolonged β-AR stimulation are 
consistent with the finding that plasma norepinephrine 
levels in HF patients is correlated with the degree of 
cardiac dysfunction and mortality.   
Interestingly, new research demonstrates that genetic or 
pharmacological suppression of EPAC1 improves cardiac 
function by preventing myocardial hypertrophy and 
fibrosis induced by persistent β-AR activation(19). 
Consequently, focusing on EPAC1 may offer therapeutic 
advantages for heart disorders(19,20). 
The research for Epac-selective pharmacological 
modulators was motivated by the data showing that Epac 
proteins are engaged in numerous important 
pathophysiological processes in different tissues (agonists 
and inhibitors). These compounds are expected not to 
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affect the cAMP/PKA-dependent pathway, and, ideally, 
be able to distinguish between the two Epac isoforms.  
These compounds can be categorized as cAMP analogues 
and non-nucleotidic small molecules based on their 
chemical structure. The main shortcomings of reported 
modulators were their inability to distinguish between 
PKA or EPAC isoforms, as well as their inadequate drug-
like properties. Also, the orthosteric cAMP site is 
abundantly conserved in cAMP-regulated protein, giving 
difficulties concerning selectivity(21). Finding a non-
competitive allosteric modulator that is anticipated to 
have less risks of cross-reactivity with other receptors that 
signal via cAMP, such as PKA or CNG ion channels, may 
be the solution to this problem(22). Only CE3F4(23,24) and, 
to our knowledge, AM-001(19) have been shown to 
selectively inhibit EPAC1.  
The small molecule AM-001 is a thieno[2,3-b]pyridine 
derivative that inhibits EPAC1 specifically and non-
competitively(19). During long-term β-adrenergic receptor 
activation, AM-001 reduces heart hypertrophy, 
inflammation, and fibrosis and enhances cardiac function. 
After mouse myocardial ischaemia/reperfusion injury, 
AM-001 lowers the infarct size in in-vivo tests(19).  
At this point we tried to understand the possible allosteric 
binding site of the AM-001 derivative since there is no 
data regarding its location. Considering that the biological 
evaluation showed a non-competitive mechanism of 
action and given the critical involvement of the hinge 
region of the EPAC in the close to open conformation 
shift, this region has recently been found to be a druggable 
area(25,26).  
Both catalytic and allosteric sites can be highlighted very 
effectively using the cosolvent molecular dynamics 
(CMD) approach(27). The multiple solvent crystal 
structures (MSCS) methodology(28) served as inspiration 
for this technique. The MSCS is based on solving protein 
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crystal structures while using a variety of organic 
cosolvents. It was discovered that there was a strong 
correlation between the overlapping sites of several 
cosolvents and biologically significant regions(27). The 
CMD might be seen as the in-silico analog of MSCS 
experiments. In order to identify the regions where 
organic solvents bind more preferentially, the CMD 
approach simulates the dynamics of a protein being 
solvated by a solution of organic solvents and water.  
In our research, we used CMD to search for the EPAC1 
allosteric binding site. As a result, the cosolvent 
occupancy maps for the EPAC1 active and inactive 
conformations were created and examined after the 
EPAC1 active and inactive conformations were solvated 
with a solution of 20% (w/w) isopropanol, ethanol, and 
dimethylsulfoxide in water. ISO is the most used solvent 
for CMD as it is able to interact with hydrophobic protein 
sites(29). Due to their relative abilities as hydrogen-bond 
acceptors and donors, DMSO and ETOH were 
selected(30,31). Additionally, the cosolvents were selected 
to be entirely water miscible to prevent the phenomenon 
of molecules aggregating and the concentration was set to 
prevent protein denaturation(32).  
By using homology from the EPAC2 crystal structure, 
models of the active and inactive EPAC1 conformations 
were created. The RMSD of the Cα backbone  was 
calculated to determine whether the unfolding 
phenomenon did not have an impact on the protein during 
the simulations(33). The RMSD results demonstrated that 
the cosolvents molecules did not interfere with protein 
folding (Figures 27 A and B).  
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Figure 27. (A) RMSD of Ca atom of Epac1 inactive conformation simulations. ISO is for 
isopropanol, Wat is for water, ETOH is for ethanol and DMSO is for dimethyl sulfoxide. 
 
 

 

Figure 27. (B) RMSD of Ca atom of Epac1 inactive conformation simulations. ISO is 
for isopropanol, Wat is for water, ETOH is for ethanol and DMSO is for dimethyl 
sulfoxide. 
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The cosolvent occupancy maps were determined by 
analyzing the simulation's trajectory. The pockets where 
the cosolvent molecules were found most frequently are 
shown on each map. Protein and cosolvent molecule 
interactions were not considered. To make 
comprehension of the maps easier, a size cut-off was used 
to remove the smaller disconnected portion of the maps. 
As a result, the regions of the proteins where the cosolvent 
occupancy maps could be superimposed represented the 
locations that would be ideal for partner binding. 

 
1.1) Materials and methods 

1.1)1. EPAC structures 
The EPAC structure was downloaded from the PDB data 
bank (http://www.rcsb.org/), inactive state: PDB code 
2BYV(34); active state PDB code 3CF6(12). 
Homology model were carried out by homology model 
PRIME(35) of MAESTRO(36). The obtained models were 
examined to avoid steric clashes, bond length deviations 
and angles, etc., by using the Ramachandran plot and the 
Protein Preparation Wizard(37). The missing loops were 
obtained by Raptor X(38,39). The primary sequence of 
EPAC1 and EPAC2 was downloaded by UniProtKB 
(https://www.uniprot.org) code: O95398NCBI and 
UniProtKB code: Q8WZA2 respectively. 
 
1.1)2. Molecular dynamics 
Molecular dynamics was performed with the AMBER 12 
suite(40). For simulation in water the protein was solvated 
in a periodic octahedron simulation box using TIP3P 
water molecules, providing a minimum of 10 Å of water 
between the protein surface and any periodic box edge. 
The organic cosolvent/water box were prepared by 
packmol by fixing a 20% w/w ratio(41). Parameters for 
cosolvents were obtained by pyMDMix. 
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(http://mdmix.sourceforge.net) Then, ions were added to 
neutralize the charge of the total system. The solvents 
molecules and the ions were energy-minimized keeping 
the coordinates of the protein-ligand complex fixed (1000 
cycle), and then the whole system was minimized (5000 
cycle). Following minimization, the entire system was 
heated to 298 K (20 ps). The production simulation was 
conducted at 298 K with constant pressure and periodic 
boundary condition. Shake bond length condition was 
used (ntc = 2). Production was carried out on GeForce 
gtx780 gpu. The cosolvent occupancy maps were 
computed with trajectories length of 100 ns and 250 ns. 
The obtained maps were similar regardless the length of 
the trajectories.  
The production length of the simulations to evaluate the 
AM-001 stability at the studied sites was 10 ns. The 
production time to run PCA was 200 ns. All simulations 
were repeated five times. The occupancy maps were 
calculated by Chimera Volume viewer(42). Chimera we 
also used for the representation of the maps by volume 
viewer range 50%, and for the size filtering by the Hide 
Dust tool size 5.0(43). Compounds were parametrized by 
Antechamber(44,45) using BCC charges. Trajectories 
analysis were carried out by cpptraj program(46). 
 
1.1)3. PCA 
The PCA analyses were carried out by cpptraj program(46). 
The trajectory was firstly superimposed to an average 
structure obtained by cpptraj. Then, the trajectory of the 
a-carbon was extracted, and the covariance matrix 
calculated. The diagonalization of the covariance matrix 
generated a set of eigenvectors that gave a vectorial 
description of the motion. The computed eigenvectors and 
eigenvalues were used to draw the porcupine plot by 
means of the Normal Mode Wizard module 
(NMWiz)(47,48) of the VMD gui(49). 
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1.1)4. Molecular docking 
Ligand structures were built with Maestro Schrodinger (36) 
and minimized using the OPLS3 force field until a rmsd 
gradient of 0.05 kcal/(mol Å) was reached. The docking 
simulations were performed using Gold(56), Plants(57) and 
Autodock(55). We set a binding lattice of radius or side 
large enough to cover the whole studied maps, then all 
default settings were used. The Docking of the AM-001 
analogues were carried out by Plants(57), using as receptor 
a representative structure obtained by the trajectory of the 
EPAC1/posa3_6. The representative structure was the 
average structure extracted by cpptraj(46) after a stable 
rmsd was reached. The poses binding free energy was 
calculated by MAESTRO prime MMGB-SA module(64). 
The pictures reported in the manuscript were done with 
Pymol(63). 

 
1.2) Analyses of the active conformation 

 
In order to evaluate the effectiveness of the approach, the 
active conformation of the enzyme was primarily 
investigated. BRET tests were previously used to 
establish if AM-001 inhibited EPAC1(23). Indeed, the 
experiment determined the degree of EPAC1 activation, 
or the change from an inactive to active state of the 
enzyme following antagonist binding. Cosolvent 
occupancy maps were generated using 100 ns (Figures 28, 
29) and 250 ns trajectory times.  
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Figure 28. Epac1 Csolvents occupancy maps for Active 
conformation. Epac1 is reported as cartoon colored by 
domains: CNBD and DEP green; REM orange; CDC25-
HD blue and RA red. Yellow maps are for ETA; cyan for 
ISO and pink for DMSO. The pictures are rotated of 180 
degrees. 
 

 
Regardless of the length of the trajectories, the occupancy 
maps studies for the EPAC1 active conformation resulted 
in the discovery of four intriguing zones labeled as regions 
from 1 to 4 (Figure 29).  
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Figure 29 Epac1 Active conformation cosolvent occupancy maps selected 
areas. Epac1 is reported as cartoon: CNBD and DEP green; REM orange; 
CDC25-HD blue and RA red. Yellow maps are for ETA; cyan for ISO and 
pink for DMSO  

 
The Rap binding site corresponded to areas 1 and 2, which 
were situated at the CDC25-HD domain(12). Indeed, the 
areas 1 and 2 were occupied by this domain, as 
demonstrated by the superimposition EPAC2 crystal 
structure, containing the Rap-interacting domain, with the 
EPAC1 model (PDB code: 4MGI)(50). We observed that 
the area 1 involved 4 α helices of the CDC25-HD namely 
α1 (671–680), α3 (708–713), α5 (750–756) and α9 (839–
844). This area bound the β4 and the loop connecting β4 
to α3 of the Rap domain. (Figure 30). The area 2 involved 
the CDC25 Helical Hairpin (α9 and α10 from 823 to 854) 
that accommodated the loop between α1 and β2 of Rap(51) 
(Figure 30). A possible interaction between EPAC1 and 
RanPB2 was also suggested to occur in region 2(52). The 
site 3 contained a loop that was not present in EPAC2 and 
was situated at the interface between the CDC25-HD and 
RA domains. A portion of the loop (550–557), the 
CDC25-HD α1 (678–682) and the β1 (558–562) of RA 
domain were all included in this wide surface. This area 
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was reported to be suitable for a protein-protein 
interaction(53).  
 

 

 

 

Figure 30. Epac1 active conformation with Rap domain. Epac1 is reported as 
cartoon colored by domains: CNBD and DEP green; REM orange; RA red and 
CDC25-HD blue. Rap domain is reported as purple cartoon. Yellow maps are for 
ETA; cyan for ISO and pink for DMSO. cAMP was reported as brown stick. 

 
The area 4 was located at the REM domain. It comprised 
the α1 (394–398) and α3 (434–440) helices of REM and a 
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small loop of CNBD (294–299). This zone was found to 
be suitable for partners binding by FTPmap 
experiments(26).  
EPAC1 was regulated and/or influenced in the subcellular 
localization by various proteins with unclear binding 
pockets(52). Indeed, it was reported that the residues 838–
881 were involved in the compartmentalization of 
EPAC1, but it was not clarified how these residues drove 
this activity(53). Furthermore, tubulin was also reported as 
a direct partner of EPAC1, but its binding site was not yet 
identified(54). Our analyses of the occupancy maps 
revealed that specific regions were appropriate for partner 
protein binding and were compatible with the existing 
structural information, proving the suitability of the 
method.  

 
1.3) Occupancy maps analysis of inactive 

conformation  
 
The EPAC1 auto-inhibited form (inactive conformation) 
was next submitted to the CMD procedure to locate a 
potential AM-001 binding site. The cosolvent occupancy 
maps were generated using 100 ns and 250 ns trajectory 
calculations (Figure 31). The evaluations of the cosolvent 
occupancy maps did not reveal any appreciable variations 
depending on the length of the trajectories and help in the 
identification of several suitable locations (areas). The 
proposed mechanism of cAMP-induced EPAC1 
activation involves EPAC1 regulatory domain that moves 
away from the catalytic domain. The lid (first -strand of 
REM 384-391 and the tip of CDC25-HD HP832-837) and 
the hinge helix play a fundamental role in this transition 
(CNBD 299–308). So, this cAMP-dependent 
conformational change should be impaired as a result of 
AM-001 binding to its allosteric pocket(26). These results 
were utilized to exclude the area surrounding the CDC25-
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HD and RA domains. Indeed, the regions seem to be too 
far away from the lid and hinge helix to have any effect 
on the transition from an inactive to an active 
conformation state. This finding led us to manage 7 areas 
(Figure 31).  
The cAMP binding pocket was in Area 1(12). The 
identification of the cAMP site stressed the validity of the 
method used. 
 

 
Figure 31 Epac1 Inactive conformation cosolvent occupancy maps selected 
zones. Epac1 inactive conformation is reported as cartoon: CNBD and DEP 
green; REM orange; CDC25-HD blue and RA red. Yellow maps are for 
ETA; cyan for ISO and pink for DMSO 

 
Docking and molecular dynamics were used to inspect the 
remaining locations. Area 2 was located at the CNBD near 
the catalytic site, Near the catalytic site, area 2 was located 
at the CNBD, which included CNDB 3 and the following 
loops (245-250), α4 (251-260), and α6 (1-6). (344–350). 
Area 3 was located at the interface between CNBD and 
REM domains. REM β1 (387–392) and α1 (398−402) 
together with the CNBD β9 (353–359) and β10 (363−368) 
surround this area. Area 4 is featured by the HP loop of 
CDC25-HD and the REM α2 (423−430). The only area 
completely located at the CDC25-HD was Area 5, which 
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included α2 (689−692), α3 (704−708), α5 (761−765) and 
α9 (815−827). The area 6 was at the interface of 
CDCD25-HD and REM. The area was defined by the α8 
(800–805), α9 (817–822) and α10 (844–851) of CDC25-
HD and the loop between α2 and α3 (247–251) of the 
CNDB. Area 7 was found between the CDC25-HD and 
CNDB domains, and it included the CDC25-HD's helix 
α8 (793–801) and the long helix (206-216) connecting 
CNDB to the Dep domain (Figure 32).  
 

 
 
Figure 32. Epac1 sequence and secondary structure. 
EPAC1 UniProtKB code: O95398. The DEP domain is not 
included in the sequence secondary assignment. CNBD 
residues 191-380; REM residues 381-525; RA residues 
526-661; CDC25-HD residues 662-923. For each domain 
the number of the a and b begins from 1. 

 
Thus, AM-001 was docked to each of the mentioned 
areas. The docking investigations were conducted using 
Autodock(55), Gold(56) and Plants(57).  
Among the docking software, at least one consistent AM-
001 binding pose (RMSD < 1.5 Å ) for each location was 
chosen and submitted to molecular dynamic simulations 
(10 ns). 
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The analysis of the molecular dynamic trajectories 
revealed that the ligand went out of the pocket early in the 
simulation for areas 2, 3, 4, and 7. Indeed, these sites were 
evidently solvent exposed, and it was assumed that these 
sites were more suitable as protein-protein interaction 
pockets(58) then as a small molecule binding sites(59).  
Managing area 5 and 6, the analysis of the trajectory 
revealed two stable (rmsf < 1.0 Å) binding modes for area 
5 (denoted as pose4_5 and pose9_5) (Figures 33, 34) and 
one for area 6 (denoted as pose3_6).  
 
 

  
Figure 33. Epac1 Area5 pose4_5 and pose9_5 binding modes. Left panel 
pose4_5; right panel pose9_5. Docking proposed binding mode (white) and 
molecular dynamic trajectories snapshots (cyan) of AM-001 at Epac1 Area5. 
The enzyme is reported as cartoon. The domains reported in the picture are, 
REM orange and CDC25-HD blue. Residues of the pocket are reported as 
grey lines. 
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Figure 34 Epac2 Area5 pose4_5 and pose9_5 binding mode. Left panel 
pose4_5; right panel pose9_5. Docking proposed binding mode (white) and 
molecular dynamic trajectories snapshots (cyan) of AM-001 at Epac2 
Area5. The enzyme is reported as cartoon. The domains reported in the 
picture are, CNBD and DEP green; REM orange; RA red and CDC25-HD 
blue. Residues of the pocket are reported as grey lines 

 
Then, we investigated whether the three chosen binding 
modes may be appropriate for EPAC2 because AM-001 
predominantly bound to the EPAC1 isoforms 
(IC50EPAC1 48.5 µM) and was ineffective in inhibiting 
EPAC2 activity (IC50EPAC2 > 1000 µM)(19). So, we ran 
several molecular dynamics simulations of the three 
binding modes placed in the corresponding pockets of 
EPAC2.  
We calculated the binding free energy(60,61) and we 
compared the trajectories with those resulting from the 
EPAC1 simulations. The trajectories inspection showed 
that the poses for area 5 were stable for EPAC2 (pose4_5 
rmsf 0.49 Å pose9_5 rmsf 0.39 Å) as observed for EPAC1 
(pose4_5 rmsf 0.41 Å pose9_5 rmsf 0.60 Å). The 
computed binding free energies for EPAC1 and EPAC2 
were very similar (EPAC1 ΔG pose4_5 = − 53.9, pose9_5 
= − 56.1; EPAC2 ΔG pose4_5 = − 63.3 pose9_5 = − 53.1). 
The difference was just 3 Kcal/mol for pose9_5, and a 
difference of 10 Kcal/mol for pose4_5 with the best ΔG 
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value for EPAC2. These findings would suggest that area 
5 is not suitable for binding of AM-001 as a selective 
allosteric inhibitor of EPAC1. However, this site might 
correlate to a biologically significant area for both EPAC 
isoforms' enzymatic activity. The area 6 pose underwent 
the same investigation once more. A degree of instability 
was evident from the trajectory inspection. The compound 
moved toward the solvent, showing a rmsd higher than 3 
Å and a calculated ΔG of -45.9 kcal/mol. The complex 
EPAC1/pose3 6 trajectory was examined in a similar 
manner. The AM-001 pose displayed overall stability 
with a rmsd of 1.19 Å and an estimated ΔG of -65.1 
kcal/mol, favoring the EPAC1 binding with about 20 
kcal/mol.  
According to our findings, region 6 would be most suited 
for the allosteric inhibition of EPAC1. To verify our 
hypothesis, we ran a 200-ns molecular dynamic 
simulation and tested whether this binding site could 
match the known SAR profile of the chemical analogues 
(Table 7). 
The trajectory analysis demonstrated the stability of the 
chosen binding mode and allowed us to identify a series 
of pharmacophoric interactions: the fluorinated phenyl 
group interacted with the R801 side chain through a pi-
cation interaction and hydrophobic contacts with L235 
and M; the primary amine moiety and the amidic nitrogen 
atom were involved in H-bond with D234 side chain; the 
pyridine thiophene fused ring had hydrophobic contacts 
with F237, R255, I825 and M844 side chains; the 
unsubstituted phenyl ring was trapped by pi-cation 
contacts with R847 and R850; the thiophene ring lay in a 
hydrophobic pocket mainly formed by R377, P378, N260 
and N838 side chains; additionally, the thiophen aromatic 
ring behaved as weak H-bond acceptor(62) for the 
asparagine side chain amide (Figure 35). 
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The stability of these interactions throughout the 
simulation time supported the validity of the suggested 
binding site. 
 

 
Figure 35. Proposed binding mode for AM-001 (cyan). Epac1 is 
reported as cartoon: CNBD and DEP green; REM orange; CDC25-
HD blue and RA red. Surface is reported in grey. Residues 
involved in interactions were depicted as grey stick. H-bond was 
reported as yellow dotted lines. 

 
 

Then, we analyzed the two binding locations with the 
intention of understanding the reasons that contributed to 
AM-001's selectivity between the two EPAC isoforms 
under study. The main difference deals with the residues 
of the loop between the CNBD b10 and REM b1. For 
EPAC1 and EPAC2, the loop had 19 and 18 residues, 
respectively. Even though the two isoforms' lengths were 
comparable, just two residues were shared. Additionally, 
the four residues facing EPAC1's binding pocket (RPPT) 
were considerably different from those in the same places 
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in EPAC2 (NQGN). Consequently, it might be suggested 
that the selectivity is caused by how this loop behaves in 
terms of conformation and interactions with AM-001. 
Furthermore, R847 and I825, involved in contacts with 
AM-001 are not the same in the EPAC2 isoform but they 
are replaced by N (956) and T (934) respectively, 
weakening the binding stability. Additionally, E(345) in 
EPAC2 corresponds to D239 in EPAC1. When combined, 
these results offer a potential justification for the affinity 
of AM-001 for EPAC1.  
The nine AM-001 analogues (Table 7 and Figure 36) were 
then docked into this binding site to assess how well the 
site might fit the experimental data(18).  
 

  
Figure 36. Plants proposed binding mode of AM-001 analogues. Left panel: 
AM-001 (cyan) AM-002 orange, AM-004 pink and AM-005 white; Right 
panel: AM-001 (cyan), AM-003 magenta, AM-006 light green, AM-007 
grey, AM-008 violet and AM-009 yellow. AM-010 is not reported because 
of unrelated binding mode. Epac1 is reported as cartoon: CNBD and DEP 
green; REM orange; CDC25-HD blue and RA red. Surface is also reported 
in grey. Residues involved in interactions were depicted as white stick 

 
The compoundsAM-004 and AM-005, which varied only 
in the fluorine atom location, shared the same interactions 
with AM-001 and had a very comparable binding mode. 
Although there were some obvious differences, the 
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binding mode for the compounds AM-003, AM-006, AM-
007, AM-008, and AM-009 was similar to AM-001, we 
did not observe the contacts of the fluorinated phenyl ring 
(AM-003 and AM-006), the thiophene (AM-007 and AM-
008), and the unsubstituted phenyl ring (AM-009) of AM-
001. We found a binding mode for compound AM-002 
that was comparable to AM-001, but we did not see any 
H-bonds, and the pyrimidone-linked phenyl ring was 
positioned farther away from the R801 position (Figure 
34). 
Moreover, we found a strong correlation between the 
experimental biological activity and the estimated binding 
energy for the docking poses(36,64), with a significant 
correlation coefficient, R, of 0.74 and Rs of 0.83 p (2-
tailed) 0.53%. (Table 8). The chosen binding mode 
essentially matches the SAR for analogs of AM-001. In 
conclusion, the chosen binding mode rationally fits the 
known structure-activity relationship for the AM-001 
analogues and appears appropriate as a selective allosteric 
binding site for the inhibitor AM-001. 
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Compounds Structures BRET ratio 
variationa 

AM-001 
 

46.7 ± 0.8 

AM-002 
 

93.6 ± 0.9 

AM-003 

 

100.4 ± 2.1 

AM-004 
 

47.0 ± 0.7 

AM-005 

 

46.9 ± 1.3 

AM-006 

 

74 ± 2.8 

AM-007 
 

80.5 ± 3.9 

AM-008 
 

82.1 ± 5.5 
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AM-009 
 

82.4 ± 1.8 

AM-010 
 

101.3 ± 2.8 

Table 7 Structures and Bret ratio variation of AM-001 analogues.a  

a Data from reference 1 
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Compd DGa BRET ratiob 
AM-001 -60.23 46.7 
AM-002 -42.65 93.6 
AM-003 -49.17 100 
AM-004 -49.88 47 
AM-005 -58.92 46.9 
AM-006 -53.45 74 
AM-007 -52.46 80.5 
AM-008 -46.1 82.1 
AM-009 -47.54 82.4 

 
Table 8. Correlation between BRET-ratio values and calculated DG (Kcal/mol) 
of docking proposed binding poses for AM-001 analogues. aDG values were 
calculated by MMGB-SA module of Maestro suite [2, 3]; bdata are from reference 
1. Compound AM-010 was omitted in the computation by its unrelated binding 
mode. 
The Spearman coefficient Rs was 0.83, p (2-tailed) 0.53%;  
The Pearson coefficient R was 0.74 

 
At the end, we analysed the EPAC1/AM-001 complex 
trajectory in order to understand how the AM-001 binding 
impaired the activating transition of the enzyme. To 
underline the  dominant mode of motion of the protein 
over the simulation time, PCA analysis was 
conducted(65,66,67). Porcupine plots(68,69), that display the 
direction and magnitude of the top two eigenvectors 
(Figure 37) for each of the backbone Ca atoms, were used 
to represent these protein motions (Figure 37 and 38). The 
most prominent observed motion was related to the loops 
at the CDC25-HD. Focusing on the helices that shaped the 
binding site we observed that α7 (794–805), α8 (821–830) 
and α9 (840–850) helices of the CDC25-HD moved 
toward the CNBD, as well as the CNBD α2 (230–242) 
moved toward the CDC25-HD. The observed movements 
involved the enzyme loop and helices that are crucial in 
the open -to-close conformational transition. As a result, 
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AM-001 binding to region 6 in the closed conformation 
of EPAC1 may improve the interaction between the 
CDC25-HD and CNBD domains, stabilizing an inactive-
like conformation and avoiding the activation transition 
that would otherwise be triggered by cAMP binding to the 
CNBD domain. 
 

 

  
Figure 37 Porcupine plot of the top two eigenvectors. Right panel: 
eigenvector 1, left panel: eigenvector 2. Epac1 is reported as tube: CNBD 
and DEP green; REM orange; CDC25-HD blue and RA red. AM-001 is 
reported as cyan stick. The yellow and grey arrows attached to each a-
carbon atom indicate the direction of the movement; the size of each arrow 
shows the magnitude of the corresponding movement. 
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Figure 38. PCs cumulative contribution (%, Y-axis) of variance for the 10 
eigenvectors (X-axis) calculated by PCA. The contribution of first and 
second eigenvectors is also reported to the corresponding point. 
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2 15.9 363.37 
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7 3.5 81.88 
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Table 9 Values of the ten eigenvectors, eigenvalues and 
relative proportion of variance  
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1.4) Conclusions  
 
To identify a potential AM-001 EPAC1 allosteric 
inhibitor binding site, cosolvent molecular dynamics was 
employed. By analyzing cosolvent occupancy maps, we 
were able to determine the EPAC1 sites that would be best 
for partner binding. The docking and molecular dynamics 
of AM-001 evaluated each location. The pocket located at 
the interface between α8, α9 and α10 of CDC25-HD and 
α2 and α3 of CNBD appears to be suitable as a selective 
allosteric binding site for the AM-001. The available AM-
001 analogues were docked to this site showing a good 
match with the already reported SAR(18). The 
EPAC1/AM-001 trajectory was subjected to PCA 
analysis, which revealed that the AM-001 binding may 
have strengthened the contact between CDC25-HD of the 
catalytic region and CNBD of the regulatory region, 
stabilizing an inactive "like" conformation. Therefore, 
despite the binding of cAMP to EPAC1, AM-001 binding 
to the predicted binding pocket may force the highly 
dynamic protein in an inhibited conformation. 
 
 
Bufano M, Laudette M, Blondeau JP, Lezoualc'h F, Nalli M, Silvestri 
R, Brancale A, Coluccia A. Modeling Epac1 interactions with the 
allosteric inhibitor AM-001 by co-solvent molecular dynamics. J 
Comput Aided Mol Des. 2020 Nov;34(11):1171-1179. doi: 
10.1007/s10822-020-00332-y.  
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2) Exploring CCRL2-Chemerin binding 
 
Chemokines are soluble mediators that control 
immunological development and function, primarily via 
enhancing leukocyte trafficking. Chemokines interact with 
seven-transmembrane domain (7-TMD) receptors. The two 
main functional categories of chemokine receptors are the 
"classical" G protein-coupled signaling receptors (GPCR) 
and the atypical chemokine receptors (ACKRs)(1).  ACKRs 
did not behave like GPCR for signal transduction, but rather 
they induce ligand internalization and degradation. In 
various circumstances ACKRs have the ability to move the 
ligand throughout the cell(2). Similar to ACKRs, CCRL2 has 
a changed amino acidic sequence (QGYRVFS) in the 
cytoplasmic extension of the third transmembrane helix in 
place of the conserved motif DRYLAIV, which is necessary 
for the induction of G protein-mediated responses(1). 
Therefore, CCRL2 does not promote cell motility or 
activate traditional G protein-mediated signaling. CCRL2 
has been suggested to function as a receptor for chemokines 
including CCL2, CCL5, CCL7, CCL8, CCL19, and CCL21 
in the past(3,4,5), although other research teams have doubted 
these findings. Instead, it is commonly accepted that 
CCRL2 bind the non-chemokine chemotactic factor 
chemerin. According to the widely accepted theory, CCRL2 
binds chemerin at its N-terminus while leaving the C-
terminus free for interaction with cells expressing the 
functional chemerin receptor, chemokine-like receptor 1 
(CMKLR1). So, it is suggested that CCRL2 function as a 
chemerin-presenting molecule at the surface of barrier 
cells(6,7). The recruitment of CMKLR1-expressing cells, 
such as monocytes/macrophages, dendritic cells, 
plasmacytoid dendritic cells, and NK cells, may therefore 
be aided by CCRL2(8,9,10). It has been demonstrated that this 
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CCRL2/CMKLR1 axis controls the trafficking of dendritic 
cells, mast cells, and NK cells in vivo(6,11,12,13,14). 
This concept, which assumes that CCRL2 differs from all 
other ACKRs in not internalizing, recycling, and 
scavenging the ligand, is supported by in vitro and in vivo 
studies(13,14). Therefore, the biological role of CCRL2 as 
well as its scavenging and recycling properties are still up 
for debate.  
As explain previously, the only recognized CCRL2 ligand 
up to this point is chemerin, which is encoded by the 
RARRES2 gene. Mammalian cells synthesize chemerin, a 
163 amino acid (aa) pro-precursor. A precursor form of 
chemerin is secreted as a result of the N-terminal processing 
of the 20 aa(7). Depending on the extent of processing, the 
additional C-terminal cleavage produces both active and 
deactivated chemerin forms. For instance, chemerin is 
activated by proteases such as plasmin, elastase, and 
cathepsin G, resulting in multiple chemerin isoforms with 
varying affinities for CMKLR1, the active chemerin 
receptor. Chemerin becomes inactive when chymase 
further cleaves the bioactive form(15). Therefore, the C-
terminal proteolytic processing functions as a regulatory 
mechanism to manage the concentration of active 
chemerin.  
To date, two more G protein-coupled receptors, CMKLR1 
and GPR1, that show high affinity for chemerin have been 
identified. Most innate immune cells, including dendritic 
cells, macrophages, and Natural Killer (NK) cells, express 
CMKLR1. 
Chemerin triggers a poor Ca2+ mobilization and ERK1/2 
activation in GPR1-expressing cell lines, but the agonist-
induced internalization of the receptor is effective. Given 
that no GPR1-mediated activity has been identified on 
primary cells or in living organisms, it is possible that 
GPR1 functions as a chemerin decoy receptor. GPR1 is 
found to be expressed in the central nervous system, 
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skeletal muscle, skin, and adipose tissue, where it may 
control the action of chemerin, rather than by leukocyte 
populations(7,16). 
Only CCRL2, between these three receptors, lacks the 
capacity to initiate an intracellular signaling cascade.  
It has been demonstrated that CCRL2 controls the 
recruitment of NK cells in pathological situations(11,17) as 
well as inflammation-related disorders as experimental 
autoimmune encephalitis, hypersensitivity, and 
inflammatory arthritis(16,18,19,20) . 
Given the numerous physiological roles of the ccrl2-
chemerin complex we choose to run protein-protein 
docking followed by accelerated molecular dynamic(21) 
(aMD) simulation of the potential binding conformations in 
order to further define the CCRL2–chemerin interaction. 
It was setting a protocol of aMD as opposed to a standard 
molecular dynamic approach, which is forced by kinetic 
trapping effects and a restricted sampling of the 
conformational space. By applying a potential energy 
boost, this technique lowers the energy barrier between two 
different low-energy states, raising the transition 
probabilities between two distinct conformations(22). 
Principal component analysis (PCA) were used to analyze 
the 5.5 μM second trajectories that we collected and 
identify the variables with the most variance(23,24). Then, the 
hot-spot residues of the CCRL2 chemerin complex were 
highlighted. These were the residues that were more 
frequently implicated in binding interactions. 

 
2.1) Materials and methods 

 
2.1.1) Structural comparison of modeled 

proteins 
The optimized CCRL2 and chemerin models were 
compared to their respective AlphaFold 
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(https://alphafold.ebi.ac.uk/, entry: O00421 
CCRL2_HUMAN) conformations using Matchmaker 
function of UCSF Chimera(25) and RMSD values were 
obtained. 
 
2.1.2) Protein–protein docking 
Protein–protein docking was performed on HADDOCK 
server(26) using the 3D models of CCRL2 and chemerin 
proteins. We set up as “active” residues (residues 
expected to be involved in the interaction between the two 
molecules) the N‐terminal residues 1–100 of chemerin 
and the extracellular loops of the CCRL2 receptor (from 
UniProtKB, 25–67; 120–128; 190–122; 284–310) 
following literature data(26); the other residues were 
defined as “passive” (residues accessible to the solvent 
closed of the active residues). This docking protocol 
consisted of three stages: rigid body (it0), semi‐flexible 
refinement (it1), and explicit solvent refinement (water). 
The docking experiments were carried out by using 
default parameters. Just MD steps in the TAD and cooling 
stage were increased to 2000 for it0(26). HADDOCK 
produced 1000 models in the first step, then refined to 200 
best model in the following steps. The final models were 
automatically clustered based on the fraction of common 
contacts that measures the similarity of the intermolecular 
contacts. At the end, we obtained 12 clusters, and for each 
of them, it was selected as representative structure the 
conformation with the best score value. 
 
 
2.1.3) Accelerated molecular dynamics  
The membrane embedded complexes structures(27) and the 
Amber parameters(28) were obtained by CHARMM‐GUI 
server through Membrane builder module(29). 
The structural information to have a reliable placement of 
the bilayer membrane at CCRL2 were obtained by 
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Uniprot (UniProtKB: O00421) at the subcellular 
localization section. Indeed, in this section were defined 
both the nonmembrane region (topological domain), and 
the extent of the membrane‐spanning regions 
(transmembrane) of CCRL2. 
In the first step of the CHARMM membrane builder we 
upload the pdb files of the representative structures from 
HADDOCK cluster. In the second step the protein was 
aligned in order to orient it with respect to the membrane 
normal (the Z-axis). In the third step the system size was 
determined calculating the cross-sectional area along the 
Z-axis and the cross-sectional areas of lipid molecules. So 
the systems were inserted in a membrane of 20% 
cholesterol and 80% POPC (1‐palmitoyl‐2‐oleoyl‐sn‐
glycero‐3‐phosphocholine); the system was solvated with 
TIP3P water model and ionized up to a concentration of 
0.15 M NaCl still using the CHARMM‐GUI, additional 
Cl− ions were added to neutralize the systems(27).  All the 
system (proteins + membrane + solvent) consists of 
67 447 atoms. Each system was then submitted to aMD, 
carried out on Cineca supercomputer using Amber20. The 
whole system was minimized (5000 cycle) using 
restraints for CCRL2 and membrane (10 and 2.5, 
respectively); then, the CHARMM‐steps equilibration 
protocol with progressive removal of position restraints 
was applied to the membrane and protein atoms 
(http://www.charmm-gui.org/demo/amber_ff/2).  
Several restraints are set on the protein, water, ion, and 
lipid molecules throughout the equilibration process to 
ensure gradual equilibration of the initially constructed 
system.(44) Harmonic restraints are applied to ions and 
heavy atoms of the protein, repulsive planar restraints to 
prevent water from entering into the membrane 
hydrophobic region, and planar restraints to hold the 
position of head groups of membranes along the Z-axis. 
As the equilibration process continues, these restraining 
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forces gradually decrease. To permit a successful 
equilibration, i.e., to avoid instability of dynamics 
integrations during equilibration, the NVT dynamics 
(constant volume and temperature) is used for the first and 
second steps, and the NPAT (constant pressure, area, and 
temperature) dynamics for the rest at 303.15 K (DMPC 
and POPC) and 323.15 K (DPPC) (Table 10).  
 
 

Step  Ensemble1 Time 
steps 

Equilibration 
time 

Force constant for harmonic restraint2 

 Protein 
backbone3 

Protein 
sidechain3 

Water4 Lipid5 Ion3 

1 NVT 1 ps 125 ps 10.0 5.0 2.5 2.5 10.0 
2 NVT 1 ps 125 ps 5.0 2.5 2.5 2.5 0.0 
3 NPAT 2 ps 125 ps 2.5 1.0 1.0 1.0 0.0 
4 NPAT 2 ps 250 ps 1.0 0.5 0.5 0.5 0.0 
5 NPAT 2 ps 250 ps 0.5 0.1 0.1 0.1 0.0 
6 NPAT 2 ps 250 ps 0.1 0.0 0.0 0.0 0.0 
1NVT stands for constant volume and temperature, NPAT stands for constant pressure, area, and 
temperature. 
2Force constants are in kcal/(mol Å) 
3positional armonic restraint 
4Harmonic restraint to keep water molecule away from the membrane hydrophobic region. 
5Harmonic restraint to keep the lipid tail in -5 Å < Z < 5 Å and lipid head groups close to the membrane 
surface (Z  ± 17 Å for DMPC and Z ± 19 Å for DPPC and POPC)  
Table 10. Information on each equilibration steps 

 
This equilibration protocol was carried out by Amber and 
consists of two NVT (constant number of particles (N), 
volume (V), and temperature (T)) steps to heat the system 
to 303.15 K employing as thermostat Langevin dynamics 
(collision frequency 1 ps) and four NPAT (constant 
number of particles (N), pressure (P), area (A) and 
temperature (T)) steps (Table 10) with SHAKE algorithm 
and the particle mesh Ewald (PME)(30) (with a cutoff of 
9 Å). The required average dihedral energy and average 
total potential energy were computed during 5 ns classical 
molecular dynamics for each studied complex(31). The 
aMD production (500 ns) was conducted at 315 K with 
constant pressure (1 bar) and periodic boundary 
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condition, Shake (ntc = 2) and PME with cut of 10 Å were 
set, each simulation was repeated three times. 
Total Accessible Surface Area and Buried Surface Area 
(BSA) were computed by Pisa server 
(http://pdbe.org/pisa/). The property maps were 
calculated by Coco server(32).  
 

2.1.4) Trajectories analyses 

Trajectories analyses were carried out by mdtraj(33). The 
PCA analyses was carried out with scikit‐learn using the 
decomposition module(34). Scipy library(35) was used to 
calculate Gaussian Kernel density estimation (KDE). 
Graphics were done with Matplotlib(36).  

 
2.2) Modeling of CCRL2 and chemerin 

 
A methodology based on protein-protein docking and 
aMDs was used to determine the potential residues 
implicated in the CCRL2 chemerin binding. 
Since the crystal structure of CCRL2 was not available, it 
was decided to derive CCRL2 using a homology modeling 
approach and chemerin using ab-initio computations. 
CCRL2 has two conformational states, active and 
inactive, like other chemokine receptors. It was decided to 
model exclusively the active state of the receptor because 
interaction with the ligands puts GPCRs in the active state. 
The CCRL2 model was specifically based on the 
chemokine receptor that shared the most similarities with 
it (PDB: 5WB1(37)) and was lacking an N-terminal tail. 
The absence of highly conserved homologous proteins led 
to the ab-initio modeling of chemerin. 
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Notably, both the CCRL2 and chemerin structures became 
accessible at the AlphaFold database in the meantime, as 
the designed computations were completed 
(alphafold.ebi.ac.uk). By calculating the RMSD, the 
AlphaFold and our models were compared. For CCRL2, 
it was calculated a Cα RMSD of 1.02 Å and the great 
amount of this distance was related with the extracellular 
loop 2 (ECL2, residues 169–192) and the TM6 helix 
(Figure 39).  
TM6 was embedded in the membrane, far from the 
chemerin binding site. As a result, we predicted that it 
would only slightly affect the ligand binding. A long loop 
(23 residues) is difficult to predict with accuracy, indeed 
also AlphaFold listed this the ECL loop as having poor 
confidence (per-residue confidence scores between 70 and 
50). 
Furthermore, the bias associated with the various loop 
conformations was decreased by using aMD in place of 
classical MD. Indeed, aMD provided a significant benefit 
in simulating rare events necessary for protein 
conformational change and modeling conformational 
change without prior knowledge of conformational 
states(38). The superimposition of our model and the one 
proposed by AlphaFold resulted in a Cα RMSD of 1.12 Å 
for chemerin. The C terminal helix 2 was the least well-
fitting domain (Figure 40) but It was claimed that 
chemerin binding to the CCRL2 was not affected by this 
area. From this information we could tell that a good 
superimposition between the AlphaFold and our models 
was appreciated. 
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Figure 39. Superimposition of CCRL2 alphafold (cyan) and in-house 
homology model (blue). It is reported a frontal (left) and a 180 degrees 
rotated view (right) of the receptor. 

 
 

 
Figure 40. Superimposition of chemerin alphafold (blue) and in-house model 
(blue). It is reported a frontal (left) and a 180 degrees rotated view (right). 
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2.3) CCRL2‐chemerin protein–protein docking 
 

The CCRL2-chemerin complex was docked using 
HADDOCK server(26) and the results gave us 12 different 
clusters. Haddock post docking quality evaluation 
algorithms determined a representative binding 
conformation for each cluster, designated as complexes 1–
12 (Figure 41). To the chosen models weren't given any 
more refinement. Similarly, in order to be as objective as 
possible, we didn’t consider the docking score and the 
energy of the complexes. We generated a membrane 
belayer for each of the representative complexes and then 
we submitted them to aMD; each MD had a length of 500 
ns. In order to assess the system stability, the resulting 
trajectories were first subjected to RMSD analysis. 
Among the simulations we observed some complexes 
with peculiar trends. The C‐terminal helix, for complex 9, 
moved up to the binding site during the simulation time 
and this behavior led us to don’t consider this complex. 
Indeed, as told in the introduction, a model in which 
Chemerin C‐terminal binds CMKLR is commonly 
accepted(39). Another complex that we don’t investigate 
was the complex 10 in which Chemerin assumes a 
distorted conformation with the C-terminal moving far 
away from the N-terminal.  
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Complex 1 Complex 2 Complex 3 Complex 4 

    
Complex 5 Complex 6 Complex 7 Complex 8 
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Complex 9 Complex 10 Complex 11 Complex 12 
Figure 41. Docking proposed binding conformation for Chemerin 
(pink) and CCRL2 (cyan) aligned on CCRL2 
 
2.4) Selection of CCRL2‐chemerin binding models 

The analyses of the trajectories started from a PCA 
analyses. The obtained matrixes were investigated by 
Gaussian kernel (KDE) to produce probability distribution 
functions in the subspaces covered by principal 
components 1 and 2 (PC1 vs. PC2). It was demonstrated 
that the method for analyzing MD trajectories data that 
coupled a dimension reduction step (PCA) with a 
subsequent clustering step (KDE) was able to reduce noise 
and producing more compact and well-separated clusters 
of conformations(40). Furthermore, for each trajectory, the 
KDE plots facilitated the identification of conformational 
basins that presented the population with high density; 
from each basin we extracted the representative 
conformations. This method offered the more frequently 
present conformations believed to be most significant 
(Table 10). 
Then, we computed the BSA for each of these 
conformations.  Because of the small dimensions of the 
interface between CCRL2 and chemerin, conformations 
with BSA smaller than 600  Å2 were excluded(41). The 22 
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remaining conformations were analyzed by visual 
inspection focusing on the salt bridge interactions. Indeed, 
the specificity of how proteins interact with other  
 

  

  

Complex 4 

Complex 2 Complex 1 

Complex 3 



Application of molecular dynamics simulations 

 184 

  

  

Complex 5 Complex 6 

Complex 7 Complex 8 
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biomolecules is greatly influenced by this type of 
contact(42,43). 
The examined conformations have been divided into two 
broad chemerin binding modes. At the same time, the 
CCRL2 and Chemerin areas that are more frequently 
engaged in the binding have been identified: the two 
extracellular loops ECL2 (residues169–192) and ECL3 
(residues264–270) for CCRL2, as well as the residue 
lining the receptor channel's opening; the α1 helix, the β1 
sheet, and the loop between β2 and β3 sheets (β2β3‐loop 
residues 49–73) were the three areas of Chemerin that 
were most crucial for interaction with the cognate 
receptor.  
Twelve of the twenty-two examined conformations shared 
the first binding mode (defined as BM1). The interactions 
between the chemerin β2β3-loop and ECL3 (6 
conformations of12) and ECL2 were indicative of this 
binding mode (6 conformations of 12). Additionally, the 
chemerin α1 helix touch the entrance of the channel (9 
conformations of 12).  

 

  
Table 11 Trajectories analyses by RMSD, Explained variance and Kernel 
Density Estimation 

Complex 12 Complex 11 
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For BM2, which was present in seven of the examined 
conformations, the chemerin β2β3-loop made contact 
with the CCRL2 ECL2 and ECL3 in seven of those 
conformations, the α1 helix made contact with the CCRL2 
ECL2 in seven of those conformations, and the β1 sheet 
made contact with the ECL3 and the residues lining in the 
receptor channel entrance in four of those conformations. 
The significant contribution of the Chemerin C-terminal 
domain to the binding to CCRL2 distinguished the three 
remaining conformations. These three conformations 
were discarded because it was claimed that the C-terminal 
was solely involved in the binding of CMKLR1(39). 
An interesting point to note is that the 180° rotation of the 
chemerin conformation was the principal difference 
between the two binding modes, BM1 and BM2. The 
chemerin α1 helix for the BM1 was located behind the β 
sheets, as opposed to the BM2 where it was placed in front 
of the β sheets (Figure 42). 
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Conformation 2 as representative of BM1 Conformation 14 as representative of BM2 

Figure 42. Docking proposed chemerin binding modes. 
 
 

2.5) Proposed interaction models for CCRL2‐
chemerin binding 
The binding residues, the types and frequencies of the 
identified interactions were examined to acquire 
additional knowledge. Two patterns of interaction were 
seen for the BM1. For the first one, we found that the 
chemerin β2β3-loop make contacts with the ECL2 
residues of CCRL2. 
The majority of the chemerin β2β3-loop residues were 
polar, for this reason salt bridges and H-bonds were the 
most often seen interactions. Indeed, we found a 
conserved array of polar contacts (6 conformation of 12) 
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Lys60chem with Asp271CCRL2, Lys61chem with 
Glu265CCRL2, Glu63chem with Lys197CCRL2, and 
Lys72chem with Asp176CCRL2. Additionally, a 
hydrophobic interaction between Val66chem and 
Phe188CCRL2 was noticed (Figure 43 and 44). For the 
conformation falling within BM1, the second pattern of 
contacts included a salt bridge between CCRL2 Lys30 and 
Glu175 and the chemerin α1 helix residues Glu1 and 
Arg4, respectively. Chemerin Arg5 also made polar 
contact with Glu26 or Asp29 of CCRL2. Notably, the 
chemerin β1 sheet residues were also involved in contacts 
with the CCRL2 ECL2, and a polar contact was seen 
between Glu26chem and Arg185CCRL2. Another polar 
contact between the chemerin β2β3 loop Lys61 and 
Glu192 of the CCRL2 ECL2 was observed (Figure 45 and 
46). 
As a result, the BM1 conformation analysis revealed two 
key sites known as the first and second pattern of 
interactions.  
We hypothesized that the chemerin β2β3‐loop loop might 
interact with the CCRL2 TM6–TM7 loop, moving the far 
away from the CCRL2 entrance channel and allowing the 
chemerin α1 helix to move toward this channel, even 
though we did not observe any shifting of one position to 
the other during the simulation time.  
The chemerin β2β3‐loop created significant polar 
connections and hydrophobic contacts in the BM2. 
Indeed, the chemerin residues Lys60, Lys65, Arg67, and 
Lys72 established salt bridge with Glu175 of ECL2, 
Asp32 and Glu26 of TM1, and Asp271 of ECL3, 
respectively (five conformations of seven). 
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Figure 43. First proposed patter of interactions for BM1. Proteins are 
reported as cartoon: pink for chemerin, and cyan for CCRL2. Residues 
involved in contacts were reported as stick: grey for chemerin and cyan for 
CCRL2. Salt bridges are depicted as purple dot lines. Membrane is not 
reported for clarity 
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Figure 44. BM1 first proposed pattern of interactions as surface. Chemerin 
is reported as red surface, CCRL2 is reported as blue surface. In the right 
panel are depicted the interacting areas, as yellow surfaces, for both 
chemerin (top) and CCRL2 (down) 
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Figure 45. Second proposed patter of interactions for BM1. Proteins 
are reported as cartoon: pink for chemerin, and cyan for CCRL2. 
Residues involved in contacts were reported as stick: grey for chemerin 
and cyan for CCRL2. Salt bridges are depicted as purple dot lines. 
Membrane is not reported for clarity 
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Figure 46. BM1 second proposed pattern of interactions as surface. 
Chemerin is reported as red surface, CCRL2 is reported as blue surface. In 
the right panel are depicted the interacting areas, as yellow surfaces, for both 
chemerin (top) and CCRL2 (bottom). 

It is noteworthy that interactions between the chemerin 
β2β3‐loop and the CCRL2 ECL2 appeared to push the 
latter away from the receptor entrance channel, resulting 
in a space filled by β1 sheet residues (QETSV), forming a 
salt bridge between Glu322chem and Arg161ECL2 and 
hydrophobic contacts between Gln321chem and 
Phe159ECL2 (Figures 47 and 48). 
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Figure 47. Proposed interaction for BM2. Proteins are reported as cartoon: 
pink for chemerin, and cyan for CCRL2. Residues involved in contacts were 
reported as stick: grey for chemerin and cyan for CCRL2. Salt bridges are 
depicted as purple dot lines. Membrane is not reported for clarity. 
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2.6) Conclusions  
The accomplished simulations allowed us to learn more 
about how chemerin binds to CCRL2. The findings that 
have been provided are the earliest efforts to explain the 
CCRL2 chemerin interaction. Two binding modes for 
chemerin were found after 5.5 μs of simulations, and both 
BMs point to the importance of the chemerin helix α1, β1 
sheet and β2β3‐loop. Additionally, it was proposed that the 
CCRL2 chemerin complex might arise because of the 
CCRL2 ECL2 moving away from the receptor entry 
channel under the influence of the chemerin approach, thus 
making binding easier. Additionally, a short list of hotspot 
residues that may be essential for facilitating complex 
formation and chemotactic activity was obtained by the 
analysis of the trajectory data. Indeed, we identify for 
chemerin the α1 helix Glu1, Arg4, and Arg5, at the β2β3‐
loop three lysine residues (60, 61, and 65), and for the β1 
sheet Gln25 and Glu26. Furthermore, the ECL2 and ECL3 
areas for CCRL2 were identified: the residues Glu175, 
Asp176, and Asp271 appeared to be important for ECL3. 
Although these findings still require experimental 
confirmation, they may aid in elucidating the CCRL2—
chemerin interaction. The presented models may also help 
elucidate the physio-pathological roles of both CCRL2 and 
chemerin as well as their potential utility as targets for 
therapeutic intervention. These studies in medicinal 
chemistry could pave the way for the discovery of 
modulators of the CCRL2 chemerin interaction. 
 
Bufano M, Laffranchi M, Sozzani S, Raimondo D, Silvestri R, 
Coluccia A. Exploring CCRL2 chemerin binding using accelerated 
molecular dynamics. Proteins. 2022 Sep;90(9):1714-1720. doi: 
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Conclusions and future perspectives 
 
This thesis focuses on the application of molecular modeling 
during the early stages of drug discovery and the use of molecular 
dynamics simulations to predict ligand-protein or protein-protein 
stable interactions.  
Because of their comparatively higher efficiency and cheaper 
costs compared to traditional experiments, in silico methods, 
particularly docking and scoring in virtual screening, are crucial 
during this lead compound design phase.  
Molecular docking is one of the most widely utilized techniques 
due to its capacity to predict the conformation of small molecule 
ligands within the proper target binding site. For instance, 
investigations involving important molecular events, such as 
ligand binding modes and the intermolecular interactions that 
stabilize the ligand-receptor complex, can be easily carried out. 
This technique is part of the virtual screening procedures that 
aims to identify novel bioactive compounds from huge chemical 
libraries using knowledge about the protein target (structure-
based VS) or already-existing bioactive ligands (ligand-based 
VS).  
We developed a protocol featured by 5 steps: identification of the 
target, validation of docking software, docking of compounds 
libraries, pharmacophore generation and filter, visual inspection. 
It was applied on targets involved in the development of cancer 
disease.  
The first VS focus the attention on a pharmacological approach 
used to treat cancer that tries to stop the interaction between Gab2 
and C-SH3 domain of Grb2. We identify a compound, AN-465-
J137-985, that significantly lowers the affinity of the C-SH3 for 
Gab2 in binding and displacement experiments. Also, in cellula 
experiments, on A549 and H1299 overexpressing the C-SH3 
fragment of Grb2, validate its antitumorigenic activity.  
We applied structure-based VS on PDZ domain of DVL1 and we 
found that the (S)-RS4690 showed inhibitory activity on 
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colorectal cancer cell HCT116, SW480, and SW620 
demonstrating the inhibition of the WNT pathway and a 
selectivity toward the PDZ domain of NHERF1.  
With the same protocol we identify compound 18, that specific 
inhibits LDHA in several cancer cells, CRC HCT116, SW620, 
A549 and PANC-1. Moreover, compound 18 consistently 
increased NADH content and decreased lactate levels in tumor 
cells.  
Furthermore, molecular dynamics simulations could be 
complementary to classical molecular docking techniques with 
the possibility to examine the binding process to shade light on 
stable state reached by the ligand or conformational 
rearrangements occurring before, during, or after binding. Indeed, 
we used Co-solvent molecular dynamics (CMD) to search for the 
allosteric binding site of the AM-001 inhibitor of EPAC1 
analyzing the active and inactive conformations and generating 
their cosolvent occupancy maps in 100ns and 250 ns trajectories. 
Occupancy maps and PCA analyses helped us to identify the 
pocket at the interface between CDC25-HD and CNBD as 
suitable binding site.  
Additional methods in MD helped us to increase the accessible 
timescale, increase the sampling and overcoming high energy 
barriers. This led us to explore infrequent events like protein-
protein binding interactions. We used accelerated molecular 
dynamics on the CCRL2-Chemerin complex to let the system exit 
from the local minima adding a bias potential. Trajectories 
analyses highlighted hot-spot residues more frequently 
implicated in binding interactions.  
In conclusions, several techniques are available for researching 
the dynamic properties of pharmacological targets, predicting and 
characterizing binding sites, finding new active molecules, and 
optimizing existing ones. One of these, structure-based Virtual 
Screening, gave us the opportunity to identify molecules of 
pharmacological interest that are considered as lead compounds 
and will be optimized to enhance their inhibitory activity and 
improve their pharmacokinetics profiles (drug like properties).  
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