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Innovation is the driving force of human progress. Recent urn models reproduce well the dynamics
through which the discovery of a novelty may trigger further ones, in an expanding space of opportunities,
but neglect the effects of social interactions. Here we focus on the mechanisms of collective exploration,
and we propose a model in which many urns, representing different explorers, are coupled through the links
of a social network and exploit opportunities coming from their contacts. We study different network
structures showing, both analytically and numerically, that the pace of discovery of an explorer depends on
its centrality in the social network. Our model sheds light on the role that social structures play in discovery
processes.
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Discoveries are essential milestones for the progress
of our societies [1–11]. Recently, different mathematical
approaches have been proposed to model the dynamics of
innovation [12–23]. Among these, of particular interest
are those based on random processes with reinforcement
[24–26], such as Pòlya urns [27,28]. Urns have been
extensively used to study and model a variety of systems
and processes, from evolutionary economics, voting, and
contagions [29–32] to language and folksonomies [33,34].
More recently, they have been employed to filter informa-
tion [35] and grow social networks [23]. Interestingly, urns
can also be used to model discovery processes, if oppor-
tunely combined with the concept of the adjacent possible
(AP)—the set of all those things which are one step
away from what is already known (Kauffman [36]). This
formulation of the AP, which dates back to concepts
previously introduced by Farmer, Langton, and others
[37–39], has been translated into the urn model with
triggering (UMT), a particular process in which the space
expands together with the discovery dynamics, and the
appearance of a novelty opens up the possibilities of further
discoveries [4,40–43]. UMTs could successfully replicate
the basic signatures of real-world discovery processes, such

as the famous Heaps’ and Zipf’s laws [44,45], often
recurrent in complex systems [15,46–50], as well as
Taylor’s law [51]. It turns out that the Heaps’ law, a
sublinear growth of the number of distinct elements DðtÞ ∼
tβ with the number of elements t, well describes the pace at
which scientists discover concepts or users collect new
items [40,52,53], with higher values of β denoting a faster
exploration of the AP. However, despite the fact that the
existing models can capture essential underlying mecha-
nisms behind the discovery of novelties, little emphasis is
given to the collective dynamics of exploration and to the
benefits that social interactions could bring. In fact, with the
exception of Ref. [23], the modeled exploration dynamics
refers to a single entity, representing, for example, the joint
effort of researchers within a field [52]. Without taking into
account the multiagent nature of the process, these models
(i) do not capture the heterogeneity of the pace of the
individual explorers and (ii) do not include the benefits
brought by social interactions and collaborations. Indeed,
empirical evidence of these mechanisms has been found in
various contexts [54–56], such as music listening, politics,
voting, and language [57–59].
In this Letter, we propose a model of interacting

discovery processes where an explorer is associated to
each of the nodes of a social network [60–62], and its
dynamics is governed by an UMT. Hence, the local
dynamics of each node accounts for the presence of an
AP, more precisely, the adjacent possible in the space of
concepts. The social network makes the exploration a
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collective one, since processes of neighboring urns are
coupled. This coupling expands the notion of the AP by
adding a social dimension, represented by the set of
opportunities one is possibly exposed to through his or
her social contacts. We call this the adjacent possible in the
social space. Social networks have been extensively used
as a substrate on top of which dynamical processes take
place [63,64]. Notice, however, that our setting crucially
differs from the typical approach in which the network
mediates, for example, the diffusion of innovations or
social contagions [65,66]. Here, the interactions among
the many discovery processes reveals the twofold nature of
the AP of each individual, highlighting the crucial role
played by the social structure in determining the individual
exploration dynamics.
Model.—Let us consider an unweighted directed graph

GðN ; EÞ, where N and E are, respectively, a set of N ¼
jN j nodes and a set of E ¼ jEj links. Each node of the
graph represents an individual or agent, while link ði; jÞ
denotes the existence of a directed social relation from
individual i to j (such that i can benefit from j). The graph
is described by its adjacency matrix A≡ faijg, whose
element aij is equal to 1 if link ði; jÞ is present and is 0
otherwise. Each node i is equipped with an UMT that
describes the discovery process of the agent i [40]. We
indicate the urn i at time t as U iðtÞ, while SiðtÞ denotes the
sequence of balls generated up to time t. Notice that U iðtÞ is
an unordered multiset of size UiðtÞ ¼ jUiðtÞj, while SiðtÞ
is an ordered multiset of size jSiðtÞj ¼ t. Each urn i is
characterized by two parameters, ρi and νi. As in the
original UMT, the reinforcement parameter ρi accounts for
the number of balls of the same color that are added to the
urn i whenever a ball of a given color is extracted at time t.
Furthermore, the triggering parameter νi controls the size
of the adjacent possible in the space of concepts, as ðνi þ
1Þ balls of new colors are added to the urn of node i
whenever at time t a color is extracted for the first time [40].
In this abstract representation, the space of concepts—
made by all the colors—expands in time together with each
discovery process, without relying on a predefined struc-
ture [41]. Discovery processes of different individuals are
then coupled through the links of the network, representing
social interactions. Namely, at each time t, the individual i
draws a ball from an enriched urn, the so-called social urn
of node i, Ũ iðtÞ, composed by its own urn plus the
additional balls present at time t in the urns of its neighbors,
without their reinforcement. The latter represents the AP in
the social space. Figure 1 illustrates the case of two nodes
with a directed link. We thus have

Ũ iðtÞ ¼ U iðtÞ þ ∪
j∈N

aijU 0
jðtÞ; ð1Þ

where U 0
jðtÞ ¼ U ½m¼1�

j ðtÞ ⊆ UjðtÞ is the underlying set of
the multiset UjðtÞ (with multiplicity m ¼ 1), i.e., the set of

size U0
jðtÞ ¼ jU 0

jðtÞj formed by its unique elements.
Duplicates in the urn associated to node j at time t are
indeed not considered. Thus, the “memory” of node j due
to the reinforcement does not influence node i. Similarly,
let us denote with S0

iðtÞ the underlying set of the sequence
SiðtÞ, i.e., the sequence of all the unique elements of SiðtÞ.
We consider synchronous updates for all the urns.
Pace of discovery.—As previous works have shown

[40], the dynamics of novelties and innovations share a
number of commonalities and can, thus, be thought as two
sides of the same process; a novelty refers to the discovery
of something by an individual (already known to others),
while innovations are novelties that are new to everybody.
Here, we are interested in studying the asymptotic growth
of the number of novelties—of each sequence—as a
function of time (sequence length), representing the pace
of discovery. We know, from standard results on the UMT
[40], that an isolated urn i follows a Heaps’ law, i.e., a
power law behavior DiðtÞ ∼ tβi [44], DiðtÞ ¼ jS0

iðtÞj being
the number of different elements contained in the sequence
SiðtÞ up to time t. Thus, the Heaps’ exponent βi quantifies
the speed at which the urn discovers new elements (by
definition bounded by βi ≤ 1). Let us consider now a node i
that interacts through the network. In general, since DiðtÞ
increases by one every time a ball is extracted for the first
time, we can write Diðtþ 1Þ ¼ DiðtÞ þ Pnew

i ðtÞ, where
Pnew
i ðtÞ ∈ ½0; 1� is the probability that the ball extracted at

node i at time t never appeared in SiðtÞ before. In other
words, Pnew

i ðtÞ ¼ Prob½Diðtþ 1Þ ¼ DiðtÞ þ 1jDiðtÞ�, and
we can express it as the fraction of discoverable balls over
the total number of balls available to node i at time t. This
leads to an equation for the asymptotic Heaps’ dynamics
that in the continuous time limit reads

dDiðtÞ
dt

¼ Pnew
i ðtÞ ¼ jŨ iðtÞ⊖S0

iðtÞj
ŨiðtÞ

; ð2Þ

FIG. 1. Illustration of the model in the case of a network with
two nodes. Each node is equipped with an urn obeying the UMT
with the same parameters ρ ¼ 1, ν ¼ 1, and M0 ¼ νþ 1. At the
time t, the urns start with two balls, one red (R) and the other blue
(B). Then, each node extracts a ball (1, R; 2, B), and, therefore, ρ
additional balls of the same colors are added to the respective urns
(reinforcement). Also, since in both cases, the extracted balls
represent a novelty for the respective nodes, νþ 1 balls of new
colors are also added (adjacent possible). At tþ 1, node 1 has
access to all its balls plus two extra ones coming from the
adjacent possible in the social space, i.e., the set of balls available
through its neighbor (dashed borders).
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where A⊖B denotes the multiset obtained by removing all
the elements in set B from the multisetA (all duplicates are
removed). Notice that if a node i has an out degreeP

j aij ¼ 0, its associated Eq. (2) reduces to the one of

an isolated urn, for which Ũ iðtÞ ¼ U iðtÞ. Thus, its Heaps’
dynamics for ρ > ν follows DiðtÞ ∼ tν=ρ for t → ∞ [40,51]
(see Supplemental Material [67]). In the most general case,
where each node i is equipped with an UMT(ρi, νi), the
equation for the Heaps’ laws of each node i ∈ N can be
written as in Eq. (2), by accounting for all the neighbors
that are part of the social urn of node i. This can be done by
using the nonzero elements of A, so that the number of balls
ŨiðtÞ in the social urn of node i at time t reads

ŨiðtÞ ¼ ρitþ
X
j∈N

½aij þ δij�½M0 þ ðνj þ 1ÞDjðtÞ�; ð3Þ

where M0 is the initial number of balls in each urn and δij
stands for the Kronecker delta. Finally, the large time
behavior of the number of different elementsDiðtÞ for each
node i can be written as

dDiðtÞ
dt

¼M0

P
jðaij þ δijÞ þ

P
j½δijνj þ aijðνj þ 1Þ�DjðtÞ

ρitþ
P

jðaij þ δijÞ½M0 þ ðνj þ 1ÞDjðtÞ�
:

ð4Þ

Equation (4) forms a system of N coupled nonlinear
ordinary differential equations, with initial conditions
Dið0Þ ¼ 0∀ i ∈ N , that can be numerically integrated
for any network topology faijg.
Numerical results.—We start exploring the behavior

of our model on the famous Zachary karate club net-
work (ZKC) [74], where each node is equipped with an
UMTðρ ¼ 6; ν ¼ 3Þ with same parameters and initial con-
ditions. We run different simulations and observe, for
each node i, the average growth of the number of distinct
elements DiðtÞ as a function of time. We then extract the
values of the Heaps’ exponents of each node as βi ¼ βiðTÞ,
where βiðtÞ ¼ lnDiðtÞ= ln t and T ¼ 104. Figure 2 shows
the nodes of the networks colored accordingly. Notice the
higher pace of discovery displayed by the notoriously

central nodes corresponding to the instructor (node 1) and
the administrator of the club (node 34). This proves that
nodes with identical UMTs can have completely different
dynamics, suggesting that a strategic location on the social
network correlates with the discovery potential of an indi-
vidual. To further investigate this relation, we study the
dynamics on five small directed networks. Figures 3(a)–3(e)
show the temporal evolution of DiðtÞ for each node i of the
networks displayed on the left. We report the simulated
Heaps’ laws (colored points), whose extracted exponents βi
are shown in the legend. In addition, to assess the validity of
Eq. (4), we also plot the curves (continuous black lines)
obtained using the appropriate faijg. It can be seen that the
analytical formalism introduced perfectly captures the
Heaps’ laws, since lines are almost indistinguishable from
(simulated) points. In particular, in Fig. 3(a), we observe

FIG. 2. Dynamics of the interacting urns on the Zachary karate
club network, whose nodes are colored according to the resulting
Heaps’ exponent.

FIG. 3. Heaps’ dynamics of the interacting urns on five directed
toy graphs (different symbols correspond to different nodes).
Each node is equipped with an UMT with the same parameters
ρ ¼ 6 and ν ¼ 3. (a)–(e) Temporal evolution of the number of
discoveriesDiðtÞ for each node i (associated Heaps’ exponents βi
in the legend). The solutions of Eq. (4), shown as continuous
black lines, are in perfect agreement with simulations. (f)–(j)
Temporal behavior of the associated Heaps’ exponents extracted
at different times. The gray area up to T ¼ 104 corresponds to the
values of (a)–(e).
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the highest pace of discovery in the node with more out-
going links. However, the nontrivial behaviors observed in
Figs. 3(b)–3(e) for chains and graphs containing cycles
indicate that the exponent of a node does not depend solely
on local nodeproperties. For instance, inFig. 3(d), node 2 has
two outgoing links, while the others have one link only. In
contrast with what is observed in Fig. 3(a), here the highest
pace of discovery is the one of node 1, whose social urn
gets the benefits of the urn of node 2. Moreover, in Figs. 3(c)
and 3(d), a simple changeof directionof link4 → 2 translates
into completely different dynamics. We also notice that in
both Figs. 3(c) and 3(e) the presence of a cycle enhances the
pace of discovery in a process ofmutual exchange. However,
while in Fig. 3(d) node 1 is linked to the cycle and captures
the same behavior of those in the cycle, in Fig. 3(e) node 1
behaves as an individual urn. We have further investigated
whether the extracted βimaydependon themaximum timeT
at which we have stopped the simulations. The curves
reported in Figs. 3(f)–3(j) as a function of time for time
up to 108 clearly indicate that the systems, even for the small
graphs considered, have not yet reached a stationary state.
Thermalization times, that are typical of empirical trajecto-
ries of diffusion process [75], here are strongly influenced by
the topology of the network. This can be seen by comparing
the two β1ðtÞ of Figs. 3(f) and 3(g), both approaching—aswe
will see later—the asymptotic value ν=ρ ¼ 0.5 but at very
different timescales. Nevertheless, the ranking induced by
the pace of discovery persists at all finite times. In the next
section, we will further investigate this characteristic behav-
ior, ultimately proving its universality for all networks (see
Supplemental Material [67]).
Analytical results.—In order to extract the asymptotic

values of the Heaps’ exponents and their dependence on
the network topology, we derive an analytical solution
of Eq. (4) for t → ∞. Let us suppose ρi ¼ ρ and
νi ¼ ν ∀ i ∈ N . For sufficiently high values of ρ, we
have limt→∞DiðtÞ=t ¼ 0 ∀ i, so that the denominator of
the rhs of Eq. (4) can be approximated by ρt, leading to

dD⃗ðtÞ
dt

≈
1

t

�
ν

ρ
I þ νþ 1

ρ
A

�
D⃗ðtÞ ¼ 1

t
MD⃗ðtÞ; ð5Þ

where D⃗ðtÞ≡ fDiðtÞgi¼1;…;N , I denotes the N × N identity
matrix, and we have introduced the constant matrix
M ¼ fðAÞ ¼ ðν=ρÞI þ ðνþ 1=ρÞAÞ. By operating the
change of variable t ¼ ez, Eq. (5) can be rewritten as
dzD⃗ðzÞ ≈MD⃗ðzÞ, a standard first-order differential system,
which leads to the solution

D⃗ðtÞ ≈
Xr

l¼1

Xml−1

p¼0

c⃗p lnpðtÞtλl ; ð6Þ

where fλlgl¼1;…;r and fmlgl¼1;…;r are the eigenvalues of
M with their respective multiplicities and c⃗p are vectors

defined by the initial conditions. The asymptotic behavior
of DiðtÞ is then governed by the leading term in Eq. (6),
so that

DiðtÞ ≈
t→∞

ui lnp̂ðiÞðtÞtλ̂ðiÞ; ð7Þ

where λ̂ðiÞ is the eigenvalue ofM with the biggest real part
such that the ith entry of at least one of its eigenvectors c⃗p is
different from zero. Similarly, p̂ðiÞ is the maximum value
of p among these eigenvectors and, in general, can be less
than the multiplicity of the eigenvalue λ̂ðiÞ minus one.
For example, in the case of a chain as in Fig. 3(b), the
asymptotic solution is DiðtÞ ∼ ui lnN−iðtÞtν=ρ. In this exam-
ple, all the exponents tend to ν=ρ at large times, while at
finite times nodes with higher powers in the logarithm show
higher paces of discovery, thus explaining the behavior
seen in Fig. 3(g) (see Supplemental Material [67]).
In the case of strongly connected graphs, Eq. (7)

simplifies: the logarithmic correction disappears, and
all the asymptotic exponents are equal to the maximum
eigenvalue λ̂ ¼ fðμ̂Þ ofM. In fact, for the Perron-Frobenius
theorem [76,77], A has a simple and positive maximum
eigenvalue μ̂ corresponding to an eigenvector u⃗ with all
positive entries. Thus, the approximated solution becomes

DiðtÞ ≈
t→∞

uitλ̂; ð8Þ

where ui is proportional to the Bonacich eigenvector
centrality [78] of node i, a global indicator of centrality
that recursively quantifies the importance of a node from
that of its neighbors and not just from the number of
neighbors. As a consequence of Eq. (8), for strongly
connected graphs, every node has approximately the same
behavior tλ̂. What makes a node different from another is
precisely the multiplicative factor ui. In cycles and cliques,
nodes are all structurally equivalent (ui ¼ u∀ i), meaning
that they all have the sameDiðtÞ. On the contrary, in graphs
such as the ZKC (see Fig. 2), the different values of ui
play a very important role. Most central nodes, as the
instructor and the chief administrator, are the fastest
explorers (highest βi), even having the same asymptotic
Heaps’ exponent λ̂.
In the more general case in which a graph is not strongly

connected, Eq. (7) still holds, and the same argument can
be applied to each of the strongly connected components
to recursively find the values of ui, p̂ðiÞ, and λ̂ðiÞ (see
Supplemental Material [67]). In such cases, the eigenvector
centrality needs to be replaced by its natural extension to
non-strongly-connected graphs, i.e., the α centrality [79].
We have investigated the correlation between the α central-
ity and the pace of discovery in real-world networks.
Figure 4 shows the scatter plot of the number of discovered

colors DiðTÞ and the normalized α centrality c½α�i =c½α�max in
four empirical social networks: (a) the ZKC [74], (b) a
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Twitter network of followers [80], (c) a coauthorship
network in network science [81], and (d) a collaboration
network between jazz musicians [82] (see Supplemental
Material [67]). The high values of the Spearman’s rank
correlations (rS ≥ 0.97 in all cases) found in both undi-
rected [Figs. 4(a), 4(c), and 4(d)] and directed networks
[Fig. 4(b)] is in agreement with our predictions. This
confirms that, together with the AP in the space of
concepts, it is crucial to take into account of an AP in
the social space.
In conclusion, we have presented a first example

in which stochastic (and not deterministic) processes
are coupled over the nodes of a complex network, and
analytical insights on the relations between structure
and dynamics are possible. The results highlight that
the structural—not just local—properties of the nodes
can strongly affect their ability to discover novelties.
Our networked model of social urns is not just a simple
extension of UMTs. What makes it novel and different is
the very same idea of coupling together many urns over
a complex social network and the concept of “social urn”
we have introduced. It is such a network coupling that
spontaneously produces novel behaviors, such as different
exponents of the Heaps’ law in a single system, and has the
potential to open new areas of research and applications.
This work represents only a first step toward the inclusion
of structured interactions in discovery processes. Urns can,
in fact, result in oversimplified models for the dynamics of
individual explorers. Future works could consider non-
identical urns or even explore the effects of having indi-
viduals with a finite storage capacity or where the adoption
of the new might trigger the abandoning of the old, as
for substitutive systems [83]. Another natural extension
would be considering discoveries and social relationships
unfolding across different network layers [84] or higher-
order structures [85,86]. In addition, it would be interesting
to study the relationship with existing models of social
spreading and meme popularity [87–89]. Finally, our
results could be directly applied in studies on efficient
team structures in cooperative creative tasks [90–94].
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[29] M. V. Simkin and V. P. Roychowdhury, Phys. Rep. 502, 1

(2011).
[30] M. Hayhoe, F. Alajaji, and B. Gharesifard, in Proceedings

of the American Control Conference (ACC), 2017 (IEEE,
New York, 2017), pp. 358–363.

[31] M. Hayhoe, F. Alajaji, and B. Gharesifard, in Proceedings
of the 2018 Annual American Control Conference (ACC)
(IEEE, New York, 2018), pp. 2644–2650.

[32] S. Berg, Public Choice 47, 377 (1985).
[33] T. Gong, L. Shuai, M. Tamariz, and G. Jäger, PLoS One 7,

e33171 (2012).
[34] C. Cattuto, V. Loreto, and L. Pietronero, Proc. Natl. Acad.

Sci. U.S.A. 104, 1461 (2007).
[35] R. Marcaccioli and G. Livan, Nat. Commun. 10, 745 (2019).
[36] S. A. Kauffman, in SFI Working Papers (Santa Fe Institute,

Santa Fe, NM, 1996).
[37] N. H. Packard, Dyn. Patterns Complex Syst. 212, 293

(1988).
[38] C. Langton, Computation at the edge of chaos: Phase

transition and emergent computation, Technical Report
No. 1–3, 1990.

[39] C. Langton, C. Taylor, J. Farmer, and S. Rasmussen,
Artificial Life II (Avalon, New York, 2003).

[40] F. Tria, V. Loreto, V. D. P. Servedio, and S. H. Strogatz,
Sci. Rep. 4, 5890 (2014).

[41] V. Loreto, V. D. Servedio, S. H. Strogatz, and F. Tria,
in Creativity and Universality in Language (Springer,
New York, 2016), pp. 59–83.

[42] P. Gravino, B. Monechi, V. Servedio, F. Tria, and V. Loreto,
in Proceedings of the Seventh International Conference on
Computational Creativity, Paris, France (2016), http://www
.computationalcreativity.net/iccc2016/wp-content/uploads/
2016/01/Crossing-the-horizon.pdf.

[43] B. Monechi, Ã. Ruiz-Serrano, F. Tria, and V. Loreto,
PLoS One 12, e0179303 (2017).

[44] H. S. Heaps, Information Retrieval: Computational and
Theoretical Aspects (Academic, New York, 1978).

[45] G. K. Zipf, Human Behavior and the Principle of Least
Effort: An Introduction to Human Ecology (Ravenio,
Cambridge, England, 2016).

[46] F. Font-Clos, G. Boleda, and A. Corral, New J. Phys. 15,
093033 (2013).

[47] M. Perc, J. R. Soc. Interface 11, 20140378 (2014).
[48] A. Mazzolini, A. Colliva, M. Caselle, and M. Osella,

Phys. Rev. E 98, 052139 (2018).
[49] A. Mazzolini, M. Gherardi, M. Caselle, M. Cosentino

Lagomarsino, and M. Osella, Phys. Rev. X 8, 021023
(2018).

[50] A. Mazzolini, J. Grilli, E. De Lazzari, M. Osella, M. C.
Lagomarsino, and M. Gherardi, Phys. Rev. E 98, 012315
(2018).

[51] F. Tria, V. Loreto, and V. Servedio, Entropy 20, 752 (2018).
[52] I. Iacopini, S. Milojević, and V. Latora, Phys. Rev. Lett. 120,

048301 (2018).

[53] A. Mastrototaro, A mathematical model for the emergence
of innovations, Ph.D. Thesis, Politecnico di Torino, 2018.

[54] M. J. Salganik, P. S. Dodds, and D. J. Watts, Science 311,
854 (2006).

[55] R. Pálovics and A. A. Benczúr, Soc. Network Anal. Mining
5, 4 (2015).

[56] J. Ternovski and T. Yasseri, Soc. Networks 61, 144
(2020).

[57] P. F. Lazarsfeld, B. Berelson, and H. Gaudet, The People’s
Choice (Duell, Sloan & Pearce, New York, 1944).

[58] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. Kramer, C.
Marlow, J. E. Settle, and J. H. Fowler, Nature (London)
489, 295 (2012).

[59] J. Bryden, S. P. Wright, and V. A. Jansen, J. R. Soc.
Interface 15, 20170738 (2018).

[60] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47
(2002).

[61] M. E. Newman, SIAM Rev. 45, 167 (2003).
[62] V. Latora, V. Nicosia, and G. Russo, Complex Networks:

Principles, Methods and Applications (Cambridge Univer-
sity Press, Cambridge, England, 2017).

[63] M. A. Porter and J. P. Gleeson, Dynamical Systems on
Networks: A Tutorial (Springer, New York, 2005).

[64] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University
Press, Cambridge, England, 2008).

[65] E. Rogers, Diffusion of Innovations, 4th ed. (Free Press,
New York, 2010).

[66] D. Centola, How Behavior Spreads: The Science of Com-
plex Contagions, Princeton Analytical Sociology Series
(Princeton University Press, Princeton, NJ, 2018).

[67] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.248301 for the full
derivation of the main equations and their analytical solution
in the case of a single urn, two coupled urns, chains, cycles
and cliques of N urns, and the general case of strongly and
non-strongly-connected networks, for a description of the
datasets, for a comprehensive investigation of the relation-
ship between the ranking of the nodes induced by their
Heaps’ exponent and the eigenvector and α centrality, which
includes Refs. [68–73].

[68] R. Tarjan, SIAM J. Comput. 1, 146 (1972).
[69] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and

T. Zhou, Phys. Rep. 650, 1 (2016).
[70] K. Ide, A. Namatame, L. Ponnambalam, F. Xiuju, and

R. S. M. Goh, Adv. Comput. Sci. 3, 115 (2014).
[71] R. Ghosh and K.Lerman, Phys. Rev. E 83, 066118

(2011).
[72] R. Ghosh and K. Lerman, Discrete Continuous Dyn. Syst.

Ser. B 19, 1531 (2012).
[73] L. Katz, Psychometrika 18, 39 (1953).
[74] W.W. Zachary, J. Anthropological Res. 33, 452 (1977),

www.jstor.org/stable/3629752.
[75] G. Dosi, A. Moneta, and E. Stepanova, Ind. Innovation 26,

461 (2019).
[76] O. Perron, Math. Ann. 64, 248 (1907).
[77] G. Frobenius and S.-B. Deutsch. Akad. Wiss. Berlin.

Math-Nat. Kl. 456 (1912).
[78] P. Bonacich, J. Math. Sociol. 2, 113 (1972).
[79] P. Bonacich and P. Lloyd, Soc. Networks 23, 191 (2001).

PHYSICAL REVIEW LETTERS 125, 248301 (2020)

248301-6

https://doi.org/10.1214/07-PS094
https://arXiv.org/abs/1207.5635
https://doi.org/10.3150/19-BEJ1143
https://doi.org/10.3150/19-BEJ1143
https://doi.org/10.1007/BF00275863
https://doi.org/10.1016/j.physrep.2010.12.004
https://doi.org/10.1016/j.physrep.2010.12.004
https://doi.org/10.1007/BF00127533
https://doi.org/10.1371/journal.pone.0033171
https://doi.org/10.1371/journal.pone.0033171
https://doi.org/10.1073/pnas.0610487104
https://doi.org/10.1073/pnas.0610487104
https://doi.org/10.1038/s41467-019-08667-3
https://doi.org/10.1038/srep05890
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Crossing-the-horizon.pdf
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Crossing-the-horizon.pdf
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Crossing-the-horizon.pdf
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Crossing-the-horizon.pdf
http://www.computationalcreativity.net/iccc2016/wp-content/uploads/2016/01/Crossing-the-horizon.pdf
https://doi.org/10.1371/journal.pone.0179303
https://doi.org/10.1088/1367-2630/15/9/093033
https://doi.org/10.1088/1367-2630/15/9/093033
https://doi.org/10.1098/rsif.2014.0378
https://doi.org/10.1103/PhysRevE.98.052139
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1103/PhysRevE.98.012315
https://doi.org/10.1103/PhysRevE.98.012315
https://doi.org/10.3390/e20100752
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1126/science.1121066
https://doi.org/10.1126/science.1121066
https://doi.org/10.1007/s13278-014-0244-y
https://doi.org/10.1007/s13278-014-0244-y
https://doi.org/10.1016/j.socnet.2019.10.005
https://doi.org/10.1016/j.socnet.2019.10.005
https://doi.org/10.1038/nature11421
https://doi.org/10.1038/nature11421
https://doi.org/10.1098/rsif.2017.0738
https://doi.org/10.1098/rsif.2017.0738
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248301
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1103/PhysRevE.83.066118
https://doi.org/10.1103/PhysRevE.83.066118
https://doi.org/10.3934/dcdsb.2014.19.1355
https://doi.org/10.3934/dcdsb.2014.19.1355
https://doi.org/10.1007/BF02289026
www.jstor.org/stable/3629752
www.jstor.org/stable/3629752
www.jstor.org/stable/3629752
https://doi.org/10.1080/13662716.2018.1444978
https://doi.org/10.1080/13662716.2018.1444978
https://doi.org/10.1007/BF01449896
https://doi.org/10.3931/e-rara-18865
https://doi.org/10.3931/e-rara-18865
https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.1016/S0378-8733(01)00038-7


[80] M. De Choudhury, Y.-R. Lin, H. Sundaram, K. S. Candan,
L. Xie, and A. Kelliher, in Proceedings of the Fourth
International AAAI Conference on Weblogs and Social
Media (AAAI Press, 2010).

[81] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[82] P. M. Gleiser and L. Danon, Adv. Complex Syst. 06, 565

(2003).
[83] C. Jin, C. Song, J. Bjelland, G. Canright, and D. Wang,

Nat. Hum. Behav. 3, 837 (2019).
[84] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio,

J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z.
Wang, and M. Zanin, Phys. Rep. 544, 1 (2014).

[85] I. Iacopini, G. Petri, A. Barrat, and V. Latora, Nat. Commun.
10, 2485 (2019).

[86] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas,
A. Patania, J.-G. Young, and G. Petri, Phys. Rep. 874, 1
(2020).

[87] J. P. Gleeson, J. A. Ward, K. P. O’Sullivan, and W. T. Lee,
Phys. Rev. Lett. 112, 048701 (2014).

[88] J. P. Gleeson, K. P. O’Sullivan, R. A. Baños, and Y. Moreno,
Phys. Rev. X 6, 021019 (2016).

[89] J. D O’Brien, I. K. Dassios, and J. P. Gleeson, New J. Phys.
21, 025001 (2019).

[90] A. Schecter, A. Pilny, A. Leung, M. S. Poole, and N.
Contractor, J. Organ. Behav. 39, 1163 (2018).

[91] V. S. Torrisi, S. Manfredi, I. Iacopini, V. Latora et al.,
in DS 95: Proceedings of the 21st International Con-
ference on Engineering and Product Design Education
(E&PDE 2019), University of Strathclyde, Glasgow, 2019
(2019).

[92] B. Monechi, G. Pullano, and V. Loreto, Proc. Natl. Acad.
Sci. U.S.A. 116, 22088 (2019).

[93] R. Sinatra, D. Wang, P. Deville, C. Song, and A.-L.
Barabási, Science 354, aaf5239 (2016).

[94] S. Fortunato, C. T. Bergstrom, K. Börner, J. A. Evans,
D. Helbing, S. Milojević, A. M. Petersen, F. Radicchi,
R. Sinatra, B. Uzzi et al., Science 359, eaao0185
(2018).

PHYSICAL REVIEW LETTERS 125, 248301 (2020)

248301-7

https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1142/S0219525903001067
https://doi.org/10.1038/s41562-019-0638-y
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1103/PhysRevLett.112.048701
https://doi.org/10.1103/PhysRevX.6.021019
https://doi.org/10.1088/1367-2630/ab05ef
https://doi.org/10.1088/1367-2630/ab05ef
https://doi.org/10.1002/job.2247
https://doi.org/10.1073/pnas.1909827116
https://doi.org/10.1073/pnas.1909827116
https://doi.org/10.1126/science.aaf5239
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1126/science.aao0185

