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Abstract: Background: Hypoxic-ischemic encephalopathy (HIE) is a severe pathology, and no unique
predictive biomarker has been identified. Our aims are to identify associations of perinatal and
outcome parameters with morphological anomalies and ADC values from MRI. The secondary aims
are to define a predictive ADC threshold value and detect ADC value fluctuations between MRIs
acquired within 7 days (MR0) and at 1 year (MR1) of birth in relation to perinatal and outcome
parameters. Methods: Fifty-one term children affected by moderate HIE treated with hypothermia
and undergoing MRI0 and MRI1 were recruited. Brain MRIs were evaluated through the van Rooij
score, while ADC maps were co-registered on a standardized cerebral surface, on which 29 ROIs were
drawn. Statistical analysis was performed in Matlab, with the statistical significance value at 0.05.
Results: ADC0 < ADC1 in the left and right thalami, left and right frontal white matter, right visual
cortex, and the left dentate nucleus of children showing abnormal perinatal and neurodevelopmental
parameters. At ROC analysis, the best prognostic ADC cut-off value was 1.535 mm2/s × 10−6

(sensitivity 80%, specificity 86%) in the right frontal white matter. ADC1 > ADC0 in the right
visual cortex and left dentate nucleus, positively correlated with multiple abnormal perinatal and
neurodevelopmental parameters. The van Rooij score was significantly higher in children presenting
with sleep disorders. Conclusions: ADC values could be used as prognostic biomarkers to predict
children’s neurodevelopmental outcomes. Further studies are needed to address these crucial topics
and validate our results. Early and multidisciplinary perinatal evaluation and the subsequent re-
assessment of children are pivotal to identify physical and neuropsychological disorders to guarantee
early and tailored therapy.

Keywords: hypoxic-ischemic encephalopathy; HIE; perinatal asphyxia; MRI; ADC; van Rooij; prog-
nostic parameter; early biomarker; ROC curve

1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is a severe pathology affecting 0.5–1/1000
live births in Western countries, presenting a mortality rate varying between 10 and 60% and
neurodevelopmental sequelae affecting nearly 23% of children [1–3]. Perinatal asphyxia is
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the most frequent cause of HIE [1,4], and the diagnostic pathway to identify indications for
therapeutic hypothermia encompasses newborn sequential assessment using three criteria
related to clinical and laboratory parameters, Sarnat score, and electroencephalography
recording [5,6]. If therapeutic hypothermia is indicated, and no exclusion parameters are
present, patients undergo therapeutic hypothermia within 6 h, which consists of cooling
the neonate at 33.5 for 72 h, followed by progressive heating at 0.25–0.5 ◦C/h over the next
12 h [1,4,6].

Literature has shown that therapeutic hypothermia can improve patients’ prognoses
and has become routine practice in the field of therapy for HIE [1,3,7]. Various MRI
biomarkers with various cut-off levels have been suggested to predict neurodevelopmental
outcomes, although no univocal results have been obtained [8–11].

Identifying early and non-invasive biomarkers to predict children’s prognoses and
neurodevelopmental outcomes is particularly complicated in children with moderate
disease, and it is crucial to provide fact-based awareness to worried parents and to plan an
early, multidisciplinary, and tailored treatment for patients [12–15].

The primary objectives are to identify associations between both the neurodevelop-
mental outcome of hypoxic-ischemic encephalopathy at 1 year and the perinatal clinical-
laboratory parameters with (a) brain anomalies in MRI, scored by van Rooij et al. [16], and
(b) ADC values in brain areas sensitive to hypoxic-ischemic injury.

The secondary objectives are (c) to identify an ADC threshold value to differentiate
patients in relation to their prognosis; (d) to detect fluctuations in brain ADC values
between MRIs acquired within 7 days (MRI0) and at 1 year (MRI1) of life; and (e) to
correlate fluctuations in ADC values with perinatal and neurodevelopmental parameters.

2. Materials and Methods

Our retrospective observational study was conducted in accordance with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards. The study
was approved by the Institutional Review Board and the Research Ethics Committee of the
Bambino Gesù Hospital of Rome (approval code: 1917_OPBG_2019; date: 24 July 2019).
Written informed consent was obtained from the parents of all individual participants
included in the study before MRI scans and before therapeutic procedures.

2.1. Participants

Patients were retrospectively and consecutively recruited from the archive of our
institution by a neonatologist with 30 years of experience in the time frame 1 January 2013
to 30 June 2020. Inclusion criteria encompassed: gestational age between 36 and 40 weeks,
diagnosis of HIE made at birth, therapeutic hypothermia performed within 6 h of birth,
and high-quality MRI performed within 7 days and at 1 year of birth, including at least
T2WI and DWI/ADC sequences. The parameters used to define high-quality MRIs were
as follows: absence of motion degradation, absence of significant artifacts that could have
impaired the exam evaluation, and sequences covering the entire brain. Exclusion criteria
were: significant comorbidities, such as intracranial or systemic tumors, infections, or
severe malformations; maternal risk factors, such as drug or alcohol abuse; and incomplete
data, including perinatal clinical data, laboratory data, and neurodevelopmental data at
1 year.

The following patients’ data were collected and reported in an anonymized database:
demographic characteristics; gestational age; eutocic or dystocic delivery (both the causes
of maternal and child dystocia, including the need to use forceps or suction cups and
invasive gynecological maneuvers); perinatal therapies; perinatal complications (need
for cardiac massage and/or mechanical ventilation, development of respiratory distress
syndrome/RDS); perinatal laboratory values (umbilical cord pH, lactates in the blood);
ten-minute Apgar score; children’s neurodevelopment at 1 year, scored using the Bayley III
coded scale [17]; and qualitative indices of patients’ suffering, such as sleep disorders and
physiokinesitherapy, at 1 year.
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The final cohort of patients consisted of 51 subjects presenting with moderate HIE
(Figure 1).

Children 2023, 10, x FOR PEER REVIEW 3 of 14 
 

 

cardiac massage and/or mechanical ventilation, development of respiratory distress 
syndrome/RDS); perinatal laboratory values (umbilical cord pH, lactates in the blood); 
ten-minute Apgar score; children’s neurodevelopment at 1 year, scored using the Bayley 
III coded scale [17]; and qualitative indices of patients’ suffering, such as sleep disorders 
and physiokinesitherapy, at 1 year. 

The final cohort of patients consisted of 51 subjects presenting with moderate HIE 
(Figure 1). 

 
Figure 1. Flow chart showing the final study population selection. 

2.2. MRI Acquisition 
Newborns were either placed on their backs in carrying mats (Medical VAC), which 

can ensure the maintenance of the position and avoid motion artifacts or were sedated. 
Infants requiring mechanical ventilation and/or anticonvulsant therapy received an 
increase in sedative and/or anticonvulsant dosage before the scan. Ear protectors were 
placed in patients’ ears before scanning. The temperature was kept stable, and vital signs, 
such as heart rate and oxygen saturation, were monitored by a pediatric anesthesiologist 
with 30 years of experience. 

Brain MRIs were performed within 7 days and at 1 year from birth, following 
therapeutic hypothermia, on the same 3T scanner (Magnetom Skyra, Siemens, Erlangen, 
Germany) with a 32-channel brain coil (L-W-H: 440 mm 330 mm 370 mm) and using the 
following protocol: axial TSE T2 (TR 6380 ms, TE 109 ms, ST 3 mm); coronal TSE T2 (TR 
6380 ms, TE 109 ms, FA 150, ST 3 mm); axial DWI (TR 6400 ms, FA 98 ms, FA 75 m); and 
3D T1 MPRAGE (TR 1570 ms, TE 2.67 ms, TI 900 ms, FA 9 laying, ST 0.8 mm). 

2.3. Radiological Evaluation 
2.3.1. Van Rooij Score 

Brain MRIs were evaluated and scored with the van Rooij score [16] by two pediatric 
neuroradiologists with 15 and 10 years of experience. Any discrepancies were solved by 

Figure 1. Flow chart showing the final study population selection.

2.2. MRI Acquisition

Newborns were either placed on their backs in carrying mats (Medical VAC), which can
ensure the maintenance of the position and avoid motion artifacts or were sedated. Infants
requiring mechanical ventilation and/or anticonvulsant therapy received an increase in
sedative and/or anticonvulsant dosage before the scan. Ear protectors were placed in
patients’ ears before scanning. The temperature was kept stable, and vital signs, such as
heart rate and oxygen saturation, were monitored by a pediatric anesthesiologist with
30 years of experience.

Brain MRIs were performed within 7 days and at 1 year from birth, following therapeu-
tic hypothermia, on the same 3T scanner (Magnetom Skyra, Siemens, Erlangen, Germany)
with a 32-channel brain coil (L-W-H: 440 mm 330 mm 370 mm) and using the following
protocol: axial TSE T2 (TR 6380 ms, TE 109 ms, ST 3 mm); coronal TSE T2 (TR 6380 ms,
TE 109 ms, FA 150, ST 3 mm); axial DWI (TR 6400 ms, FA 98 ms, FA 75 m); and 3D T1
MPRAGE (TR 1570 ms, TE 2.67 ms, TI 900 ms, FA 9 laying, ST 0.8 mm).

2.3. Radiological Evaluation
2.3.1. Van Rooij Score

Brain MRIs were evaluated and scored with the van Rooij score [16] by two pediatric
neuroradiologists with 15 and 10 years of experience. Any discrepancies were solved by
a pediatric neuroradiologist with 30 years of experience. Patients were divided into two
groups in relation to the presence of signal abnormalities.

2.3.2. Measurement of ADC Values

ADC maps were generated from DWI sequences in all newborns and then co-registered
on a standardized cerebral surface, which is widely used in pediatric studies [14]. On the
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standardized cerebral surface, a pediatric neuroradiologist with 10 years of experience man-
ually drew 29 regions of interest (ROI) in brain areas sensitive to hypoxic-ischemic injury
(Supplementary Materials Table S1 and Figure S1). The correct positioning of the ROIs was
visually evaluated and, if needed, corrected by the same neuroradiologist before quantita-
tive data extraction from the maps of ADC. ROIs vary in size and morphology, depending
on brain structures and to avoid CSF inclusion. However, directly drawing the ROIs on
the standardized cerebral surface on which all the ADC maps were co-registered elimi-
nated inter-individual variability and guaranteed the homogenization of ROI positioning,
morphology, and area among the patients.

2.4. Statistical Analysis

Statistical analysis was performed in Matlab, with the statistical significance value
at 0.05.

To identify correlations of both patients’ perinatal parameters and neurodevelopmental
outcomes with imaging findings from the MRI acquired within 7 days scored by the
van Rooij score, a logistic regression analysis was performed; to identify associations of
both patients’ perinatal parameters and neurodevelopmental outcomes with ADC values
measured in the ROIs, we performed a linear regression analysis.

Receiver operating characteristic (ROC) analyses were realized for each ROI in relation
to the perinatal clinical and laboratory parameters and in relation to the neurodevelopmen-
tal parameters at 1 year. The ADC threshold value to differentiate patients in relation to
their prognosis was calculated by using the maximum Youden J index.

For longitudinal analysis, ADC0 (ADC of MRI0) and ADC1 (ADC of MRI1) were firstly
regrouped by each perinatal and neurodevelopmental parameter. To detect fluctuations
in brain ADC values between MRI0 and MRI1, we compared ADC0 and ADC1 values for
each ROI using a paired t-test. To identify possible ADC differences in MRIs acquired at 1
year of life among subjects in relation to perinatal and neurodevelopmental parameters, a
linear regression analysis was performed.

3. Results

The final cohort of patients consisted of 51 subjects presenting moderate HIE (Figure 1).
Patients’ demographic data and perinatal and outcome parameters were collected and
reported in an anonymized database (Table 1).

Table 1. Main demographic and clinical characteristics of patients affected by hypoxic-ischemic
encephalopathy.

Characteristics Patients

N◦ of subjects 51
N◦ F/M 18/33
Eutocic/Dystocic delivery 23/28
Apgar 10 min < 5/≥5 23/28
Blood lactate < 3.9/≥3.9 31/20
Base Excess < −12/≥−12 35/16
Umbilical cord pH < 7/≥7 18/33
Cardiac Massage Y/N 18/33
Mechanical Ventilation Y/N 18/33
RDS 17/34
Bayley III—motion impairment < 85 at 1 year Y/N 6/45
Sleep Disorders at 1 year Y/N 6/45
Physiokinesitherapy at 1 year Y/N 7/44

3.1. Correlations between Perinatal and Outcome Parameters with Van Rooij Score at MRI0

In patients presenting with signal abnormalities at MRI0, the median van Rooij score
was 3.1 ± 2.7 (SD/standard deviation).
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No significant correlations were found between the van Rooij score and the perinatal
parameters.

A significant correlation was identified between the van Rooij score and the evidence
of sleep disorders (p < 0.014).

3.2. Correlations between Perinatal and Outcome Parameters with ADC Values at MRI0 and
ROC Analysis

ADC0 < ADC1 in the left and right thalami, in the right visual cortex, in the left dentate
nucleus, and in the left and right frontal white matter for multiple outcomes and perinatal
parameters (Table 2).

Table 2. Results.

Results
Correlations between the van Rooij score at MRI0 and perinatal/outcome parameters
Perinatal Parameters Outcome Parameters
- sleep disorders (p < 0.0014)
Correlations between perinatal and outcome parameters with ADC values at MRI0 and perinatal/outcome parameters
Brain region Perinatal Parameters Outcome Parameters

left thalamus pH <7 (p < 0.026)
BE < −12 mmol/L (p < 0.025)
lactate <3.9 (p < 0.029)
RDS (p < 0.041)
cardiac massage (p < 0.032)

sleep disorders (p < 0.026)
motor impairment (p < 0.015)
physiokinesitherapy (p < 0.044)

right thalamus lactate <3.9 (p < 0.004) sleep disorders (p < 0.041)
motor impairment (p < 0.021)

right visual cortex BE < −12 mmol/L (p < 0.011)
cardiac massage (p < 0.047)

-

left frontal white matter BE < −12 mmol/L (p < 0.041)
RDS (p < 0.038)
cardiac massage (p < 0.043)

sleep disorders (p < 0.022)
motor impairment (p < 0.014)

right frontal white matter RDS (p < 0.026)
cardiac massage (p < 0.039) motor impairment (p < 0.046)

left dentate nucleus - motor impairment (p < 0.028)
Fluctuations in ADC values between MRI0 and MRI1, and correlation with perinatal and outcome parameters
Brain region Perinatal Parameters Outcome Parameters

right visual cortex Dystocic birth (p < 0.001)
Apgar10 <5 (p < 0.001)
pHuc <7 (p < 0.001)
BE < −12 mmol/L (p < 0.001)
RDS (p < 0.001)
mechanical ventilation (p < 0.001)
cardiac massage (p < 0,0)

sleep disorders (p < 0.001)
motor impairment (p < 0.007)
physiokinesitherapy (p < 0.001)

left dentate nuclei Dystocic birth (p < 0.001)
Apgar10 (p < 0.001)
pHuc < 7 (p < 0.001)
BE < −12 mmol/L (p < 0.001)
RDS (p < 0.001)
mechanical ventilation (p < 0.001)
cardiac massage (p < 0.001)

sleep disorders (p < 0.009)
motor impairment (p < 0.007)
physiokinesitherapy (p < 0.002)

ADC0 < ADC1 in the left thalamus in patients presenting with sleep disorders
(p < 0.026), showing motor abnormalities at Bayley III (p < 0.015), and needing phys-
iokinesitherapy (p < 0.044); in the right thalamus in patients presenting with sleep disorders
(p < 0.041) and showing motor abnormalities at Bayley III (p < 0.021); in the left frontal
white matter in patients presenting with sleep disorders (p < 0.022) and showing motor
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abnormalities at Bayley III (p < 0.014); and in the right frontal white matter (p < 0.046) and
in the left dentate nucleus in patients presenting with motor abnormalities at Bayley III
(p < 0.028) (Table 2).

In ROC analysis and for the cut-off of 1.535 mm2/s × 10−6 in the ROI drawn in the
right frontal white matter, the outcome parameter with the highest area under the curve
(AUC) (0.856) was the presence of sleep disorders at 1 year, presenting a sensitivity of 80%
and a specificity of 86% (Figure 2).
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Figure 2. ROC curve for the ADC cut-off value of 1.535 mm2/s × 10−6 in the ROI drawn in the right
frontal white matter for the outcome parameter sleep disorders. The x-axis refers to the sensitivity,
the y axis refers to 1-specificity. The blue line represents the AUC, while the green line represents the
diagonal. For the cut-off value of 1.535 mm2/s × 10−6, the sensitivity was 80%, and the specificity
was 86% (red dot), while the AUC was 0.856.

3.3. Fluctuations in ADC Values between MRI0 and MRI1 and Their Correlation with Perinatal
and Outcome Parameters

ADC1 > ADC0 across the ROIs, and it was observed that there was a significant value
increase in ADC1 > ADC0 in the right visual cortex and the left dentate nucleus for both
multiple outcomes and perinatal parameters (Table 2).

4. Discussion

We found some significant correlations between perinatal and outcome parameters and
imaging. In particular, the van Rooij score was significantly higher in children presenting
with sleep disorders at 1 year of life, and ADC0 was significantly lower in children showing
abnormal perinatal parameters and compromised neurodevelopmental outcomes in the
left and right thalami, left and right frontal white matter, right visual cortex, and left
dentate nucleus. The optimal ADC cut-off value was identified in the right frontal white
matter (value: 1.535 mm2/s × 10−6; sensitivity: 80%; specificity: 86%). ADC1 values
were higher compared to ADC0 in the right visual cortex and left dentate nucleus and
positively correlated with multiple abnormal perinatal parameters and compromised
neurodevelopmental outcomes.

4.1. Correlations between Perinatal and Outcome Parameters with Van Rooij Score and with ADC
Values at MRI0, and ROC Analysis

Results showed that ADC1 values were lower: in the left and right thalami, in the
left and right frontal white matter, in the right visual cortex of patients presenting with
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abnormal perinatal parameters, RDS at birth, and needing cardiac massage and/mechanical
ventilation; and in the left and right thalami, in the left and right frontal white matter, and in
the left dentate nucleus of patients presenting with sleep disorders and motor abnormalities
and needing physiokinesitherapy at 1 year of birth.

Term infants affected by HIE usually present with two peculiar patterns on the MRI: the
main involvement of basal ganglia, thalami, and perirolandic areas, leading to severe motor
impairments, and the involvement of watershed areas, resulting principally in cognitive
impairment. Severe HIE forms result in diffuse gray and white matter involvement,
characterized by both cognitive and motor impairments [18–21] (Figure 3).
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Figure 3. MRI0 of patients affected by HIE injury and presenting: pattern 1 (a–c), characterized by the
prevalent involvement of basal ganglia, thalami, and perirolandic areas; pattern 2 (d–f), characterized
by the prevalent involvement of watershed areas (c,d); pattern 3, characterized by mixed patterns
(g–i). In particular, the figure shows: T2WI (a), ADC (b), and DWI (c) sequences of patients presenting
with pattern 1 and showing areas of diffusion restriction in the left thalamus (dotted black arrow in
(b,c)), paired with focal left thalamic hyperintensity in T2 (black arrow in (a)); T2WI (d), ADC (e), and
DWI (f) sequences of patients presenting with pattern 2 and showing areas of diffusion restriction
in the left and right frontal and right parietal white matter (dotted white arrows in (e,f)), paired
with inhomogenous T2 hypointensity in the same areas (white arrows in (d)); T2WI (g), ADC (h),
and DWI (i) sequences of patients presenting with mixed patterns showing both areas of diffusion
restriction in the capsulo-lenticular regions bilaterally (dotted black arrows in (h,i)), which match
with the focal areas of T2 hyperintensity in the same areas (black arrows in (g)); and diffuse areas of
diffusion restriction in the corpus callosum (white * in (h,i)) and in the left and right frontal and right
parietal white matter (dotted white arrows in (h,i)), with aT2 hyperintensity match in the corpus
callosum (black * in (g)) and no clear evidence of T2 signal alterations in the remaining areas of (g).
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Most of the perinatal parameters were altered in neonates presenting with low ADC
values in the thalami, and this data can be easily explained, since thalami are particularly
sensitive to hypoxic-ischemic injury, appearing to be even more vulnerable than basal gan-
glia to ischemic insult [22,23]. The increased vulnerability was explained by the spreading
of hypoxic-ischemic injury from the cortex to the thalami via the axons in the white matter
and only secondly to the basal ganglia [24]. Since the DWI may need a few days to reach the
complete extent of the lesions [25], thalami showed lower scores, being among the first to
suffer from hypoxic-ischemic injury. This data is corroborated by studies on stroke patients,
since primary injuries may disrupt functional connections, resulting in the development of
secondary injuries, such as thalamic damage, which impair patients’ recovery [26,27].

The hypothesis of injury spreading through the white matter to the thalami was
strengthened by the evidence of lower ADC values in the left and right frontal white
matter, which was much more evident in severe patients who needed cardiac massage
and presented with RDS [24]. The frontal white matter is the site of the pyramidal tract,
which arises from the primary motor cortex in the precentral cortex and through the
posterior limb of the internal capsule, reaching the bulbar pyramid, where it decussates
and continues its pathway in the spinal cord. Neurons of the primary, secondary, and
accessory motor cortices receive multiple inputs from different areas of the brain. In
particular, significant mediation and modulation are made by the anterior motor-related
thalamic regions, including the ventral anterior thalamic and the ventrolateral thalamic
nuclei, and the posterior sensory-related thalamic areas, including the posterior thalamic
nuclear group [28,29].

Therefore, there was also high consistency between correlations found between ADC0
values and perinatal and outcome parameters at 1 year. In particular, the motor impairment
identified by the Bayley III scale optimally correlated with low ADC values identified in
the right and left thalami and in the frontal left and right white matter.

Moreover, low ADC values were identified in the dentate nucleus, whose dorsal motor
domain controls and regulates motor functions. In particular, the dentate nucleus receives
inputs from the premotor and supplementary cortices and sends outputs to the thalami
via the dentate–thalamic tract. From the thalami, inputs will be projected to the premotor
and primary motor cortices, to the basal ganglia, to the posterior parietal cortex, and to the
substantia nigra. Fine movements are regulated by the myoclonic triangle, which consists of
the dentate nucleus, the red nucleus, and the inferior olivary nucleus [30–33]. Consequently,
and in accordance with this evidence, low ADC values were scored by patients needing
physiokinesitherapy.

The perfect balance between excitatory and inhibitory inputs to the pyramidal tract is
impaired in case of insults to the corticospinal tracts or indirectly to the thalami, such as
in neonates affected by hypoxic-ischemic injury and presenting with motor impairment
at 1 year of birth and justifies the correlation between imaging findings and abnormal
neuromotor outcomes.

Low ADC values were also identified in the visual cortex, and that is not surprising,
since HIE represents the leading cause of cerebral visual impairment, according to the
study by Pehere et al. [34]. The paper proved that HIE caused more than one-third of
cerebral visual impairments in children <2 years, the majority of whom presented with
severe disability [34].

A significant correlation was found between the van Rooij score and the ADC0 val-
ues with sleep disorders. Interestingly, sleep disorders are among the least-investigated
symptoms in pediatric populations and are rarely evaluated as outcomes in pediatric pa-
tients affected by HIE [35]. However, recent literature demonstrated that neonates affected
by HIE showed a delayed onset of the sleep–wake cycle and developed sleep disorders,
compromising children’s and parents’ quality of life [35–37].

Sleep–wake cycle generation is a complex mechanism involving multiple intercon-
nected cerebral areas and reflects the integrity, maturity, and organization of the neuronal
network. Takenouchi et al. [36] showed the abnormalities of sleep–wake cycling at the EEG,
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reflecting the involvement of the basal forebrain and the cortical, thalamic, and hypothala-
mic neurons in patients affected by HIE. In particular, the wake-promoting pathways arise
from the midbrain and split into the ventral pathway, innervating the basal forebrain, the
cortex, and the hypothalamus, and the dorsal pathway, innervating the thalami [38].

Diffuse supratentorial ischemic insult has been frequently related to the disruption of
the sleep–wake cycle and justifies the correlation found. Moreover, an increasing amount
of evidence demonstrates that the involvement of the thalami and/or the basal ganglia
is associated with the delayed onset of sleep–wake cycles and with consequent sleep
disorders [36,39]. These data are corroborated by our results since our patients showed
low ADC values both in the frontal white matter and in the thalami. Since these areas are
crucial in the sleep–wake cycle, hypoxic-ischemic insults disrupt the neuronal network and
the related pathways, causing consequent sleep disorders.

Accordingly, sleep disorder was the outcome parameter that most significantly corre-
lated with increased van Rooij scores in the right frontal white matter [9].

Finally, in ROC analysis and for the cut-off of 1.535 mm2/s × 10−6 in the ROI drawn
in the right frontal white matter, the outcome parameter with the highest area under the
curve (AUC) (0.856) was the presence of sleep disorders at 1 year, presenting a sensitivity
of 80% and a specificity of 86%.

The results of the ROC curve, together with the results of the ADC analysis and the
van Rooij score, are particularly interesting since the presence of sleep disorders seems to
be the most consistent and relatable parameter investigated, even if this pathology is rarely
assessed in HIE patients.

In particular, we only included patients presenting with high-quality MRIs acquired
within 7 days. The identification of lower ADC values in MRIs performed within 7 days
indicated restricted diffusion in areas that are extremely sensitive to hypoxic-ischemic insult
and corresponded with cytotoxic oedema, leading to irreversible lesions secondary to cell
death [40]. The MRIs carried out within 7 days from birth allowed for an optimal evaluation
of the morphostructural and functional sequences that are affected by defined processes of
“pseudonormalization”, or the normalization of the neuroradiological picture that persists
after 7 days [9,41]. Therefore, the predictive value of ADC as an early biomarker may be
impaired if the scan is performed after 7 days [42].

4.2. Fluctuations in ADC Values between MRI0 and MRI1 and Their Correlation with Perinatal
and Outcome Parameters

ADC1 values tend to diffusively grow across the ROIs, and a significant increase in
ADC1 values compared to ADC0 values in the right visual cortex and the left dentate
nucleus was observed for both multiple outcome and perinatal parameters.

In literature, the difference between MRIs acquired within and after 7 days of birth
extensively described an increase in ADC values in relation to the pseudonormalization
phenomenon [9,41], but few studies investigated the correlation with late MRI appear-
ance [43].

The identification of an increase in ADC values in MRIs performed at 1 year, compared
to ADC values performed within 7 days, is related to a persistent and significantly high
ADC value. Its correlation with perinatal and outcome parameters at 1 year excludes
normalization and suggests, instead, an ischemic scar in different brain areas following HIE.

Accordingly, the correlation of ADC1 values increased with multiple abnormal peri-
natal and outcome parameters, suggesting that the severity of the HIE is a key factor in
defining brain damage. On the other hand, the reduced number of brain areas identified in
MRI1, compared to the higher number of areas identified in MRI0, may be explained by
the proven effectiveness of therapeutic hypothermia, which reduces cerebral injury burden
and improves patients’ prognoses [1,3,7].

The crucial importance of identifying prognostic biomarkers in HIE and of correctly
diagnosing and classifying neonates according to the severity of their pathology fueled
a vast amount of literature, some of which efficiently applied AI to provide quantitative
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findings to stage neonates affected by HIE [44]. Our results confirm the vast majority of
literature, which, nevertheless, show inhomogeneous results [4,9,23,43–46]. We hypothesize
that the inconsistency that exists among papers stems from the extensive differences in
patients’ cohorts in relation to number, severity score, and demographic features; from the
absence of a standardized and universally performed MRI protocol; and from the timing of
imaging acquisition. Further studies are needed to address these crucial topics and validate
our results.

The first limitation of the present study is the absence of a group of patients matched
for HIE severity, age, and sex who did not undergo therapeutic hypothermia. Therapeutic
hypothermia has been proven to significantly improve pediatric patients’ prognoses, and
therefore, it is not ethically acceptable to randomly assign patients to therapy or placebo in
case of hypothermia indications. The second limitation is the imbalance between patients
with good prognoses and patients presenting with severe prognoses at 1 year. These data
are justified by the positive effects of therapeutic hypothermia and by the strict protocols
that our institution applied to guarantee early diagnosis and therapy to children.

5. Conclusions

ADC values in MRI0 were significantly lower in children showing abnormal peri-
natal parameters and compromised neurodevelopmental outcomes in the left and right
thalami, left and right frontal white matter, right visual cortex, and left dentate nucleus.
In particular, at ROC analysis, an ADC threshold value of 1.535 mm2/s × 10−6, measured
in the right frontal white matter, presented a sensitivity of 80% and a specificity of 86%
when predicting children’s prognoses at 1 year of life. ADC1 values tended to globally
increase, compared to ADC0 values, with particular evidence in the right visual cortex
and left dentate nucleus, and were positively correlated with multiple abnormal perinatal
parameters and compromised neurodevelopmental outcomes. The van Rooij score was
significantly higher in children presenting with sleep disorders at 1 year of life.

Our study highlights the need for a comprehensive MRI study of HIE and underlines
the importance of the DWI/ADC sequence for children’s evaluations. ADC values can be
used as prognostic biomarkers to predict children’s neurodevelopmental outcomes and
provide parents with the most-required information related to patients’ prognoses, which
can help them understand and agree with the medical personnel on the best therapy for
their children. Further studies are needed to address these crucial topics and validate
our results.

Moreover, the results suggest the key importance of early and multidisciplinary
perinatal evaluation and subsequent re-assessment of children to identify physical and
neuropsychological disorders to guaranteeearly and tailored therapy.
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