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ABSTRACT:

Water reservoirs are subjected to increasing hydrological stresses, therefore continuous and accurate monitoring of these resources
is essential to ensure their sustainable management. This work proposes a methodology to remotely monitor the surface extent
of water reservoirs through the analysis of satellite multispectral and Synthetic Aperture Radar (SAR) images. In particular, a
segmentation strategy was implemented within Google Earth Engine (GEE) to distinguish water bodies from the surrounding land
surface and measure their extension, by applying three different approaches to Sentinel-1, Sentinel-2, and Landsat-8 imagery. The
first approach is based on the use of the Automatic Water Extraction Index (AWEI) and the self-adaptive Otsu’s thresholding method,
the second approach is based on the image conversion from RGB (Red-Green-Blue) to HSV (Hue, Saturation, Value) and the use
of a parametric threshold, the third approach is based on the use of SAR imagery and an empirically selected threshold. A “static”
validation strategy was developed from scratch and standard segmentation metrics were computed to evaluate the accuracy of the
three approaches. The average values of the F1 scores on the Sentinel imagery were equal to 0.95, 0.90, and 0.84 for the three
approaches, respectively. The same metric on the Landsat imagery was 0.95 for the first approach and 0.93 for the second approach.
The best approach, i.e. the AWEI-based method, was then applied to three water bodies in which the effects of the 2022 drought
were particularly significant: Sawa lake (Iraq), Poyang lake (China), and Po river (Italy). The results visually highlighted the good
performance of the approach in segmenting the water bodies from the surrounding areas.

1. INTRODUCTION

Natural and artificial water reservoirs are essential freshwater
resources for human and animal consumption, agricultural ir-
rigation, and several industrial applications. Currently, wa-
ter level measurements are generally performed by traditional
ground instruments such as gauge stations. Indeed, the data
collected by these instruments are used to estimate the area and
volume of the reservoirs (and their variations over time) using
volume-area-elevation curves derived from bathymetric and to-
pographic information of the reservoir itself (Tong et al., 2016,
Hamoudzadeh et al., 2023). However, in-situ monitoring is
mainly possible in developed countries, due to the difficulties
in installing and maintaining measurement stations in remote
areas. In addition, even in developed countries, gauge stations
are not installed at small and secondary reservoirs. Conversely,
the use of Earth Observation (EO) technologies can remarkably
reduce the monitoring costs (independent from the actual ex-
tent of the reservoir) and provide frequent and regular data that
facilitate the continuous monitoring of water reservoirs, in prin-
ciple with homogeneous worldwide procedures (Valadão et al.,
2021).

The aim of this work is precisely included in this background:
the general goal is to lay the foundations for the development
of a procedure based on free EO data for the routine monitoring
of the extent of whichever water reservoir. In particular, in this
preliminary analysis focused on multispectral and SAR satellite
images, three different segmentation approaches able to distin-
guish water bodies from the surrounding land surface and meas-
∗ Corresponding author

ure their extent were investigated using Sentinel-1, Sentinel-2,
and Landsat-8 imagery. Indeed, the continuous computation of
2D metrics, such as perimeter and area, is a first step towards
the monitoring of the seasonal and annual variations of wa-
ter reservoirs, allowing the reconstruction of long-term surface
water dynamics. This goal is strictly related to the United Na-
tions Sustainable Development Goals (SDGs) concerning water
availability (SDG 6 - Clean water and sanitation) and climate
change effects monitoring (SDG 13 - Climate action), and to
the Recovery Plan Next Generation EU.

2. METHODOLOGY

Three water segmentation approaches were investigated and
implemented within Google Earth Engine (GEE). GEE is a
cloud computing platform that integrates a wide and freely ac-
cessible remote sensing data archive, including Landsat and
Sentinel image collections. Through efficient Application Pro-
gramming Interfaces (APIs), GEE makes it possible to carry out
large-scale geospatial analyses, according to the well-known
”data-information-knowledge-wisdom” paradigm (Kavvada et
al., 2020). In particular, continuing the work started in (Ravan-
elli et al., 2023), the following three water segmentation ap-
proaches were investigated:

• the first (Sengupta et al., 2020, Donchyts et al., 2016)
is based on the application of the Automatic Water Ex-
traction Index (AWEI) (Feyisa et al., 2014) and the
self-adaptive Otsu’s thresholding method (Otsu, 1979) to
multispectral imagery;
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• the second (Valadão et al., 2021) is based on the use of
multispectral imagery and the conversion from the RGB
(Red-Green-Blue) to the HSV (Hue, Saturation, Value)
color model to which a parametric threshold is applied;

• the third (Geohackweek, 2016) is based on the use of SAR
imagery and an empirically selected threshold.

The first two approaches were applied to Sentinel-2 (Google
Earth Engine Data Catalog, 2023a) and Landsat-8 (Google
Earth Engine Data Catalog, 2023c) multispectral imagery, and
the third one to Sentinel-1 SAR (Google Earth Engine Data
Catalog, 2023b) imagery. For the approaches based on multis-
pectral imagery, only images with a percentage of cloudy pixels
less than 30% were selected and a cloud mask was computed to
consider only cloud-free pixels using the QA60 bitmask band
of Sentinel-2 (Google Earth Engine Data Catalog, 2022) and
the QA PIXEL and QA RADSAT bands of Landsat-8 (ESA,
2022). For all the approaches, the median reducer was used
to aggregate image data over time (Google Earth Engine Doc-
umentation, 2023). The median reducer aggregates all the im-
ages of an image collection available in a given period and com-
putes an overall median image by calculating the median value
of each pixel – for every band – across the temporal stack of im-
ages. The median images were the input to the three segment-
ation approaches. A period of one year was considered in the
analyses, in particular, the images collected in 2019 were ana-
lysed into three-month sub-periods. In this way, all the images
available in 2019 for the three considered satellites were split
into four sub-collections to investigate the four seasons separ-
ately. Figure 1 and Figure 2 show a median image for Sentinel-
2 (after applying the cloud filters) and Sentinel-1 for the period
January-March 2019 over the Marghera dock (Venice, Italy),
i.e. the validation area, as described in Section 3.

Figure 1. Sentinel-2 multispectral median image (Marghera
dock, January-March 2019).

Each approach returned a water segmentation mask as output,
from which the area of the reservoir was computed by counting
the pixels classified as water and by multiplying the resulting
number by the image resolution. Table 1 shows the resolution
(pixel size) of the bands used in the analyses.

The following sections describe each approach in detail.

2.1 AWEI approach

In the AWEI-based approach, the water pixels in the input me-
dian image were segmented by implementing the AWEI spec-

Figure 2. Sentinel-1 median image (Marghera dock,
January-March 2019).

Band resolution (pixel size) [m]
Satellite RGB NIR SWIR1/SWIR2 GRD (IW)

Sentinel-2 10 10 20 -
Landsat-8 30 30 30 -
Sentinel-1 - - - 10

Table 1. Band resolution of Sentinel-2, Landsat-8, and
Sentinel-1: RGB, Near-infrared (NIR), Short-wave infrared

(SWIR), and Ground Range Detected (GRD) Interferometric
Wide (IW).

tral index and by applying the method of local thresholding
based on the Otsu’s thresholding and the Canny edge detector
algorithms (Donchyts et al., 2022). The AWEI index is presen-
ted in Equation 1 (Feyisa et al., 2014):

AWEI = 4 · (ρGREEN − ρSWIR1) − 0.25 · ρNIR − 2.75 · ρSWIR2

(1)

where ρ represents the reflectance for the GREEN (G), SWIR1,
SWIR2, and NIR bands, and the coefficients and the arithmetic
combinations of the chosen spectral bands were determined by
critical examination of the reflectance properties of various land
cover types (Feyisa et al., 2014).

The AWEI index allows for maximization of the separability
of water and non-water pixels and thereby makes it possible to
extract surface water with high accuracy (Feyisa et al., 2014).
Unlike the Normalized Difference Water Index (NDWI) or the
Modified Normalized Difference Water Index (MNDWI), the
use of AWEI index avoids segmentation errors due to many
factors such as clouds, snow, and ice. Additionally, the AWEI
does not commit errors of commission (false positive segment-
ation of water) in areas with shadows due to topographic condi-
tions or the presence of cloud shadows (Donchyts et al., 2016).
The increase in the contrast between water and other dark sur-
faces provided by this index compared to the NDWI index is
shown in Figure 3.

After the AWEI index computation, the method of local
thresholding based on Otsu’s thresholding, and the Canny edge
detector algorithm were applied to reduce the number of input
pixels only to those located near water-land edges (Donchyts
et al., 2016). The detection of water pixels was then refined
using morphological dilation. Figure 4 shows the water mask
generated using the approach applied to Sentinel-2 imagery.
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Figure 3. Comparison between NDWI (above) and AWEI
(below) resulting images on the same area (Venice lagoon).

Figure 4. Water segmentation image obtained with the AWEI
approach using Sentinel imagery.

2.2 HSV approach

In the HSV-based approach (Valadão et al., 2021), the input
median RGB image (see Figure 1) was firstly transformed to
HSV. Only the Hue band was selected to facilitate the sub-
sequent identification of the water pixels (Valadão et al., 2021).
In this case, the water segmentation was based on a paramet-
ric threshold: more specifically, only the pixels in the 0.25-0.95
tonality range were classified as water pixels. The resulting wa-
ter segmentation mask is shown in Figure 5.

2.3 SAR approach

The Sentinel-1 images were filtered by selecting only the VV
polarisation. It is important to underline two issues that affect
SAR imagery. Firstly, some surfaces alter the polarisation of the
SAR signal, but this is usually not frequent for water body seg-
mentation. Secondly, SAR images are often affected by speckle
noise that deteriorates the quality of the image (Geohackweek,
2016). To reduce the speckle, a focal median filter was applied.
Then, a simple threshold method was implemented to identify
water pixels in the SAR images. Specifically, a threshold of
backscatter was chosen and all pixels below that threshold were
classified as water. The selected threshold value was -16 dB
and it was empirically selected by visually inspecting the histo-
gram representing the number of pixels and the intensity of the
backscattered signal (Figure 6).

The water segmentation mask obtained with this approach is
shown in Figure 7.

Figure 5. Water segmentation image obtained with the HSV
approach using Sentinel imagery.

Figure 6. Histogram for SAR threshold selection.

Figure 7. Water segmentation image obtained with the SAR
approach using Sentinel imagery.

3. VALIDATION

The three approaches were validated using a “static” validation
strategy, i.e, considering a validation area where the water level
variations do not impact the water surface extent over time and
the geometry of the water borderlines is available as an inde-
pendent ground truth. Specifically, the different approaches
were applied to the harbour area of Marghera considering the
2019 year and the results were compared with the reference
shapefile of the Site of National Interest (SIN) of Marghera
available on the Ministry of Environment and Energy Secur-
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ity website of the Italian Government. In the selected area, the
water borderlines are artificial and, therefore, in theory, inde-
pendent from the water level, allowing to compare the perform-
ances of the three approaches using imagery acquired in differ-
ent epochs. The reference ground truth and the generated water
masks are shown in Figure 8.

Figure 8. Ground truth mask (a) and water detection masks
obtained with the first approach on Sentinel imagery (b) and

Landsat imagery (e), the second approach on Sentinel imagery
(c) and Landsat imagery (f), and the third approach (d)

(Marghera dock, January-March 2019). True positives are in
blue, true negatives in green, false positives in red and false

negatives in yellow.

Figure 8-b and 8-e visually demonstrate how the AWEI ap-
proach performs better than the other ones. Figure 8-c shows
that the HSV approach generates a higher number of false posit-
ive pixels compared to the AWEI approach. Moreover, the HSV
approach not only fails to segment the pixels of land located on
the water-land border but also those located inland. The reason
is related to the presence of a few roofs in the validation area:
their color falls in the Hue range of 0.25-0.95, which was set
to classify water in this approach. To further improve the per-
formance of this method, a solution could be to narrow down
the Hue range or select a non-urban validation area. Figure 8-d
highlights that the SAR approach presents many segmentation
issues and provides the worst results. In this case, the number
of pixels segmented as false negatives is higher, i.e. a lot of wa-
ter pixels are segmented as land pixels. Finally, by analyzing

Figure 8-d it is possible to notice that the small portion in the
hinterland classified as false positive is actually an area where
the algorithm works correctly and the reference is not correct.
That area is indeed a small wet area that in the reference image
was mistakenly considered land. This affects also the second
method.

For each approach, the confusion matrix was computed using
both Sentinel and Landsat collections to investigate the per-
formance of the investigated approaches. The following stand-
ard metrics were computed: Accuracy (A), Intersection over
Union (IoU), Precision (P), Recall (R), and F1 score (F1). The
results are presented in Tables 2, 3, 4, 5, and 6.

Temporal range Images A IoU P R F1
Q1 2019 12 0.98 0.92 0.97 0.94 0.96
Q2 2019 7 0.98 0.90 0.99 0.91 0.95
Q3 2019 9 0.98 0.91 0.99 0.92 0.95
Q4 2019 8 0.98 0.89 0.95 0.94 0.94

Table 2. Metrics of the AWEI approach with a time range of
three months (Sentinel-2).

Temporal range Images A IoU P R F1
Q1 2019 15 0.98 0.92 0.98 0.94 0.96
Q2 2019 13 0.98 0.90 0.97 0.93 0.95
Q3 2019 17 0.98 0.91 0.98 0.93 0.95
Q4 2019 10 0.98 0.89 0.95 0.94 0.94

Table 3. Metrics of the AWEI approach with a time range of
three months (Landsat-8).

Temporal range Images A IoU P R F1
Q1 2019 12 0.97 0.86 0.86 0.97 0.92
Q2 2019 7 0.97 0.84 0.86 0.96 0.91
Q3 2019 9 0.96 0.82 0.85 0.97 0.90
Q4 2019 8 0.95 0.78 0.79 0.97 0.87

Table 4. Metrics of the HSV approach with a time range of three
months (Sentinel-2).

Temporal range Images A IoU P R F1
Q1 2019 15 0.97 0.87 0.91 0.96 0.93
Q2 2019 13 0.98 0.88 0.95 0.93 0.94
Q3 2019 17 0.98 0.89 0.95 0.93 0.94
Q4 2019 10 0.97 0.84 0.87 0.95 0.91

Table 5. Metrics of HSV approach with a time range of three
months (Landsat-8).

Temporal range Images A IoU P R F1
Q1 2019 44 0.95 0.73 0.98 0.74 0.84
Q2 2019 46 0.95 0.71 0.98 0.72 0.83
Q3 2019 47 0.95 0.72 0.98 0.73 0.84
Q4 2019 44 0.95 0.73 0.98 0.73 0.84

Table 6. Metrics of the SAR approach with a time range of three
months (Sentinel-1).

Again, Tables 2, 4 and 6 demonstrate that the first approach per-
forms better than the others: all the metrics, except the Recall,
are higher than the corresponding ones of the other approaches.
In particular, the average F1 scores of the three approaches ap-
plied to Sentinel-2 (first and second approach) and Sentinel-1
(third approach) imagery are equal to 0.95, 0.90, and 0.84, re-
spectively. The same metric values on the Landsat imagery are
0.95 for the first approach and 0.93 for the second one. Fur-
thermore, by comparing changes in F1 scores through the sub-
periods for each approach in Tables 2, 4 and 6, it is possible
to notice that the AWEI and SAR methods are less affected by
seasonality compared to the HSV method. This behaviour can
be related to the different lighting conditions in the median im-
ages during winter and summer. The HSV method segments
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water pixels based on a Hue range: variations in the lightness
conditions cause a change in Hue conditions, and therefore af-
fect the performance of this approach. The differences between
the seasons can be visually appreciated in Figure 9, in which
black areas highlight the pixels that are misclassified as false
positives for the summer (right) period while they are correctly
classified in the winter period (left).

Figure 9. Results comparison between January-March 2019
(left) and July-September 2019 (right) for the second approach.

Finally, Table 6 highlights that the number of SAR images
available for each period is higher than the number of multis-
pectral images. This is related to two reasons: firstly the area of
Marghera is located at the intersection of several orbits of the
Sentinel-1 satellite, both ascending and descending; secondly,
SAR images are not affected by clouds, therefore no cloud fil-
ter was applied to remove images.

4. CASE STUDIES

The best method (i.e. the AWEI approach) was applied to three
case studies in which the effects of the 2022 drought were par-
ticularly significant. For sake of brevity, only the results ob-
tained using Sentinel-2 images are shown below.

4.1 Sawa Lake

Sawa Lake is an endorheic lake (4.5 km long and 1.8 km wide)
located in southern Iraq in the governorate of Muthanna, near
the Euphrates River. The water level in the lake used to fluctu-
ate between dry and wet seasons, but despite being situated in
an arid region, in 2022 it did not dry up because of the balance
between evaporation and water feed, i.e. based on rainfall and
groundwater through cracks and fissure (Service, 2015). Sawa
Lake was severely affected by the 2022 water crisis caused by
climate change, which led to low rainfall and drought, but also
by lack of maintenance of water infrastructure and by the pres-
ence of dams in upstream countries that reduced the flow of
the Tigris and Euphrates rivers (Radeef and Abdulameer, 2023).
Lake Sawa degradation started more than 10 years ago, but in
2022 the lake disappeared for the first time (Copernicus, 2022).
This effect can be appreciated in Figure 10 by comparing the
median image obtained for the period January-March 2020 with
the corresponding one of 2022.

The application of the AWEI-based method to this lake returned
the water masks shown in Figure 11.

The water area was obtained from these masks to quantify the
change: the area decreased from 3.90 km2 in 2020 to 0.39 km2

in 2022.

Figure 10. Sentinel-2 median image of Sawa lake on
January-March 2020 (left) and on January-March 2022 (right).

Figure 11. Water detection image on January-March 2020 (left)
and January-March 2022 (right).

4.2 Poyang Lake

Poyang Lake is located in Jiujiang, in China’s Jiangxi Province
and it is the largest freshwater lake in China. The lake is fed
by the Gan, Xin, and Xiu rivers which connect to the Yangtze
through a narrow channel. Poyang Lake routinely fluctuates in
size between the winter and summer seasons: in winter, water
levels on the lake are typically low, then summer rains cause it
to swell. However, in recent years, the size of the lake has been
decreasing overall. In particular, during the summer of 2022,
the Yangtze River basin was affected by a prolonged heat wave
and drought, and therefore Poyang Lake dried up reaching wa-
ter levels not seen in decades. On June 23, the Xingzi Station
measured the highest water levels of the year on Poyang Lake;
after that, the Jiangxi Hydrological Monitoring Center recor-
ded high temperatures and a lack of rain, i.e. the factors that
caused the lake to drop rapidly (NASA, 2022). On August 6,
water levels had declined to 11.99 meters and the Center iden-
tified this date as the start of the lake dry season: water levels
have continued to drop, registering 8.96 meters on August 30.
In this case, the comparison was made between Spring 2022
(i.e. median image obtained for the period April-June 2022)
and Summer 2022 (i.e. median image obtained for the period
July-September 2022). The median images depicted in Figure
12 show this trend, and the measures of the areas confirm it:
from the masks represented in Figure 13, areas of 2281.48 km2

and 1054.61 km2 were obtained for Spring 2022 and for Sum-
mer 2022, respectively.

Figure 12. Sentinel-2 median image of Poyang lake on
April-June 2022 (left) and on July-September 2022 (right).

4.3 Po river

Po river is the longest river in Italy (652 km). It is located in the
North of Italy and flows from east to west crossing many im-
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Figure 13. Water detection image on April-June 2022 (left) and
on July-September 2022 (right).

portant Italian cities. The vast valley around the Po is called
the Po Basin: about 20 million people live there (a third of
the Italian population) and it is the main industrial area and the
largest agricultural area in the country, accounting for 35% of
Italian agricultural production (Borzı̀ et al., 2021). Moreover,
the water of the Po river is essential for the energy production
of the country. Its flow is controlled by lots of dams that work
as hydroelectric power plants and there are several thermoelec-
tric power stations that use the water of the Po basin as coolant.
During 2022, due to the intense drought, the water level of the
river reached a historic low in the principal sections and the
flow touched its all-time low (Po River Basin District Author-
ity, 2022). The analysis was carried out by comparing Spring
2020 and Spring 2022 in a 50 km portion of the Po river near
Piacenza. The results are shown in Figure 14 and 15, where it is
possible to observe a reduction of the surface from 14.72 km2

to 11.22 km2, i.e. about 25% in only two years.

Figure 14. Sentinel-2 median image of Po river on April-June
2020 (above) and on April-June 2022 (below).

Figure 15. Water detection image on April-June 2020 (above)
and on April-June 2022 (below).

5. CONCLUSIONS AND FUTURE PERSPECTIVES

The aim of this work was to lay the foundations for the de-
velopment of a methodology for the continuous monitoring of
water reservoirs through the analysis of multispectral and SAR
satellite images. The main objective was to implement a seg-

mentation strategy able to distinguish water from the surround-
ing land surface and then to measure the planimetric extent of
water reservoirs starting from the area occupied by the water
pixels identified in the retrieved masks. In particular, three dif-
ferent approaches were implemented within GEE and applied
to Sentinel-1, Sentinel-2 and Landsat-8 imagery. The first ap-
proach is based on the use of the AWEI and the self-adaptive
Otsu’s thresholding method; the second approach is based on
the image conversion from RGB to HSV and the use of a para-
metric threshold; the third approach is based on the use of SAR
imagery and an empirically selected threshold. A “static” val-
idation strategy was developed from scratch and standard seg-
mentation metrics were computed to evaluate the accuracy of
the three approaches. The average values of the F1 scores on
the Sentinel imagery were equal to 0.95, 0.90 and 0.84 for the
three approaches, respectively. The same metric on the Landsat
imagery was 0.95 for the first approach and 0.93 for the second
approach. The best approach (the AWEI-based method) was
then applied to three water bodies in which the effects of the
2022 drought were particularly significant: Sawa lake (Iraq),
Poyang lake (China), and Po river (Italy). The results visually
highlighted the good performance of the approach in segment-
ing the water bodies from the surrounding areas.

Nevertheless, an adequate monitoring of water reservoirs in-
cludes not only the estimation of the extent of their surface but
also the quantification of their volume. This paper focused on
the extent estimation since the continuous computation of 2D
metrics is a first step towards the monitoring of the seasonal
and annual variations of water reservoirs, allowing the recon-
struction of long-term surface water dynamics.

As for future developments, the validation will be extended
to other areas. In this work, the validation was carried out
on the SIN of Marghera dock, and this choice introduced ad-
ditional errors in the validation itself due to the presence of
nearby buildings and vegetation. Moreover, the dock area was
selected because in this area the water surface remains con-
stant over time. The generation of a dataset starting from high-
resolution satellite images will allow validation of the method-
ology on dynamic references too, increasing the generalization
of the methodology. Furthermore, the generation of the dataset
may lead the way to the development and testing of data-driven
approaches, such as deep learning algorithms. Regarding the
SAR results, future development will investigate a threshold
selection method based on automatic approaches (e.g. Otsu’s
thresholding), instead of parametric thresholds. Finally, the
combination of the three tested approaches will be investigated
to improve the results.
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