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Abstract: In this paper, a multi-fractal analysis on a diastolic blood pressure signal is conducted. The
signal is measured in a time span of circa one day through the multifractal detrended fluctuation
analysis framework. The analysis is performed on asymptotic timescales where complex regulating
mechanisms play a fundamental role in the blood pressure stability. Given a suitable frequency
range and after removing non-stationarities, the blood pressure signal shows interesting scaling
properties and a pronounced multifractality imputed to long-range correlations. Finally, a binomial
multiplicative model is investigated showing how the analyzed signal can be described by a concise
multifractal model with only two parameters.
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1. Introduction

The combination of chaos and, in general, complexity theory and biomedical engi-
neering promotes an in-depth study of biomedical problems and provides new ways for
studying physiological signals, whose parameter variations are difficult to describe ac-
curately by classical approaches [1]. Indeed, fractal structures and chaotic dynamics are
found in biomedical time series drawn from a wide range of physiological phenomena [2].
In fact, the availability of improved and (often) non-invasive technologies to measure
physiological signals, together with powerful frameworks for complex systems analysis,
allow an in-depth characterization of the inherent mechanisms underlying the physiolog-
ical regulation. The study of physiological signals has also gained a lot of attention in
the machine learning community, especially in various correlation and predictive studies
leading themselves to non-invasive methodologies to detect brain injuries [3–5]. Complex
physiological rhythms and peculiar fluctuations are widespread within most parts of the
biological systems and subsystems, starting from sub-cellular levels to organs or even
the entire body. Such fluctuations arise from the combined influences of the fluctuating
environment (i.e., the “noise” that is inherent in biological systems) and deterministic,
possibly chaotic, mechanisms [6]. Despite the growth of studies in this area, the role of the
low and high degree of freedom dynamics within physiological systems is still unclear.
However, as opposed to the daily human experience, intrinsic noisy dynamics have been
found to be of paramount importance for healthy conditions, especially in fine-grained
regulatory mechanisms. These regulation mechanisms are often very complex and act
jointly to reach a suitable equilibrium state. As an example, the heartbeat is generated by
an autonomous pacemaker in the heart, but its frequency is mediated by the neural activity,
which is controlled, in turn, by a large number of different feedback circuits all acting in
parallel [6].
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Moreover, many physiological signals have been found to possess some appealing
properties, such as scale invariance and fractal dynamics, that is, when the structure repeats
itself on sub-intervals of the signal. In other words, the following definition holds.

Definition 1 (Scale-invariant signal). A signal X(t), is said to be scale invariant when it features
a power-law behavior such as X(ct) = cHX(t), with c being a suitable constant.

The presence of such a family of laws seems to be ubiquitous in nature. The power-law
exponent H, in general, describes the particular kind of fractal and scale-invariance struc-
tures underlying the signal. This parameter is strictly related to other fractal indices that
allow a complete characterization of the system. For example, it is related to the decay of
the Fourier spectrum that, if it behaves as power-law, gives rise to complex structures of the
noise, known as 1/ f noise. As an example, experiments on heart rate variability show that
the heart rate fluctuation displays a 1/ f noise fractal dynamic with long-range correlations
and also a multifractal behavior [7–11]. The same applies to the blood pressure dynamic,
being strictly related to the heart rate variability and subject to several complex regulatory
mechanisms. In particular, systemic blood pressure depends on two basic mechanisms
for regulating blood pressure: (i) short-term mechanisms from seconds to minutes, which
regulate blood vessel diameter, heart rate and contractility; (ii) long-term mechanisms from
minutes to several hours, which regulate the blood volume. The arterial and cardiopul-
monary baroreceptors are of particular importance in short-term blood pressure control. If
arterial blood pressure rises, the integral activity of the baroreceptors will also increase. As
a consequence, peripheral resistance and heart rate will diminish via a lower sympathetic
tone [12]. Notably, 1/ f noise is observed in blood pressure measurements [13] together
with changing regime after baroreceptor denervation [14]. Within the frequency range
where the 1/ f noise is observed, no specific frequency is preferred by the overall system,
meaning that there are no resonance frequencies or characteristic time constants. As a
result, the fine-grained regulation involves many complex factors.

In this work, a multifractal characterization of a diastolic blood pressure (BPd) time
series for a traumatic brain injury (TBI) patient is conducted. Time series data are collected
from the Brain IT dataset [15] in the time span of circa one day and in a suitable frequency
range. In fact, monitoring the blood pressure is an important part of the entire assessment
and diagnosis of acute brain injuries, as this protects the brain from a secondary brain
injury [16]. “Multifractal” means that the complete fractal dynamic of a given signal, if any,
is not characterized by a single type of singularity (such as in monofractal signals), but it
is described by a suitably wide spectrum, characterized via several indices [9]. In other
words, within the local approximation through suitable series, such as the Taylor series,
for several points in time, we find a family of non-integer, hence fractional, exponents;
this is a hallmark of complexity. Moreover, the monofractal characterization through the
Hurst exponent H allows us to define which type of persistence, or memory, characterizes
the time series. The concept of persistence is related to the auto-correlation of the signal
whether its decay as a function of the time lag follows a power-law.

Definition 2 ((Anti-)Persistent signals). Uncorrelated signals, such as white noise, are featured
by a Hurst exponent H = 0.5 with a fast auto-correlation decay. For persistent (positively correlated)
signals, we find H > 0.5, whereas for anti-persistent signals, we find H < 0.5. Signals with H > 0.5
are defined as (positively) long-range correlated, meaning that the value of the signal in a given
point in time is correlated with past values giving rise to a memory in the system.

If, for a monofractal signal, the moments of the underlying probability distribution
are constants for a wide range of timescales, the same does not hold for multifractal signals,
suggesting a complex hierarchical organization of singularities. In this work, to give a
complete multifractal characterization of the BPd signal, we use the detrended fluctuation
analysis (DFA) [17] and its counterpart, the multifractal detrended fluctuation analysis
(MFDFA) [18]. DFA and MFDFA are used in many fields to investigate the complexity of
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signals from biological and physiological data to finance, engineering and physics [19–33].
As an example, the DFA is found to be very useful in characterizing intracranial pressure
(ICP) signals and to predict TBI [34]. The appealing of this methodology is in its widespread
applicability on real-world signals. In fact, unlike traditional methods—for details see [35]—
useful only for stationary signals, MFDFA gives the possibility to locally detrend datasets
containing polynomial trends of a given order and, hence, allowing one to also analyze
non-stationary signals. However, as we will see, other types of trends, such as periodic or
quasi-periodic trends have to be faced carefully in order to reach stationarity.

After the breakthrough of Kolmogorov with a series of dimensional and scaling argu-
ments for fluids in the limit of very large Reynolds numbers (fully developed turbulence),
binomial multiplicative models—known as strongly multifractals given their wide hierarchy
of singularities—gained popularity in explaining natural phenomena [36,37], not only in
fluid dynamics. In the current work, a simple two-parameter model derived from a modifi-
cation of the binomial multiplicative cascade process used in previous works [38,39] for
the study of river flow is also provided, showing how it remarkably fits with the analyzed
time series in a suitable range of frequencies for asymptotic timescales.

The paper is organized as follows. In Section 2, the dataset, the MFDFA technique and
the data pre-processing procedure are presented. In Section 3, the results of the MFDFA on
the BPd signal is discussed, and the parameters of a fitted multiplicative cascade process
are provided. Conclusions are drawn in Section 4, while in Appendix A, the theory behind
the adopted multiplicative model is briefly illustrated.

2. Data and Methodology

In the current study, the Brain IT dataset [15] is adopted. These data stem from a multi-
centric study across 22 clinics in Europe and cover two types of information: physiological
time series and static patient information (demographics). We have obtained a subset of the
database that contained 90,000 samples of diastolic blood pressure measured on 9 patients
collected at a sampling rate of 1 Hz. Hence, the time duration of the measurement amounts
to 1500 min. In this study, we investigate the BPd signal of a patient (patient id 15026161)
equipped with an invasive ICP monitoring tool, with no evacuation of mass lesion and
with no removal operations of foreign bodies from the skull. As our model does not use
static information but only physiological information, we discarded from the database all
patient data except BPd and time-stamps.

2.1. Multifractal Detrended Fluctuation Analysis

The multifractal version of DFA is derived from the original DFA version proposed
by Kantelhardt et al. in [18] for non-stationary time series. The first three steps of the
procedure [30] are equivalent, and they are presented in the following.

Let X = {xk}N
k=1 be a time series consisting of N time samples characterized by a

compact support, i.e., xk = 0 for a negligible fraction of indices k. The main steps read
as follows:

Step 1: Compute the profile:

Y(i) =
i

∑
k=1

(xk − x), i = 1, . . . , N, (1)

where x is the mean of X, i.e.,

x =
1
N

N

∑
i=1

xi (2)
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Step 2: Divide the profile into Ns non-overlapping segments of equal length s. Recall that
N is the length of the time series; then, the number of segments Ns reads as

Ns =

⌊
N
s
+

1
2

⌋
(3)

where
⌊

x + 1
2

⌋
rounds x to the nearest integer. Since a short part at the end of

the profile may be discarded, with N often not being a multiple of the considered
timescale s, the same procedure is repeated starting from the opposite end, in order
to not discard any part of the series, yielding 2Ns segments.

Step 3: Calculate the local trend for each of the 2Ns segments by a least-square fit of the
series and then determine the variance as follows:

F2(s, ν) ≡ 1
s

s

∑
i=1
{Y[(ν− 1)s + i]− yν(i)}2, (4)

for each segment ν = 1, . . . , Ns and:

F2(s, ν) ≡ 1
s

s

∑
i=1
{Y[N(ν− Ns)s + i]− yν(i)}2, (5)

for each segment ν = Ns + 1, . . . , 2Ns. The quantity yν(i) is the fitting polynomial
of the segment ν. Depending on the order m of the polynomial, DFAm yields
different polynomial detrending from the computed profile (i.e., of order m, or
m− 1 if the original series X is considered). For example, using linear, quadratic,
and cubic polynomials yield different DFA1, DFA2, DFA3 and so on for higher-
order analogues [18]. The DFAm performance in removing polynomial trends can
be appreciated in [40].

Step 4: Average over all segments to obtain the q-th order fluctuation function:

Fq(s) ≡
{

1
2Ns

2Ns

∑
ν=1

[
F2(s, v)

]q/2
}1/q

. (6)

The case for q = 0 will be discussed below, while for q = 2, the standard DFA is
obtained. Here, the interest is in how the generalized q-dependent fluctuation Fq(s)
depends on the timescale s for different values of q. Hence, it is requested to repeat
steps 1–4 for several suitable timescales s. The fluctuation function Fq(s) depends
on the DFA order m and will increase by increasing s. By construction, Fq(s) is only
defined for s ≥ m + 2.

Step 5: Determine the scaling behavior of the fluctuation function by analyzing the log-
log plots Fq(s) vs. s for each value of q. If the series X is long-range power-law
correlated, Fq(s) will increase, for large values of the timescales s, as power-law,
that is:

Fq(s) ∼ sh(q) (7)

For large values of s, the procedure of determining the scaling behavior becomes
statistically unreliable because of the number of segments Ns for the averaging
procedure in step 4. Hence, it is advised not to overcome the limit s = N/4 in
the fitting procedure to determine h(q). For timescale s ≈ 10, a systematic error
can occur even if it can be suitably corrected. The exponent h(q) may depend on
q. The quantity h(q) is known as the generalized Hurst exponent and for stationary
time series h(2) is identical to the Hurst exponent H [18]. The value of h(0), which
corresponds to the limit of h(q) for q→ 0, cannot be determined directly using the
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averaging procedure in Equation (6) because of the diverging exponent. Instead, a
logarithmic averaging can be employed as:

Fq(s) ≡ exp

{
1

4Ns

2Ns

∑
ν=1

ln
[

F2(s, v)
]q/2

}1/q

. (8)

We note that h(0) cannot be defined for time series with fractal support, where h(q)
diverges for q→ 0.

Definition 3 (Multifractal and Monofractal Signals). If the generalized Hurst exponent h(q)
is found independent of q, the time series is monofractal, i.e., it shows a uniform scaling over all
magnitude scales of the fluctuations. Conversely, the time series is said to be multifractal when h(q)
depends appreciably on q, so that small fluctuations scale differently from large ones.

It can be shown that the generalized Hurst exponent is related to some classical
multifractal indices [41,42]. In particular, h(q) is directly related to the classical multifractal
scaling exponents, also called the Rényi scaling exponent, τ(q) by the relation:

τ(q) = qh(q)− 1, (9)

where τ(2) is the correlation dimension. Moreover, the generalized multifractal dimen-
sion [43] D(q) reads as:

D(q) =
τ(q)
q− 1

=
qh(q)− 1

q− 1
. (10)

A compact and useful way to express the multifractal characteristic of a time series is the
multifractal spectrum f (α̃) computed by the Legendre transform of τ(q):

f (α̃) = qα̃− τ(q), (11)

where α̃, called the singularity strength or Hölder exponent, is equal to α̃ = dτ(q)
dq . Through

Equation (9), we find the following relations for the multifractal spectrum:

α̃ = h(q) + q
dτ(q)

dq
and f (α̃) = q[α̃− h(q)] + 1. (12)

2.2. Data Pre-Processing
2.2.1. Addressing Outliers

When working with real-world signals, such as signals coming from noisy measur-
ing instruments, a check on the existence of outliers and their removal is of paramount
importance before starting any analysis. For the signal under analysis, a simple Hampel
filter [44] for outlier detection and substitution is used. It is known that when a dataset
contains outliers, even a single out-of-scale observation, the sample mean may deviate
significantly [45]. The Hampel filter is based on the fact that a single large observation can
make the sample mean and variance cross any bound; thence, a robust estimation of the
outlier can be based on the median and the median absolute deviation (MAD) [46].

Given a sequence of values {xk}N
k=1 and a sliding window of length k, the local median

is defined as:
Mk

i = median(xi−k, xi−k+1, . . . , xi, . . . , xi+k−1, xi+k), (13)

and the standard deviation reads as:

σk
i = ρ ·median(xi−k, . . . , xi+k), with ρ =

1√
2 · erfc−1(1/2)

≈ 1.4826 (14)
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Finally, the MAD is defined as:

MAD =
σk

i
ρ

(15)

and, for a given threshold Tσ, the Hampel identifier detects xi as an outlier and replaces it
with Mk

i . Even if the Hampel filter treats the process underlying the signal as a sequence of
i.i.d. random variables, it is considered extremely effective in practice [47]. Figure 1a shows
the detected outliers together with the upper and lower bounds of the signal at hand, while
Figure 1b shows the original signal and the processed signal thanks to the Hampel filter.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250
Hampel

Original signal

Lower limit

Upper limit

Outliers

(a)

0 2000 4000 6000 8000 10000

0

100

200

300
Original

0 2000 4000 6000 8000 10000

0

50

100

150
Hampel

(b)

Figure 1. Results of the Hampel filtering procedure for outlier removals (a). Original time series (top
panel) and processed time series (bottom panel) (b). In the last panel the presence of a high non-
stationary behavior, such as slow varying cycles, can be observed that needs to be addressed before
operating the MFDFA. The bottom panel in (b) also shows a set of singularities for the processed
signal, such as cuspids and stairs.

2.2.2. Filtering out Environmental Factor Outliers

It is essential to filter physiological signals to place them in a suitable frequency band
before further analysis [34]. In order to eliminate high frequency noise due to environmental
factors, we processed the signal X(t) with a stable linear-phase low-pass finite impulse
response (FIR) filter [48] with the following characteristics. Let fN = f

fs/2 ∈ [0, 1] be the
normalized frequency, where fs is the sampling frequency (in sample/sec) and fs/2 is the
Nyquist frequency; then, the filter design follows:

• Equiripple filter with pass-band frequency: f pb
N = 0.10;

• Stop-band frequency: f sb
N = 0.15;

• Stop-band attenuation: 60 dB;
• Amplitude of the ripple in the pass-band: 1 dB.

This specific design for the FIR filter yields a computationally light filter whose order
is 87. Since the application allows off-line pre-processing, we employ the above filter
to run a zero-phase filtering, that is, processing the input signal in both forward and
reverse directions. Specifically, after filtering the signal in the forward direction, we reverse
the filtered signal and run it back through the filter, yielding zero-phase distortion. In
other words, the forward and reverse filtering direction zeroes the measured group delay
τg = 43.5 samples. We note that the linear-phase compensation comes with the effect of a
filter transfer function which equals the squared magnitude of the original filter transfer
function and a filter order that is double of the order of the original filter. Finally, the
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stop-band frequency f sb
N = 0.15 allows the elimination of all frequency components above

f = 0.05 Hz, corresponding to a timescale t = 1/ f of 5 s.

2.2.3. Addressing Non-Stationarities

A random process is said to be stationary if its statistical properties do not change over
time. More precisely, for a random process X(t), the following two definitions hold.

Definition 4 (Strict-Sense Stationary). A random process X(t) is said to be strict-sense stationary
(SSS) if all its finite order distribution are time invariant, i.e., the joint CDF of X(t1), X(t2), . . . , X(tk)
is the same as for X(t1 + α), X(t2 + α), . . . , X(tk + α) for any k, any t1, t2, . . . , tk, and any timeshift
α. Hence, for a SSS process, the first-order distribution is independent of t, and the second-order
distribution, i.e., the distribution of any two samples X(t1) and X(t2), depends only on the distance
or lag τ = t1 − t2.

Definition 5 (Wide-Sense Stationary). A random process X(t) is said to be wide-sense (or
weak-sense) stationary (WSS) if its mean and auto-correlation function are time invariant, i.e.,
E(X(t)) = µ and RX(t1, t2) is only a function of the distance or lag |t1 − t2|.

Hence, stationarity refers to time invariance of some, or all, of the statistics of a random
process (e.g., mean, auto-correlation, n-th order distribution). It is worth noting that in real-
world signals, it is difficult to find a true SSS or WSS signal due to the presence of transient,
drift, cycle, polynomial or quasi-periodic trends. However, some random phenomena
can exhibit a steady-state behavior after the transient. For example, a random walk is
not stationary [49]. DFA is a powerful tool for analyzing the long-range correlations in
a real-world signal since it incorporates polynomial detrending routines in its main core,
and it has been shown to outperform pre-existing methods, such as R− S analysis [50,51],
fluctuation analysis [52] or other methods to study the auto-correlation of a signal, such as
the decay of the Fourier spectrum [53] or the decay of the auto-correlation function [35].
However, real-world time series such as physiological measurements or even rainfalls and
river water flows can be affected by other types of trends such as seasonalities and, more
specifically, periodic or quasi-periodic trends [40] that make the signals non-stationary
with the appearance of crossovers in the scaling function of the DFA (periodic or quasi-
periodic trends). Besides apparent crossovers, a non-stationarity reveals a Hurst exponent
H > 1 in the DFA scaling function with no clear interpretation in the fractal theory, being
for one-dimensional self-affine processes the H exponent related to the fractal dimension
(D = 2 − H) that has to be positive. As an example, in Figure 2, it the log-log plot
representing the scaling function F2(s) for the BPd signal treated only with outlier removal
phase and low-pass filtering can be appreciated. The high value of the Hurst exponent
H > 1 denotes the presence of non-stationarities not removed by the third order DFA, i.e.,
DFA3. Notwithstanding, the DFA is able to address polynomial trends—see Section 2.1—
and many detrending techniques aiming to study real-world signals are proposed, such as
the ones based on empirical mode decomposition, singular value decomposition, Fourier
spectrum (Fourier detrended MFDFA), etc.—see [35,54] for further information.
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Figure 2. Scaling function F2(s) computed through the DFA3 for the BPd signal filtered with the
Hampel and the low-pass FIR filters, but not pre-treated for addressing non-stationarity.

In this work, we concatenate three methods to obtain a near-stationary signal:

1. The log transformation, where each sample X(k) is substituted by log(X(k)) [55]
in order to stabilize the overall variance of the signal;

2. The subtraction from the signal of the overall trend obtained by a median filter with a
time window

YM(k) =

{
median[X(k− (n− 1)/2 : k + (n− 1)/2)] if n is odd
median[X(k− n/2, . . . , k + (n/2)− 1)] if n is even

with k = 4500 samples;
3. the so-called Fourier-detrended MFDFA [56], which consists of removing the first

c = 60 sinusoids from the Fourier spectrum, corresponding to slow varying cycles
that are sources of residual non-stationarity.

The last detrending method, used in several works in the literature dealing with real-
word signals [29,54,57,58], has the drawback of generating an apparent crossover located
around the timescales corresponding to the cut-off frequency related to c in the fast Fourier
transform (FFT) spectrum [59]. However, this phenomenon is not a real problem here since,
as we will see, we are interested in the asymptotic behavior of the scaling function Fq(s),
which is the scaling behavior for higher timescales.

One can experimentally verify the non-stationarity property by computing the vari-
ogram Gk that measures the variance of differences k time units apart relative to the variance
of the differences 1 time unit apart [60]. Specifically, for a given time series zt, the variogram
is defined as:

Gk =
Var(zt+k − zt)

Var(zt+1 − z1)
, for lag k = 1, 2, 3, . . . (16)

It can be shown that for a stationary process, as k increases, the graph of Gk vs. k
approximates to an asymptotic stable behavior, while for a non-stationary process, Gk
tends to increase monotonically. In Figure 3a, the variogram for the original signal is
reported, while in Figure 3b, the one obtained for the processed signal is shown. The
general appearance in Figure 3a does seem to indicate that it does not converge to a stable
level, confirming the non-stationary nature of the time series under analysis. Instead, in the
processed case, we find a clear plateau indicating the removal of an important amount of
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non-stationarity. Furthermore, the residual non-stationarity is addressed directly by the
MFDFA detrending procedure given a suitable order polynomial.

0 20 40 60 80 100
0

2

4

6

8

10

12
Variogram

(a)

0 20 40 60 80 100
0

50

100

150

200

250
Variogram

(b)

Figure 3. Variogram for the original time series (a) and after the non-stationarity removal (b).

As noted above, pre-processing of a noisy non-stationary signal can impair the MFDFA
analysis due to the appearance of crossovers. As an example, it is well known that the
Fourier detrending technique, used to eliminate the low-frequency periodicities, generates
a crossover and allows us to measure the multifractal characteristics only after a predefined
timescale s×, where the scaling function can be approximated with a linear regression [59].
As expected, the normal low-pass filtering procedure based on a linear-phase FIR filter
(whose delay group is suitably compensated) also distorts the scaling function for lower
scales. With the aim of understanding the dynamic of such distortion, we generated two
synthetic signals of 215 samples. One was an uncorrelated signal with a Hurst exponent
H = 0.5, while the other was a long-range (positively) correlated signal with H = 0.8. The
correlated fractional Gaussian noise (fGn) was obtained by the FFT algorithm together with
an embedding of the covariance matrix in a circulant matrix—see [61,62].

It is worth noting that, for both signals, the scaling function Fq(s) is a straight line
with an angular coefficient equal to H. In Figure 4, the main findings for the synthetic
uncorrelated and correlated signals after the FIR filtering are reported. In Figure 4a,b, the
power spectrum estimate after the low-pass filtering is reported. Figure 4c,d gives an idea
of the profiles of both signals, while Figure 4e,f report the scaling behavior computed by
DFA1. In both cases the wide crossovers around s× = 30 with a bad Hurst exponent are
clearly visible, while the scaling behavior remains the original one for s× � 30, that is, for
asymptotic timescales. This fact has to be taken into account in analyzing pre-processed
real-world signals, such as the one at hand.
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Figure 4. The behavior of the DFA1 scaling function F2(s) for two synthetic signals with Hurst
exponent H = 0.5 (uncorrelated) and H = 0.8 (positively correlated) for a wide timescale range
s. Panels (a,b) depict the power spectral density for both signals, showing how the linear-phase
FIR filter suppresses the frequency components after a given cut-off frequency. Panels (c,d) report
the profile Y(i) of both signals for the original and filtered version. Finally, panels (e,f) show the
appearance of a crossover placed at low timescales due to the filtering process for both filtered signals
in the DFA1 plot. However, the correct scaling behavior is asymptotically restored, i.e., it remains
unchanged for higher timescale values.
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3. Results and Discussion
3.1. Multifractal Characterization of the BPd Signal

In describing the multifractal characteristics of the BPd signal at hand we evaluate the
DFA3 for timescales higher than s > 150 until s = bN/5c, where the scaling function Fq(s)
is close to be a straight line for all exponents q and timescales s—see Figure 5a. We report
the following main multifractal indices:

• Multifractal strength of the singularity spectrum f (α̃):

∆α̃ = α̃+ − α̃−, (17)

where α̃+, α̃− are the two extreme values at the two ends of the multifractal spectrum
support, respectively;

• The asymmetry of the singularity spectrum that is evaluated through a suitable
asymmetry index Aα̃, that reads as [63]:

Aα̃ =
∆α̃L − ∆α̃R
∆α̃L + ∆α̃R

, (18)

with ∆α̃L = α̃∗ − α̃− and ∆α̃R = α̃+ − α̃∗, and where α̃∗ is the α̃ value at maximum of
the singularity spectrum f (α̃), i.e., the box counting dimension.

The main results of our investigation are reported in Table 1. In particular, the shape
parameters of the multifractal spectrum are provided, such as α̃−, α̃+, α̃∗, ∆α̃ and Aα̃,
together with the Hurst exponent H = h(2) and the correlation dimension τ(2). As
concerns the multifractal strength, we find a higher value ∆α̃ = 0.752 and a symmetric
spectrum, with a small Aα̃ = 0.011, that together with the correlation dimension τ(2)
indicate a strong multifractality of the BPd signal. Finally, the Hurst exponent H = 0.880
indicates the presence of long-range correlations.

As concerns the multifractal nature, it is possible to distinguish from multifractality
due to the wideness of the PDF [64] and multifractality due to the two different correlations
in small- and large-scale fluctuations. These two kinds of multifractality can be assessed by
evaluating two time series derived from the original one: the shuffled time series and the
surrogate one. The former is computed by simply shuffling at random the time indices,
while the latter is obtained by changing the phases, computed through the discrete Fourier
transform (DFT) of the original signal, drawing from a uniform distribution in (−π, π) [65].
In the last case, one can demonstrate that the PDF tends to be normally distributed but
correlations do not change, destroying intrinsic non-linearity. The shuffling procedure
will destroy all long-range correlations and the corresponding shuffled time series will
exhibit monofractal scaling. Conversely, the multifractality due to the wideness of the PDF
is not affected by the shuffling procedure. Since the shuffling of time series destroys the
long-range correlations, if the multifractality is due only to long-range correlations, then
one should expect a constant value hshuffle = 0.5. If both types of multifractality are present,
the shuffled and the surrogate series will show weaker multifractality with respect to the
original series.
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Figure 5. Results of the MFDFA3 on the BPd signal. Panel (a) reports the Fq(s) vs. s diagram varying
the timescale s in a wide range of values. Results of the MFDFA3 on the BPd signal for the original
(normal), shuffled and surrogate time series. Panel (b) shows the h(q) vs. q diagram. Circles denotes
the modified multiplicative model fitted to the data. Panels (c–e) report the mass exponent τ(q) vs. q,
the generalized dimension D(q) vs. q and the Hölder exponent α̃(q) vs. q diagrams derived from
the multifractal formalism. Panel (f) shows the multifractal spectrum for the BPd signal. The high
amplitude ∆α̃ of the multifractal spectrum together with the non-linear behavior of h(q) and τ(q)
demonstrate a strong multifractal signature of the analyzed signal. Shuffled and surrogate series
indicate that the multifractality is due to long-range correlations. Finally, the near-optimal fitting of
the modified multiplicative cascade model (A3), represented as circles in panels (b), shows that the
BPd signal can be described concisely by only two parameters a and b.
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Table 1. Multifractal indices reported for the BPd signal and estimated parameters of the multiplica-
tive model.

α̃+ α̃− α̃∗ ∆α̃ Aα̃ h(2) τ(2) a b

1.362 0.610 0.997 0.752 0.011 0.880 0.850 0.6576± 0.0014 0.39± 0.0008

In order to give a complete picture of the multifractal characteristics of the analyzed
BPd time series, in Figure 5 and its respective panels, the main multifractal diagrams
obtained from the MFDFA and the application of the whole multifractal analysis procedure
are reported. Panel (a) reports the scaling function Fq(s) vs. s for the MFDFA3 parametrized
with the moment values q ∈ {−15,−10,−5,−2, 2, 5, 10, 15}. The BPd signal scales dif-
ferently depending on q for a wide range of timescales s after s× = 150, indicating the
presence of multifractality. Panel (b) shows how the generalized Hurst exponent h(q) is
a non-linear decreasing function of q that, together with the non-linear behavior of the
mass exponent τ(q) vs. q—panel (c)—the Hölder exponent α̃(q) vs. q—panel (e)—and the
amplitude of the singularity spectrum f (α̃)—panel (f)—demonstrate the multifractality
of the BPd time series. In particular, from panel (b), by considering the diagram for the
shuffled series, we can see that the shuffling procedure actually destroys all long-range
correlations in the original signal (indicated as “normal” in the plot) with hshuffle(2) being
nearly linear, and h(2) close to the value for an uncorrelated signal. Therefore, it is possible
to conclude that the long-range correlations do not depend on the wideness of the PDF of
the signal: rather, they are an intrinsic feature of the complexity of the signal under analysis.
Finally, the surrogate series, with h(2) ≈ hsurr(2), shows that the long-range correlations
in the “monofractal zone”, described by the exponent h(2), are not destroyed, while the
intrinsic non-linearity are eliminated.

3.2. Fitting a Multiplicative Cascade Model

As a last task, we investigate the possibility of describing the multifractal dynamic
with a concise multiplicative model. We find that a particular multifractal model, originally
proposed in the geophysical field [38,39], to model rainfall and river flows, fits well with
the time series under analysis. Specifically, the statistical properties of the BPd signal are
very similar to the ones pertaining to the class of the multiplicative cascade models [36,66].
In panels (b,f) of Figure 5, the fitted curves represented as circles for h(q) and f (α̃) show
that in the whole q-range, i.e., q ∈ [−15, 15], the exponents can be well-approximated by
the formula [38]:

h(q) =
1
q
− ln(aq + bq)

q ln(2)
, (19)

with ln(x) being the natural logarithm of x. Equation (19) is derived from a modification
of the (non-conservative) multiplicative multifractal cascade model—see Appendix A—
with two masses. The advantage of this model is that it can be suitably described by
only two parameters, namely a and b. The fitting results are a = 0.6576± 0.0014 and
b = 0.39± 0.0008, with a fitting total sum-of-squares error equal to 0.0023.

4. Conclusions

In this paper, the multi-fractal properties of a human body diastolic blood pressure
has been investigated in a time span of circa one day within a given frequency spectrum for
asymptotic timescales. The signal shows nice scaling properties and long-range correlations.
Moreover, the moments are found to scale differently in a wide range of timescales, indicat-
ing the presence of multifractality. The shuffles and surrogate tests demonstrate the nature
of multifractality that is found in the long-range correlations and intrinsic non-linearity.
Hence, a modified binomial multiplicative model is fitted showing how the signal at hand
can be described concisely with a multiplicative model with only two parameters.

In our future research agenda, we plan to use the multifractal indices and the param-
eters of the multiplicative model as candidate features to train machine learning models
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for unsupervised or supervised learning (e.g., to discriminate patients according to their
physiological signals).
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Abbreviations
The following abbreviations are used in this manuscript:

i.i.d. Independent and identically distributed
BPd (Diastolic) blood pressure
CDF Cumulative distribution function
DFA Detrended fluctuation analysis
DFT Discrete Fourier transform
FIR Finite impulse response
fGn Fractional Gaussian noise
FFT Fast Fourier transform
ICP Intracranial pressure
MAD Median absolute deviation
MFDFA MultiFractal detrended fluctuation analysis
PDF Probability density function
SSS Strict-sense stationary
TBI Traumatic brain injury
WSS Wide-sense stationary

Appendix A

In the multifractal cascade model, generally, a record φk of length 2N is constructed
recursively by running three basic steps:

1. Splitting the cascade in half;
2. Multiplying the first half of the cascade by a;
3. Multiplying the second half of the cascade by b.

The two factors a and b are linked by the relation a < b < 1. Furthermore, the
process is said to be conservative if a + b = 1. The above steps are repeated Nmax times (i.e.,
generations) until each newly generated sub-series has length 1.

For the sake of example, at generation n = 0, we have a constant cascade, i.e.,:

φ
(0)
k = 1, k = 1, 2, . . . , N

At generation n = 1, the first half of the cascade is multiplied by a factor a, whereas
the second half of the cascade is multiplied by a factor b, yielding:

φ
(1)
k =

{
a · φ(0)

k = a for k = 1, 2, . . . , N/2

b · φ(0)
k = b for k = N/2 + 1, N/2 + 2, . . . , N

https://www.brainit.org.uk/brainit/public/
https://www.brainit.org.uk/brainit/public/
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At generation n = 2, one would obtain:

φ
(2)
k =


a · φ(1)

k = a2 for k = 1, 2, . . . , N/4

b · φ(1)
k = ab for k = N/4 + 1, N/4 + 2, . . . , N/2

a · φ(1)
k = ba for k = N/2 + 1, N/2 + 2, . . . , 3N/4

b · φ(1)
k = b2 for k = 3N/4 + 1, 3N/4 + 2, . . . , N

whereas the third generation n = 3 foresees eight sub-series whose respective values are a3,
a2b, a2b, ab2, ba2, b2a, b3, and b2a.

Concisely, the final record can be written as:

φk = aNmax−n(k−1)bn(k−1) (A1)

where n(k) is the number of 1s in the binary representation of the index k, e.g., n(13) = 3,
since 1310 = 11012 [38]. For this kind of multiplicative cascade, the closed formula for τ(q)
is given as

τ(q) =
− ln(aq + bq) + q ln(a + b)

ln(2)
(A2)

leading to the following relation for h(q) [36,66]:

h(q) =
1
q
− ln(aq + bq)

q ln(2)
+

ln(a + b)
ln(2)

. (A3)

If q = 1, then h(1) = 1 regardless of the values of a and b. In order to generalize
the model [38] such that any value for h(2) is possible, we need to subtract the offset
∆h = ln(a+b)

ln(2) from h(q). This constant offset corresponds to a additional long-range cor-
relations within the original multiplicative cascade model. The offset can be reduced or
eliminated by rescaling the power spectrum, hence multiplying the FFT coefficient of the
Fourier spectrum by f−∆h, where f is the frequency. In this way, the slope of the power
spectrum E( f ) ∼ f β is decreased from β

′
= 2(H)− 1 =

[
2 ln(a + b)− ln(a2 + b2)

]
/ ln(2)

to β
′
= 2((H) − ∆h) − 1 = − ln(a2 + b2)/ ln(2). Finally, the backward FFT is used to

transform back the signal into the time domain.
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