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A B S T R A C T

Forests play a crucial role in maintaining ecological balance and biodiversity, making the accurate mapping of 
tree species and assessment of biodiversity indices essential for informed management decisions. This study 
introduces an innovative methodology that integrates EnMAP (Environmental Mapping and Analysis Program) 
hyperspectral data with Sentinel-2 multitemporal data to classify tree species in the biodiverse landscapes of 
Kampinos National Park and its surrounding regions in Poland.

We extract essential vegetation indices such as NDVI, NDMI, SAVI, and EVI from Sentinel-2 data to assess 
forest health and dynamics. The Sentinel-2 data is upscaled from 10 m to 30 m to align with EnMAP’s spatial 
resolution, followed by precise co-registration of the images using QGIS. Utilizing a rich dataset from the Na
tional Forest Inventory, we extract spectral signatures of nine distinct tree species from both data sources. We 
employ five machine learning algorithms—Support Vector Machines (SVM), Random Forest (RF), CatBoost 
(CAT), Gradient Boosting Classifier (GBC), and XGBoost (XGB)—to enhance classification accuracy.

Through iterative experimentation with data reduction techniques and algorithm tuning, we achieve optimal 
performance across needle-leaved and broad-leaved species. The resulting tree species maps are validated 
through quantitative accuracy assessments against mixed-species polygons from the National Forest Inventory 
and ground truthing in the Kampinos National Park. Achieving an overall accuracy of 85% to 93%, our study 
demonstrates the efficacy of this integrated approach in tree species mapping. Furthermore, the tree species maps 
serve as a foundation for deriving key biodiversity indices—species richness, Shannon-Wiener Diversity Index, 
Simpson’s Diversity Index, and a composite Biodiversity Index—providing insights into spatial biodiversity 
patterns and informing targeted conservation strategies. This study exemplifies the potential of combining 
advanced remote sensing techniques with field validation to enhance our understanding of forest ecosystems and 
guide sustainable management practices.

1. Introduction

Forests are crucial in upholding biodiversity and delivering 
ecosystem services that are fundamental for human welfare and the 
preservation of the environment. Accurate mapping of forest tree species 
composition and assessing biodiversity are crucial endeavours that hold 
significant implications for effective forest management, conservation 
efforts, and understanding the intricate relationships between forest 
ecosystems and their inhabitants (Langmaier et al., 2023; Nagendra, 
2001; Pausas & Austin, 2001). It is also important in maintaining 

biodiversity, providing habitats for numerous plant and animal species, 
and contributing to ecological processes such as carbon sequestration, 
nutrient cycling, and climate regulation (Lindenmayer et al., 2000; Noss, 
1999; Fahey et al., 2018; Liang et al., 2016). However, biodiversity is 
highly sensitive to natural and anthropogenic factors, such as climate 
change, deforestation, habitat fragmentation, and invasive species, 
making it imperative to monitor and quantify changes in forest 
composition and diversity over time (Foley et al., 2005; Sala et al., 2000; 
Vitousek et al., 1997; Brockerhoff et al., 2017).

Recent research has made significant strides in tree species 
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classification and biodiversity assessment through the application of 
advanced remote sensing technologies and machine learning algo
rithms. For instance, studies have shown that integrating hyperspectral 
and multispectral data can enhance the accuracy of species classifica
tion, allowing for the identification of subtle spectral differences among 
tree species (Fang et al., 2020; Marconi et al., 2022). Moreover, the use 
of deep learning techniques has emerged as a promising approach for 
automating tree species classification, significantly improving efficiency 
and precision in complex forest environments (Sun et al., 2019; Zhong 
et al., 2024). These advancements underscore the importance of 
continuous research and innovation in the field to address the challenges 
posed by changing environmental conditions. Despite these advance
ments, gaps remain in the application of these methods across different 
ecological contexts. The current research aims to bridge this gap by 
focusing on the biodiverse landscapes of Kampinos National Park in 
Poland.

Recent advancements in tree species classification have primarily 
leveraged data from airborne remote sensing technologies, such as the 
APEX hyperspectral data. APEX is a dispersive push-broom system with 
a 28-degree field of view developed by a Swiss–Belgian consortium 
under the framework of the ESA-PRODEX program (Itten et al., 2008). 
Studies utilizing APEX data have demonstrated its effectiveness in 
capturing detailed spectral information, enabling researchers to classify 
tree species with considerable accuracy. For instance, (Raczko and 
Zagajewski, 2017) employed APEX to classify common tree species in 
the Szklarska Poręba town, achieving an accuracy of 77 % using neural 
networks. Similarly, UAV-based hyperspectral sensors have gained 
traction in forest monitoring as well, providing high-resolution imagery 
that enhances classification precision. (Wang et al. 2023) Utilized UAV 
LiDAR and hyperspectral data in the Maoershan forest area, achieving a 
classification accuracy exceeding 79.91 % through various machine 
learning algorithms. These studies illustrate the significant progress 
made in the field, yet they also highlight the limitations associated with 
the scale and coverage of airborne data.

The introduction of the DLR Earth Sensing Imaging Spectrometer 
(DESIS), mounted on the International Space Station, marks a significant 
advancement in hyperspectral remote sensing. DESIS covers the spectral 
range of 402 – 1000 nm, which is narrower compared to airborne sen
sors. While previous studies have focused on tree species classification, 
recent research using DESIS has explored plant species richness pre
diction rather than direct species mapping. For example, the study (Guo 
et al., 2023) demonstrates the sensor’s capability to assess biodiversity 
indirectly. However, while DESIS provides a broader spatial coverage, it 
often comes with lower spatial resolution compared to airborne sensors 
and also it covers a narrower spectral region compared to the EnMAP 
satellite which will cover 430–––2450 nm.

The advent of hyperspectral remote sensing technology, combined 
with multitemporal multispectral data, has revolutionized our ability to 
map forest tree species and assess biodiversity at unprecedented scales 
(Dalponte et al., 2012; Fassnacht et al., 2016; Somers & Asner, 2014). 
Hyperspectral sensors capture detailed spectral information across 
hundreds of narrow wavebands, enabling the identification of unique 
spectral signatures for different tree species and their biochemical 
properties (Dalponte et al., 2012; Somers & Asner, 2014). When com
bined with multitemporal multispectral data, which captures the sea
sonal variations in vegetation phenology, these datasets provide a 
powerful tool for accurate tree species classification and biodiversity 
assessment (Grabska et al., 2019; Xi et al., 2021; Immitzer et al., 2012; 
Somers et al., 2011; Hościło and Lewandowska, 2019).

Mapping forest tree species and quantifying biodiversity have 
numerous applications in forest management, conservation planning, 
ecosystem monitoring, and ecological research (Hernández-Stefanoni 
et al., 2014; Rocchini et al., 2015; Turner et al., 2003). For instance, in 
the event of natural disasters or disturbances, forest managers can use 
these maps to identify areas where specific tree species have been 
impacted and plan targeted reforestation efforts to maintain ecosystem 

balance (Hemmerling et al., 2021; Pausas et al., 2004). Additionally, 
biodiversity indices derived from tree species maps can inform conser
vation strategies, highlighting areas of high biodiversity that require 
protection or restoration efforts (Gillespie et al., 2008; Nagendra & 
Rocchini, 2008; Féret & Asner, 2014).

Furthermore, accurate tree species mapping and biodiversity 
assessment contribute to our understanding of ecosystem processes, 
such as carbon sequestration, nutrient cycling, and habitat suitability for 
various species (Fahey et al., 2018; Liang et al., 2016; Paquette & 
Messier, 2011). This knowledge is crucial for developing sustainable 
forest management practices and mitigating the impacts of environ
mental changes (Brockerhoff et al., 2017; Lindner et al., 2010; Millar 
et al., 2007). Moreover, these techniques can aid in monitoring the 
dynamics of soil moisture and its relationship with climate patterns in 
semi-arid regions , further enhancing our understanding of ecosystem 
resilience and vulnerability.

In this study, we aim to leverage newly developed spaceborne 
hyperspectral satellite data to address the challenges faced by previous 
research. Unlike airborne sensors, spaceborne data offers the advantage 
of large coverage, enabling us to apply our models at a national level 
(Future work). However, this approach presents certain disadvantages, 
such as reduced resolution and the lack of structural visibility of trees 
compared to UAV-collected data. We have employed five different ma
chine learning models, combining their strengths to enhance classifi
cation performance unlike the previous studies where they examined 
each model separately.

2. Study area, data used and preprocessing

2.1. Study area

The study area for this research encompasses the Kampinos National 
Park and its surrounding areas in Mazowian region, located near the city 
of Warsaw in central Poland (Fig. 1). The study area covers the area of 
Kampinos National Park is the second-largest national park in Poland, 
covering an area of approximately 385 square kilometers, it is a 
biosphere reserve and Natura 2000 site (Grabska-Szwagrzyk et al., 2024, 
Kampinos National Park website:https://kampn.gov.pl/kampinoski- 
park-narodowy#first). The park is characterized by a diverse range of 
habitats, including forests, wetlands, dunes, and meadows, supporting a 
rich biodiversity of flora and fauna, making it an important conservation 
area.

Approximately 70 % of Kampinos National Park is covered with 
forests, and of that forested area, around 67 % is comprised of pine trees, 
and the common tree species are pine (Pinus sylvestris), birch (Betula 
spp.), oak (Quercus spp.), and alder (Alnus spp.) (Andrzejewska et al. 
2018). The age of the forests in the study area varies, with the presence 
of both old-growth and younger stands, providing a range of ecological 
niches and habitats for various species.

The Kampinos National Park is located in the area of the largest 
Polish hydrological node – point of convergence of valleys of Vistula, 
Bug, Narew, Wkra and Bzura rivers, and therefore is recognised as 
ecological corridor of high European importance. The climate in the 
Kampinos Forest is classified as continental, characterized by warm 
summers and cold winters, with large daily temperature amplitudes 
exceeding 30 ◦C. Additionally, ground frost occurs during the growing 
season, leading to lower average air temperatures and higher relative 
humidity (Owadowska et al., 2013).

The mean annual temperature ranges from 7 ◦C to 9 ◦C, with sig
nificant seasonal variations. Precipitation is moderate, with an average 
annual rainfall of approximately 550 mm, distributed throughout the 
year. The diverse habitats within the study area, including the forested 
areas, wetlands, and dunes, support a rich biodiversity of plant and 
animal species, making it an important conservation area.
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2.2. Data used

For this study, we utilized both multispectral and hyperspectral 
satellite data to map forest tree species and assess biodiversity. Specif
ically, we employed 10 images from the Sentinel-2 multispectral satel
lite (Gatti and Bertolini, 2018) and 3 images from the EnMAP 
hyperspectral mission.

The Sentinel-2 mission, part of the Copernicus program, consists of 
two identical satellites (Sentinel-2A and Sentinel-2B) equipped with the 
MultiSpectral Instrument (MSI). The MSI captures data in 13 spectral 
bands ranging from visible to shortwave infrared, with spatial resolu
tions of 10 m, 20 m, and 60 m depending on the band (Drusch et al., 
2012). The area of interest in our study covered two tiles (T34UDC and 
T34UDD), necessitating the use of 10 Sentinel-2 images to ensure 
complete coverage.

On the other hand, the Environmental Mapping and Analysis Pro
gram (EnMAP) is a hyperspectral satellite mission developed by the 
German Aerospace Center (DLR). EnMAP carries a hyperspectral imager 
that acquires data in 224 spectral bands spanning the visible to short
wave infrared range (420–2450 nm) with a spectral sampling of 6.5 nm 
in the visible and near-infrared and 10 nm in the shortwave infrared 
(Guanter et al., 2015, Segl et al., 2015). The sensor has a spatial reso
lution of 30 m and a swath width of 30 km (Stuffler et al., 2007). For our 
study area, we utilized 3 EnMAP hyperspectral images.

The combination of multispectral Sentinel-2 data, which provides 

frequent revisit times and broad spatial coverage, and hyperspectral 
EnMAP data, which offers detailed spectral information for accurate 
material identification, presents a powerful approach for mapping forest 
tree species and assessing biodiversity (Fassnacht et al., 2016).

2.2.1. Sentinel-2 data preprocessing
The Sentinel-2 data used in this study consisted of 10 images 

covering the two tiles, T34UDC and T34UDD, which encompass the area 
of interest. Table 1 provides details about the Sentinel-2 images, 
including the acquisition dates, tile numbers, and processing levels and 
Table 2 provides list of indices and bands used.

Since the area of interest spans across two tiles, a mosaic operation 

Fig. 1. Study Area with orthophotomap on the background.

Table 1 
Sentniel-2 images used for study.

No. Date Tile Number Processing Level

1. 2023-04-22 T34UDC L2A
2. 2023-04-22 T34UDD L2A
3. 2023-06-03 T34UDC L2A
4. 2023-06-03 T34UDD L2A
5. 2023-08-15 T34UDC L2A
6. 2023-08-15 T34UDD L2A
7. 2023-09-06 T34UDC L2A
8. 2023-09-06 T34UDD L2A
9. 2024-01-29 T34UDC L2A
10. 2024-01-29 T34UDD L2A
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was performed to combine the overlapping tiles into a single seamless 
image. The extent of the EnMAP images (List of them mentioned in 
Table 3) was used to extract the specific area of interest from the 
mosaicked Sentinel-2 data. This process resulted in a total of 5 Sentinel-2 
images covering the study area, which were further utilized for subse
quent analysis.

The preprocessing of Sentinel-2 data followed a systematic approach, 
as illustrated in the flowchart (Fig. 2).

I. The first step involved selecting the bands of interest, namely B2 
(Blue), B3 (Green), B4 (Red), B5 (Red Edge), B8 (NIR), B11 
(SWIR-1), and B12 (SWIR-2), which cover the visible, near- 
infrared, and shortwave infrared regions of the electromagnetic 
spectrum (Sentinel-2 2015).

II. In the second step, the spatial resolution of all selected bands was 
downscaled to 30 m to match the resolution of the EnMAP 
hyperspectral data. This step was necessary because the original 
spatial resolutions of the Sentinel-2 bands vary between 10 and 
20 m, depending on the band.

III. The third step involved converting the digital numbers (DNs) of 
the selected bands to bottom-of-atmosphere (BOA) reflectance 
values.

IV. The fourth step involved calculating various vegetation indices 
from the selected bands. A total of nine vegetation indices (Huete 
et al., 2002) were computed, including:

• Aerosol Free Vegetation Index (AFRI_1600) (Karnieli et al., 
2001): B8 − 0.66 * (B11/(B8 + 0.66 * B11))

• Canopy Chlorophyll Content Index (CCCI) (Gitelson et al., 2005): 
((B8 − B5)/(B8 + B5))/((B8 − B4)/(B8 + B4))

• Green Chlorophyll Index (CIgreen) (Gitelson et al., 1996): (B8/ 
B3) − 1

• Red Edge Chlorophyll Index (CIrededge) (Gitelson et al., 2003): 
(B8/B5) − 1

• Enhanced Vegetation Index (EVI): 2.5 * (B8 − B4)/((B8 + 6 * B4 
− 7.5 * B2) + 1)

• NDVI with MIR (NDVI_MIR): (B12 − B8)/(B12 + B8)
• Normalized Difference Vegetation Index (NDVI): (B8 − B4)/(B8 
+ B4)

• Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988): ((B8 −
B4)/(B8 + B4 + 0.5)) * 1.5

• Normalized Difference Moisture Index (NDMI) (Gao, 1996): (B3 
− B12)/(B3 + B12)

V. The final step involved stacking the selected bands (7 layers) and 
the calculated vegetation indices (9 layers) into a single 16-layer 
image for each Sentinel-2 scene.

2.2.2. EnMAP data preprocessing
The EnMAP hyperspectral data underwent a streamlined pre- 

processing approach, as depicted in the flowchart (Fig. 3). The first 
step involved acquiring the EnMAP hyperspectral images covering the 
study area.

In the second step, co-registration of the EnMAP images with the 
Sentinel-2 data was performed using the Basic Pixel Alignment tool in 
the Co-registration plugin of QGIS. This step ensured that the EnMAP 
and Sentinel-2 data were spatially aligned, facilitating their integration 
and subsequent analysis.

The third and final step involved removing the zero bands present in 
the EnMAP data. Specifically, five bands in the EnMAP hyperspectral 
images contained zero values, which were identified and removed to 
optimize the data for further processing.

The version numbers indicate the order in which the images were 
processed, with Image 1 being the first version, followed by Image 2 and 
Image 3. So, in summary, these three images are part of the same tile 
(DT0000044865), captured in close succession, and processed in a 
specific order, as indicated by the acquisition times and version 
numbers.

After completing these pre-processing steps, the EnMAP hyper
spectral data were ready for integration with the pre-processed Sentinel- 
2 data, enabling the subsequent tree species classification and biodi
versity assessment.

2.2.3. Reference data preprocessing
The reference data for this study was obtained from the Polish Forest 

Data Bank (FDB), a national forest inventory database. The FDB contains 
information on forest stands, represented as polygons, with detailed 
attributes on the tree species composition and their respective coverage 
percentages within each stand.

Each FDB polygon represents a forest stand, and the attribute table 
provides the percentage share of different tree species within that stand. 
The species share is expressed using a scale ranging from 1 to 10, where 
10 indicates a homogenous coverage of 100 % for a particular species. 
However, the precise spatial distribution of these species within the 
stand remains uncertain.

To ensure the reliability of the reference data, several preprocessing 
steps were undertaken. First, only the FDB polygons representing pure 
stands with a single species dominance of 90 % or more were selected. 
Due to the high frequency of Scots pine (Pinus sylvestris) in Polish for
ests, 10 % of the pure stands with a 100 % share of this species were 
randomly chosen for inclusion.

The next step involved aligning the reference samples with the actual 
forest mask any reference samples or their parts that fell outside the 
forest mask were removed to ensure the accuracy of the training and 
validation data.

The final reference dataset covers four different regions in Poland 
and includes nine tree species, as well as two subspecies of oak. This 
comprehensive reference data, combined with the preprocessing steps, 
provides a robust foundation for the subsequent tree species mapping 
and biodiversity assessment using the EnMAP hyperspectral and 
Sentinel-2 multispectral data (Table 4).

3. Methodology

The methodology followed a systematic approach, as illustrated in 
the flowchart (Fig. 4). The first step involved co-registering the EnMAP 
hyperspectral images with the Sentinel-2 data using the Basic Pixel 
Alignment tool in QGIS. This ensured spatial alignment between the two 

Table 2 
List of Indices and Bands used from Sentinel-2.

S. 
No

Indices S. 
No

Band

1. Aerosol Free Vegetation Index (AFRI_1600) 1. B2 (Blue-490 nm)
2. Canopy Chlorophyll Content Index (CCCI) 2. B3 (Green-560 

nm)
3. Green Chlorophyll Index (CIgreen) 3. B4 (Red-665 nm)
4. Red Edge Chlorophyll Index (CIrededge) 4. B5 (Red Edge-705 

nm)
5. Enhanced Vegetation Index (EVI) 5. B8 (NIR- 842 nm)
6. Normalized Difference Vegetation Index with 

MIR (NDVI_MIR)
6. B11 (SWIR-1 

1610 nm)
7. Normalized Difference Vegetation Index 

(NDVI)
7. B12 (SWIR-2 

2190 nm)
8. Soil-Adjusted Vegetation Index (SAVI) ​ ​
9. Normalized Difference Moisture Index (NDMI) ​ ​

Table 3 
List of EnMAP images used.

No Date Processing level Version

1. 20230928T102021 L2A 001
2. 20230928T102025 L2A 002
3. 20230928T102029 L2A 003
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datasets, facilitating their integration for subsequent analysis.
Next, the pre-processed EnMAP and Sentinel-2 data were stacked, 

resulting in a combined dataset with 299 features (219 from EnMAP and 
80 from Sentinel-2) for each pixel. Reference data from the National 
Forest Inventory, which are in the form of polygons representing 
different tree species, were used to extract spectral signatures from the 
stacked dataset. Preprocessing steps were applied to this reference data, 
including replacing outliers with averages and handling missing values 
(NaNs) using the same approach.

The reference data were then separated into two data frames: one for 
the three needle-leaf species and another for the six broad-leaf species. 
Five different machine learning algorithms were chosen to evaluate 
their performance in tree species classification: Random Forest, Support 
Vector Machine (SVM), Gradient Boosting Classifier (GBC), CatBoost 
Classifier, and XGBoost.

Machine Learning Algorithms

• Random Forest (RF) (Breiman, 2001): An ensemble learning method 
that constructs multiple decision trees and combines their pre
dictions, providing robust and accurate results for classification 
tasks.

• Support Vector Machine (SVM) (Cortes and Vapnik, 1995): A su
pervised learning algorithm that finds the optimal hyperplane 
separating different classes, making it effective for both classification 
and regression problems.

• Gradient Boosting Classifier (GBC) (Friedman, 2001): An ensemble 
technique that combines weak learners (decision trees) in an itera
tive manner, with each subsequent model attempting to correct the 
errors of the previous one.

• CatBoost Classifier (CBC) (Prokhorenkova et al., 2018): A gradient 
boosting algorithm that uses ordered target encoding and oblivious 
trees, making it efficient for handling categorical features and 
reducing overfitting.

• XGBoost (XGB) (Chen and Guestrin, 2016): An optimized imple
mentation of gradient boosting that employs parallel processing and 
advanced regularization techniques, resulting in improved compu
tational performance and model accuracy.

To address the high dimensionality of the feature space (299 fea
tures), three data reduction techniques were employed: Gaussian 
Random Projection, Independent Component Analysis (ICA), and Prin
cipal Component Analysis (PCA). These techniques aimed to reduce the 
number of features while preserving the most relevant information for 
classification. As shown in Fig. 5, ICA outperformed the other two 
methods and was selected for further processing.

The machine learning algorithms were trained and tested separately 
for needle-leaf and broad-leaf species, as the tuning parameters and class 
distributions differed between these two groups. Hyperparameter tuning 
was performed to optimize the performance of each algorithm. A forest 
mask Fig. 6 was used to differentiate between forest and non forest.

Once the algorithms were trained and tuned, they were applied to 
the full stacked image (approximately 90 km × 30 km) to predict tree 
species. First, a forest/non-forest filter was applied to the image, fol
lowed by separate broad-leaf and needle-leaf filters. The trained algo
rithms were then used to predict tree species on the filtered images, and 
the results were combined to produce a final classified image.

Following the successful production of the species map, this study 
aims to further analyse the forest ecosystem by calculating various 
biodiversity indices. These indices will provide valuable insights into the 
diversity of the forest, enabling a comprehensive understanding of the 
ecological dynamics within the study area. Specifically, this analysis will 
involve the calculation of the Shannon-Wiener Index, Simpson’s Di
versity Index, Species Richness, and biodiversity index. These indices 
will be derived from the species map, allowing for a detailed examina
tion of the forest’s biodiversity and its spatial distribution.

Shannon-Wiener Index: The Shannon-Wiener index, also known as 
Shannon entropy, quantifies the species diversity within a given area by 
considering both the number of species present and their relative 
abundance. It is calculated as − Σ(pi * ln(pi)), where pi represents the 
proportion of individuals of the i-th species in the total population. This 
index provides insights into the richness and evenness of species in the 
ecosystem (Pipinis & Radoglou, 2024; Ette et al., 2023).

Simpson’s Diversity Index: Simpson’s diversity index measures the 
dominance or evenness of species in a community. It is calculated as 1 −
Σ(pi

2), where pi represents the proportion of individuals of the i-th spe
cies. A higher Simpson’s index indicates lower diversity due to domi
nance by a few species, while a lower value signifies higher diversity 
(Ette et al., 2023; Purvis & Hector, 2000).

Interest of bands in Sentinel2 
imagery (B2, B3, B4, B5, B8, B11, 

B12).

Change the resolution of all 
bands to 30mts.

Convert the Digital Number (DN) 
to reflectance.

Calculating required indices. Stack bands with indices.

Fig. 2. Sentinel-2 images preprocessing flowchart.

EnMAP Imagery.
Pixel based co-registration of 

EnMAP imagery with Sentinel2 
data.

Removal of zero bands from co-
registered EnMAP Imagery.

Fig. 3. EnMAP images preprocessing flowchart.

Table 4 
Classes considered for training and testing.

No. Tree Species No. of 
Polygons

No. of 
Pixels

1. Black locus (Robinia pseudoacacia L.) 6 25
2. European Beech (European beech—Fagus 

sylvatica L.)
5 50

3. Birch (silver birch—Betula pendula Roth and 
downy birch—Betula pubescens Ehrh.)

96 1610

4. Oak 160 5883
4a. Northern Red Oak (Quercus rubra) 2 29
4b. Pedunculate Oak (English oak—Quercus robur L. 

and sessile oak—Quercus petraea (Matt.) Liebl.)
7 179

5. Larch (European larch—Larix decidua Mill.) 12 533
6. Alder (gray alder—Alnus incana (L.) Moench and 

black alder—Alnus glutinosa Gaertn.)
183 3884

7. Aspen (Populus sp.) 5 69
8. Pine (Scots pine − Pinus sylvestris L.) 30 7204
9. Spruce (Norway spruce—Picea abies (L.) H. 

Karst)
8 97
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Species Richness: Species richness simply refers to the number of 
different species present in a given area. It provides a basic measure of 
biodiversity by counting the total number of unique species observed 
within the study area. Higher species richness indicates greater biodi
versity and ecosystem complexity (Heym et al., 2020; Laurila-Pant et al., 
2015).

Biodiversity Index: The custom biodiversity index developed in
volves calculating the ratio of the number of different species observed 
within the 9-pixel area to the total number of species in the study area. 
For example, if out of the 9 pixels contain 2 different species, the index 
would be 2/9 (0.2222). This index offers a simplified measure of 
biodiversity based on the presence of unique species within the defined 

area.
To assess the performance of the tree species classification models, 

we employed several evaluation metrics, including overall accuracy, 
precision, recall, and F1-score (mainly F1-score presented as a result). 
The dataset was split into training and validation samples using a 70:30 

Fig. 4. Workflow for tree species classification.

Fig. 5. Model for feature selection.

Fig. 6. Forest Mask.
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ratio, with 70 % of the data allocated for training the models and 30 % 
reserved for testing their performance.

After training the models, we evaluated their performance on the 
validation dataset. Overall accuracy was calculated as the ratio of 
correctly classified instances to the total number of instances. Precision 
and recall were computed for each species to assess the model’s ability 
to correctly identify true positives while minimizing false positives and 
false negatives. The F1-score, which is the harmonic mean of precision 
and recall, was also calculated to provide a balanced measure of model 
performance. Due to space constraints, we have included only the F1- 
score results in the Results section of this paper.

4. Results & discussion

4.1. Results

In this section, we present the classification results obtained from 
five different machine learning algorithms. Each algorithm was trained 
separately for needle leaf and broad leaf classes to account for their 
distinct characteristics. Notably, due to the limited number of classes in 
needle leaf species (three classes), no tuning was required for this part of 
the algorithm, resulting in consistently high accuracies exceeding 90 %. 
Conversely, tuning efforts were focused on the broad leaf part of the 
algorithms to optimize performance. We begin by providing an overview 
of the overall accuracy and class-specific accuracies achieved by each 
algorithm, followed by a detailed analysis of the classification outcomes.

The results of the classification models were analysed to evaluate the 
F1 scores across the five different algorithms with varying numbers of 
features (50–150). Fig. 7 illustrates the F1 scores of the algorithms as the 
number of features increases. It is observed that the F1 scores for all 
algorithms remain consistently high, ranging between 0.98 and 0.99 
across the different feature sets.

The minimal variation in F1 scores indicates a high level of stability 
and consistency in the performance of the classification models as the 
number of features changes. This behaviour of F1 scores also suggests 
that the algorithms maintain similar levels of accuracy and robustness 
across the feature sets tested.

The results for broad leaf species indicate that the F1 score remains 
relatively consistent, with minimal fluctuations across the feature sets. 

This suggests that the optimal number of features for this classification 
task is 50, as the F1 score does not significantly improve or worsen with 
increased features.

Fig. 8 illustrates the F1 score variation across the different feature 
sets. The scores range from 0.86 to 0.93, with the majority of the algo
rithms exhibiting a stable performance. The Random Forest (RF), Cat
Boost (CBC), and Extreme Gradient Boosting (XGB) algorithms 
demonstrate a slight decrease in F1 score as the number of features in
creases, indicating that the optimal feature set is indeed 50.

In contrast, the performance of the algorithms trained with needle 
leaf species does not exhibit a clear trend with respect to the number of 
features. The F1 score remains relatively stable across the different 
feature sets, making it challenging to draw conclusions about the 
optimal number of features for this classification task.

The variation in F1 score with the number of features is a crucial 
aspect of evaluating the performance of the algorithms. The results 
presented in Fig. 8 provide valuable insights into the behaviour of the 
algorithms under different conditions, allowing for a more informed 
evaluation of their performance.

Although there is a slight increase in the F1 score for the needle-leaf 
model, this increase is not substantial. In contrast, Fig. 8 demonstrates 
that the broad-leaf model performs optimally with 50 features. 
Considering both of these observations, we have decided to select 50 
features for our analysis.

The results for the broad leaf species classification presented above 
were obtained after the algorithms were tuned to optimize their 
performance.

By selecting the top 50 independent components, we minimized 
redundancy and focused on the most significant features for tree species 
classification. The feature contribution analysis revealed that, for the 
evergreen model, 51 % of the features were derived from EnMap data 
while 49 % originated from Sentinel-2 data. Similarly, for the deciduous 
model, the split was 52 % EnMap and 48 % Sentinel-2. This approach 
highlights the balanced and complementary contribution of both data
sets in capturing essential spectral information.

The detailed analysis of the selected features indicated that certain 
Sentinel-2 bands and indices played a crucial role. By analysing the top 
50 components, we observed that along with bands B11 and B12, and 
indices like NDVI, AFVI, CCCI, EVI, NDMI(M), and SAVI, were consis
tently among the highest contributors across multiple seasons. For 

Fig. 7. Algorithms performance for Needle leaf. Fig. 8. Algorithms performance for broad leaf.
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instance, the NDVI calculated from each of the five Sentinel-2 images, 
representing different seasons, was identified as a top contributor to the 
components as were the mentioned bands and indices..For the EnMap 
data, critical spectral bands for both evergreen and deciduous models 
were found within the ranges of 418 nm-454 nm (8 bands), 686 nm-756 
nm (8 bands), and 879 nm-1128 nm (20 bands). Additionally, specific 
bands for the deciduous model included 1282 nm-1378 nm (9 bands), 
1609 nm-1958 nm (11 bands), and 2384 nm-2400 nm (3 bands). For the 
evergreen model, the significant bands were 1294 nm-1342 nm (5 
bands), 1738 nm-1977 nm (8 bands), and 2337 nm-2400 nm (3 bands). 
These findings highlight the importance of various spectral regions and 
indices in the classification of different tree species.

Significance of tuning Machine learning Models:
Tuning is essential to optimize the performance of machine learning 

algorithms and enhance their ability to accurately classify specific 
classes within a dataset. Fig. 9 illustrates the variation in F1 scores for all 
broad leaf species following the tuning process. Notably, the F1 scores 
for classes 1 (from 0 to 0.67), 2 (from 0.22 to 0.55), and 7(from 0.32 to 
0.54) exhibited significant increases, highlighting the effectiveness of 
the tuning in enhancing the classification performance for these specific 
classes. In contrast, classes 3, 4, 4a, and 4b showed a slight increase in F1 
scores, indicating a moderate improvement. Finally, the F1 score for 
class 6 remained consistent throughout the tuning process.

The analysis presented in Fig. 9 focuses on the F1 scores of broad leaf 
species after tuning, specifically for the Support Vector Machine (SVM) 
algorithm using 50 features. This detailed examination provides valu
able insights into the impact of tuning on the classification performance 
of individual classes within the broad leaf species dataset.

To address the query on combining Sentinel-2 and EnMap data, we 
conducted an analysis comparing the classification performance using 
four different datasets: Sentinel-2 alone, EnMap alone, a combination of 
both and EnMap indices alone. The evaluation focused on the F1 scores 
of various broadleaf species classes. Our results, illustrated in the 
accompanying Fig. 10, demonstrate that the combined dataset consis
tently outperforms the individual datasets for the majority of classes. 
Specifically, for classes 1, 2, 3, 6, and 7, the combined data achieves 
better F1 scores compared to using Sentinel-2 or EnMap data alone. For 
class 4, all three datasets performed equally well. Interestingly, for 
classes 4a and 4b, Sentinel-2 data showed better performance. However, 
considering the overall performance across all classes, it is evident that 
the combined dataset yields the most robust results. Thus, we opted to 
use the combined Sentinel-2 and EnMap data to leverage the strengths of 
both datasets, ensuring a more accurate and reliable classification.

Regarding the use of indices derived from hyperspectral data, we 
conducted an additional analysis where we calculated 186 indices from 

the EnMap hyperspectral data. These indices relate to the structural, 
biophysical, biochemical properties, and moisture or water content of 
the trees. The indices were sourced from the Index Database website (htt 
ps://www.indexdatabase.de/db/ias.php), selecting EnMap as the sensor 
and vegetation as the application. Out of 256 available indices, only 186 
were feasible for calculation. We applied the same data reduction pro
cess using Independent Component Analysis (ICA) and employed SVM 
for the classification of tree species classes based solely on these indices, 
using the top 50 components derived from ICA. The results of this 
analysis are depicted in the image above (Fig. 10). Due to the extensive 
number of indices used, we provide a direct reference to the source for 
detailed formulas and descriptions.

The classification results depicted in Fig. 11 showcase how various 
algorithms classified different tree species using a set of 50 features. As 
previously indicated, the decision to utilize 50 features was based on its 
superior performance in terms of overall accuracy. Therefore, the clas
sified map presented in the document is specifically derived from the 50- 
feature set to ensure optimal accuracy and consistency in the classifi
cation results. The inclusion of this figure provides a visual representa
tion of the classification outcomes achieved by the algorithms, 
emphasizing the significance of the selected feature set in enhancing the 
accuracy of the classification process.

After combining the outputs from Support Vector Machine (SVM), 
Random Forest (RF), and CatBoost (CBC) algorithms, a comprehensive 
analysis was conducted to determine the final classification results. 
Notably, SVM exhibited the best overall accuracy for the needle species, 
particularly excelling in classes 5, 8, and 9, corresponding to larch, pine, 
and spruce. These classes were directly sourced from the SVM output 
due to its superior performance in accurately classifying these species.

For classes 1, 2, 4.a, and 4.b,7 representing Black locus, European 
beech, Northern red oak, and pendunculate and Sessile oaks, and Aspen 
SVM demonstrated good class accuracy. Hence, these classes were also 
selected from the SVM output. To ensure accuracy, class 3 (birch) un
derwent a cross-check process, where it had to be classified as birch by 
both CatBoost and SVM algorithms to be categorized as birch.

Lastly, classes 4 and 6, corresponding to oak and alder, were sourced 
from the RF algorithm. The combination of these selections from SVM 
and RF, based on their individual strengths in classifying specific spe
cies, culminated in the final classification results. Fig. 12 visually rep
resents the outcomes of this amalgamation, showcasing the effectiveness 
of leveraging multiple algorithms to enhance the accuracy and precision 
of the classification process.

Using Fig. 12 as a base map (Heym et al., 2020), multiple biodiver
sity indices (Pipinis and Radoglou, 2024) were generated to assess the 

Fig. 9. SVM F1 score for broad leaf tree species Before and After tuning.

Fig. 10. F1score comparison between multiple datasets.
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forest’s biodiversity (Ette et al.,2023, Purvis and Hector, 2000, Laurila- 
Pant et al., 2015). As explained previously these indices include the 
Shannon-Wiener index, Simpson’s diversity index, species richness, and 
a custom biodiversity index, all calculated at a resolution of 90 m, where 
each pixel represents a 9-pixel area of the EnMAP image. Each index 
offers a distinct perspective on the distribution and abundance of species 
within the habitat.

Fig. 13 displays the results of these indices, providing valuable in
sights into the biodiversity patterns and species composition within the 
forest area.

4.2. Validation

To evaluate the performance of the classification model, a compre
hensive validation process was undertaken. Initially, the Polish Forest 
Data Bank (FDB) was utilized to select stands with multiple tree species 
classes and varying percentages. The classification results were then 
compared to the actual species composition and percentages within each 
stand. This process was repeated for five stands, selected based on non- 
homogeneity, covering areas of 61,446; 16,601; 59,563; 162,321; and 
110,646 square meters, respectively. The results are presented in 
Table 5 below.

Example Interpretation: For Stand ID 17–12-1–07-379-f, the actual 
data indicates that there are two classes: Forest Class 6 with an occu
pancy of 90 % and an Other class with an occupancy of 10 %.

Fig. 11. The classification results for all the algorithms followed by the orthophotomap.

Fig. 12. Combination of 3 classified images.

R. Vanguri et al.                                                                                                                                                                                                                                Ecological Indicators 167 (2024) 112671 

9 



• The SVM model classified this stand as having 22.5 % coverage of 
Class 4 and 77.5 % coverage of Class 6, indicating a significant 
misclassification of Class 4.

• The RM & CAT models showed 4.2 % coverage of Class 4 and 95.7 % 
coverage of Class 6, which is a closer approximation to the actual 
occupancy.

Fig. 13. Biodiversity Indices.

Table 5 
Comparison of national forest inventory data (FDB) with classified image.

No 1 2 3 4 5
Stand ID 17-12-1-07-379-f 16-03-3-08-1-f 16-03-3-11-117-c 17-13-2-10-82-b 06-14-1-07-115-d

Class from FDB Class [6, other] [3,4,6] [4,8] [3,4] [3,4, other]
% [90,10] [10,40,50] [40,60] [40,60] [30,60,10]

SVM Class [4,6] [4] [3,4,6,8] [4] [3,4,6,8]
% [22.5,77.5] [100] [4.4,40,10,44.6] [100] [7.4,79,12,0.8]

RM Class [4,6] [4,6] [3,4,5,6,8] [4,6] [3,4,6,8]
% [4.2,95.7] [6.3,93.7] [1.4,19,1.4,34,43] [5.5,95.5] [1.6,74,23,0.8]

CAT Class [4,6] [3,4,6] [3,4,6,8,9] [3,4,4b,6] [3,4,6,8]
% [4.2,95.7] [31,6.2,62.5] [1.4,29.8,23.8,40,4.4] [51,3,1,43] [6.6,80,12,0.8]

GBC Class [2,4,4a,6,7] [4a,7] [2,4,5,6,8,9] [4,4a,4b,7] [3,4,6,8]
% [12,2,2,76,8] [37.5,62.5] [8.9,28,2.9,17.9,31.3,10.4] [3,64,1,30] [4.1,79,15,0.8]

XGB Class [2,4,6] [2,3,4,6] [3,4,5,6,8,9] [2,3,4,4b,6] [3,4,6,8]
% [1.4,12.6,85] [6.25,6.25,50,37] [1.4,37.3,2.9,16.4,35.8,5.9] [3,0.5,87,1,7] [5.7,78,14,0.8]

Fig. 14. Field visit sites with google images in the background.
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• The GBC model reported 12 % for Class 2, 2 % for Class 4, 2 % for 
Class 4a, 76 % for Class 6, and 8 % for Class 7, suggesting a more 
diverse classification but still deviating from the actual data.

• The XGB model indicated 1.4 % for Class 2, 12.6 % for Class 4, and 
85 % for Class 6, which aligns more closely with the actual occu
pancy of Class 6.

The validation process was further expanded to include the Kampi
nos National Park, which was not represented in the FDB reference data. 
To achieve this, a grid of 60x60 meter squares was created, covering the 
park’s area. Four species, pine, oak, alder, and birch were selected for 
this validation exercise, as they are the dominant species within the 
national park.

Field visit was conducted on April 13, 2024, to two sites as illustrated 
in the Fig. 14b within the Kampinos National Park. The results 
confirmed that the classification model accurately identified the species 
within each square, with all species correctly classified.

However, due to the vast area of the national park and the re
strictions on accessing certain areas, not all squares could be validated 
through field visits. To address this, the validation process was extended 
to include an online search of the Polish National Data website (National 
Forest Inventory: https://www.bdl.lasy.gov.pl/portal/mapy-en). This 
allowed for the identification of the stand corresponding to each square 
and the verification of the presence or absence of the species within that 
stand. The percentage of each species within the stand was also checked 
to ensure accuracy.

The validation process employed a combination of field visits and 
online research to ensure the reliability of the classification results. This 
comprehensive approach allowed for a thorough evaluation of the 
model’s performance and provided valuable insights into its strengths 
and limitations.

4.3. Discussion

The classification results obtained using the five algorithms reveal an 
interesting phenomenon. Upon examining the classified images, it be
comes apparent that a strip-like area in the middle of the image is 
classified as a different class, whereas in reality, it belongs to the same 
species. This effect is observed in the classified images of all algorithms 
except for the SVM classifier. Fig. 15 illustrates this phenomenon, with 

the left image showing the classified image from SVM and the right 
image showing the classified image from Random Forest. Both images 
correspond to the Kampinos National Park.

The Support Vector Classifier (SVC) with tuned parameters (C = 10, 
gamma=’scale’, kernel=’rbf’) demonstrated a unique ability to avoid 
the strip-like area misclassification observed in the classified images, 
unlike the other algorithms used in the study. The utilization of these 
specific parameters, such as a regularization parameter (C = 10), a 
gamma value (’scale’), and a radial basis function kernel (’rbf’), played a 
crucial role in enhancing the algorithm’s performance. The regulariza
tion parameter helped prevent overfitting, the gamma value influenced 
the kernel coefficient, and the radial basis function kernel allowed for 
effective handling of non-linear relationships in the data (Mercier and 
Lennon, 2003, Camps-Valls and Bruzzone, 2005). These tuned param
eters, combined with the inherent characteristics of the SVM algorithm, 
likely contributed to its success in accurately classifying the strip-like 
area and achieving superior performance compared to the other 
algorithms.

The Support Vector Machine (SVM) algorithm is designed to handle 
imbalanced datasets, including those with varying sample sizes. SVMs 
are known for their ability to focus on the most informative samples, 
which can help mitigate the effects of class imbalance. This is achieved 
through the use of a kernel function and the optimization of a margin 
around the decision boundary (Dalponte et al., 2015).

To study this effect more closely, we selected a square area within the 
strip and a square area just beside it, both covering 9 pixels each and 
representing the same tree species, pine. Despite having the same spe
cies, the spectral signatures of these areas differ, as evident from Fig. 16. 
This discrepancy suggests that the strip area has a higher reflectance, 
whereas the area beside it has a lower reflectance. This finding high
lights the importance of considering the spectral signatures of different 
areas within the same species (Ballanti et al., 2016, Mercier and Lennon, 
2003).

Notably, the SVM classifier appears to have avoided this effect, 
which is one of the reasons why we chose its output for the needle leaf 
species, in addition to its higher F1 score.

In our study, we thoroughly evaluated the performance of the Sup
port Vector Machine (SVM) algorithm, both with and without parameter 
tuning. Our results indicate that the SVM consistently outperforms other 
machine learning algorithms, mainly in the anomaly area. Regardless of 

Fig. 15. Comparison between SVM and RM classified images.

R. Vanguri et al.                                                                                                                                                                                                                                Ecological Indicators 167 (2024) 112671 

11 

https://www.bdl.lasy.gov.pl/portal/mapy-en


the tuning, the SVM demonstrated robust classification capabilities, 
effectively distinguishing between forest classes despite the presence of 
the anomaly shown strip-like area. This resilience suggests that the SVM 
is capable of overcoming the challenges posed by such anomalies, 
enabling it to perform classification more accurately than other machine 
learning methods employed in this study. Therefore, we believe that the 
superior performance of the SVM is not merely apparent but is indicative 
of its effectiveness in handling complex classification tasks in the pres
ence of anomalies.

The combination of outputs from multiple algorithms, such as SVM, 
RF, and CBC, underscores the importance of leveraging diverse ap
proaches to enhance classification accuracy (Camps-Valls and Bruzzone, 
2005). The selection of algorithms based on their individual strengths in 
classifying specific species contributes to the overall accuracy and pre
cision of the classification process. Furthermore, the visual representa
tion of the classification outcomes provides valuable insights into the 
spatial distribution of tree species within the study area (Fig. 10, 11).

The final output, derived from the combination of multiple algorithm 
outputs as detailed above, is a culmination of diverse classification ap
proaches. The accuracy of the overall image classification is intricately 
tied to the F1 score of each class and their weighted average. Through a 
meticulous evaluation process, the overall F1 score is determined to be 
0.91, reflecting the robustness and effectiveness of the combined clas
sification methodology in accurately delineating and categorizing the 
various classes (Ballanti et al., 2016) (Mercier and Lennon, 2003).

The biodiversity indices derived from the species map give us 
important insights into the forest’s richness and diversity. The Shannon- 
Wiener index helps us understand the complexity of the ecosystem by 
looking at both the number of species and how evenly they are 
distributed. In our study, this index ranged from 0 to 1.735, indicating 
varying levels of diversity across the park. Higher values mean more 
species and a more balanced distribution, suggesting healthier ecosys
tems (Pipinis & Radoglou, 2024; Ette et al., 2023).

Simpson’s diversity index, which ranges from 0 to 0.814 in our 
findings, shows us the balance between common and rare species. Lower 
values suggest a diverse ecosystem with many species, while higher 
values point to the dominance of a few species, which can signal 
ecological issues (Ette et al., 2023; Purvis & Hector, 2000).

Species richness, the simple count of different species, ranged from 1 
to 6 in our study area. This measure highlights the variety of habitats 
and the range of species they support, underscoring the park’s impor
tance for biodiversity (Heym et al., 2020; Laurila-Pant et al., 2015).

Our custom biodiversity index, which ranges from 0.111 to 0.666, 
looks at the proportion of different species within small areas. This index 
helps identify biodiversity hotspots and assess the effectiveness of con
servation efforts.

In summary, these biodiversity indices reveal the complex ecological 

dynamics in Kampinos National Park and emphasize the need for 
ongoing conservation to maintain the park’s rich biodiversity. They 
provide a clear picture of the park’s health, guiding future conservation 
and management strategies.

5. Conclusion

This study presents a comprehensive approach to tree species clas
sification and biodiversity assessment using a combination of machine 
learning algorithms and remote sensing data. By leveraging the 
strengths of Support Vector Machine (SVM), Random Forest (RF), and 
CatBoost (CBC) algorithms, we achieved an overall F1 score of 0.91 in 
accurately classifying needle leaf and broad leaf tree species.

The results demonstrate the effectiveness of using 50 features for 
optimal classification performance, as increasing the number of features 
did not significantly improve the F1 scores. The tuning process proved 
valuable in enhancing the classification accuracy for specific broad leaf 
species classes, highlighting the importance of algorithm optimization.

An interesting finding emerged from the classified images, where a 
strip-like area was consistently misclassified by all algorithms except 
SVM. Further investigation revealed differences in spectral signatures 
within the same species, emphasizing the need to consider spatial var
iations in reflectance properties.

The combination of multiple algorithm outputs, with each contrib
uting its strengths in classifying specific species, underscores the 
importance of leveraging diverse approaches to improve overall accu
racy. The visual representation of the classification results provides 
valuable insights into the spatial distribution of tree species and aids in 
understanding the forest ecosystem’s structure.

The biodiversity indices calculated from the classified maps, 
including Shannon-Wiener index, Simpson’s diversity index, species 
richness, and a custom biodiversity index, offer a comprehensive 
assessment of the forest’s biodiversity patterns. These indices can inform 
forest management decisions and support conservation efforts.

The validation process, which involved field visits and online data 
verification, ensures the reliability of the classification results. This 
multi-faceted approach, combining remote sensing data, machine 
learning algorithms, and field validation, demonstrates the potential of 
this methodology in accurately mapping tree species and assessing 
biodiversity at a landscape scale.

Despite the promising results, this study has some limitations that 
warrant consideration. Future research should focus on increasing 
coverage of EnMAP data which restricts the scope of species mapping, 
indicating the need for additional data acquisition, possibly exploiting 
the availability of other hyperspectral sensors (PRISMA), to expand the 
study area and increase the number of species considered. Future 
research efforts could explore the integration of neural networks and 
other advanced techniques to further enhance classification accuracy 
and address the challenges associated with mapping complex forest 
ecosystems.
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