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Guest Editorial:
Deep Neural Networks for Graphs: Theory,

Models, Algorithms, and Applications

I. INTRODUCTION

DEEP neural networks for graphs (DNNGs) represent an
emerging field that studies how the deep learning method

can be generalized to graph-structured data. Since graphs are
a powerful and flexible tool to represent complex information
in the form of patterns and their relationships, ranging from
molecules to protein-to-protein interaction networks, to social
or transportation networks, or up to knowledge graphs, poten-
tially modeling systems at very different scales, these methods
have been exploited for many application domains.

Since the pioneering works on trees, namely, recursive
neural networks [1], [2], and directed acyclic graphs [3],
[4], up to methods extended to general graphs, both by
recursive approaches (namely, graph neural networks (GNNs)
[5], [6]), or graph convolutional network approaches (namely,
NN4Gs [7] and GCNs), a plethora of neural models for graphs
have been proposed [8], [9]. Moreover, beyond the pure neural
networks paradigm, the term deep graph networks (DGNs) has
been introduced to include also the class of Bayesian-based
and generative graph networks [9]. In particular, after 2015 a
broader class of models has been introduced and in their
various incarnations, DNNGs and DGNs have become a
topic of intense research of the remarkable ability of graph
representations in learning tasks such as node classification,
graph classification, graph generation, and link prediction.
To witness the interest in the field, numerous surveys have
appeared, e.g., [8], [9], and the survey paper [8] has received
the 2024 IEEE TRANSACTIONS ON NEURAL NETWORKS
AND LEARNING SYSTEMS Outstanding Paper Award.

However, this area of research and applications is still highly
vibrant and constantly growing [10]. Indeed, the increasing
number of works in DNNGs and related areas indicates that
both academic and industrial communities have still a con-
siderable demand for developing more advanced technology
and algorithms, considering also the inclusion of trustworthy
concepts in the model design, theoretical foundations, tools,
and platforms for real-world applications, including practi-
cal scenarios, such as large-scale, dynamic, and ambiguous
graphs.

This special issue would contribute to collecting advance-
ments in the field, focusing on new challenges for fully
exploiting the potential of DGN approaches. The special
issue received over 140 submissions, out of which 40 were
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chosen for publication. These selected papers are categorically
divided into three groups: a) theoretical research; b) innovative
methodologies, including models and algorithms that enhance
DNNGs, GNNs, graph representation learning, and similar
fields; and c) a diverse range of applications in areas like com-
puter vision, recommendation systems, community detection,
molecular generation, and multivariate time series forecasting.

A. Theoretical Studies

Salim and Sumitra [A1] revisited the state-of-the-art filter
designs for spectral GCNs (SGCNs) in the context of regu-
larization theory, and based on this principle, they explored
various optimization strategies for SGCNs, design challenges,
and recent developments in the field. Pasa et al. [A2]
reexamined graph spectral filtering theory, conducting a theo-
retical analysis of straightforward graph convolution operators
with varying complexity, based on linear transformations or
controlled nonlinearities, suitable for implementation in single-
layer GCNs. Li et al. [A3] advanced geometric deep learning
on spheres by introducing CNNs for spherical signal process-
ing, utilizing area-regular spherical Haar tight framelets. Fan
et al. [A4] theoretically demonstrated that selection bias in
DNNGs inevitably leads to a biased correlation between the
aggregation mode and class label, which drastically hinders
the model’s generalization ability.

B. Models and Algorithms

Cui et al. [A5] introduced a series of aligned vertex convo-
lutional network models designed to learn multiscale features
from local-level vertices, specifically for the purpose of
graph classification. He et al. [A6] proposed an unsupervised
heterogeneous graph contrastive learning approach, HGCA,
specifically designed for analyzing heterogeneous information
networks with missing attributes. He et al. [A7] introduced a
novel end-to-end parallel adaptive graph convolutional clus-
tering model, which replaces the fixed, pretrained graph in
GCNs with an adaptive graph learned directly from the data
through two pathway networks. Wang et al. [A8] introduced
a new framework to mitigate the over-smoothing problem
encountered in DNNGs. Their model involves selectively
dropping edges based on their “edge strength,” defined by
the frequency with which an edge serves as a bridge on
the shortest path between pairs of nodes. To address the
channel mixing issue and lower the over-fitting risk inherent in
traditional GCN models, Zhang et al. [A9] developed the scale
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graph convolution technique, which leverages channel-wise
scale transformation for extracting node features. Fan et al.
[A4] demonstrated how selection bias significantly impedes
the generalization capabilities of DNNGs and proposed a novel
debiased GCN with a differentiated decorrelation regularizer
to mitigate this bias in GCN estimation. Wang et al. [A10]
proposed a parallel graph deep learning approach using the
alternating direction method of multipliers (pdADMM-G),
which enables simultaneous parameter updates across each
layer of GA-MLP models, facilitating model parallelism.
Sun et al. [A11] proposed a new graph embedding model,
i.e., attribute force-based graph (AGForce), which effectively
preserves structural information while adaptively integrating
attribute data into node features. Chen et al. [A12] introduced
a graph-navigated dual attention network for zero-shot learn-
ing, designed to learn discriminative visual embeddings that
facilitate accurate visual-semantic interactions, thus enabling
efficient knowledge transfer from seen to unseen classes. Peng
et al. [A13] introduced a reverse graph learning framework for
GCNs, capable of generating high-quality graphs for enhanced
feature learning and featuring a novel out-of-sample extension
method that enables both supervised and semi-supervised
learning applications. Eliasof et al. [A14] developed an effi-
cient compression technique for GCNs that combines the use
of compressed Haar wavelets with quantization methods. Yang
et al. [A15] proposed a revised mutual information maxi-
mization framework, termed channel capacity maximization
(CapMax), designed to learn informative representations for
dynamic networks characterized by time-varying topology and
evolving node attributes. Zheng et al. [A16] addressed the
challenges of encoding nodes’ transition structures by intro-
ducing transition propagation GCNs that include a transition
propagation module and a bilevel graph convolution module,
enabling the adaptive and dynamic generation of temporal
node embeddings through diverse interactions. Lin and Li
[A17] developed a status-aware GNN tailored for directed
signed graphs, incorporating a loss function derived from
status theory, i.e., a social-psychological approach specifically
formulated for these types of graphs. Ai et al. [A18] introduced
a two-level DNNG framework designed to concurrently cap-
ture microscopic (small scale) and macroscopic (large scale)
structural information, thereby enhancing the overall represen-
tation of a graph. Lin et al. [A19] introduced a framework of
structure-aware prototypical neural process for few-shot graph
classification (FSGC), marking, to our knowledge, the first
attempt to approach FSGC through the lens of neural process.
Zhao et al. [A20] uncovered that contrastive learning essen-
tially functions as a type of learning to rank, and from this
viewpoint, they introduced a coarse-to-fine contrastive learning
framework on graphs, incorporating a self-ranking paradigm
to ensure the preservation of discriminative information across
different nodes and to reduce the impact of perturbations
of various magnitudes. Cui et al. [A21] introduced DyGCN,
an efficient dynamic embedding framework for GCN-based
methods, designed to update node embeddings in dynamic
graphs efficiently while maintaining performance. Spinelli
et al. [A22] developed an algorithm within a meta-learning

framework to enhance the explainability of a GNN during its
training phase. Joshi et al. [A23] explored GNN representation
distillation with a focus on maintaining global topology, intro-
ducing the first contrastive distillation technique for DNNGs.
Their method, known as graph contrastive representation
distillation, trains student networks to implicitly retain the
global topology found in the teacher’s node embedding space.
In recent years, graph drawing techniques aimed at creating
esthetically pleasing node-link layouts have been developed.
Tiezzi et al. [A24] introduced a new framework for creating
graph neural drawers (GNDs), which are machines utilizing
neural computation to construct efficient and complex maps.
GNDs are a type of DNNG that can be trained using various
loss functions, including those typically used in graph drawing.

C. Applications
As DNNGs and graph representation learning rapidly

evolve, community detection emerges as a research field of
growing practical importance. For those interested in further
exploration, we recommend the survey paper [A25]. In [A26],
Android entities and their behavioral relationships are repre-
sented as a heterogeneous information network, utilizing its
complex semantic meta-structures to define implicit high-order
relationships. Ding et al. [A27] proposed a causal incremental
graph convolution approach for the problem-solving of GCN
model retraining for the recommendation. Seo et al. [A28]
introduced an innovative GCN-aided recommender system
that optimally utilizes user-item interaction data following the
construction and partitioning of a signed graph. Liu et al.
[A29] developed a new adversarial defense mechanism tai-
lored for DNNG-based multivariate time series forecasting,
capable of effectively counteracting adversarial attacks while
maintaining local information. Bai et al. [A30] developed
a discrete hashing method for cross-modal retrieval using a
GCN. This method includes a GCN-based unified classifier
module that explores label-implicit information to improve
feature representation for cross-modal hashing. In the context
of online multiagent forecasting, Li et al. [A31] introduced
a new collaborative prediction unit, designed to combine
predictions from various collaborative predictors based on a
collaborative graph. For skeleton-based action recognition, Qin
et al. [A32] introduced a novel framework that combines
GCNs with angular encoding of high-order features, aiming
to robustly discern the interconnections between joints and
body segments. Du et al. [A33] developed a novel method for
3-D point cloud semantic segmentation, using a local–global
graph convolutional approach that constructs local graphs
and applies a self-attention mechanism to generate adjacency
matrices with short-range dependencies. Huang et al. [A34]
introduced a dual-graph attention convolution network for
3-D point cloud classification, designed to simultaneously
learn both low-level extrinsic and high-level intrinsic graph
features within point clouds. Gao et al. [A35] developed
a mutually supervised graph attention network tailored for
few-shot segmentation, aimed at optimizing the use of a
limited quantity of annotated samples. Wang et al. [A36]
presented a graph-based contrastive learning approach for
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the description and detection of local features, a technique
that significantly enhances the accuracy of correspondence
establishment in sequential images, a critical aspect in various
computer vision tasks. For the task of molecular generation,
Li et al. [A37] proposed an effective geometric embedding
approach, encompassing the spatial structure representations
of drug molecules by transforming their 3-D coordinates into
images, and the geometric graph representations of protein
targets by modeling the protein surface as a mesh. In the
context of functional connectivity prediction, Etemadyrad et al.
[A38] developed a deep learning approach for graph trans-
formation, incorporating additional meta-features through a
newly developed GNN-based generative model. Ling et al.
[A39] created a GCN-based model for survival analysis that
not only generates survival predictions but also identifies local
neighborhoods. This is achieved by employing multiple sparse
geometric graphs constructed directly from high-dimensional
features. Liu et al. [A40] introduced an innovative framework
that effectively combines the structural patterns and individual
node representations in retweeting trees for the purpose of
detecting rumors.
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