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Principal-Component Analysis (PCA) is a fundamental tool in data science and machine learning, used for 
compressing, analyzing, visualizing, and processing large datasets. At the same time, temporal segmentation 
is important for coherent component analysis of big data collections generated by time-varying distributions. 
However, both segmentation and PCA can be critically affected and misled by corrupted points that often exist 
in big data collections. To address these issues, we propose a novel and robust method for joint segmentation 
and principal-component analysis of time-varying data, based on L1-norm formulations. Our proposed method 
estimates robust L1-norm principal components (L1-PCs) over different temporal horizons and combines them 
to perform outlier detection, data segmentation, and subspace estimation. Numerical studies on real-world data, 
including videos and smartphone-sensed human body motion measurements, corroborate the merits of the pro-

posed method in terms of segmentation, PCA, and outlier detection/removal.
1. Introduction

Principal-Component Analysis (PCA) is commonly used in data sci-

ence and machine learning. By applying PCA to large datasets, we can 
identify the main subspace and use it for various tasks such as denois-

ing, dimensionality reduction, compression, feature extraction, and vi-

sualization. However, in many applications, the data subspaces change 
over time [1], smoothly or abruptly, as for example in digital health-

care [2], wireless communications [3], and autonomous vehicles [4], 
among others. Subspace shifts can either be continual or more abrupt, 
in the form of successive subspace-coherent segments (i.e., data seg-

ments within which the data subspace remains largely invariant).

Regardless of the kind of temporal subspace shifting, any PCA on the 
entire time series data will fail to capture the temporal coherence or the 
principal-component evolution. This motivated us to explicitly address 
the joint data segmentation and analysis for the first type of temporal 
variation (continual) while providing in the process an approximate 
solution for the second type of variation (abrupt).
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In essence, time-series segmentation can be viewed as a form of data 
clustering [24]. Indeed, there exist several methods in the literature 
that extend clustering to temporal segmentation and change detection. 
A main difference is that standard clustering methods (such as K-means) 
do not consider any temporal order of the data, which is a critical factor 
in time-series segmentation. For example, subspace clustering methods, 
such as Generalized PCA (GPCA), do segment (cluster) the dataset based 
on subspace coherence, but the segments may not be successive in time, 
as desired in the time-series analysis problem at hand [6–8].

Apart from clustering, subspace tracking methods have also been 
used for temporal segmentation. While tracking methods do take into 
account the temporal order, they are better suited for capturing con-

tinual subspace shifts rather than explicitly identifying data segments 
[30,31,51].

Clustering, tracking, and segmentation methods alike can be suscep-

tible to corrupted and outlying points in the dataset. Cluster centers 
can be misled, tracked subspaces can be skewed, and non-existing data 
segments might be falsely identified. Indeed, real-world big data col-

lections often contain outliers resulting, for example, from sensor mal-
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Fig. 1. Two-dimensional data {𝐱𝑛}3000𝑛=1 from a time-varying Gaussian distribution, plotted versus time index 𝑛.
functions, errors in data storage/transcription, sensing interference, and 
even adversarial data poisoning attacks [25–28].

Therefore, there is a need for data analysis methods that are robust 
against outliers. In the area of PCA, two successful robust variants of 
standard PCA are L1-PCA [29,47] and Robust PCA (RPCA). Both are 
designed for batch processing of a complete data collection. Their re-

spective Adaptive L1-PCA [30,31] and Robust Subspace Tracking [42]

variants handle the problem of streaming data. However, none of these 
robust component analysis and subspace tracking methods have been 
specifically designed for joint data segmentation and subspace analysis 
of full rank data. In this work, we fill this gap in the literature, propos-

ing a novel robust method for joint data segmentation and component 
analysis (R-JSCA): R-JSCA is built on the foundations of L1-PCA [29]

and inherits its robustness against corrupted and outlying data. Specifi-

cally, R-JSCA

• employs the Hierarchical L1-PCA (H-L1-PCA) computation pro-

posed in [32];

• uses the computed L1-PCs within a coarse-to-fine segmentation ap-

proach;

• the coarse stage discards outliers and detects the main temporal 
data segments;

• the fine stage acts on each data segment to detect the smaller tem-

poral data changes.

As we demonstrate, R-JSCA is robust, computationally efficient, and can 
be easily extended to streaming-data processing.

The rest of the paper is organized as follows. In Sec. 2, we present 
our data model and problem statement. In Sec. 3, we review the techni-

cal background on the topic. In Sec. 4 we present the theoretical basis 
of the proposed R-JSCA method and in Sec. 5 we describe the R-JSCA 
algorithm. Sec. 6 presents numerical studies and comparisons on syn-

thetic and real-world data. Concluding remarks are drawn in Sec. 7.

2. Data model and problem statement

We consider time-series data  = {𝐱1, 𝐱2, … , 𝐱𝑁} ⊂ℝ𝐷 , partitioned 
into 𝑇 successive subspace-coherent segments as follows:

 = {𝐱1,… ,𝐱𝑛(𝑡),… ,𝐱𝑛(𝑡+1)−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

,… ,𝐱𝑁} ⊂ℝ𝐷,
2

𝑡-th segment
where we denote by 𝑛(𝑡) the index of the first data point in segment 
𝑡 ∈ [1 ∶ 𝑇 ]. We also denote by

 (𝑡) ∶= [𝑛(𝑡) ∶ 𝑛(𝑡+ 1) − 1]

the index set of all data points in segment 𝑡.2 Based on these definitions: 

𝑛(1) = 1, 
𝑇⋃
𝑡=1

𝑁(𝑡) = [1 ∶𝑁],  (𝑡) ∩ (𝜏) = ∅ if and only if (iff) 𝜏 > 𝑡 and 

𝑛(𝜏) > 𝑛(𝑡) iff 𝜏 > 𝑡. Then, for any 𝑛 ∈ (𝑡)–i.e. for each data point in 
the 𝑡-th segment–we define

𝐱𝑛 =𝐔(𝑡)𝐫𝑛 +𝐰𝑛 ∈ℝ𝐷, (1)

where 𝐔(𝑡) ∈ 𝕍 (𝐷, 𝐾(𝑡)) ∶= {𝐔 ∈ ℝ𝐷×𝐾 ∶ 𝐔⊤𝐔 = 𝐈𝐾(𝑡)} is a basis for 
the subspace of segment 𝑡 and 𝐫𝑛 is a random subspace coordinate 
vector. We also define the signal subspace (𝑡) ∶= span(𝐔(𝑡)), with di-

mensionality 𝐾(𝑡) ≤𝐷. 𝐰𝑛 ∈ ℝ𝐷 is a additive zero-mean noise vector, 
independent of 𝐫𝑛, with covariance matrix 𝚺(𝑡). Based on this model, 
the mean-squared distance of 𝐱𝑛 ∈ (𝑡) from (𝑡) is

𝔼{‖𝐱𝑛 −𝐔(𝑡)𝐔(𝑡)⊤𝐱𝑛‖22} (2)

= 𝔼{‖(𝐈𝐷 −𝐔(𝑡)𝐔(𝑡)⊤
)
𝐰𝑛‖22}

≤ 𝔼{‖𝐰𝑛‖22} = Tr(𝚺(𝑡))

Thus, as noise variance Tr(𝚺(𝑡)) tends to 0, the noise is benign and 
𝐱𝑛 tends to be entirely in subspace (𝑡). However, in real-world ap-

plications, a small fraction of the data-points might also be corrupted 
by high-variance outliers of unknown statistics, so they highly deviate 
from the nominal subspace of their segment. For example, in Fig. 1 we 
show (𝐷 = 2)-dimensional zero-mean Gaussian data plotted over time, 
defining 𝑇 = 3 successive subspace-coherent segments.

The problem of interest is described as follows. Given the time-

series data  , we wish to jointly detect segment thresholds {𝑛̂(𝑡)}⊤
𝑡=2

by estimating the first component of the segment bases {𝐔(𝑡)}𝑡∈[1∶𝑇 ]. 
Importantly, we need a robust method that will allow us to accomplish 
these tasks even if the time-series is corrupted by sporadic outliers of 
unknown statistics, at unknown frequency and locations.
2 For ∀𝑧1, 𝑧2 ∈ℤ such that 𝑧1 < 𝑧2, we denote [𝑎 ∶ 𝑏] = {𝑧1, 𝑧1 + 1, … , 𝑧2}.



Digital Signal Processing 145 (2024) 104338S. Colonnese, G. Scarano, M. Marra et al.

Fig. 2. Illustrative example of hierarchical L1-PCA [32], for 𝑁 = 27, 𝐿 = 3, and 𝑊 =𝑊 =𝑊 = 3.
3. Related work

3.1. Segmentation and component analysis approaches

Time-series segmentation and subspace analysis, as described in 
Sec. 2, are typically addressed using tracking-based or clustering-based 
analysis methods. Robust tracking methods provide a time-varying rep-

resentation of the data subspace, which expresses a suitably selected 
data subset sliding in time [41,42,30,43]. On the other hand, clustering-

based analysis can be modified to cluster time-series data and provide 
a basis for each cluster. Segment-based analysis can also be achieved 
by first segmenting the data [10] and then performing a component 
analysis on each segment.

Subspace clustering of time-varying data series [12,11,14] assumes 
that there is a finite number of distinct subspace segments in the data. 
Thus, clustering as in [13] is inherently challenged by slow/smooth 
subspace changes and is often addressed by considering substantially 
low rank [15] or application-specific [16–19] priors. Deep-learning ap-

proaches to change detection are either suited for low-dimensional time 
series data [20] or require large training datasets [21]. For segmenta-

tion and component analysis purposes, noisy streaming data with weak 
or no priors can be handled by robust component analysis algorithms. 
Besides, possible trends on data mean can also be addressed [22]. Seg-

mentation can be also accomplished on weights profile obtained in 
subspace tracking, as in [23]. However, subspace tracking is a more 
complex operation addressing recursive computation of the complete 
subspace matrix and of its pseudo inverse, whereas not all the sub-

space components are necessary to detect a change in data statistics. 
Furthermore, change detection on the subspace weight profile needs 
thresholding operations which are not directly related to the data fea-

tures (e.g., burstiness of outliers) making it difficult to fine-tune the 
segmentation to the actual data characteristics.

3.2. Robust component analysis and L1-PCA

Regarding robustness, several works have addressed the princi-

pal component analysis (PCA) of data affected by noise and outliers 
[33,35]. Outlier-resistant PCA has been widely studied in the literature 
[5,33]. Several methods aim to robustly and compactly represent the 
observed data by a constant vector [36–38], possibly leveraging a low-

rank prior on the data subspace [34,39,40].

Outlier-resistant PCA methods, such as L1-norm based PCA (L1-

PCA), bring robustness in data analysis. The L1-PC of a collection of data 
points {𝐱1, 𝐱2, … , 𝐱𝑁} is a vector 𝐪 of normalized Euclidean norm that 
maximizes 

∑𝑁
𝑛=1 ||𝐪⊤𝐱𝑛||1. L1-PCA can be solved exactly as a combina-

torial optimization problem [29], or approximately, e.g., by alternating 
optimization [44], fast Fourier transform [45], bit-flipping [46] (L1-

BF), or hierarchical computation [32]. L1-PCA has also been extended 
to multi-way array (tensor) processing in [43,48–50]. Streaming ver-

sions of L1-PCA were proposed in [31] as well as in [30], where the 
3

authors associate a reliability to each sample by computing its scalar 
1 2 3

product with respect to (w.r.t.) the estimated principal component and 
leverage it to discard outliers.

3.3. Hierarchical L1-PCA

The proposed method presented below is based on robust hierarchi-

cal L1-PCA [32], summarized as follows. First, the 𝑁0 =𝑁 input data 
points {𝐱𝑛 ∈ ℝ𝐷}𝑁0

𝑛=1 are divided into 𝑁1 groups of size 𝑊1 =𝑁0∕𝑁1. 
Then, the L1-PC of each of these groups is calculated, e.g., by means 
of the bit-flipping algorithm [46]. The L1-PC of group 𝑛 ∈ [1 ∶ 𝑁1] is 
denoted by 𝐪(1)𝑛 . The superscript (1) denotes that this is the first layer 
of L1-PC computations. Then, the 𝑁1 layer-1 L1-PCs {𝐪(1)𝑛 }𝑁1

𝑛=1 are di-

vided into 𝑁2 layer-2 groups of size 𝑊2 = 𝑁1∕𝑁2 and the L1-PC of 
each group is computed. The L1-PC of group 𝑛 ∈ [1 ∶𝑁2] in layer-2 is 
denoted by 𝐪(2)𝑛 . Similarly, at layer 𝑙 = 3, 4, …, we divide the 𝑁𝑙−1 L1-

PCs from layer 𝑙 − 1, {𝐪(𝑙−1)𝑛 }𝑁𝑙−1
𝑛=1 , into 𝑊𝑙 = 𝑁𝑙−1∕𝑁𝑙 groups and we 

calculate the L1-PC of each group. We terminate at layer 𝐿 such that 
𝑁𝐿 = 1. The resulting top-layer L1-PC 𝐪 = 𝐪(𝐿)1 constitutes an approxi-

mate L1-PC of the entire dataset, found in a hierarchical way. Moreover, 
importantly, hierarchical L1-PCA returns a group of hierarchical L1-PCs 
(H-L1-PCs):

( ; ) ∶=
{
{𝐪(𝑙)𝑛 }𝑛∈[1∶𝑁𝑙]

}
𝑙∈[1∶𝐿]

, (3)

where  = {𝑊𝑙}𝑙∈[1∶𝐿]. The H-L1-PCs in ( ; ) are used by the 
proposed method for joint segmentation and component analysis as de-

scribed in the following sections. An illustrative example of hierarchical 
L1-PCA is offered in Fig. 2.

4. Proposed method

Herein, we propose to detect subspace changes assessing how well 
each data sample aligns with sets of neighbors of different widths. The 
underlying idea is that the alignment random fluctuations are expected 
to be smaller in absence than in presence of subspace changes. There-

fore, in this section we firstly introduce the multi-scale conformity and 
then we analyze its statistical properties in a reference case. The next 
section will describe the segmentation algorithm based on the multi-

scale conformity statistic.

4.1. Definition of multi-scale conformity

In this work, we utilize the H-L1-PCs presented above and build 
a method for multi-scale analysis of the input data. First, we notice 
that, for any layer 𝑙 > 1 and index 𝑛 ∈ [1 ∶ 𝑁𝑙], only a subset of the 
data points {𝑥𝑚}𝑚∈[1∶𝑁] have contributed to the formation of the H-

L1-PC 𝐪(𝑙)𝑛 . We denote by 𝜔(𝑙)
𝑛 the index set of those data points and 

find that 𝜔(1)
𝑛 = [(𝑛 − 1)𝑊1 + 1 ∶ 𝑛𝑊1] and, for every 𝑙 > 2, 𝜔(𝑙)

𝑛 =⋃
𝑗∈[(𝑛−1)𝑊𝑙+1 ∶ 𝑛𝑊𝑙]𝜔

(𝑙−1)
𝑗

. Expanding this recursive definition, we find 

that for any 𝑙 ≥ 1 and 𝑛 ∈ [1 ∶𝑁𝑙],
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Fig. 3. We consider 𝑁 = 27 points and calculate the conformity of 𝐱6 at 𝐿 = 3 layers (𝑊1 = 𝑊2 = 𝑊3 = 3). Row-wise from top to bottom, the orange points 
correspond to the conformity cohorts {𝐱𝑛}𝑛∈𝜔(1)

6
, {𝐱𝑛}𝑛∈𝜔(2)

6
, and {𝐱𝑛}𝑛∈𝜔(3)

6
, respectively.

Fig. 4. (a) Points from (𝜋∕4, 0.8) (blue) and (0, 0.8) (red). (b) Histogram of conformity of blue points (blue) and red points (red), w.r.t. the eigenvector of the 
blue points.
𝜔(𝑙)
𝑛 =

[
(𝑛− 1)𝐿𝑙 + 1 ∶ 𝑛𝐿𝑙

]
, (4)

where 𝐿𝑙 =
∏𝑙

𝑗=1𝑊𝑗 . For example, 𝜔(2)
2 = [(𝑊2)𝑊1 + 1 ∶ (𝑊2 + 1)𝑊1] ∪

[(𝑊2 + 1)𝑊1 + 1 ∶ (𝑊2 + 2)𝑊1] ∪⋯ ∪ [(2𝑊2 − 1)𝑊1 + 1 ∶ 2𝑊2𝑊1] =
[𝑊1𝑊2 + 1 ∶ 2𝑊1𝑊2]. Moreover, we notice that the cardinality of 𝜔(𝑙)

𝑛

is |𝜔(𝑙)
𝑛 | =𝐿𝑙 =

∏𝑙
𝑗=1𝑊𝑗 (constant across 𝑛). That is, the number of data 

points that participate to the formation the H-L1-PCs at layer 𝑙 increases 
as 𝑙 increases. In other words, H-L1-PCs of higher layers summarize data 
points across a wider temporal span.

At the same time, each data point 𝐱𝑛 contributes to the formation 
of a single H-L1-PC at each layer 𝑙. Let 𝜈(𝑛, 𝑙) ∈ [1 ∶ 𝑁𝑙] denote the 
index of that H-L1-PC (it holds 𝜈(𝑛, 𝑙) ∈ 𝜔

(𝑙)
𝑛 ). That is, at layer 𝑙, data 

point 𝐱𝑛 is only represented by H-L1-PC 𝐪(𝑙)
𝜈(𝑛,𝑙). Our method uses 𝐪(𝑙)

𝜈(𝑛,𝑙)
to assess the reliability or conformity of 𝐱𝑛 at layer 𝑙. Specifically, for 
any 𝑛 ∈ [1 ∶𝑁] and 𝑙 ∈ [1 ∶ 𝐿], we define the layer-𝑙 conformity of 𝐱𝑛
as

𝜉(𝑙)𝑛 =
|𝐱⊤𝑛 𝐪(𝑙)𝜈(𝑛,𝑙)|‖𝐱𝑛‖2 ≤ 1. (5)

Based on the above, through 𝐪(𝑙)
𝜈(𝑛,𝑙), 𝜉

(𝑙)
𝑛 captures the conformity of 𝐱𝑛

to its layer-𝑙 cohort {𝐱𝑚}𝑚∈𝜔(𝑙)
𝑛

. Importantly, since |𝜔(𝑙)
𝑛 | increases along 

𝑙, 𝜉(𝑙)𝑛 at higher layers captures the conformity of 𝐱𝑛 w.r.t. a broader 
cohort around it. For instance, 𝜉(1)𝑛 captures the conformity of 𝐱𝑛 w.r.t. 
just 𝑊1 neighboring points, while 𝜉(𝐿)𝑛 captures the conformity of 𝐱𝑛
w.r.t. the entire dataset. An example of this is offered in Fig. 3.

4.2. Note on conformity distribution

Depending on 𝐱𝑛 and its layer-𝑙 cohort {𝐱𝑚}𝑚∈𝜔(𝑙)
𝑛

, conformity 𝜉(𝑙)𝑛

is a random variable the distribution of which varies both along 𝑛 and 
𝑙 –unless the noise is low enough and the data distribution/subspace 
remains stationary.

We study the stationary case with the following example. We con-
4

sider zero-mean (𝐷 = 2)-dimensional normal distribution, with domi-
nant eigenvector 𝐪 at angle 𝜋4 rad with the x-axis, unit marginal vari-

ances, and correlation coefficient equal to 𝜌. For simplicity in notation, 
we denote this distribution as (𝜋∕4, 𝜌). For any data point 𝐱 from 
this distribution, we denote by Ξ = |𝐱⊤𝐪|∕‖𝐱‖2 its conformity w.r.t. the 
dominant eigenvector 𝐪 [53]. Then, we derive the probability density 
function (PDF) of Ξ. Denoting by 𝜙 the angle between 𝐱 and the x-axis, 
we find Ξ = | cos(Φ − 𝜋∕4)| –that is, conformity captures the angular 
proximity of the data point to the dominant rank-1 subspace of the dis-

tribution, spanned by 𝐪. Based on [54], the PDF of 𝜙 is

𝑝Φ(𝜃) =
√
1 − 𝜌2

2𝜋 (1 − 𝜌 sin(2𝜙))
∀𝜙 ∈ [−𝜋,𝜋]. (6)

Accordingly, through simple algebraic manipulations, it follows that the 
PDF of Ξ is

𝑝Ξ(𝜉) =
√
1 − 𝜌2

𝜋
(
1 + 𝜌− 2𝜌 𝜉2)

)√
1 − 𝜉2

∀𝜉 ∈ [0,1]. (7)

If instead of 𝐪 we measure conformity w.r.t. a norm-1 vector 𝐪0 that is 
at angle Φ0 with 𝐪, the conformity PDF becomes

𝑝Ξ(𝜉) =
√
1 − 𝜌2

𝜋
(
1 + 𝜌𝑠0 − 2𝜌 𝑠0𝜉2 − 2𝜌 𝑐0

√
1 − 𝜉2)

)√
1 − 𝜉2

, (8)

where 𝑐0 = cos(𝜋∕2 − 2𝜙0) and 𝑠0 = sin(𝜋∕2 − 2𝜙0). Clearly, for 𝜙0 =
𝜋∕4, (8) boils down to (7). Next, we illustrate how the PDF of the con-

formity, when calculated with respect to the true eigenvector, can serve 
as an identifier of points drawn from the nominal distribution.

In Fig. 4(a), the blue points are drawn from (𝜋∕4, 0.8) and the red 
points from (0, 0.8). In Fig. 4(b), we plot histograms of the confor-

mity of the blue points (blue bars) and the red points (red bars) w.r.t. 
the dominant eigenvector of the blue points, 𝐪. Conformity of the blue 
points w.r.t. 𝐪 takes most values very close to 1. On the other hand, con-

formity of red points w.r.t. 𝐪 takes most values around 0.707, which is 

the cosine of the angle between 𝐪 and the eigenvector of the red points 
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(i.e., the x-axis). Both histograms are in accordance with the theoretical 
PDF formulas presented above.

In practical computation, the dominant direction is not known but 
estimated via the rank-1 L1 PCA component. The random fluctuation 
discussed earlier serve as a reliable representation for the random fluc-

tuation of the points with respect to the estimated rank-1 L1 PCA 
component, which accurately and robustly captures the principal co-

variance matrix eigenvector.

5. R-JSCA via multi-scale conformity

R-JSCA is a method that calculates the multi-scale conformity of a 
time-series samples w.r.t. H-L1-PCs (calculated as discussed in Sec. 3.3

above). The conformity evaluation leads to a transition detection that 
happens in two stages: a coarse detection stage and a fine detection 
stage. The coarse stage checks the conformity of each sample with re-

spect to its closest neighbors, and it performs a preliminary coarse data 
segmentation. The fine stage operates within each segment by evaluat-

ing the sample conformity on widening neighbor sets, thus refining the 
coarse segmentation.

5.1. Coarse stage

Let us consider a time-varying data distribution. As far as new sam-

ples arrive, the PCs over different time spans are computed, up to the 
higher available layer 𝐿. The R-JSCA coarse stage analyzes the sam-

ples conformity 𝜉(𝑙)𝑛
|||𝑙=𝐿 with respect to 𝐿 versus the time index 𝑛. If 

the conformity 𝜉(𝑙)𝑛
|||𝑙=𝐿 is above a threshold 𝜃0 = 𝜃max, the 𝑛-th sample 

is deemed stationary and noise-free. If the conformity 𝜉(𝑙)𝑛
|||𝑙=𝐿 is be-

low the threshold 𝜃0 = 𝜃max, a set of up to 𝜏max consecutive samples 
is considered and matched towards decreasing thresholds 𝜃0 = 𝜃max, 
𝜃𝑖 = 𝛼 𝜃𝑖−1, 𝑖 = 1, ⋯ , 𝜏max, 𝛼 < 1, identifying extending confidence inter-

vals as depicted in Fig. 5. Given the Union of Confidence Intervals (UCI) 

UCI𝑛 =
𝑡𝑛⋃
𝑖=0

(𝜃𝑖+1, 𝜃𝑖] of increasing probability 𝑝(UCI)
𝑖

= 𝑟 
{
𝜉 ∈ (𝜃𝑖+1,1]

}
, 

R-JSCA computes the UCI test written as follows:

𝜉(𝐿)𝑛 ∈ UCI𝑛 =
𝑡𝑛⋃
𝑖=0

(𝜃𝑖+1, 𝜃𝑖], (9)

where 𝑡𝑛 ∈ [0 ∶ 𝜏max] is a counter of the number of consecutive samples 
violating the condition in (9). If 𝑡𝑛 < 𝜏max consecutive values violate 
the UCI condition (9), they are discarded as outliers. This is exactly the 
outlier rejection strategy proposed in [30] (case of adaptive threshold). 
Differently from [30] though, in this work, a recycling buffer stores the 
𝑡𝑛 < 𝜏max samples that do not fit in the UCI. When 𝜏max consecutive 
samples are stored in the recycling buffer, a change in the data pdf is 
inferred, the 𝜏max samples in the buffer form the initial set of the new 
data segment, the buffer is emptied, the counter 𝑡𝑛 is set to zero and the 
online data analysis restarted.

Both the threshold 𝜃max and the buffer size 𝜏max can be tuned to the 
statistics of the data and outlier process. The threshold 𝜃max determines 
the ability to detect isolated outliers. If a prior model of the observa-

tions is available, the threshold can be tuned to the desired trade-off 
between false alarm probability and detection probability; details on 
the adjustment can be found in Appendix A. If no prior is available, but 
a set of data is available for training purposes, the threshold can still be 
set on the frequency of occurrences of the multi-scale conformity.

Also the parameter 𝜏max can be set based on the desired trade-

off between probability of detection and probability of false alarms. 
Appendix A examines in detail the impact of 𝜏max on the probabil-

ity of detection and probability of false alarms in case of indepen-

dent outliers. Following the same line of reasoning, in case of burst 
of outliers, 𝜏max is set above the minimum outlier burst length to be 
5

detected.
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Fig. 5. Union of Confidence Interval criterion: PDF 𝑝Ξ(𝜉) (black line), 
decreasing thresholds 𝜃𝑘, 𝜃𝑘+1, 𝜃𝑘+2 associated to increasing probabilities 
𝑝
(𝑈𝐶𝐼)
𝑘

, 𝑝(𝑈𝐶𝐼)
𝑘+1 , 𝑝(𝑈𝐶𝐼)

𝑘+2 (shaded areas).

The points that fail the UCI conformity test (9) are stored in the re-

cycling buffer: if they are less than 𝜏max they are just discarded (green 
circle) as in [30] and [52]. Still, if the UCI test fails on 𝜏max sam-

ples, this triggers the start of the new data segment. In summary, the 
coarse step checks for systematic failures of the UCI conformity test 
over consecutive samples to detect subspace changes in the observation 
time series. Differently from [30], the PC analysis window is not up-

dated but restarted, and the following R-JSCA applies to detect further 
subspace changes. The performance of R-JSCA (coarse) is discussed in 
Appendix A.1, where a closed form analysis is carried out under simpli-

fying assumptions.

5.2. Fine stage

The R-JSCA fine stage analyzes the samples conformity 𝜉(𝑙)𝑛
|||𝑙=𝐿 with 

respect to the layer index 𝑙, corresponding to different temporal span. 
The conformity of the estimates achieved over different layers of the 
hierarchical L1-PCA architecture should consistently increase. Changes 
in the underlying pdf are spotted by inconsistencies of the estimates.

In case of stationary data, the conformity estimated at the 𝑛-th time 
index, 𝜉(𝑙)

𝑛
, 𝑙 = 0, ⋯ , 𝐿 − 1, is a constant mean r.v., with variance de-

creasing over increasingly larger data samples [56]. In presence of 
a subspace change, the conformity over larger data samples changes 
when the PC estimation interval spans across the transition, as illus-

trated in Fig. 6.

Herein, we detect a change by observing the conformity confidence 
interval [59,60]. Specifically, we adopt the Intersection of Confidence 
Intervals criterion [57,58] and we test the conformity 𝜉(𝑙)𝑛 over increas-

ing values of 𝑙, corresponding to wider temporal intervals: if the data 
samples are stationary, the conformity pdfs the 𝜉(𝑙)𝑛 are expected to over-

lap, as in Fig. 6(a); on the contrary, if there is a subspace change, the 
conformity at higher layers (larger time span) is expected to lower and 
the overlap is lost, as in Fig. 6(b). Turning to math, the confidence in-

tervals 𝑗 (𝑛) of 𝜉(𝑗)𝑛 over different layers 𝑗 = 1, ⋯ , 𝐿 are as follows

(𝑗)
𝑛 =

(
𝜉(𝑗)𝑛 −Δ𝜉(𝑗)𝑛 , 𝜉(𝑗)𝑛 +Δ𝜉(𝑗)𝑛

]
, (10)

where Δ𝜉(𝑗)𝑛 is a suitable function of the standard deviation of the sam-

ple conformity.3 Then, the ICI is computed as

3 Following the approach in [57], we set Δ𝜉(𝑗)𝑛 = Γ(𝑗) ⋅ 𝜎(𝑗)
𝑛 , where 𝜎(𝑗)

𝑛 is the 
sample conformity standard deviation, estimated over a local window  and 
Γ(𝑗) is equal to the (1 − 𝜂∕2)𝑡ℎ-percentile of the standard Gaussian distribution 
 (0, 𝜂∕2) plus a correction factor 𝑘

𝑊 𝑙
which decreases as the layer index 𝑙
increases.
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Fig. 6. Intersection of Confidence Interval criterion: PDFs of the 𝑗-th layer conformity 𝜉(𝑗)𝑛 for the 𝑛-th data point; (a) no subspace change (overlapping PDFs for 
increasing 𝑗), (b) subspace change (non overlapping PDFs for increasing 𝑗).
Algorithm 1 R-JSCA Coarse Stage algorithm pseudocode.

Input: Data matrix 𝐗 ∈ℝ𝐷×𝑁0 , and currently estimated L1 PC of the 𝐿-th layer, 
𝐪(𝐿) .

1: 𝑛 = 0, 𝑠 = 0, 𝐪(𝐿) ← H-L1-PCA(𝐗∶,0∶𝑁−1)
2: while 𝑛 <𝑁 − 1
3: 𝑡 = 0, 𝜃0 = 𝜃max ∈ (0,1), 𝑅𝐵 = ∅
4: 𝑛← 𝑛+ 1
5: while 𝐱⊤

𝑛
𝐪(𝐿)∕|𝐱𝑛|2 < 𝛼𝑡𝑛 𝜃0 and 𝑡 ≤ 𝑡𝑚𝑎𝑥

6: 𝑅𝐵 ←𝑅𝐵
⋃
{𝐱𝑛}

7: 𝑡← 𝑡+ 1
8: if 𝑡 = 𝑡𝑚𝑎𝑥

9: 𝑇 ← 𝑛, 𝑠← 𝑠+ 1, 𝑆 ← 𝑠

10: 𝐪(𝐿) ← H-L1-PCA(𝐗∶,𝑇 ∶𝑁−1)
11: end if

12: 𝑛← 𝑛+ 1
13: end while

14: if 𝑡 ≠ 𝑡𝑚𝑎𝑥

15: 𝐗←𝐗 ⧵𝑅𝐵

16: end if

17: end while

Return: Number of Coarse transitions 𝑆𝐶 , and their locations 𝑛𝐶
𝑠
, 𝑠 = 0, ⋯ , 𝑆𝐶 −

1, outlier-free data matrix 𝐗.

ICI(𝑙)𝑛 =
𝑙⋂

𝑗=1
(𝑗)
𝑛 . (11)

The maximum layer index 𝑙max
𝑛 for which the intervals overlap,

𝑙max
𝑛 = max

𝑙∶ ICI
(𝑙)
𝑛 ≠∅

𝑙 (12)

is monitored over 𝑛 and, when 𝑙max
𝑛 changes, a fine transition is de-

tected, and the desired rank-1 PC (or higher rank PCs) are computed. 
Thereby, R-JSCA achieves a change detection resolution below the win-

dow size 𝑊 , detecting changes at each and every sample.

5.3. Key takeaways

The multiscale conformity analysis carried out by the R-JSCA coarse 
and fine stages is summarized in Algorithms 1, 2. For clarity, also 
Figs. 7, 8 depict the R-JSCA coarse and fine stages, respectively: the 
original measurements come from different distributions (represented 
by different colors) and are affected by outliers (the green circle).

A few remarks are in order. Firstly, R-JSCA relies on the only as-

sumption that the subspace change affects the first principal component 
of the data. Due to this mild assumption, R-JSCA tackles full-ranked 
6

time variant real data, which are rarely addressed in the literature. 
Fig. 7. R-JSCA (coarse): (a) Data points conformity test versus the time index 𝑛; 
unreliable points are identified and stored in reservoir; (b) Coarse stage result: 
outlier rejection and coarse segmentation.

Secondly, R-JSCA applies not only to batch data, but also to stream-

ing data; the maximum layer 𝐿 shall be selected so as to match the 
desired observation time span. Additionally, R-JSCA can manage both 
sporadic and consecutive outliers [55], by suitably setting the parame-

ter 𝜏𝑚𝑎𝑥 of the Coarse stage performing outlier excision. Finally, herein 
we developed the analysis with reference to rank-1 L1-norm represen-

tation of a data subset, since it, as carried out in the foundation work,

[46], captures its most important feature (basis vector) in the robust 
maximum-magnitude projection sense. We expect then, that monitoring 
the evolution of the rank-1 component alone across data subsets suf-

fices to guide segmentation protocols. In arguably rare application cases 
where subtle changes over time do not show up in the first L1-norm 
principal component of the data, joint higher rank L1-norm decompo-

sition may be pursued [29], [46] (or recursively projection of the data 
on to the subspace orthogonal to the first L1-norm principal component 
and disjoint computation of the next, etc. [36]).

In summary, the strength of R-JSCA in detecting subspace shifts, is 
related to a few key factors: i) the robustness of the adopted L1-PC, ii) 
the two stage computational architecture, which allows to distinctly ad-

dress data errors versus slight subspace shifts, and iii) the tunability of 
the parameters to the desired false alarm versus detection trade-off. In 
terms of feasibility, the R-JSCA hierarchical computational structure as-

sures that its computational complexity is reduced; for more details, the 
interested reader can refer to Appendix B). As for future work, R-JSCA 
relies on intermediate L1-PCs, and it can be extended to PCs computed 
with different metrics, provided that a layered architecture is adopted. 
Furthermore, R-JSCA relies on rank-1 PC analysis, but it can be gener-
alized by i) introducing a conformity vector for the general rank-d PC 
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Algorithm 2 R-JSCA Fine Stage algorithm pseudocode.

Input: Outlier-free data matrix segments as identified by the fine stage 𝐗∶,𝑇 𝐶 ∶𝑛𝐶
𝑠+1

.

1: 𝑛 = 𝑛𝐶
𝑠

, 𝑢 = 0, 𝑆𝐹 = 0
2: compute 𝐪(𝑙)

𝜈(𝑛,𝑙), 𝑛 = 𝑛𝐶
𝑠
⋯𝑛𝐶

𝑠+1, 𝑙 = 1,⋯ ,𝐿max

3: while 𝑛 < 𝑛𝐶
𝑠+1

4: 𝑙 = 1, exit = 0
5: while (𝑙 < 𝐿max) or (exit == 1)
6: compute 𝜉(𝑙)

𝑛
← 𝐱⊤

𝑛
𝐪(𝑙)
𝜈(𝑛,𝑙)∕|𝐱𝑛|2

7: compute Δ𝜉(𝑙)
𝑛

← confint(𝑛, 𝑙)

8: if

(
𝜉(𝑙)
𝑛

−Δ𝜉(𝑙)
𝑛

> max
𝑗=1,⋯,𝑙−1

{
𝜉
(𝑗)
𝑛 +Δ𝜉(𝑗)𝑛

})
9: or

(
𝜉(𝑙)
𝑛

+Δ𝜉(𝑙)
𝑛

< min
𝑗=1,⋯,𝑙−1

{
𝜉
(𝑗)
𝑛 −Δ𝜉(𝑗)𝑛

})
10: 𝑛𝐹

𝑢
← 𝑛, 𝑙𝑢 ← 𝑙 𝑢← 𝑢+ 1

11: exit = 1
12: end if

13: end while

14: 𝑛← 𝑛+ 1
15: end while

Function: Δ𝜉 ← confint(𝑛, 𝑙)

1: 𝜎̂(𝑙)
𝑛

=
[
𝐴𝑣

{(
𝜉(𝑙)
𝑛

−𝐴𝑣
{
𝜉(𝑙)
𝑛

})2} ]1∕2
2: Δ𝜉(𝑙)

𝑛
= 𝜎̂(𝑙)

𝑛
⋅
(
𝐹1−𝛼∕2 + 𝑘∕𝑊 𝑙

)
3: Return Δ𝜉

Return: Number of Fine transitions 𝑆𝐹 , their locations 𝑛𝐹
𝑢
, 𝑢 = 0, ⋯ , 𝑆𝐹 − 1 and the associated selected layer 

𝑙𝑢, , 𝑢 = 0, ⋯ , 𝑆𝐹 − 1; the symbol 𝐴𝑣 denotes the average on 𝑛 ∈ .

Fig. 8. R-JSCA (fine): (a) Outlier-free segmented data conformity test versus the layer index 𝑙; (b) Fine stage result: refined data segmentation and relevant rank-1 
L1 PCs for each data segment.
case, and ii) analyzing how the distribution of the conformity vector 
changes corresponding to a subspace change. Finally, multiscale con-

formity can be exploited as a feature for a deep learning system. These 
topics are left for future studies.

6. Experiments

We assess the performance of R-JSCA on synthetic datasets as well 
7

as on two real datasets, referring to human activity related accelera-
tion/speed signals acquired by a smartphone and to an outdoor, pan-

ning camera, highly dynamic video.

6.1. Synthetic datasets: off-on-off and rotating Gaussian

To assess the performance of R-JSCA, we first consider two 𝐷 = 2, 
zero-mean, normally distributed data series, 𝑁 = 3740 long, and differ-

ently changing in time. The covariance of the first data set changes at 

samples 𝑛1 = 935 and 𝑛2 = 2806, such that the data PDF assumes the 
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Fig. 9. Time varying distribution of the data: (left) off-on-off case and (right) 
linear phase shift case.

Fig. 10. Ground truth orientation 𝜑𝑛 and its estimates represented by pseudo-

colored horizontal bars for the cases of (a) abrupt and (b) gradual transition; the 
time indexes of the 5% outliers are highlighted by black dots. R-JSCA (coarse) 
rejects the outliers and either grabs the abrupt transition or approximate the 
gradual one (a); R-JSCA (fine) step-wise approximates the gradual transition.

two principal axis directions: 𝜑𝑛 =
𝜋

2 , for 𝑛1 < 𝑛 < 𝑛2 and 𝜑𝑛 = 0 other-

wise. Fig. 9(a) depicts the ground truth orientation by a pseudo-colored 
horizontal bar and sketches the concentration ellipses of the data dis-

tributions. The second dataset gradually rotates in time with 𝜑𝑛 =
𝑛𝜋

𝑁
. 

Fig. 9(b) depicts 𝜑𝑛 and the associated rotating concentration ellipses. 
For both cases, 5% of data are randomly substituted with outliers, nor-

mally distributed around (10, −10) with marginal variances (1, 1).
The cascade of the R-JSCA coarse and fine segmentation stages is ap-
8

plied to both the datasets. Fig. 10 depicts the ground truth orientation 
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Table 1

Mean Square Error (dB) values for three synthetic datasets with off-on-off (first 
column), linear (second column), and constant (third column) trends (5% of 
outliers). R-JSCA (coarse) ranks first on off-on-off and constant datasets fol-

lowed by R-JSCA (fine); R-JSCA (fine) ranks first on the linear trend, followed 
by R-JSCA (coarse).

Synthetic Dataset Off-on-off Linear Constant

GPCA -1.44 dB -1.67 dB -1.56 dB

GGS -2.14 dB -0.89 dB 1.96 dB

L2-PCA -1.05 dB -0.42 dB 1.96 dB

L1-PCA -1.05 dB -0.42 dB -3.28 dB

H-L1-PCA (layer 5) -1.05 dB -0.42 dB -12.12 dB

R-JSCA (coarse) -8.12 dB -2.95 dB -28.48 dB

R-JSCA (fine) -8.05 dB -5.95 dB -12.21 dB

𝜑𝑛, with outliers highlighted by black dots for the two cases. The esti-

mated orientations at the output of the R-JSCA coarse and fine stages 
are also represented as horizontal colored bars. We compare the results 
with: GPCA [9], and GGS followed by segment-based PCA of [10].4

In Fig. 10(a), R-JSCA (coarse) follows very well the ground truth 
trend, correctly detecting two subspace changes (with a delay of 28 and 
5 samples). R-JSCA (fine) accurately estimates the data subspace ori-

entation, with few small, spurious oscillations. Overall, R-JSCA outper-

forms competitors in jointly detecting the abrupt changes and adapting 
the L1-PCA estimation window to the time varying data. In Fig. 10(b), 
R-JSCA (coarse) detects one subspace change (at sample 2166), approx-

imating the linear trend by two constants. Then, R-JSCA (fine) detects 
various smaller transitions, approximating the linear trend with several 
constant steps, and generating the segment-based PCs and achieving 
the best segmentation performance. R-JSCA performs consistently over 
different percentages of outliers, as shown in Fig. 11, illustrating, for 
different datasets (column a), the cases of absence of outliers (column 
b) and presence of 10% of outliers (column c).

In Table 1, we report the Mean Square Error (MSE) between the 
ground truth 𝜑𝑛 and the estimated orientation 𝜑̂𝑛, averaged over the 
time index 𝑛, for the two datasets, and for a reference constant dataset. 
R-JSCA (coarse) and R-JSCA (fine) are accurate estimators, outper-

forming the benchmarks GPCA and GGS as well as L2, L1 and H-L1-

PCA, which approximate the orientation with a constant. On the first 
dataset, R-JSCA (coarse) and R-JSCA (fine) achieve MSE = −8.12 dB
and MSE = −8.05 dB, respectively; on the second dataset R-JSCA ranks 
best (MSE=-5.95 dB), followed by R-JSCA (coarse) (MSE = -2.95 dB).

In summary, the proposed R-JSCA is accurate both on smoothly and 
abruptly changing data. We now show that R-JSCA captures meaning-

ful transitions on two real datasets, referring to action recognition and 
video analysis, respectively.

6.2. Real dataset: human activity smartphone accelerometer data

Firstly, we challenge R-JSCA on the human activities datasets in 
[62,63], collecting time-variant acceleration/speed signals as acquired 
by a smartphone during different activities and postural transitions. R-

JSCA applies to the spatial acceleration time series, resulting by moving 
average of the sensed samples. The observation matrix is built by 200 
samples of the standing posture dataset, 23 samples of the stand-to-sit 
transition dataset and the 200 samples of sitting posture dataset. Fig. 12

plots one component of linear acceleration versus time, and it highlights 
in yellow the ground truth transition area (from sample 201 to sample 
223). R-JSCA (coarse) correctly detects one transition at sample 206, 
no further transitions are detected by R-JSCA (fine). Thereby, R-JSCA 
grabs the statistical change associated with the postural change.

4 The parameter setting is as follows: R-JSCA (coarse): 𝑤𝑛 = 20, 𝜃𝑚𝑖𝑛 = 0.2, 

𝜃𝑚𝑎𝑥 = 0.9, 𝜌 = 0.5; R-JSCA (fine): 𝑘 = 4.10, 𝛼 = 0.05; GGS: 𝜆 = 0.1, 𝐾 = 2.
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Fig. 11. R-JSCA of different time-varying synthetic data: (a) original dataset, (b) true, R-JSCA (coarse) and R-JSCA (fine) subspace directions in absence of outliers, 
and (c) true, R-JSCA (coarse) and R-JSCA (fine) subspace directions in presence of 10% of outliers.

Fig. 12. R-JSCA application to the smartphone accelerometer dataset for human action recognition [62][63]; stand-to-sit analysis (b) of the first component of the 
acceleration vector versus time (black line). The ground truth interval of the stand-to-sit postural change is indicated by the yellow bar, and the transition detected 
by R-JSCA coarse stage is indicated by the dashed red line; no further transition was detected by the R-JSCA fine stage.
6.3. Real dataset: outdoor video with camera panning

Secondly, R-JSCA applies to the outdoor video sequence Jumps in 
Fig. 13, formerly introduced in [64] for the purpose of video key-

frames extraction. Fig. 14 plots the subjective relevance of the sequence 
frames (black line) annotated by the authors in [64] based on users’ 
frame scoring. The video camera rapidly pans and zooms throughout 
the video, posing challenges to the segmentation algorithms, since no 
9

low-rank assumptions stand. R-JSCA processes the grayscale, downsam-
pled (from 480x270 a 160x90), vectorized video frames. After R-JSCA 
(coarse) discarded 78 outliers out of 950 frames, R-JSCA (fine) detected 
26 subspace changes and computed the PCs of each segment. Fig. 14

depicts the time segments detected by R-JSCA as colored bars and the 
discarded outliers as narrow white stripes. Given the lack of ground 
truth segmentation, we compare R-JSCA segmentation with the sub-

jective relevance measured in [64]. After an initial transitory (due to 
camera instability), the subspace changes identified by R-JSCA (fine) 

nicely match the peaks of the subjective score. R-JSCA catches sub-
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Fig. 13. Selected thumbnails referring to different intervals of the video sequence Jumps: the scene undergoes major variations since the camera zooms and pans 
during the outdoor acquisition.

Fig. 14. R-JSCA results on the sequence Jumps: the segments detected by R-JSCA appear as colored bars while the outliers are represented by white stripes. The 
black line shows the fluctuations of the manually annotated frame visual relevance versus the frame index. R-JSCA detects the subspace changes on high innovation 
frames, corresponding to the peaks of the visual relevance, whereas larger segments span consecutive low-relevant, low-innovation frames.
space changes in correspondence to the high innovation frames that 
also trigger a high subjective interest. Instead, detected intervals span 
a larger number of frames when the subjective interest is low, i.e. on 
low innovation video segments. Thereby, R-JSCA provides a meaningful 
segmentation and analysis of the video data.

In summary, R-JSCA provides an accurate, meaningful segmentation 
and analysis of time-series, also rejecting outliers frequently occurring 
in real measurements. The two-tiers architecture, where R-JSCA (fine) 
detects small variations only after R-JSCA (coarse) has rejected outliers, 
avoids the curse of detecting gradual signal fluctuations amongst bigger 
outliers.

We remark that the R-JSCA coarse and fine stages are designed to 
work in synergy. The coarse stage rejects the outliers and it detects the 
larger changes; the fine stage detects smaller changes that would be 
10

challenging to identify without first removing outliers. The fine stage 
can be skipped when prior knowledge of the application suggests that a 
coarse segmentation is adequate.

Thanks to its mild assumptions, R-JSCA tackles data of different sub-

space structure kinds, including full-rank data, as shown above for a 
video shot by a moving camera. The analysis of identifiability con-

ditions and performance guarantee on the basis of more restrictive 
hypotheses is left for further study.

7. Conclusion

This paper proposes a method for Joint Segmentation and Compo-

nent Analysis (R-JSCA) based on multiscale data conformity analysis. 
By means of a two-tiers architecture, applicable both to batch and on-

line data, R-JSCA provides a robust and accurate segmentation and 
analysis of time-series, managing both sporadic and consecutive out-
liers, without priors on the subspace structure of the observed data. 
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R-JSCA outperforms state-of-the-art competitors on synthetic and real 
datasets, where it can detect abrupt as well as smooth transitions. The 
results show that, thanks to its mild assumptions, R-JSCA tackles data 
of different subspace structure kinds, including full-rank data, e.g., a 
video shot by a moving camera. Finally, we observe that the proposed 
method holds promise to develop into a data-driven approach, where 
the pattern assumed by the multi-scale sample conformity can serve as 
features for segment change detection. Further investigation is worth-

while on the adaptation of the R-JSCA multiscale conformity analysis 
to deep learning systems.
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Appendix A. R-JSCA performance analysis

Herein we address the closed form performance analysis of the R-

JSCA approach for the case of bidimensional Gaussian random variable, 
under few simplifying assumptions. The herein derived performance, 
although ideal, provides a theoretically grounded insight on the R-JSCA 
computational architecture.

A.1. R-JSCA coarse stage: multiscale conformity analysis over time index

Herein, we consider the change detection [61] as a binary clas-

sification problem and we derive the closed form expression of the 
probability of detection and the probability of false alarm for the case 
of bidimensional, i.i.d. normal data samples. Let 0, 1 denote the 
hypothesis of absence and presence of subspace changes, respectively. 
R-JSCA detects a change if and only if 𝜏𝑚𝑎𝑥 consecutive samples fail the 
UCI test. Let us also assume 𝑞𝐿 ≈ 𝑞, being 𝑞 the dominant covariance 
matrix eigenvector. With these positions, the detection probability 𝑃𝐷

depends on the subspace change, as measured by the angular shift 𝜙0, 
and equals to:

𝑃𝐷(𝜙0) =
𝜏𝑚𝑎𝑥∏
𝑖=1

𝛼𝑖𝜃𝑚𝑎𝑥ˆ

0

𝑝Ξ|0
(𝜉𝑖|1)𝑑𝜉𝑖

=
𝜏𝑚𝑎𝑥∏
𝑖=1

𝛼𝑖𝜃𝑚𝑎𝑥ˆ

0

√
1 − 𝜌2

[
𝜋
(
1 + 𝜌 sin(𝜋∕2 − 2𝜙0) − 2𝜌 sin(𝜋∕2 − 2𝜙0)𝜉2

−2𝜌 cos(𝜋∕2 − 2𝜙0)𝜉
√
1 − 𝜉2)

)√
1 − 𝜉2

]−1
𝑑𝜉𝑖.

(A.1)
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Conversely, the probability of false alarm equals to
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Fig. A.15. R-JSCA (coarse): probability of detection versus probability 
of false alarm for zero mean two-dimensional normal distribution with 
unitary marginal variances and correlation coefficient 𝜌 = 0.95 (𝜃𝑚𝑎𝑥 =
0.98 ± 0.005, 𝜏𝑚𝑎𝑥 = 1, 2, 3, 4), for different values of 𝜙0, namely 𝜙0 ∈
{0.25𝜋,0.225𝜋,0.2𝜋,0.175𝜋,0.15𝜋}.

𝑃𝐹𝐴 =
𝜏𝑚𝑎𝑥∏
𝑖=1

𝛼𝑖𝜃𝑚𝑎𝑥ˆ

0

𝑝Ξ|0
(𝜉𝑖|0)𝑑𝜉𝑖

=
𝜏𝑚𝑎𝑥∏
𝑖=1

𝛼𝑖𝜃𝑚𝑎𝑥ˆ

0

√
1 − 𝜌2

𝜋
(
1 + 𝜌− 2𝜌 𝜉2

𝑖
)
)√

1 − 𝜉2
𝑖

𝑑𝜉𝑖.

(A.2)

In both the above equations we calculate the joint probability that 
a series of consecutive conformity samples fall below certain thresh-

olds; the probability of this joint event is computed by a product, where 
the factors represent the probability that each sample 𝜉𝑖 is under the 
corresponding threshold 𝛼𝑖𝜃𝑚𝑎𝑥. These factors vary in presence or in 
absence of a change (i.e. conditional to 1 or 0). The first case (i.e. 
all the samples under the thresholds in presence of a change) leads to a 
correct detection, while the second case (i.e. all the samples under the 
thresholds in absence of a change) results into a false alarm. Hence, the 
equations represent the probabilities of detection and false alarm in the 
coarse stage.

For the sake of concreteness, Fig. A.15 plots the probability of false 
alarm and the probability of detection computed for the case of zero 
mean two-dimensional normal distribution with unitary marginal vari-

ances and correlation coefficient 𝜌 = 0.95, for different values of PC 
change 𝜙0. For increasing size 𝜏𝑚𝑎𝑥 of the recycling buffer, the false 
alarm rate drastically decreases, while the probability of detection re-

mains consistent, also in presence of small fluctuations of 𝜃𝑚𝑎𝑥. When 
the PC change 𝜙0 decreases from its maximum value 𝜋∕4 the detection 
performance smoothly decreases.

A.2. R-JSCA fine stage: multi-scale conformity analysis over layer index

Let us outline the performance analysis of R-JSCA (fine) for the ref-

erence of two layers. R-JSCA (fine) detects a change when the difference 
between 𝜉(𝑙)𝑛 and 𝜉(𝑙+1)𝑛 exceeds a threshold Δ𝜉(𝑙)𝑛 + Δ𝜉(𝑙+1)𝑛 . i.e. R-JSCA 
fine detects change by analyzing the conformity 𝜉(𝑙)𝑛 over 𝑙. Herein, we 
consider two layers 𝑙 and 𝑙 + 1, and the conformities

𝜉(𝑗)𝑛 =
𝐱⊤𝑛 𝐪̂

(𝑗)‖𝐱𝑛‖2 , 𝑗 = 𝑙, 𝑙 + 1, (A.3)

where 𝐪̂(𝑗) is the estimated PC at layer 𝑗 = 𝑙, 𝑙 + 1. The false alarm and 
detection probability for the fine detection are written as:

𝑃𝐷 =
¨



𝑝Ξ(𝑙) ,Ξ(𝑙+1)|1
(𝜉(𝑙), 𝜉(𝑙+1)|1)𝑑𝜉(𝑙)𝑑𝜉(𝑙+1) (A.4)
and
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𝑃𝐹𝐴 =
¨



𝑝Ξ(𝑙)|0
(𝜉(𝑙), 𝜉(𝑙+1)|0)𝑑𝜉(𝑙)𝑑𝜉(𝑙+1), (A.5)

where  is the decision region of the ICI criterion, defined as

 =
{
𝜉(𝑙), 𝜉(𝑙+1)s.t.

(
𝜉(𝑙) − Δ𝜉(𝑙)

)
>
(
𝜉(𝑙+1) − Δ𝜉(𝑙+1)

)||(
𝜉(𝑙) + Δ𝜉(𝑙)

)
<
(
𝜉(𝑙+1) − Δ𝜉(𝑙+1)

)}
.

(A.6)

Let us assume 𝑝(𝜉(𝑙), 𝜉(𝑙+1)|𝑖) ≈ 𝑝(𝜉(𝑙)|1) ⋅ 𝑝(𝜉(𝑙+1)|1), and let us de-

note by 𝜖(𝑗), 𝑗 = 𝑙, 𝑙 + 1 the phase of the estimated component 𝐪(𝑗), 𝑗 =
𝑙, 𝑙 + 1. We obtain

𝑝Ξ(𝑗)|𝑖
(𝜉(𝑗)|𝑖) =

ˆ
𝑝Ξ(𝑗)|𝐸(𝑗) ,𝑖

(𝜉(𝑗)|𝜖(𝑗),𝑖) ⋅ 𝑝𝐸(𝑗)|𝑖
(𝜖(𝑗)|𝑖)𝑑𝜖,

𝑖 = 0,1; 𝑗 = 𝑙, 𝑙 + 1.
(A.7)

Approximating 𝑝𝐸(𝑗)|𝑖
(𝑒(𝑗)|𝑖) with an uniform distribution in [−𝛿𝑙, 𝛿𝑙]

under the hypothesis 0, and in [𝑚𝑒 − 𝛿𝑙, 𝑚𝑒 + 𝛿𝑙] under the hypothesis 
1, we obtain

𝑝Ξ(𝑙) ,Ξ(𝑙+1)|0
(𝜉(𝑙), 𝜉(𝑙+1)|0) =⎡⎢⎢⎣ 1

2𝛿𝑙

𝛿𝑙ˆ

−𝛿𝑙

𝑝Ξ(𝑙)|𝐸(𝑙)|0
(𝜉(𝑙)|𝜖(𝑙)|0)𝑑𝜖(𝑙)

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣ 1
2𝛿𝑙+1

𝛿𝑙+1ˆ

−𝛿𝑙+1

𝑝Ξ(𝑙+1)|𝐸(𝑙+1)|0
(𝜉(𝑙+1)|𝜖(𝑙+1)|0)𝑑𝜖(𝑙+1)

⎤⎥⎥⎦
(A.8)

and

𝑝Ξ(𝑙) ,Ξ(𝑙+1)|1
(𝜉(𝑙), 𝜉(𝑙+1)|1) =⎡⎢⎢⎣ 1

2𝛿𝑙

𝛿𝑙ˆ

−𝛿𝑙

𝑝Ξ(𝑙)|𝐸(𝑙) ,1
(𝜉(𝑙)|𝜖(𝑙),1)𝑑𝜖(𝑙)

⎤⎥⎥⎦
⋅
⎡⎢⎢⎣ 1
2𝛿𝑙+1

𝑚𝑒+𝛿𝑙+1ˆ

𝑚𝑒−𝛿𝑙+1

𝑝Ξ(𝑙+1)|𝐸(𝑙+1) ,1
(𝜉(𝑙+1)|𝜖(𝑙+1),1)𝑑𝜖(𝑙+1)

⎤⎥⎥⎦ ,
(A.9)

where

𝑝Ξ(𝑗)|𝐸(𝑗) ,0
(𝜉(𝑗)|𝜖(𝑗),0) =

√
1 − 𝜌2

𝜋
(
1 + 𝜌− 2𝜌 𝜉2

𝑖
)
)√

1 − 𝜉2
𝑖

(A.10)

and

𝑝Ξ(𝑗)|𝐸(𝑗) ,1
(𝜉(𝑗)|𝜖(𝑗),1)

=
√
1 − 𝜌2

[
𝜋
(
1 + 𝜌 sin(𝜋∕2 − 2 ∗ 𝜖(𝑗)) −2𝜌 sin(𝜋∕2 − 2 ∗ 𝜖(𝑗))𝜉2

−2𝜌 cos(𝜋∕2 − 2 ∗ 𝜖(𝑗))𝜉
√
1 − 𝜉2)

)√
1 − 𝜉2

]−1
.

(A.11)

Fig. A.16 shows an example of the joint PDF5 of two conformity mea-

sures 𝜉(𝑙)𝑛 , 𝜉
(𝑙+1)
𝑛 under the hypothesis of absence and presence of a 

subspace change. The decision region where R-JSCA (fine) detects a 
change is highlighted. The probabilities of false alarm 𝑝𝐹𝐴 and of de-

tection 𝑝𝐷 are obtained by integration of the conditional joint PDFs 
under the hypothesis of absence and presence of a subspace change, 
respectively.

Appendix B. Computational complexity

The computational complexity of R-JSCA depends i) on the compu-

tational complexity (𝐻𝐿1𝑃𝐶𝐴)
𝑁,𝑤

of hierarchical L1 PCA evaluation, ii) on 
the complexity (𝑐𝑜𝑎𝑟𝑠𝑒)

𝑁,𝑤
of the coarse stage, and iii) on the complexity 
12

5 Herein, we assume 𝜉(𝑙)
𝑛

and 𝜉(𝑙+1)
𝑛

to be statistically independent.
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Fig. A.16. R-JSCA (fine): change detection decision region, for zero mean 
two-dimensional normal distribution with unitary marginal variances and cor-

relation coefficient 𝜌 = 0.8, 𝜙0 = 𝜋∕4; the thresholds Δ𝜉(𝑙), Δ𝜉(𝑙+1) determine the 
distance of the line boundaries 2 

(
Δ𝜉(𝑙) + Δ𝜉(𝑙+1)

)
.


(𝑓𝑖𝑛𝑒)
𝑁,𝑤

of the fine stage. The coarse and fine stages require a number 
of elementary operations which is straightforwardly related to 𝑁, 𝑤, 
namely (𝑐𝑜𝑎𝑟𝑠𝑒)

𝑁,𝑤
≈𝑁 and (𝑓𝑖𝑛𝑒)

𝑁,𝑤
≈𝑁 ⋅ 𝐿 ≈𝑁 ⋅ log(𝑁)∕ log(𝑤), respec-

tively.

The computational complexity of R-JSCA firstly depends on the com-

putational complexity (𝐻𝐿1𝑃𝐶𝐴)
𝑁,𝑤

of H-L1-PCA. Let us now develop on 
H-L1-PCA, computed according to the architecture in Fig. 2. For simplic-

ity sake, we describe here a recursive 𝐿 layers computation architecture 
using a fixed size 𝑤 for the L1-PCA analysis window; the number of 
measurements satisfies 𝑁 =𝑤𝐿. The architecture can be generalized to 
variable size windows by means of a flexible data parsing strategy.

With these positions, 𝑋 is partitioned in 𝑁1 = 𝑁∕𝑤 submatri-

ces 𝑆1(𝑛) ∈ ℝ𝐷×𝑤, with 𝑛 ∈ [1 ∶ 𝑁1]: 𝑋 = [𝑆1(1), … , 𝑆1(𝑁1)]. Then 
the L1-PC is computed inside every submatrix. At the 2𝑛𝑑 -layer, the 
matrix of the estimated L1-PC components 𝑄𝐻𝐿,1 is partitioned into 
𝑁2 = 𝑁1∕𝑤 submatrices 𝑆2(𝑛) ∈ ℝ𝐷×𝑤: 𝑄𝐻𝐿,1 = [𝑆2(1), … , 𝑆2(𝑛), … ,
𝑆2(𝑁2)] with 𝑛 ∈ [1 ∶𝑁2]. Then, same as above, L1-PCA is applied to 
each submatrix.

After having defined 𝑄𝐻𝐿1 ,0 = 𝑋 and 𝑁0 =𝑁 , the process can be 
generalized to repeat iteratively ∀𝑙 ∈ [1 ∶𝐿], ∀𝑛 ∈ [1 ∶𝑁𝑙]:

𝑁𝑙 =
𝑁𝑙−1
𝑤

(B.1)

𝑄𝐻𝐿1 ,𝑙−1 = [𝑆𝑙(1),… , 𝑆𝑙(𝑛)
⏟⏟⏟
𝑤 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

,… , 𝑆1(𝑁𝑙)] (B.2)

𝐪𝐻𝐿1 ,𝑙
(𝑛) = argmax

𝐪 ∈ℝ𝐷×1||𝐪|| = 1

||𝑆𝑙(𝑛) ⋅ 𝐪||1 (B.3)

𝑄𝐻𝐿1 ,𝑙
= [𝐪𝐻𝐿1 ,𝑙

(1) ⋯ 𝐪𝐻𝐿1 ,𝑙
(𝑁𝑙)] ∈ℝ𝐷×𝑁𝑙 . (B.4)

Finally, the computational cost of classical PCA is given by co-

variance matrix computation, which is 𝑂
(
𝑁2 ⋅𝐷

)
and its eigen-

value decomposition, that is 𝑂
(
𝑁3). So, the complexity of PCA is 

𝑂
(
𝑁2 ⋅𝐷 +𝑁3). The computational cost of H-L1-PCA is given by the 

computational cost of L1-PCA on each and every layer so we have:

𝑁,𝑤 = 𝑁

𝑤
⋅𝑤3 +⋯+ 𝑁

𝑤𝐿
⋅𝑤3 =𝑤3 ⋅

𝐿∑
𝑘=1

𝑁

𝑤𝑘
.

We can rewrite it also as

 =𝑤3 ⋅𝑁 ⋅
𝐿∑ 1 =𝑁 ⋅𝑤3 ⋅

(
𝐿∑ 1 − 1

)
.
𝑁,𝑤

𝑘=1 𝑤
𝑘

𝑘=0 𝑤
𝑘
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Fig. B.17. Computational complexity (𝑅−𝐽𝑆𝐶𝐴)
𝑁,𝑤

= 
(𝐻𝐿1𝑃𝐶𝐴)
𝑁,𝑤

+ 
(𝑐𝑜𝑎𝑟𝑠𝑒)
𝑁,𝑤

+ 
(𝑓𝑖𝑛𝑒)
𝑁,𝑤

versus the number of samples 𝑁 and the window length 𝑤.

Given that 
∑𝐿

𝑘=0 𝑥
𝐾 = 1−𝑥𝐿+1

1−𝑥 we can write

𝑁,𝑤 =𝑁 ⋅𝑤3 ⋅
(
1 − 𝑥𝐿+1

1 − 𝑥
− 1

)|||||𝑥= 1
𝑤

=𝑁 ⋅𝑤3 ⋅
𝑤𝐿 − 1
𝑤− 1

⋅
( 1
𝑤𝐿

)
≈𝑁 ⋅𝑤3 ⋅𝑤𝐿−1 ⋅

( 1
𝑤𝐿

)
=𝑁 ⋅𝑤2.

(B.5)

So the computational cost of H-L1-PCA is (𝐻𝐿1𝑃𝐶𝐴)
𝑁,𝑤

≈𝑁 ⋅𝑤2 versus 
the 𝑁3 cost of conventional PCA.

The analysis above clarifies the role of the parameters 𝑁, 𝐿, 𝑤 in 
the computation of H-L1-PCA and hence in R-JSCA. The number of lay-

ers 𝐿 is a parameter depending on the overall number of samples 𝑁
addressed by the analysis and by the window 𝑤 adopted in the com-

putation of the hierarchical PCs. The number of samples 𝑁 is closely 
related to the problem under concern, e.g., whether there are big data 
involved, which is the expected stationarity interval, and so on. The 
window 𝑤 determines the accuracy of the first layer estimates and the 
computational complexity of the multi-scale conformity computation. 
Coarsely speaking, a small value of 𝑤 reduces the computational com-

plexity of H-L1-PCA evaluation ((𝐻𝐿1𝑃𝐶𝐴)
𝑁,𝑤

≈𝑁 ⋅𝑤2), it does not affect 
the complexity of the coarse stage ((𝑐𝑜𝑎𝑟𝑠𝑒)

𝑁,𝑤
≈ 𝑁), and it slightly in-

creases the complexity of the fine stage ((𝑓𝑖𝑛𝑒)
𝑁,𝑤

≈𝑁 ⋅ log(𝑁)∕ log(𝑤)). 
The overall computational complexity is sketched in Fig. B.17; we rec-

ognize that, for any 𝑁 , 𝑤 should be kept as low as possible, compatibly 
with the accuracy of the individual L1 PCs computed on 𝑤 data sam-

ples. In practice, in all our experiments we kept 𝑤 ≈ 5.
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