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ABSTRACT: A general method to obtain a representation of
the structural landscape of nanoparticles in terms of a limited
number of variables is proposed. The method is applied to a
large data set of parallel tempering molecular dynamics
simulations of gold clusters of 90 and 147 atoms, silver clusters
of 147 atoms, and copper clusters of 147 atoms, covering a
plethora of structures and temperatures. The method leverages
convolutional neural networks to learn the radial distribution
functions of the nanoclusters and distills a low-dimensional
chart of the structural landscape. This strategy is found to give
rise to a physically meaningful and differentiable mapping of
the atom positions to a low-dimensional manifold in which the main structural motifs are clearly discriminated and
meaningfully ordered. Furthermore, unsupervised clustering on the low-dimensional data proved effective at further splitting
the motifs into structural subfamilies characterized by very fine and physically relevant differences such as the presence of
specific punctual or planar defects or of atoms with particular coordination features. Owing to these peculiarities, the chart
also enabled tracking of the complex structural evolution in a reactive trajectory. In addition to visualization and analysis of
complex structural landscapes, the presented approach offers a general, low-dimensional set of differentiable variables that has
the potential to be used for exploration and enhanced sampling purposes.
KEYWORDS: machine learning, metal nanoclusters, collective variables, molecular dynamics, structure classification

INTRODUCTION
Finite-size aggregates of atoms, molecules, or colloidal
particles, can present a much broader variety of structures
than infinite crystals, because they are not constrained by
translational invariance on an infinite lattice. For example, the
structural landscape of small metal particles that consist of a few
tens to a few hundreds of atoms is much richer than that of
their bulk material counterparts.1−4 Different factors cooperate
at rendering this variegated scenario: first of all, possible
structures are not limited to fragments of bulk crystals, but they
include noncrystalline motifs, such as icosahedra or decahedra,
which contain 5-fold symmetries that are forbidden in infinite
crystals.5 Moreover, for small sizes, also planar, cage-like, and
amorphous clusters have been observed,6−8 along with hybrid
structures that exhibit features associated with more than one
motif within the same cluster.9 Adding to this already complex
scenario, metal nanoclusters are very likely to present defects,
of which there are many different types. Volume defects, for
instance, such as stacking faults and twin planes, are frequently
observed in experiments and simulations.10−14 Furthermore,
surface reconstructions are known to occur in several
clusters,15−18 and internal vacancies can also be stabilized in

some cases.19,20 Owing to the complexity of the structural
landscape of nanoclusters, there is an urgent need for a robust
classification method that can separate their structures into
physically meaningful groups, possibly producing an informa-
tive chart of the structural landscape in terms of a small
number of collective variables (CVs). In addition to providing
a low-dimensional representation of the structural landscape,
CVs are an essential tool to enhance sampling in configuration
space, such as umbrella sampling,21 metadynamics,22 temper-
ature-accelerated MD,23 and many others. A requirement of
most enhanced sampling approaches is the differentiability of
the chart with respect to atomic coordinates, i.e., that the CVs
are differentiable functions of the coordinates.
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Machine learning (ML) is emerging as an invaluable analysis
tool in the field of nanoclusters, as it allows efficient navigation
of the complexity of the structural landscape by extracting
meaningful patterns from large collections of data. ML has
already found application in microscopy image recogni-
tion,24,25 dimensionality reduction and exploration of potential
energy surfaces,26 structural recognition,26−28 characterization
of the local atomic environment,29,30 and machine learning
force fields for metals.31,32

One of the main challenges in the study of nanoclusters
concerns the identification of descriptors that can discriminate
the various structural classes. The availability of such a tool is
crucial for navigating the landscape of structures generated
during simulations. In this context, the histogram of the
interatomic distances, i.e., the radial distribution function
(RDF), has been used to study the solid−solid transitions in
metallic/bimetallic clusters via metadynamics,33 owing to its
capability to encode structural information. Another widely
used approach is Common Neighbor Analysis (CNA),34 a tool
which relies on analyzing local atomic coordination signatures
for individual atoms.27,35 Often, arbitrary rules9,35 are then
applied to CNA signatures of the atoms as a means to assign
the whole nanocluster to a structural family. Albeit being
widely used and informative, CNA still presents certain
drawbacks. First, CNA classifications are based on the
arrangement of first neighbors around any given atom, and
therefore, they do not directly encode information on the
overall shape of the nanoparticles. In addition, even though
CNA can be used for charting the structural landscape and for
unsupervised clustering to obtain very refined groupings of
structures (e.g., along the lines developed by Roncaglia and
Ferrando27), the resulting chart is nondifferentiable.
In this work, we propose to use a descriptor capable of

capturing in full generality the most important structural
features of metal nanoclusters, the RDF, and feed it to an
artificial neural network (ANN) that is trained to perform an
unsupervised dimensionality reduction, yielding a low-dimen-
sional, informative representation, where data are distributed
according to their structural similarities. We start off by
showing that RDFs are excellent descriptors of nanocluster
structures, given their capability to describe both the local36

and global order together with the overall shape of diverse
systems, and then we proceed to discuss the results obtained
by using convolutional ANNs to reduce the dimensionality of
the original descriptors.

The combination of RDF and ANNs allowed us to learn a
differentiable map from the atomic positions to a low-
dimensional (3D) chart of the structural features of nano-
clusters of various sizes and metals. The employed data sets
contain hundreds of thousands of unique structures obtained
by parallel-tempering molecular dynamics (PTMD) simula-
tions.9,37 It was possible to classify in an unsupervised manner
this wealth of structures, reproducing the well-known CNA
classes and additionally being able to distinguish subtle features
present in metal nanoclusters, including the location of the
twinning plane stacking faults, surface defects, central vacancies
in icosahedra, and intermediate/distorted structures. The chart
also allowed us to track and describe in detail dynamic
structural transformations. Additional advantages of the
present chart are the transferability and robustness, which
was demonstrated using independent data sets of metal clusters
of varying size and chemical nature, together with its
differentiability (and hence suitability for CV-based explora-
tion and biasing in molecular dynamics).

RESULTS AND DISCUSSION
Our goal is to gain insights into the structural complexity of
metal nanoclusters by means of a differentiable map of the
configuration space onto a low-dimensional yet sufficiently
informative manifold (the chart).
The method consists of generating, for every cluster

configuration in the data set, a set of high dimensional
descriptors, the RDFs, which are known to describe both the
local structural order and global shape, and distill this
information representing it in a low-dimensional, highly
compressed form. The specific ANN architecture we chose
to perform the unsupervised dimensionality reduction is that of
an autoencoder (AE)38 endowed with convolutional layers that
renders it highly specialized at learning from numerical
sequences.39 A dimensionality reduction step follows the
convolutions, yielding a physically informed three-dimensional
(3D) chart of the structural landscape of our data set, which
allows us to navigate and easily understand it. Finally, we
applied a clustering technique to the 3D chart to gauge its
quality and to identify different structural families.
AEs constitute a particular class of ANNs that is highly

specialized in the unsupervised dimensionality reduction of
data.38 AEs are designed to reproduce the input while forcing
the data through a bottleneck with a severely reduced
dimensionality (Figure 1). In this way, the network needs to

Figure 1. Simple sketch of the autoencoder architecture, showing how encoder and decoder meet at a low-dimensional (3D) bottleneck.
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learn, in the first section of the network (encoder), an efficient
representation of the data in such a way that the information
can then be reconstructed by the second half of the newtork
(decoder) with sufficient accuracy. The quality of the
reconstruction is measured by a loss function that is also
used in the training of the network.
Convolutional layers, which are specialized at learning from

ordered sequences, are adopted in the AE hereby presented
because discretized RDFs are by all means sequences. They
work by applying different kernels that slide along the data,
allowing the recognition of local features and patterns, which
makes them well versed for the analysis of inputs like signals
(using 1d convolutional kernels) or images (2d kernels).
Moreover, the connections between the nodes and the related
parameters are considerably reduced as compared to the fully
connected layers used in standard ANN, which decreases the
computational cost while allowing for better performances.
In order to test the method, we took advantage of the large

data set of nanocluster structures produced by the group9,37 via
parallel tempering molecular dynamics (PTMD) for gold,
silver, and copper nanoclusters of different sizes. In the next
section, we discuss in detail the results obtained for the most

challenging case, a gold cluster of 90 atoms, Au90, while results
relative to other metals and sizes will be shown in later
sections.
Structural Landscape of Au90. Gold nanoclusters

represent an ideal test case, owing to the broad variety of
structures6−9,15,40 they present, which include face-centered-
cubic (fcc) lattice, twins, icosahedra (Ih), and decahedra (Dh).
In the following, nanoclusters will be broadly classified into
such standard structural families by CNA (in addition to the
mix and amorphous classes), as used by Settem et al.,9 with the
aim of having an independent benchmark for our unsupervised
study. Here, we focus on a small gold nanocluster, Au90, which
is characterized by an extremely challenging structural
landscape owing to the large fraction of surface atoms. In
particular, we chart a set of Au90 configurations extracted from
PTMD simulations9 exploring a total of 35 temperatures
ranging from 250 to 550 K. Starting from an initial set of
921 600 atom configurations, we performed a local mini-
mization and filtered out duplicates, reducing the data set to
49 016 independent configurations.
As previously mentioned, RDFs were chosen because they

are general descriptors of short- and long-range order41,42 that

Figure 2. (A) Radial distribution function families for Au90. Colors reflect cluster structure classification provided by the CNA. Blue is used
for Dh, green for twin, red for fcc, orange for Ih, purple for mix, and pink for amorphous. Shaded areas represent intervals containing 90% of
the data for each CNA label, with the lower boundary representing the 0.05 quantile of the RDF population and the upper boundary the 0.95
quantile. (B) Heat map of the Wasserstein distances between the averages of the RDFs of the six CNA families is reported. Values of the
distances are scaled by a factor 103.

Figure 3. Visualization of the 3D chart generated via convolutional AE for Au90 data set, from different perspectives. Individual points refer
to a given Au90 configuration in the data set mapped according to their latent space representation. The three latent coordinates are referred
to as CVs. Points are colored following their (independent) CNA label classification; the color code is the same as that used in Figure 2.
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are equivariant with respect to rototranslation and permutation
of the atom coordinates. The aptness of RDFs as structural
descriptors is well demonstrated by Figure 2, in which the
RDFs of all CNA classes (fcc, twin, Dh, Ih, mix, and
amorphous) are well separated. We will show in the following
that this descriptive power also applies to other metals and
nanocluster sizes that actually have a less rich structural
landscape. However, a major drawback of using a probability
distribution as a descriptor, even in its discretized version, is its
high dimensionality. Our approach to provide an efficient
charting of the structural landscape of metal nanoclusters, i.e., a
low-dimensional representation, relies therefore on a dimen-
sionality reduction step.
A large number of RDFs, corresponding to individual

PTMD-derived structures, are used to train an autoencoder
(AE), which automatically learns to compress the high-
dimensional RDF information to a 3D latent representation
(Figure 1). Our AE is composed of an input and an output
layer, a central block, comprising the bottleneck layer, formed
by three fully connected layers, while the cores of the encoder
and the decoder are formed by convolutional layers (Figure 1).
The training was run feeding the AE with the RDF data set
(49 016 independent data), split in training and validation sets;
the mean squared error (MSE) between the output and the

input RDF is used as the loss function. We chose to adopt a
latent space dimensionality of 3. This choice allowed for better
performances in terms of the loss function as compared to
higher compressions, while still allowing for a convenienent
visual representation. We refer to the Supporting Information
for a comparison of the results obtained by varying the
dimensionality of the latent space.
The 3D chart obtained by the AE is shown in Figure 3 with

data points colored by their CNA label. This representation
clearly indicates how each structural family is grouped in
separate regions of the chart and how their spatial ordering and
distance reflect affinities among these families: similar
structures are placed close together (e.g., fcc and twin),
while structures that share common features occupy
intermediate regions (e.g., the twin region is interposed
between fcc and Dh). Overall, the obtained chart allows for
a physically meaningful representation of the structures. The
scatter in the data suggests that the resolution of the analysis of
the chart allowed by the CNA summary labels is not fully
conclusive and that further analysis can allow for a better
understanding of the physical information encoded in the
structure distribution inside the latent space and, consequently,
a finer discrimination of different families of structures.

Figure 4. (A) Representative samples for each of the 27 structural families identified via application of the mean shift clustering algorithm on
the latent space representation of the Au90 data set. These 27 classes were subsequently grouped in seven bigger families by similarity. Atom
colors refer to their coordination: green represents atoms with fcc coordination; red stands for hcp coordination, and white for neither of
the previous ones. Atomistic representations with transparency report 3D views, whereas those in solid colors represent cross sections. Every
structure is given a numeric index associated with the label of the belonging cluster and a particular color. The table on the right reports
both the numeric and color labels of the clusters, along with a description of the various structures. (B) Single view for a 3D plot, analogous
to the one on the extreme right of Figure 3 except for the coloring, which is now representative of the labels assigned by the mean shift
through the same color coding reported in panel A. (C) Mean-shift families fractions as a function of the temperature in the whole PTMD
data set. The color code is the same of panels A and B. More likely structures are represented with the same name of the macrofamily,
numeric index, and color of panel A. (D) Plot analogous to panel C with the only difference that the PTMD data has been classified using the
CNA label classification as in the work of Settem et al.9 Color code and labeling are the same as those used in Figure 2.
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In order to increase the structural resolution and to gain
deeper insight into the physical information encoded in the
latent space, we applied a clustering technique to identify
meaningful and coherent regions in the chart. In particular, we
chose a nonparametric technique known as mean shift.43

Application of this method to the 3D chart of Figure 4 was
justified not only by the nonparametric nature of the clustering
technique but also by its aptness at dealing with clusters of
different sizes and shapes. The only input variable required by
mean shift is the bandwidth, which dictates the resolution of
the analysis, with the smaller bandwidths leading to more
detailed parceling of the data. We chose a bandwidth that
yields a robust clustering of the chart with sufficient detail, as
discussed in the Supporting Information. Our analysis resulted
in a robust discrimination of 27 major regions for the Au90
chart, corresponding to 27 different major structural families,
as reported in Figure 4. From the figure, it is immediately
apparent how the mean shift classification is able to distinguish
and split clusters that belong to spatially separated regions of
the chart, properly reflecting the ordering of the data.
Representative structures of each mean shift family are

shown in Figure 4A, while Figure 4B shows the 3D chart with
the points colored according to the same families. They are
broadly categorized into Ih, Dh, fcc, faulted fcc, faulted hcp,
intermediates, and amorphous. Faulted fcc nanoclusters are
those with a predominant fcc part but which contain twin
planes and stacking faults. Faulted hcp clusters are those with a
predominant hcp part but which contain twin planes and/or
stacking faults. Typically, structures observed in experiments
and simulations are classified into basic structural fami-
lies,9,35,44−46 which rarely capture the fine geometrical details
within a given family. In contrast, our approach leads to a
physically meaningful classification along with capturing the
fine structural details by splitting the broader families into

several subfamilies. A closer look at the various fcc and hcp
faulted nanoclusters illustrates this point. There are three
subfamilies (cluster 3, cluster 11, cluster 15) that contain only
one hcp plane. Cluster 3, referred to as 2:1 fcc, consists of two
and one fcc plane(s) on either side of the hcp plane. Similarly,
clusters-11 and 15 are 1:1 fcc with differing shapes. When the
hcp plane is adjacent to the surface layer, we have hcp islands
(clusters-7). Cluster 10 has two converging hcp islands. In
cluster 4, local surface reconstruction occurs along with a single
hcp plane. Moving on to faulted hcp structures, three hcp
planes converge in cluster 16. With the increase in the number
of parallel hcp planes, we have either stacking faults (cluster
14) or fcc islands (cluster 21) which contain one fcc plane
(opposite of the hcp island). In the extreme case, we have full
hcp particles (clusters-20, 25). Clusters-17 and 23 both
undergo local surface reconstruction similar to cluster 4.
In fcc families, we have the conventional fcc structures

(cluster 5) and fcc structures with local surface reconstruction
(cluster 13). In the case of decahedra, there are five
subfamilies. Clusters 8, 9, and 12 are all conventional
decahedra. In cluster 9, the decahedral axis is at the periphery,
as opposed to clusters 8 and 12. Additionally, cluster 12 has a
partial cap on top (atoms belonging to the cap are shown in
red color). Decahedra in cluster 2 have an hcp island on the
surface. Finally, decahedra also exhibit reconstruction at the
reentrant grooves, resulting in icosahedron-like features
(cluster 1). There are three icosahedral clusters: Cluster 18
consists of incomplete noncompact icosahedra; cluster 19 is a
combination of Ih and Ih+Dh (has features of both Ih and Dh)
while cluster 26 is a combination of Ih+Dh and Ih+amor (has
features of both Ih and amorphous). Similarly, there are three
types of amorphous structures (clusters 0, 22, and 24). Finally,
we have intermediate structures in cluster 6.

Figure 5. (A) Cross sections of the different types of twin families obtained by using mean shift clustering on the latent space representation
of Au147. The families were split into two groups, in the same fashion as our treatment for the Au90 twin structures. Colors of the atoms refer
to their individual coordination, similarly to Figure 4. Every structure is labeled with the same alphanumeric index of Figure 6A, where the
3D chart of Au147 is depicted. (B) The four different families of icosahedral structures for Ag147 are sketched. As customary, the families were
extracted via mean shift clustering in the 3D space resulting from encoding of the Ag147 data set. The six-atom rosette defects are highlighted
in red. The first three figures on the left are three-dimensional representations; the last figure is a cross section. Complete description of the
clustering of all of the Ag147 structures can be found in the Supporting Information.
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The structural distributions of Au90, i.e., the fraction of
various families as a function of temperature, of the PTMD
data according to mean shift and CNA labels are shown in
Figure 4C and D, respectively. In both cases, we found
conventional structure families. However, mean shift further
refines the CNA-based classification.9 For instance, with the
mean shift, we have a clear separation of the various types of
Dh that were previously grouped together in a broad group of
mixed structures. In the case of faulted structures, there is a
prominent faulted fcc cluster (Faulted fcc-3) while all other
faulted structures (band between Faulted fcc-3 and Dh-8 in
Figure 4C) have very low fractions. It is noteworthy that a

mean shift can classify even structures that have a very low
probability of occurrence.
In short, the Au90 analysis showcased the descriptive power

of RDFs and the capability of the unsupervised dimensionality
reduction performed by AE to properly compress information.
Through the AE we were able to generate a highly physical
representation of the data, which, rather than simply splitting
different structures, is able to coherently distribute them in a
3D chart according to their physical similarities. As a
consequence, the subsequent independent classification via
mean shift easily identified a wealth of distinct structures and
underscored the capability of the approach to distinguish both

Figure 6. (A) Structural chart of Au147 containing 87 050 structures. Points are colored according to the structural families identified by
mean shift clustering; see also Figure S4, now labeled using alphanumeric indexes to distinguish them by the families of Figure 4. The chart
has been obtained training ex novo the network on the 87 050 of the Au147. (B) Plot of an unbiased MD simulation of Au147 undergoing a
structural transition from Ih to Dh in the same chart as A. The points are colored using their mean shift classification obtained on the
training data set represented in panel A. In the plot are depicted representative structures of the different regions. (C) Scatter plots of the
time evolution of the three CVs along the trajectory of panel B. Dark red dashed lines highlight two intervals in which the main
transformations from Ih to Dh occurs. The colors of the points correspond to their mean shift label as in panels A and B. Black dashed lines
represent a running average of the scatter plots. Bottom panels report magnifications of the two main transitions with snapshots of the main
structures observed.
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local and global structural motifs: location of twinning planes,
surface defects, distorted cluster shapes, etc.
Generality of the Approach. In this section, we show

that the approach adopted for Au90 is of general applicability.
At the root of such generality is the wealth of structural
information carried by RDFs, which are expected to be
valuable for a broad class of systems which includes
nanoclusters of other metals and sizes, as showcased below,
but is not limited to them.3,29

Here, we focus on larger cluster sizes that, as a general trend,
show a lower variety of structures compared to smaller ones. In
particular, we study clusters of 147 atoms with elemental gold
(Au147), copper (Cu147), and silver (Ag147). These two latter
cases exhibit rather different properties compared to the gold
clusters; in particular, they exhibit a lower differentiation in the
structural landscape that is mainly dominated by Ih structures.
We discuss only selected structural families identified by the
method for the three cases, that best showcase the discerning
capabilities of the method: faulted structures characteristic of
Au147 and the different types of Ih present in Ag147. Results for
Cu147 are similar to those for Ag147 and are reported in the
Supporting Information. These two examples put our approach
to a test, because these two families are characterized by
distinct structural features: faulted structures mainly differ for
small changes in the overall shape of the particles and for their
atomic coordination, while Ih have more similar shapes and
lower degrees of crystallinity.
Figure 5A shows that, in the case of Au147, our approach is

capable of distinguishing fine features in the large family of
faulted structures, which are broadly grouped into faulted fcc
and faulted hcp, in analogy to Au90. In the standard faulted fcc
(A5, corresponding to a standard double twin), there is a single
hcp plane with at least one fcc plane on either side. When the
hcp plane is adjacent to the surface layer, we have hcp islands
(A10) or sometimes partial hcp islands (A13, A14). In
addition, an hcp plane and an hcp island can occur within the
same structure (A19). When there is more than one hcp plane,
stacking defects are observed. In the extreme case, it can be
completely hcp (A20) or fcc island (A16). When there are two
hcp planes, depending on the location of the hcp planes, we
have either the central stacking fault (A15) or the peripheral
stacking fault (A9). In the standard faulted hcp (A18), there is
a single fcc plane with at least one hcp plane on either side.
Finally, we have the faulted hcp cluster with converging hcp
planes (A11).
Owing to the particular characteristics of silver, the

structural landscape of Ag147 is largely dominated by
icosahedra, which the clustering method is able to split into
four subfamilies (Figure 5B). Conventional Ih consisting of
surface vacancies is dominant among them. Icosahedra also
undergo reconstruction and disorder through “rosette” defects
on the surface. When the disordering increases further, we
observe Ih with surface disordering. Finally, one can recognize
Ih with a central vacancy where the central atom is missing as
shown in the cross section in the rightmost panel of Figure 5B.
Distinguishing with ease the latter structural subfamily is a
feature of our approach; indeed CNA can hardly recognize
icosahedra with a central vacancy because it relies on the
(missing) Ih-coordinated atom to identify the Ih class.
In summary, for all of the considered cases, the method

proved to be transferable and robust, being capable of
characterizing the wealth of structures of Au147 and giving

insights into the fine features distinguishing Ih subclasses for
Cu147 and Ag147.
Dynamical Structural Transitions. The previous sections

demonstrated that the method at hand is capable of generating
reliable, low-dimensional structural charts from large data sets
of nanocluster configurations for different metals and sizes. In
all considered cases, the charts, informed by RDFs, excelled at
distributing the different families of structures in a physically
meaningful fashion, keeping similar structures closer while
positioning different ones far apart. The method was able to
distinguish both structures presenting major shape differences
(as faulted fcc and hcp in Au nanoclusters) and structures with
lower degrees of crystallinity and a closer overall shape (Ih
subfamilies). In other words, the three CVs defining the chart
can discriminate between different metastable states of the
systems studied while maintaining an insightful ordering
among them. These features suggest that the approach can
be used for describing structural transitions occurring along
reactive trajectories, e.g., obtained by MD simulations. To test
this idea, we use the chart to study a continuous dynamic
trajectory (Figure 6).
We consider a 2 μs unbiased MD run of Au147 at 396 K. At

this temperature, the most probable structure for Au147 is Dh.
9

By choosing as the initial configuration an Ih structure, which
is very unlikely under such thermodynamic conditions, it is
possible to observe a spontaneous Ih → Dh transition in an
unbiased trajectory. In particular, we map 2 million individual
MD snapshots on the chart through the AE in Figure 1, which
was previously trained on independent structures generated by
PTMD. To be compatible with this representation, each
snapshot undergoes a short local minimization.
Figure 6A,B compares the structural chart of the entire

PTMD data set with the partial representation of the same
chart as obtained from the unbiased MD trajectory. The
trajectory progressively populates a connected, tube-shaped
region of the chart, which smoothly joins Ih to Dh domains,
passing through intermediate, defected structures that belong
to well-defined families. More in detail, the following structural
pathway is observed: Ih (cluster 4) → distorted-Ih (cluster 2)
→ distorted-Dh (cluster 7) → Dh (cluster 3), which is
confirmed by analyzing the structures along the trajectory
(Figure 6C). Beginning from Ih there is an initial transition to
distorted-Ih where the disorder increases, and we start
observing fcc-coordinated atoms in the nanocluster. The
distorted-Ih then changes to distorted-Dh where the amount
of fcc coordinated atoms increases further. Apart from the
difference in the amount of fcc, distorted-Ih is geometrically
similar to Ih, while distorted-Dh is closer to Dh. Finally, the
distorted-Dh transitions to Dh which completes a gradual
change from Ih to Dh with physically meaningful changes
along the tube-shaped region.
In the absence of the chart, it would, in principle, be possible

to perform a visual analysis of the Ih → Dh trajectory of
roughly 2 million structures. However, it would be extremely
cumbersome to identify the main thermally activated trans-
formation and to track the fine structural changes and
fluctuations along the trajectory which are crucial for
understanding the transition mechanisms. This difficulty is
easily overcome by tracking changes in the chart coordinates as
reported in Figure 6C, which shows the time evolution of the
CVs as a function of time along the trajectory. Changes in CVs
are found to correlate very well with structural changes. Three
broad phases can then be distinguished during the evolution of
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the trajectory. In the initial phase (up to ∼250 ns), the
nanocluster is predominantly Ih (cluster 4) with intermittent
fluctuations to distorted-Ih (cluster 2) and distorted-Dh
(cluster 7). The actual Ih → Dh transition occurs around
∼245 ns, followed by a long intermediate phase (spanning
∼245 to ∼1820 ns), in which fluctuations between Dh (cluster
3, dominant) and distorted-Dh (cluster 7, minor) are observed.
A final transition step at ∼1820 ns leads to the final phase
consisting of Dh with very few fluctuations to distorted-Dh.
Here, we stress that this information can be obtained simply by
following the CVs even before looking at the structures.
We now focus on the transition regions and look closely at

the structural changes. For this purpose, we consider CV1. In
the tubelike region, a continuous increase in CV1 is
synonymous with a continuous change from Ih to Dh. A
zoomed plot of the first transition (between 240 and 260 ns) is
shown in the lower left panel of Figure 6C, see Figure S7 for
CV2 and CV3. The initial Ih structures (I-A) transition to
distorted-Ih structures (II-A, III-A) where we begin to see the
fcc-coordinated atoms along with Dh-like features. With a
further increase in CV1, there is a gradual change to distorted-
Dh structures (IV-A, V-A). Finally, these structures transition
to Dh structures that have an hcp island (VI-A, VII-A).
Decahedra with an hcp island dominate the middle phase and
hcp-island-free Decahedra are obtained after a final transition
around ∼1822 ns (shown in the lower right section of Figure
6C). This second transition is marked by a slight increase in
the mean CV1 value (black dashed line): initially, we have Dh
with an hcp island (I−B, II−B) which transitions to a better
Dh (without an hcp island) around ∼1823 ns (V−B). It
appears that this transition is aided by fluctuations to distorted-
Dh intermediates (III−B, IV−B). After the transition to a
better Dh (beyond ∼1825 ns), there are three distinct
horizontal branches. The dominant one, which has the highest
CV1 value, corresponds to perfect defect-free Dh (V−B).
However, this structure often undergoes two types of local
reconstructions near the reentrant groove (VI−B and VII−B),
which coincide with two distinct values of CV1.
The preceding discussion underscores that the three deep

CVs are capable of describing in a detailed and physical fashion
what happens during a dynamic transition. The chart enables
on-the-fly tracking of the system along its structural changes
and describes transitions between different metastable states.
This is further evidence of the physical insightfulness of the
latent space generated starting from the RDFs, underscoring
the reliability of the structural information contained in the
charts and further showcasing the power of the approach. In
particular, the method shows promise for characterizing and
analyzing long trajectories generated via molecular simulations,
enabling a fast and informed way to study and follow the time
evolution of this type of systems. Importantly, the differ-
entiability of the coordinates of the latent space with respect to
the atomic positions makes it possible to address the challenge
of biasing MD simulations of structural changes.33,47 The
specific merit of this approach is to provide a natural route to
devise a general, informative, and low-dimensional collective
variable space capable of describing dozens of structural motifs.
We plan to investigate structural transformation driven by deep
learned collective variables in a separate communication.

CONCLUSIONS
This work presents an original machine learning method
capable of charting the structural landscape of nanoparticles

according to their radial distribution function. The approach
comprises two subsequent information extraction steps. The
first consists of translating the atomic coordinates into RDFs,
which encode information about the structure in translation-
ally, rotationally, and permutationally invariant ways. The high-
dimensional information contained in the RDF is then reduced
to a low-dimensional (3D) and yet visually insightful
representation (“chart”) by exploiting convolutional autoen-
coders. These deep-learning collective variables are surprisingly
good at describing structural features in a physically mean-
ingful way, discriminating the different states of the system.
The 3D charts of different metal nanoclusters were then

analyzed using a nonparametric clustering technique, which
allowed us to classify the data points into structural families.
The method succeeded at disentangling the complex structural
motifs of nanoclusters having different shapes and metals
(Au90, Au147, Ag147, and Cu147), distinguishing also fine
differences between faulted and mixed structures as well as
small defects (icosahedra with central vacancy, surface defects,
etc.). Related structural motifs, e.g., fcc and faulted fcc/hcp,
were found to occupy close regions of the chart, allowing us to
garner insights also into dynamical structural transformations.
Finally, the method further proved to be useful in the

analysis of a long unbiased MD run of Au147 undergoing a
structural transition. The collective variables allowed us to
accurately track and describe structural changes along the
dynamics. This pushes the applicability of the method beyond
the simple analysis of structural differences in large data sets,
making it a powerful tool for the inspection, interpretation, and
possibly generation of reactive trajectories between metastable
states. Indeed, the ability to discriminate with a high level of
detail different metastable states, together with the intrinsic
differentiability of neural networks, makes the encoded
variables promising for low-dimensional CVs for biased MD
simulations.
The excellent results obtained for metal nanoclusters, for

which the method could learn to identify a variety of structures
ranging from crystalline to faulted and amorphous, demon-
strate the virtue of machine learning on radial distribution
functions. Building on the generality of its descriptors, this
machine learning framework could be used to chart the
structural landscape of diverse kinds of systems including
nonmetallic nanoparticles28,48 and colloidal assemblies,29,49,50

advancing our capability to classify, explore, and understand
transitions in these systems.

METHODS
The original data sets we considered included hundreds of thousands
of structures for each particular cluster size and type. The structures
were generated through parallel-tempering molecular dynamics
(PTMD) simulations (see Supporting Information). For every data
set, original structures were then locally minimized to discount
thermal noise. In order to avoid redundancy in the data, due to
duplicates in the locally minimized structures, the initial set of
structures was filtered out in order to select only unique samples. This
selection was based on both CNA classification and potential energy.
As a result, structures in the final data set differed from each other by
at least 0.1 meV in the potential energy or by CNA label, leading to a
reduction in the number of structures to a few tens of thousands for
every cluster type. The RDFs of each configurations were obtained
using kernel density estimation on the interatomic distances (using
the KernelDensity library from scikit-learn package51) with Gaussian
kernels and a bandwidth of 0.2 nm.
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The RDFs were then discretized and processed by the autoencoder,
as described in Figure 1. Input and output of the AE share the same
sizes, equal to the total mesh points of the discretized RDFs. The
convolutional part of the encoder is composed of five blocks made of
a convolutional layer, a rectified linear unit activation function, and a
batch normalization. After the convolutions, the outputs were
flattened and fed to a fully connected linear layer which outputs the
three CVs values, closing the encoder section. The decoder follows,
mirroring the encoder. The three outputs of the encoder were fed to
another fully connected layer whose output is reshaped and fed to five
deconvolutional blocks that replicated, mirrored, the convolutional
part of the encoder. Finally, in the output layer of the decoder, data
returned to their initial size.
The output was compared to the input in the training using the

MSE loss. We performed an independent training for every
nanocluster composition and size. More details regarding the AE
architecture parameters and the training can be found in the
Supporting Information. After the training, the three-dimensional
output of the bottleneck was evaluated for all of the data to obtain a
3D chart, e.g., the one reported in Figure 3. After the chart of the data
has been generated, the mean shift43 clustering technique was
exploited to identify families of structures and evaluate the quality of
the chart. Mean shift requires setting only one parameter, the
bandwidth, dictating the resolution of the analysis. Bandwidth
selection was obtained looking for intervals of values, yielding an
(almost) constant number of clusters, see Figure S3.
Finally, the 50 configurations closest to each centroid were

analyzed visually, in order to inspect for major structural features
characterizing the different regions identified by the clustering.
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