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Abstract

Precision medicine in oncology has made significant progress in recent

years by approving drugs that target specific genetic mutations. However,

many cancer driver genes remain challenging to pharmacologically target

(“undruggable”). To tackle this issue, RNA-based methods like antisense

oligonucleotides (ASOs) that induce targeted exon skipping (ES) could pro-

vide a promising alternative. In this work, a comprehensive computational

procedure is presented, focused on supporting the development of ES-based

cancer treatments. The procedure aims to produce specific protein variants,

including inactive oncogenes and partially restored tumor suppressors. This

novel computational procedure encompasses target exon selection, in-silico

prediction of ES products, and identification of best candidate ASOs for

further experimental validation. The method was effectively employed on

extensively mutated cancer genes, prioritised according to both their suit-

ability for ES-based interventions and clinical relevance. Relevant cancer-

related genes, such as the NRAS, BRAF and CXCL8 (or IL-8) oncogenes,

and the VHL and TP53 tumor suppressors, exhibited potential for this ther-

apeutic approach, as specific target exons were identified and optimal ASO

sequences were devised to induce their skipping towards desired protein

variants. To the best of our knowledge, this is the first computational pro-

cedure that encompasses all necessary steps for designing ASO sequences

tailored for targeted ES, contributing with a versatile and innovative ap-

proach to address the challenges posed by undruggable cancer driver genes,

and beyond.

Keywords: exon skipping; antisense oligonucleotide; ASO; splicing;

RNA therapy; cancer; bioinformatics.



Abbreviations

ASO Antisense oligonucleotide

BMD Becker muscular dystrophy

CDS Coding DNA sequence

DMD Duchenne muscular dystrophy

ES Exon skipping

ESE Exonic splicing enhancer

ESS Exonic splicing silencer

FDA Food and Drug Administration

hnRNP heterogeneous nuclear ribonucleoprotein

ISE Intronic splicing enhancer

ISS Intronic splicing silencer

mRNA messanger RNA

NMD Nonsense Mediated Decay

ONG Oncogene

PMO Phosphorodiamidate morpholino oligomer

PTC Premature termination codon

siRNA small interfering RNA

snRNA small nuclear RNA

TPM Transcripts per million

TSG Tumor suppressor gene
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Chapter 1

Introduction

1.1 Cancer as a global health challenge

Cancer is the second leading cause of mortality worldwide after cardio-

vascular diseases [1]. According to projections based on population aging

and growth, the global burden of cancer is expected to increase by more

than 60% in the next twenty years, raising from about 18.1 million new

cases in 2018 to approximately 29.4 million cases in the year 2040. With

this growing global burden, treatment of cancer is one of the most signif-

icant public health challenges of the 21st century [2]. Over the past few

decades, significant advancements in DNA sequencing and a more compre-

hensive understanding of the cancer genome have revolutionised the can-

cer treatment landscape. The conventional paradigm, according to which

chemotherapy drugs (primarily targeting rapidly proliferating cells) are se-

lected based on the organ of origin, histology, and staging, has evolved

towards the molecular profiling of the tumor, predominantly based on ge-

nomics. This shift guides the choice of therapeutic strategies, including

chemotherapy, immunotherapy, and molecularly targeted agents [3]. Addi-

4



1.2. Oncogenes and tumor suppressors

tionally, this paradigm shift has paved the way for the emergence of per-

sonalised or precision medicine approaches, which hold great promise as

effective strategies for treating cancer. To develop innovative and preci-

sion therapeutic approaches, it is crucial to identify and target cancer driver

genes [4], which contain mutations conferring a selective growth advantage

to cells. Specifically, these genes can be classified as oncogenes or tumor

suppressors based on the type and location of the genetic alterations they

undergo.

1.2 Oncogenes and tumor suppressors

Oncogenes are genes that encode proteins driving the cell cycle forward,

promoting uncontrolled cellular growth and division beyond the normal

context of organism development. They derive from mutations occurring in

their normally functioning counterparts known as proto-oncogenes. Proto-

oncogenes are essential genes involved in cellular processes such as cell

growth, differentiation, and signal transduction. Alterations in these genes

that influence either the control of their behavior or the way that their en-

coded proteins are structured can lead to activation of oncogenes. When

such oncogenes are formed, they go on to drive cell multiplication and as-

sume a pivotal role in the pathogenesis of cancer [5]. Tumor suppressor

genes encode for proteins that are typically involved in restraining uncon-

trolled cellular growth, facilitating DNA repair, activating cell cycle check-

points and, when necessary, inducing cell death (apoptosis) [6]. Conse-

quently, inactivation of tumor suppressor gene function due to mutations

increases the selective growth advantage of the cell in which it resides, thus

contributing to cancer.
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1.2. Oncogenes and tumor suppressors

In a broader sense, genes in which acquired mutations promote a selec-

tive growth advantage and thus are causally linked to cancer progression

are termed cancer driver genes [4, 7]. Among well known cancer driver

genes, the mutation patterns have been observed to be highly character-

istic and nonrandom, thus providing a reference on which to functionally

classify driver genes as oncogenes or tumor suppressors [4]. In particu-

lar, oncogenes exhibit recurrent mutations at specific amino acid positions

while the occurrence of mutations in tumor suppressor genes is typically

spread across their entire length [4]. Driver mutations occurring in either

oncogenes or tumor suppressor genes lead to the stimulation of cell growth

and division. However, in the case of oncogenes, this growth advantage to

the tumor cell results from mutations that confer increased or new activ-

ity to the gene, leading to abnormal cellular processes or functions. These

mutations are termed ’gain-of-function’ mutations. On the other hand, mu-

tations occurring in tumor suppressor genes disrupt their normal function,

removing constraints on cell growth and division such as key checkpoints

regulating cell proliferation, DNA repair, and cell cycle. These mutations

are named “loss-of-function” mutations. Taking this into account, classifi-

cation of cancer genes in terms of oncogenes or tumor suppressor genes can

incorporate various criteria such as functional studies, somatic mutations,

and copy number alterations [8–10]. In particular, the widely used "20/20

rule” combines gain-of-function and loss-of-function mutation occurrence

to classify genes as oncogenes or tumor suppressors, as described in the

article by Pavel et al., 2016 [11] (section 4.2 in the Materials and Methods).

Overall, according to the comprehensive catalog of Somatic Mutations

in Cancer (COSMIC) [12], which provides extensive information on genes

with a causal impact on human cancer, there are currently 719 cancer genes
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1.3. Challenges and perspectives about precision medicine in oncology

documented (COSMIC v.86, August 2018) [13]. This catalog includes de-

tails about gene contribution to disease causation, the specific types of mu-

tations that lead to gene dysfunction in cancer, and types of cancer in which

mutations have been observed at an increased frequency [14].

1.3 Challenges and perspectives about precision medicine in on-

cology

Despite the large number of identified cancer driver genes (i.e. over 700),

approved treatments are only available for approximately 40 of them [15,

16]. Certain genes, such as the RAS family of proteins (KRAS, NRAS and

HRAS, the most frequently mutated oncogenes in cancer [17]), the MYC

proto-oncogene (MYC, a commonly amplified gene [18, 19]), and tumor

protein 53 (TP53, the most frequently altered tumor suppressor gene in hu-

man cancer [20]), present significant challenges for pharmacological target-

ing and have been categorised as “undruggable” [16]. To successfully ad-

dress these limitations, innovation and technological advancement are nec-

essary [21]. The challenge of undruggability often arises from impracti-

cal localization (intracellular and often nuclear) and/or unfavorable struc-

tural features (such as lack of distinctive protein pockets into which small

molecules can bind with high specificity and affinity) [22]. RNA-targeted

approaches have the potential to broaden therapeutic possibilities of inter-

vention, because cancer targets that are currently chemically intractable at

the protein level can prove druggable at the messenger RNA (mRNA) level

[23]. This is supported by the increasing approval of drugs utilising these

technologies in various medical contexts [24].

Despite the availability of diverse, promising nucleic acid-based modal-

7



1.4. Antisense oligonucleotides

ities for therapeutic intervention, this work is focused on exploring the po-

tential of antisense oligonucleotide (ASO)-mediated approaches to cancer

treatment. This focus is motivated by the greater versatility [25] of ASOs

compared, for instance, with small interfering RNAs (siRNAs), which have

been also extensively studied in the literature [26, 27]. In fact, ASOs not

only enable the inactivation of target genes but also offer the ability to mod-

ulate protein activity, representing a promising class of drugs for person-

alised medicine approaches [25].

1.4 Antisense oligonucleotides

ASOs are single-stranded analogues of nucleic acids able to modulate gene

expression by selectively binding to target regions through Watson-Crick

base pairing. The core of an ASO is formed by the sequence of nucleotide

bases, with a range length of 12–25 nucleotides [28], each representing one

of the four genetic building blocks: adenine (A), cytosine (C), guanine (G),

and thymine (T). These molecules typically consist of a backbone com-

posed of repeating sugar-phosphate units, but instead of the ribose sugar

found in RNA, they use modified sugars for enhanced stability and resis-

tance to cellular degradation. All oligonucleotides are negatively charged.

Several ASO chemistries have been developed that possess distinct proper-

ties aimed at improving the stability, solubility, and cellular uptake of ASOs

[29]. Phosphorothioate (PS) backbones, as well as 2′-O-methoxyethyl (2′-

MOE) and 2′-O-methyl (2′-OMe) substituents, increase resistance to degra-

dation and promote protein binding to target RNA. Locked nucleic acid

(LNA) modification (Figure 1.1, top panel) markedly increases the bind-

ing of the oligonucleotide to the targeted mRNA. In phosphorodiamidate
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1.4. Antisense oligonucleotides

morpholino oligomers (PMOs), ribose (in RNA) or deoxyribose (in DNA)

is replaced with morpholine rings, and the phosphorothioate or phospho-

diester (in RNA) groups are replaced with uncharged phosphorodiamidate

groups, resulting in a compound that is neutral and very resistant to degra-

dation (Figure 1.1, bottom panel). Positively charged piperazine residues

in positively charged PMOs, or positively charged arginine-rich peptides

in peptide-conjugated PMOs, dramatically improve the intracellular uptake

of the oligomers [30]. Regarding modifications that are made to improve

the delivery, stability and function of ASOs, these include chemical modi-

fications that promote stability as well as bioconjugation to different moi-

eties (peptides, antibodies, aptamers, lipids and sugars) and loading into

delivery vehicles (DNA nanostructures, exosomes, spherical nucleic acids,

lipoplexes and liposomes, stimuli-responsive nanotechnology) to promote

both cellular uptake and targeting to specific cells or tissues [26].
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1.5. Antisense oligonucleotides and modulation of RNA splicing

Figure 1.1: Oligonucleotide chemistries. Figure taken from Kole et al., 2012.
[30]

Depending on the target RNA molecule, ASOs can be designed to com-

plementarily bind to specific regions, such as exons or splice sites, within

the target RNA sequence.

1.5 Antisense oligonucleotides and modulation of RNA splicing

ASOs have the ability to interfere with RNA splicing, a crucial step in gene-

expression regulation that removes intronic sequences and joins exonic re-

gions to produce mature RNA molecules. This makes it possible to gen-

erate multiple transcript isoforms from a single gene and thus generate a

wide range of protein isoforms with different functions and properties, de-

pending on the cellular context. Specifically, RNA splicing is catalysed by
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1.6. Exon skipping

the spliceosome, a multimegadalton ribonucleoprotein complex composed

of multiple small nuclear RNAs (snRNAs) and many associated protein fac-

tors [31]. The spliceosome is recruited through consensus sequence ele-

ments at the 5’ and 3’ splice sites (donor and acceptor sites, respectively)

and branch-point sequences, and its action is further modulated by an array

of cis-acting exonic and intronic splicing enhancers (ESEs and ISEs), and

exonic and intronic splicing silencers (ESSs and ISSs), which are recog-

nised by auxiliary splicing factors, including the Ser/Arg-rich (SR) proteins

and heterogeneous nuclear ribonucleoproteins (hnRNPs) [32]. It is precisely

by targeting these specific splice sites or splicing regulatory elements that

ASOs can induce exon skipping, thereby modulating the splicing outcome

[33]. The impact of ASOs on RNA splicing has specific implications in the

case of mature transcripts that undergo translation into proteins.

1.6 Exon skipping

Exon skipping (ES) is a naturally occurring cellular process involved in

precursor messenger RNA (pre-mRNA) splicing, contributing to the diver-

sification of the proteome in eukaryotic organisms. During this process,

specific exons within the pre-mRNA are excluded or "skipped" from the

final mRNA transcript, resulting in the production of alternative splice vari-

ants with distinct protein-coding sequences (Figure 1.2). This phenomenon

plays a vital role in regulating gene expression and functionality, allowing

cells to generate different protein isoforms from a single gene, thus expand-

ing their functional repertoire.
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1.6. Exon skipping

Figure 1.2: An overview of exon splicing. This process can produce a diversity
of alternative transcript forms from a single gene by selective inclusion/exclusion
of exons. Figure taken from Technology Networks, Jonathan Dornell, PhD (2021).

While exon skipping is a natural mechanism, researchers have harnessed

this process for therapeutic purposes. By employing ad hoc ASOs, scientists

can manipulate the splicing process to selectively skip or include certain

exons, thereby modifying the transcript product and, consequently, the final

protein product. Indeed, by eliminating an exon and therefore a certain

number of nucleotides, the reading of the corresponding codons may or

may not remain unaltered. The coding region of the mature transcript is

read by the ribosome in consecutive triplets of nucleotides, which is known

as the "reading frame". Each triplet, or codon, specifies an amino acid to

be incorporated into the nascent polypeptide chain, thereby determining the

primary sequence of the protein. The precise arrangement of amino acids

subsequently dictates the three-dimensional folding of the protein, leading

to its functional conformation [34]. Specifically, an ES event can lead to
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1.7. Therapeutic exon skipping: the case of the Duchenne Muscular
Dystrophy

either an in-frame or an out-of-frame transcript depending on the length of

the exon that is skipped, with a potentially significant impact on the protein

product and its biological activity [35]. In particular, if the skipped exon

has a number of nucleotides that is a multiple of 3, the reading frame is

maintained, and ES results in the production of a shortened and in-frame

transcript. If the skipped exon has a number of nucleotides that is not a

multiple of 3, the reading frame is lost and we refer to the resulting transcript

as out-of-frame. In this last case, the loss of the original reading frame

may lead to the generation of a premature termination codon (PTC). If the

PTC is located at a position sensitive to Nonsense Mediated Decay (NMD),

the transcript may be degraded through this mechanism, resulting in a loss

of protein expression. On the other hand, an in-frame transcript does not

affect the reading frame but generates a shorter protein (compared with the

original one), which might still retain part of its function. Therefore, the

effect of altered skipping on protein synthesis and function depends on the

location and size of the skipped exon, as well as on the specific protein and

its biological role.

1.7 Therapeutic exon skipping: the case of the Duchenne Mus-

cular Dystrophy

In the last decade, ASOs have shown promising results when used to induce

targeted ES for the treatment of certain genetic diseases, such as Duchenne

muscular dystrophy (DMD; MIM #310200) [36, 37]. In fact, the FDA has

authorised the use of four drugs based on this antisense approach to in-

duce ES for therapeutic purposes in DMD [38–41]. DMD is a debilitating

and progressive neuromuscular disorder that results from mutations in a sin-

13

https://www.omim.org/entry/310200


1.7. Therapeutic exon skipping: the case of the Duchenne Muscular
Dystrophy

gle gene, the dystrophin gene [42], encoded by a vast locus spanning over

2 million bases on chromosome X and encompassing 79 exons [43, 44].

Among the extensive number of annotated mutations (>7000) observed in

DMD patients, the majority (∼80%) are large mutations, including dele-

tions of one or more exons (68%) and large duplications (12%), while the

remaining ones (∼20%) concerns small mutations, such as small in-dels and

point mutations [43]. Over 90% of these mutations, which tend to cluster

in the region spanning exons 45-53 [45], cause a disruption of the trans-

lational reading frame [46], ultimately leading to the complete absence of

the dystrophin protein, which plays a crucial role in proper muscle func-

tion [43, 45]. A milder form of muscular dystrophy that is also linked to

mutations in the dystrophin gene is known as Becker muscular dystrophy

(BMD; MIM #300376). Of note, mutations found in BMD patients main-

tain the translational reading frame and result in a shorter yet partially func-

tional protein [47]. In DMD, the therapeutic intervention aims to restore

the dystrophin reading frame, thereby reinstating at least partial expression

of dystrophin in DMD-affected muscles and consequently reducing disease

severity, similar to what happens in BMD. This is achieved with the de-

sign of tailored ASOs, which selectively induce exon exclusion, resulting in

the restoration of a correct reading frame [48, 49]. Consequently, a shorter

yet partially functional protein is produced [49], leading to improved muscle

strength and function in affected individuals. The top 5 mutated exons found

in DMD patients were exon 51 (14% of total mutations/21% of deletions),

exon 53 (10%/15%), exon 45 (9%/13%), exon 44 (7%/11%), and exon 43

(7%/11%) [43]. Accordingly, the FDA has authorised the use of the follow-

ing four drugs which are all based on antisense approach to induce ES of

the indicated exons for therapeutic purposes in DMD: Eteplirsen (exon 51),

14
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1.7. Therapeutic exon skipping: the case of the Duchenne Muscular
Dystrophy

Golodirsen and Viltolarsen (exon 53), Casimersen (exon 45) [38–41].

Figure 1.3 depicts the therapeutic intervention acted by Eteplirsen, one

of the approved DMD ASO drugs. In particular, genomic deletion of exon

50 leads to an out-of-frame mRNA generating a premature termination codon.

This results in the synthesis of a truncated non-functional dystrophin (left

panel). Eteplirsen specifically recognises sequences of exon 51 of the DMD

gene, allowing its exclusion from the mature mRNA. This restores the open

reading frame, promoting the synthesis of an internally deleted but partially

functional dystrophin (Figure 1.3, right panel).
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1.8. Exon skipping in cancer

Figure 1.3: Antisense-oligonucleotide treatment for Duchenne muscular dys-
trophy (DMD). Patients with DMD display mutations which disrupt the open read-
ing frame of the dystrophin pre-mRNA. Schematic representation of DMD prem-
RNA from exon 48 to 52 is shown. Genomic deletion of exon 50 leads to an out-of-
frame mRNA generating a premature termination codon (PTC). This results in the
synthesis of a truncated non-functional dystrophin (left panel). Eteplirsen, which is
an FDA-approved ASO drug, specifically recognises sequences of exon 51 of the
DMD gene, and promotes its exclusion from the mature mRNA. This restores the
open reading frame, resulting in the synthesis of an internally deleted, but partially
functional, dystrophin (right panel). Figure taken from Verdile et al., 2021 [50].
Abbreviations: PTC = Premature Termination Codon

1.8 Exon skipping in cancer

In recent years, some attempts to use ES as a therapeutic approach have also

been made in cancer. For instance, ASOs have been designed to induce skip-

ping of a specific exon (i.e., exon 4) of the ETS-Related Gene (ERG), which

is an oncogene, in prostate cancer cells [51]. This generates an out-of-frame

transcript with significant reduction of ERG protein levels, leading in turn
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1.9. Overview of relevant computational resources

to reduced cell proliferation, increased cell death, and reduced cell migra-

tion [52]. In a more recent study involving the two isoforms of the Pyruvate

Kinase M1/2 (PKM) gene, ASOs were used in one case (PKM1 isoform, a

tumor suppressor) to restore its expression, and in the other (PKM2 isoform,

an oncogene) to decrease it, resulting in both cases in reduced tumor growth

[53]. In another study, a gene that is often improperly over-expressed in

leukemia and solid tumors, the Wilms tumor 1 (WT1) gene, was consid-

ered for ES approach [54]. Specifically, ASO-mediated skipping of exon

5 resulted in decreased cell viability and survival in leukemia cell cultures

[55].

To advance and expand these efforts, especially when targeting undrug-

gable cancer-related genes, it is crucial to address the challenges associated

with ASO design comprehensively.

1.9 Overview of relevant computational resources

Designing effective therapeutic ASO sequences demands careful consider-

ation of numerous criteria. To assist in this process, some computational

tools have been developed to evaluate essential nucleic-acid properties and

facilitate ASO design. These tools include various functionalities, including

estimation of self-complementarity and tendency to form intra-molecular

hairpins, as well as the calculation or estimation of molecular weight, solu-

tion concentration, melting temperature, and absorbance coefficients [56].

Concerning the study of RNA molecules in particular, software packages

such as ViennaRNA Package 2.0 [57] and RNAstructure [58] offer tools for

predicting secondary structures and RNA–RNA interactions. Additionally,

databases such as SpliceAid 2 [59] provide information on RNA target mo-
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1.9. Overview of relevant computational resources

tifs that are bound by splicing proteins in humans. Among others, a web ap-

plication and a database, namely the PFizer RNAi Enumeration and Design

(PFRED) tool [60] and the eSkip-Finder database [61], have been recently

developed for the design, analysis, and visualisation of antisense oligonu-

cleotides and offer comprehensive features to aid researchers in their ASO

design efforts.
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Chapter 2

Aim of the work

The present thesis work focuses on the development of a computational

procedure to streamline the entire process of designing ad hoc antisense

oligonucleotides (ASOs) to induce targeted exon-skipping (ES) events in

cancer genes. This procedure encompasses all the process steps, from in

silico identifying potential target candidates to generating a list of ASO

sequences tailored to produce the intended protein variants. Of note, it

takes into account cancer-relevant features, such as mutation frequency in

patients, which holds special value for the design of ES-based therapeutic

strategies in oncology. Our approach implements state-of-the-art rules to

identify the most promising candidate exons of a gene of interest, which is

first classified in silico as either an oncogene or a tumor suppressor. Subse-

quently, the computational procedure designs specific ASOs, in accordance

with guidelines for morpholinos, tailored for selected ES events. These

events can lead to desired outcomes, such as generating oncogene variants

that lack activity or tumor suppressor variants that could exhibit partially

restored functionality. As a proof-of-concept, the procedure is applied to
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Chapter 2. Aim of the work

the top 10% most mutated genes in cancer, ranking them based on their

suitability for ES-targeted interventions, and further in-depth investigations

are carried out on clinically relevant oncogenes and tumor suppressors as

case studies. In conclusion, our computational procedure aims to provide

valuable assistance to researchers in their efforts to develop innovative ther-

apeutic interventions based on targeted ES.
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Chapter 3

Results

3.1 An integrated computational procedure to support the de-

sign of exon-skipping-based therapeutic strategies in cancer

We developed a computational procedure that, given a gene of interest, ini-

tially classifies it as either an oncogene or a tumor suppressor based on an-

notated cancer mutations and, once all its known transcripts are collected,

the pipeline proceeds to select potential target exons for exon skipping (ES),

and return the expected protein variants as outcome. The pipeline pre-

dicts whether the skipping of these exons results in shortened transcripts

that remain in frame or shift out of frame. To further investigate the short-

ened products, those labeled as out-of-frame are subjected to the prediction

of their potential degradation through Nonsense Mediated Decay (NMD),

while all transcript sequences are translated in silico into amino acid se-

quences. Finally, the procedure allows for the design and evaluation of

candidate ASO sequences to induce the skipping of specific exons that are

favorable for achieving the intended goals, such as producing inactive onco-

gene variants or restoring at least partially functional tumor suppressor vari-
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exon-skipping-based therapeutic strategies in cancer

ants. The overall procedure is illustrated in Figure 3.1 and an overview of

each individual sub-task is briefly presented in the next subsections.
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3.1. An integrated computational procedure to support the design of
exon-skipping-based therapeutic strategies in cancer

Figure 3.1: Computational procedure flowchart. The procedure begins with
a gene of interest and proceeds as follows: (A) The gene is classified as either
an oncogene or a tumor suppressor by analysing its mutational profile obtained
from the COSMIC database. (B) All annotated transcripts of the gene are collected
from the GENCODE database. Candidate exons that could undergo skipping are
selected, and the corresponding ES events are classified as either in-frame or out-of-
frame. For out-of-frame transcripts, the potential degradation by NMD is predicted.
(C) Among exons that could undergo skipping, the procedure identifies exons that
are more frequently mutated in cancer patients based on data from the COSMIC
database. (D) Candidate ASOs are designed and evaluated. These sequences are
differentiated based on whether they overlap splice junctions or bind to ESEs within
the exons. Abbreviations: ASO = Antisense Oligonucleotide; CDS = Coding
DNA Sequence; ESE = Exonic Splicing Enhancer; NMD = Nonsense Mediated
Decay
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3.1.1 Classification of a gene of interest as an oncogene or

tumor suppressor

Based on COSMIC data [14] regarding annotated mutations, the compu-

tational procedure enables the in-silico classification of a gene of interest

as either an oncogene or a tumor suppressor. This classification is based

on the principles of the "20/20 rule" proposed by Pavel et al., 2016 [11].

According to this rule, oncogenes tend to have more than 20% of anno-

tated mutations occurring as gain-of-function mutations at recurrent posi-

tions, while tumor suppressors tend to have over 20% of loss-of-function

mutations spread throughout the sequence (section 4.2 in the Materials and

Methods). Considering this evidence, the procedure automatically assesses

the likelihood of a gene belonging to either category. In particular, the clas-

sifier attempts to assign the appropriate label, either "oncogene" or "tumor

suppressor" based on the evaluation of the mutational profile (Figure 3.1A)

and the reference thresholds for gain-of-funtion and loss-of-function mu-

tations (Table 4.1) [11], while leaving genes with inconclusive mutational

data as “unclassified” (Figure 3.1A).

3.1.2 Identification of candidate exons to be targeted for

skipping

Given a gene of interest, the procedure performs a comprehensive screening

of all isoforms annotated by GENCODE [62] to identify exons amenable

to be skipped (Figure 3.1B). Only protein-coding transcripts are considered

for further investigations. Of all exons in the selected transcripts, those con-

taining the start and stop codons are excluded from the procedure, as well as
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any non-coding exons that may occur before and/or after them. This exclu-

sion is made to prevent interference with the essential regions responsible

for initiating and terminating protein translation [63, 64]. To identify can-

didate exons to induce therapeutic targeted ES, the procedure proceeds to

determine the specific outcome by considering the following two scenarios,

which may potentially result from ES: (1) in-frame transcript; (2) out-of-

frame transcript. Each shortened transcript is then translated into the cor-

responding amino acid sequence. Since the skipping of an exon can result

in the formation of a premature termination codon (PTC), potentially some-

times leading to the degradation of the resulting mRNA through NMD [65],

the procedure assesses the likelihood of NMD occurrence for all the out-of-

frame transcripts. This prediction is based on the most relevant rules associ-

ated with NMD evasion, namely, the so-called "50-55nt rule", the ‘last-exon

rule’, and the ‘start-proximal rule’ (section 4.4 in the Materials and Meth-

ods). These rules evaluate the position of the PTC formed after ES and the

expected outcome in terms of NMD occurrence. This step in the proce-

dure (Figure 3.1B) yields at list of all exons deemed potential targets for

ES, along with the corresponding shortened transcript and amino acid se-

quences obtained as a result of their exclusion. Additionally, it provides the

prediction of NMD events for the subset of out-of-frame transcripts.

3.1.3 Prioritising candidate exonic targets for exon skip-

ping via cancer mutation profiling

Aimed at selecting the best candidate exon targets for the design of ES-

based therapeutic strategies, mutation profile in cancer is then evaluated

based on COSMIC data [14]. The implemented procedure identifies the
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exons marked by the highest mutational burden, specifically those exhibit-

ing mutations in the largest number of cancer patients. In particular, taking

into account only point mutations, the procedure automatically and carefully

maps the annotated genomic mutations to the corresponding exon regions

[66] and calculates the absolute frequency of mutations within each exon

of the gene of interest. This is done by counting the number of patients

who have at least one mutation in a specific exon. Finally, exons are ranked

by the decreasing number of absolute mutation frequency, and the top 10

ranking exons are reported to proceed to ASO design (Figure 3.1C). This

step of the computational procedure aims to prioritise ASO design on exons

enriched in clinically relevant mutations, while limiting the list of candidate

exons to a manageable number.

3.1.4 Design and evaluation of ad hoc antisense oligonu-

cleotides to induce desired exon-skipping products

This step of the computational process integrates the sequences of exons

susceptible to ES and those that are highly mutated, generating 25-nucleotide-

long ASO sequences, which is the recommended length for morpholino oli-

gos [63, 64], designed to induce ES. These ASOs are designed to interact,

based on the principle of base complementarity, with two types of splicing

regulatory sites: splice junction sites (donor and/or acceptor splice sites)

and intra-exon splice sites (Figure 3.2). For each splice junction, we de-

sign a set of 7 ASOs (14 for each exon) to target the selected transcript

at the overlap of the intron-exon or exon-intron border, a strategy shown

to maximise the efficiency of mRNA splicing alteration using morpholi-

nos [63]. Regarding ASO sequences designed to bind within exon regions,
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only those fully overlapping at least one exonic splicing enhancer (ESE) do-

main are selected for further consideration. The number of ASO sequences

drawn within each exon varies depending on the exon length and the number

of annotated ESE regions therein. Once designed, ASO sequences finally

undergo evaluation based on specificity and reference physicochemical pa-

rameters, including CG percentage, G percentage, presence of tetra G, and

self-complementarity. Only ASO sequences that meet the optimal threshold

values for each parameter (summarised in Table C1), as documented in the

relevant literature [64], and have a unique match in the genome, are selected

and included in the output (Figure 3.1D) (section 4.6 in Materials and Meth-

ods). As a point of reference for evaluating the results of our procedure in

generating candidate ASOs, we compared them with four available FDA-

approved ASO drugs for Duchenne muscular dystrophy (DMD) treatment

[38–41]. Indeed, our procedure successfully identified ASO sequences ei-

ther identical or closely matched to all drugs, as shown in Table B1.

27



3.2. Application of the computational procedure to highly mutated cancer
genes

Figure 3.2: Schematic representation of the ASO design approaches. The pro-
cedure involves designing ASO sequences for a target exon using two distinct ap-
proaches. The first approach (indicated by an arrow pointing to the left in the figure)
targets the splice-junction sites, including donor and/or acceptor splice sites. The
second approach (indicated by an arrow pointing to the right in the figure) focuses
on the ESE regions within the exon. Figure created with BioRender.com.

3.2 Application of the computational procedure to highly mu-

tated cancer genes

To demonstrate the relevance of the entire computational procedure de-

scribed previously, we applied it to a clinically relevant set of genes. Specif-

ically, we selected the top 10% most frequently mutated genes in cancer pa-

tients based on data stored in the COSMIC database (v.96) [14]. A total of

72 genes were identified, as shown in Figure 3.3. The following subsections

provide insights into the output data and biological knowledge gained by

applying the procedural steps outlined in Figure 3.1 to this cancer-relevant
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dataset.

Figure 3.3: Most frequently mutated genes in cancer patients. Genes from the
COSMIC cancer gene census are ranked based on the number of cancer patients
with at least one mutation (Y-axis) in the indicated gene (X-axis). The horizontal
red line indicates the threshold applied for selecting the top 10% most frequently
mutated genes. The inset shows the selected genes (N=72), highlighted and listed
in columns, arranged in descending order of mutation frequency from top to bot-
tom and from left to right. Gene names are highlighted in the figure to depict
computationally-predicted cancer gene roles, as indicated in the color legend. Pre-
diction flow is described in section 4.2.

3.2.1 Classification of the role of selected genes in cancer

Applying the previously mentioned 20/20 rule [4, 11] (section 4.2 in the

Materials and Methods), the 72 selected genes were classified according to

their predicted role in cancer, as follows: 25 tumor suppressors, 23 onco-

genes, and 24 unclassified genes due to inconclusive scores (Figure 3.3,

inset). To validate our classification, available for 48 genes, the results were

compared with two publicly available compendia of oncogenes and tumor

suppressors: 1) Futreal et al., 2004 [67], hereafter MSigDB; 2) Tokheim et

al., 2016 [68], hereafter Tokheim. Overall, 35 out of 48 were also evaluated

by MSigDB, while Tokheim assessed 37 of 48, with classification concor-
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dance rates of 86% and 97%, respectively. For detailed information, please

refer to Appendix A and Figure A1[A-B].

3.2.2 Identification of candidate exons for targeted skip-

ping in selected cancer genes

Analysis of the selected cancer genes (N=72) revealed an average of 10

protein-coding transcripts per gene according to annotations available in the

GENCODE database (Release 43). Among these transcripts, the major-

ity (9 out of 10) harboured at least one exon predicted to be susceptible to

skipping, according to the computational procedure (Figure 3.1B). Overall,

these cancer genes had an average number of 26 exons per gene as pos-

sible targets. The in-silico simulation of ES events demonstrated that the

vast majority of these genes (68 out of 72; 94%) could yield both in-frame

and out-of-frame shortened products, supporting the potential for designing

therapeutic ES strategies for both inactivation and functional rescue pur-

poses. Furthermore, for the 23 genes previously classified as oncogenes

in our gene compendium (Figure 3.3), where functional inactivation is the

therapeutic goal, the prediction of NMD occurrence was performed for all

the out-of-frame shortened transcripts generated through in-silico ES. The

results indicated that the majority of these genes (21/23) produced at least

one out-of-frame transcript that was expected to undergo NMD.

In summary, the set of cancer genes analysed exhibited a diverse range

of transcript isoforms, many of which contained exons susceptible to skip-

ping. Importantly, a significant portion of these genes had the potential to

generate both in-frame and out-of-frame transcripts when subjected to in-

silico ES simulations. Additionally, a considerable number of oncogenes in
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this dataset have the capacity to generate out-of-frame transcripts that are

predicted to undergo degradation through NMD.

3.2.3 Prioritising candidate exon targets of selected can-

cer genes using mutation data

In the field of precision oncology, it can be valuable to devise therapeu-

tic strategies targeting exons with the highest incidence of recurrent muta-

tions. Therefore, our methodology involves prioritising exons within the

selected cancer genes (Figure 3.3), according to this criterion. Specifically,

we focused on the exons deemed potential targets for ES (from the previous

section, 26 exons on average) in each cancer gene and with at least one mu-

tation observed across the largest number of cancer patients. By analysing

the mutation profiles using data from the COSMIC database (Figure 3.1C),

we found that these exons showed an average of about 300 point mutations

each. Subsequently, the analysed exons were ranked by frequency of muta-

tions, and the top 10 scoring exons per gene in this list were selected as the

best candidates for ASO design.

3.2.4 Design and evaluation of the best candidate antisense

oligonucleotide sequences

The final step in our computational procedure involves the design of ASO

sequences that hold promise for inducing desired protein variants (Figure 3.1D).

In particular, to manage computational burden and prioritise experimental

feasibility, we focused on designing and providing as output ASO sequences

for a selected list of exons for each gene of interest. This list included the
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highest-ranking exons that were evaluated as potential targets for exon skip-

ping and were recurrently mutated in cancer patients, limited to a maximum

of 10 exons per gene. Across 72 chosen cancer genes (Figure 3.3, inset), a

total of 674 protein-coding exons were considered and customised ASOs

were generated based on two design approaches (Figure 3.2). The first

set target splicing regulatory sites located at the splice junctions, with 14

junction-exon ASOs designed per exon. The second set of ASOs focus on

regulatory sites located within the exon itself. Here, an average of approx-

imately 306 intra-exon ASOs were designed per exon. Next, both sets of

ASO sequences underwent an evaluation process based on state-of-the-art

knowledge regarding optimal values for a series of physicochemical param-

eters (Table C1). The ASO design and filtering step yielded an average of

6 ASOs at the splice junctions and 150 ASOs at the ESE sites, representing

the best candidate sequences.

3.3 Proof-of-concept case studies

3.3.1 Detecting high-potential cancer genes for effective

targeted exon-skipping intervention

We prioritised genes based on the availability of exons that were the most

suitable for achieving effective targeted interventions. To accomplish this,

we assessed the following conditions for each exon in our dataset: a) In-

clusion of the exon among the ten most frequently mutated exons in can-

cer patients for the corresponding gene; b) Desired reading frame for the

shortened transcript resulting from ES, taking into account the predicted

role of the gene in cancer (oncogene or tumor suppressor) and the intended
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therapeutic objective (inactivation or functional rescuing, respectively); c)

Presence of at least one ASO for each design strategy (targeting splice sites

within the exon or targeting splice junctions) that adheres to the recom-

mended physicochemical parameters for effective targeted splicing. Sub-

sequently, we ranked the cancer genes in our compendium based on the

decreasing percentage of their exons that met all three criteria mentioned

above (Figure 3.4). In what follows, we provide more detailed information

on two exemplary cases, namely, the first oncogene (NRAS) and the first

tumor suppressor (VHL), featured in this ranking.

Figure 3.4: Ranking of genes based on the percentage of exons that meet all the
criteria considered favorable for effective ES-based intervention. These criteria
include the following: (1) Inclusion of the exon among the ten most frequently mu-
tated exons for the corresponding gene. (2) Ensuring the correct frame is obtained
following ES, depending on the predicted cancer role (specifically, an out-of-frame
outcome for oncogenes and an in-frame outcome for tumor suppressors). (3) Exis-
tence of at least one antisense oligonucleotide available for both design strategies,
which involve targeting splice sites within the exon or at junctions, while adhering
to recommended physicochemical values.

The NRAS proto-oncogene GTPase (NRAS) has one annotated protein-
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coding transcript (ENST00000369535.5) which consist of seven exons. Given

its oncogenic nature, the therapeutic objective of an ES-based approach

would involve promoting protein degradation in order to reduce its gain-

of-function effect. To evaluate NRAS suitability as a target for this type

of intervention, particularly within the context of cancer, we conducted a

preliminary investigation of its expression in cancer tissues, utilising pub-

licly available RNA-sequencing experiments [24, 69]. These data were re-

trieved from public genomics resources, finally collecting 1,359 tumor sam-

ples from the Pan-Cancer Analysis of Whole Genomes (PCAWG) atlas [70],

along with 2,231 corresponding normal-tissue samples from the Genotype-

Tissue Expression (GTEx) [71] project. The analysis was specifically fo-

cused on transcript-level expression values, which is crucial due to the well-

documented evidence of different splicing isoforms exhibiting different be-

havior in the cancer context [72–74]. Results concerning the protein-coding

transcript (ENST00000369535) annotated for the NRAS gene revealed a

statistically significant upregulation (p-value = 1,2 e-243, Wilcoxon rank-

sum test) in its expression level, measured in transcripts per million (TPM),

in cancer tissues (TPM mean value = 29,2) compared to normal ones (TPM

mean value = 12,7) (Figure 3.5). Overall, the behavior of the identified

NRAS transcript appears to align with its potential suitability as a tumor

target for suppression. For a more comprehensive, tissue-specific examina-

tion, please refer to Table D1 and Figure D2 in Appendix D.
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Figure 3.5: NRAS expression in cancer and normal tissues. Boxplots show ex-
pression values of the NRAS gene across 1,359 tumor samples from the PCAWG
resource (“Tumor”) and 2,231 normal samples from the GTEx archive (“Normal”)
for the protein-coding transcript annotated for this gene: ENST00000369535.
Expression values are given in log2-transformed TPM counts. Abbreviations:
GTEx = Genotype-Tissue Expression; PCAWG = Pan-Cancer Analysis of Whole
Genomes; TPM = Transcripts per Million

From our computational analysis, two exons of the NRAS transcript

ENST00000369535.5, namely, exon 3 and exon 4, emerged as potential tar-

gets for ES. Skipping either exon would result in out-of-frame transcripts.

Although our computational procedure predicts that likely neither of them

would undergo degradation via NMD, both transcripts would lead to sig-

nificantly altered and shorter protein sequences, thus likely compromising

their functionality. In terms of mutation profile analysis, both exon 3 and

exon 4 rank among the top ten most mutated exons in cancer patients. Par-

ticularly, one of these exons (Ensembl ID: ENSE00001751295.1, exon 3)
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(Figure 3.6) accumulates mutations in 4,052 patients, which accounts for

over 60% of the total number of cancer patients with at least one annotated

mutation in NRAS. Consistent with its role as an oncogene, the distribution

of mutations along the gene sequence is concentrated at specific positions

(Figure 3.6B) [4, 11]. Our computational procedure designed a total of 103

ASOs for NRAS exon 3. Among these ASOs, 89 were designed to target

regulatory splice sites within the exon, while 14 ASOs were designed to tar-

get splice sites at the junctions with flanking introns. After filtering based on

both specificity and physicochemical requirements, the procedure selected

a subset of 58 ASOs, which included 52 ASOs targeting internal ESEs and

6 ASOs targeting splice sites at the junctions, with the latter being available

only to target the upstream intron-exon junction (Table 3.1, Figure 3.6).
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Figure 3.6: Example of a suitable candidate for designing an ES-based ther-
apeutic approach targeting the NRAS oncogene. The figure summarises perti-
nent genomic (top panel), sequence (panel A), and mutation (panel B) information
concerning design of an ES-based therapeutic approach targeting a specific exon
(Ensembl ID: ENSE00001751295.1) of the NRAS oncogene that our computa-
tional procedure identified as a highly suitable candidate. Details are as follows:
(A) Visualisation of 25-nt ASO sequences (represented by orange horizontal lines)
designed to target ESE sequences (depicted by green vertical bands) or splice junc-
tions. The objective is to induce the skipping of this particular exon in the mature
transcript. The presence of mutations, as annotated in the COSMIC database for
cancer patients, is indicated by red dots along the DNA sequence. The uppercase
letters represent the exon, while the lowercase letters denote the flanking introns.
(B) Mutation occurrences within the NRAS exon sequence. This figure panel dis-
plays red-dotted vertical bars, indicating the number of patients (on the y-axis,
using a logarithmic scale) with mutations at the indicated nucleotides. Abbrevia-
tions: ESE = Exonic Splicing Enhancer; ASO = Antisense Oligonucleotide
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Table 3.1: The best candidate ASO sequences designed at the exon 3 splice
junctions of the NRAS oncogene. The table provides the ASOs that were specif-
ically designed at the junctions of the selected exon of NRAS (Ensembl stable ID:
ENSE00001751295.1, third exon in the NRAS transcript). The listed ASOs, along
with their corresponding sequences indicated in the table, have successfully passed
both specificity and physicochemical filters. The nomenclature used for the ASOs
follows the conventions described by Mann et al., 2002 [75].

Gene Exon ID ASO ID ASO Sequence

NRAS ENSE00001751295.1

H3D(13, -12) UGCUCCUAGUACCUGUAGAGGUUAA

H3D(12, -13) AUGCUCCUAGUACCUGUAGAGGUUA

H3D(11, -14) AAUGCUCCUAGUACCUGUAGAGGUU

H3D(10, -15) UAAUGCUCCUAGUACCUGUAGAGGU

H3D(9, -16) AUAAUGCUCCUAGUACCUGUAGAGG

H3D(8, -17) AAUAAUGCUCCUAGUACCUGUAGAG

The tumor suppressor gene Von Hippel-Lindau (VHL) has a total of

six annotated transcripts, with four of them encoding proteins. Using our

computational procedure, we identified two specific exons as prime can-

didates for developing ES-based therapeutic approaches aimed at partially

restoring their function by selecting in-frame transcripts. Skipping either of

these two exons would result in shortened transcripts that maintain the cor-

rect reading frame. Among these exons, one of them (Ensembl stable ID:

ENSE00003504189.1, exon 2) (Figure 3.7) exhibited a higher frequency of

mutations in cancer patients, with 447 patients having at least one mutation

in this exon, accounting for approximately 24% of the total mutations ob-

served. To target the regulatory splice sites of this exon (Ensembl stable

ID: ENSE00003504189.1, exon 2), our computational procedure designed

a total of 113 ASOs. Among these, 99 ASOs were designed within the exon

itself, while 14 ASOs targeted the junctions with adjacent introns. After

filtering based on both specificity and physicochemical criteria, a subset of
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61 ASOs met the requirements, including 47 ASOs targeting internal ESEs

and all 14 ASOs designed at the junctions (Table 3.2, Figure 3.7).

Figure 3.7: Example of a suitable candidate for designing an ES-based thera-
peutic approach targeting the VHL tumor suppressor. The figure summarises
pertinent genomic (top panel), sequence (panel A), and mutational (panel B) infor-
mation concerning design of an ES-based therapeutic approach targeting a specific
exon (Ensembl ID: ENSE00003504189.1) of the VHL tumor suppressor that our
computational procedure identified as a highly suitable candidate. Details are as
follows: (A) Visualisation of 25-nt ASO sequences (represented by orange hori-
zontal lines) designed to target ESE sequences (depicted by green vertical bands)
or splice junctions. The objective is to induce the skipping of this particular exon
in the mature transcript. The presence of mutations, as annotated in the COSMIC
database for cancer patients, is indicated by red dots along the DNA sequence. The
uppercase letters represent the exon, while the lowercase letters denote the flank-
ing introns. (B) Mutation frequencies within the VHL exon sequence. The figure
panel displays red-dotted vertical bars, indicating the number of patients (on the
y-axis, using a logarithmic scale) with mutations at the indicated nucleotides. Ab-
breviations: ESE = Exonic Splicing Enhancer; ASO = Antisense Oligonucleotide
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Table 3.2: The best candidate ASO sequences designed to target the selected
exon of the VHL tumor suppresor at the splice junction. The table lists the
ASOs that were specifically designed at the junctions of the selected exon of VHL
(Ensembl stable ID: ENSE00003504189.1, second exon in both VHL annotated
transcripts). The listed ASOs, along with their corresponding sequences indicated
in the table, have successfully passed both specificity and physicochemical filters.
The nomenclature used for the ASOs follows the conventions described by Mann
et al., 2002 [75].

Gene Exon ID ASO ID ASO Sequence

VHL ENSE00003504189.1

H2A(-18, 7) AGGUGACCUAUCGGGACAAGCAAAG

H2A(-17, 8) AAGGUGACCUAUCGGGACAAGCAAA

H2A(-16, 9) AAAGGUGACCUAUCGGGACAAGCAA

H2A(-15, 10) CAAAGGUGACCUAUCGGGACAAGCA

H2A(-14, 11) CCAAAGGUGACCUAUCGGGACAAGC

H2A(-13, 12) GCCAAAGGUGACCUAUCGGGACAAG

H2A(-12, 13) AGCCAAAGGUGACCUAUCGGGACAA

H2D(13, -12) AAACGUCAGUACCUGGCAGUGUGAU

H2D(12, -13) AAAACGUCAGUACCUGGCAGUGUGA

H2D(11, -14) UAAAACGUCAGUACCUGGCAGUGUG

H2D(10, -15) GUAAAACGUCAGUACCUGGCAGUGU

H2D(9, -16) AGUAAAACGUCAGUACCUGGCAGUG

H2D(8, -17) AAGUAAAACGUCAGUACCUGGCAGU

H2D(7, -18) AAAGUAAAACGUCAGUACCUGGCAG

3.3.2 Harnessing the potential of our pipeline on well-studied

cancer genes: BRAF and TP53

As a second set of case studies, we applied our computational pipeline to

analyse one oncogene (BRAF) and one tumor suppressor (TP53), among

those most frequently mutated in cancer (Figure 3.3, inset). For each of the

two selected genes, the pipeline identified exons with the potential for being

targeted by ES-based therapeutic strategies. The pipeline prioritised these

exons based on their frequency of mutation in cancer patients. Table 3.3
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displays the top ten exons that exhibit the highest mutation frequencies for

each selected gene. The table also provides the number of candidate ASOs

designed for inducing ES at the splice junctions (ASO-J) and within the

target exon (ASO-E). Additionally, a flag (IN/OUT) is included to indicate

the correctness of the transcript frame following targeted ES, according to

the predicted role of the gene in cancer. In addition, Table E1 in Appendix

section lists the best candidate ASO-J sequences for both the BRAF and

TP53 genes.
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Table 3.3: Top ten mutated exons of the BRAF and TP53 genes. The table
specifically focuses on BRAF as an oncogene and TP53 as a tumor suppressor.
For each chosen gene, the table includes the top ten mutated exons and indicates
whether the transcript frame following targeted exon skipping is in-frame or out-
of-frame (flagged "IN"/"OUT" in the table). The last two columns display the
number of candidate ASOs designed to induce exon skipping, that satisfy all the
physicochemical parameters thresholds and with a unique match in the genome.
Columns ASO-J and ASO-E refer to ASOs targeting splice junctions and ESEs
within the corresponding exon, respectively. Exons that have at least one ASO
sequence available for both the ASO-J and ASO-E design strategies, and result in
the desired frame in the shortened transcript, are shaded in grey to indicate their
significance.

Gene Classification Top 10 mutated exons IN/OUT

frame

ASO-E ASO-J

BRAF Oncogene

ENSE00003485507.1 OUT 4 5

ENSE00003559218.1 OUT 13 4

ENSE00003569635.1 OUT 16 0

ENSE00003587655.1 IN 18 14

ENSE00001035295.1 IN 34 4

ENSE00001907699.1 OUT 3 4

ENSE00003527888.1 IN 12 7

ENSE00003521664.1 OUT 15 12

ENSE00003487759.1 IN 13 13

ENSE00003687908.1 OUT 21 0

TP53
Tumor

Suppressor

ENSE00003518480.1 OUT 59 4

ENSE00003725258.1 OUT 57 13

ENSE00003712342.1 OUT 30 6

ENSE00002048269.1 OUT 25 5

ENSE00003723991.1 OUT 56 10

ENSE00002073243.1 OUT 25 7

ENSE00003625790.1 IN 97 5

ENSE00003670707.1 IN 10 3

ENSE00003545950.1 OUT 46 5

ENSE00003786593.1 OUT 18 7
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3.4 IL-8 gene: further in-depth case study

As a third case study, our computational pipeline was utilised to analyse in

depth one oncogene, the C-X-C motif chemokine ligand 8 (CXCL8), also

known as Interleukin 8 (IL-8), as part of a work in collaboration with the

University of Verona and the IRCCS Regina Elena National Cancer Insti-

tute of Rome. IL-8 is a pro-angiogenic and pro-inflammatory factor that

acts by binding to its cognate receptors (CXC receptor 1 and 2). Both of

these are G protein-coupled receptors expressed by both immune/stromal

and cancer cells. Upon binding to its membrane-bound receptor on tar-

get cells, IL-8 activates specific downstream signaling pathways, such as

the phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein ki-

nase (MAPK) cascades. This activation leads to the promotion of different

pro-tumoral phenotypes [76]. We conducted a comprehensive investiga-

tion of IL-8 gene expression profile within the context of colorectal cancer

(CRC). Initially, we analysed the expression levels of IL-8 to unveil its dis-

tinct behavior in colon normal compared to colorectal cancer tissues. Then,

we integrated this expression analysis with our computational procedure to

identify potential exon-skipping (ES)-events and design ASO candidate se-

quences optimised to achieve our desired therapeutic objectives.

3.4.1 IL-8 gene expression analysis in colorectal cancer

To gain insights into the expression of IL-8 gene in CRC, we conducted an

extensive analysis of publicly available gene expression data for both cancer

and normal human tissues through the PCAWG [70] and GTEx resources[71].

The study was performed at the transcript level, focusing on two specific

protein-coding transcripts annotated for the IL-8 gene. These transcripts,
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namely ENST00000307407 and ENST00000401931, were present in the

RNA-sequencing data repositories utilised for our analysis. Both IL-8 tran-

scripts revealed a significant increase in their expression levels (Wilcoxon

rank-sum test p-values equal to 4.6e-19 and 3.4e-13 for ENST00000307407

and ENST00000401931, respectively) in colorectal cancer compared to nor-

mal colon tissues (Figure 3.8 and Table 3.4).
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Figure 3.8: IL-8 gene expression in colorectal cancer and normal colon tis-
sues. Boxplots show expression values for two protein-coding transcripts an-
notated for the IL-8 gene, namely the ENST00000307407 (top panel) and the
ENST00000401931 (bottom panel) transcripts, across 51 colorectal cancer sam-
ples from the PCAWG resource (“tumor”) and 88 normal colon samples from the
GTEx resource (“normal”). Expression values are given in log2-transformed TPM
counts. Abbreviations: GTEx = Genotype-Tissue Expression; PCAWG = Pan-
Cancer Analysis of Whole Genomes; TPM = Transcripts per Million
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Gene
Transcript

(Ensembl Identifier)
Mean_normal

(TPM)
Mean_tumor

(TPM)

IL-8 (ENSG00000169429) ENST00000307407 1.9 80.6

IL-8 (ENSG00000169429) ENST00000401931 0.4 3.6

Table 3.4: IL-8 gene mean expression values in normal colon tissues and col-
orectal cancer samples. The table lists two protein-coding transcripts for the IL-8
gene (Ensembl gene identifier: ENSG00000169429). Expression values were ob-
tained from the GTEx (Genotype-Tissue Expression) and PCAWG (Pan-Cancer
Analysis of Whole Genomes) resources for normal colon tissues and colorectal
cancer samples, respectively. Abbreviations: TPM = Transcripts per Million.

3.4.2 Targeting IL-8 with antisense oligonucleotides for ther-

apeutic intervention

Based on the results of the gene expression analysis, the therapeutic goal

of an ES-based approach targeting the IL-8 oncogene would be to induce

protein degradation in order to mitigate its overexpression and the associated

gain-of-function effects.

From our computational analysis, one particular exon, exon 2, emerged

as a potential target for ES. Skipping this exon would result in out-of-frame

transcripts, although our computational procedure predicts that they would

not undergo degradation via NMD following ES. We then utilised our com-

putational procedure to design customized ASO candidates, resulting in a

total of 125 ASOs sequences designed to induce selected ES variants of

IL-8. Among these ASOs, 111 were specifically tailored to target regula-

tory splice sites within the exon, while 14 ASOs were designed to target

splice sites at the junctions with flanking introns. After filtering based on

both specificity and physicochemical requirements, the procedure selected

a subset of 58 ASOs, all of which targeting internal ESEs.
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Chapter 4

Materials and Methods

The entire computational procedure described in this work was implemented

using the Python programming language (v.3.10).

4.1 Selection of test-case genes based on cancer mutations

To collect the set of test-case genes, we employed mutation data obtained

from the publicly available COSMIC database (v.96) (https://cancer.

sanger.ac.uk/cosmic) [14]. Specifically, we retrieved the “Cosmic-

MutantExportCensus.tsv” file, which can be accessed after logging in from

the main menu of the COSMIC webpage through the following path: Data

→ Downloads → All Mutations in Census Genes → “CosmicMutantEx-

portCensus.tsv” (Download Date: March 26, 2023). From this extensive

dataset, a cohort of 72 genes was selected by identifying the top 10% most

frequently mutated genes in cancer patients.
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4.2 In-silico classification of genes as oncogenes or tumor sup-

pressors

Mutation annotation data obtained from the COSMIC database was subse-

quently used to accurately classify in silico the selected cancer genes (N=72

genes) into the distinct categories of oncogenes or tumor suppressors by ap-

plying the well-established "20/20 rule" [4]. Based on this rule, for a gene

to be classified as an oncogene, it must exhibit recurrent missense mutations

that account for more than 20% of all reported mutations, indicating gain-

of-function alterations. On the other hand, to be classified as a tumor sup-

pressor, a minimum of 20% of annotated mutations within the gene should

be inactivating. Thus, this rule captures the two main categories of muta-

tions, namely gain-of-function and loss-of-function mutations, and accounts

for their respective frequencies. Specifically, gain-of-function mutations

encompass the following description type labels from COSMIC: substitu-

tion_missense, deletion_in-frame, insertion_in-frame, complex_deletion_in-

frame. Conversely, loss-of-function mutations include the following labels:

substitution_non-sense, deletion_frameshift, insertion_frameshift. To im-

plement the rule in our computational procedure, we followed the method-

ology outlined by Pavel et al., 2016 [11]. This involves the calculation,

for any gene of interest, of two distinct scores based on annotated muta-

tion data: the oncogene (ONG) and the tumor suppressor gene (TSG) score.

To determine these scores, we started by assessing the total number of an-

notated variants within a given gene. Subsequently, we computed the fre-

quencies of gain-of-function and loss-of-function mutations in relation to

the total number of annotated variants for the same gene. In particular, the

ONG score denotes the frequency of recurrent gain-of-function mutations,
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whereas the TSG score corresponds to the frequency of loss-of-function mu-

tations. Lastly, based on the criteria summarised in Table 4.1, the gene was

assigned a specific label. Specifically, if the ONG score is greater than 20%

and the TSG score is less than or equal to 5%, the gene is classified as an

oncogene. Alternatively, if the ONG score exceeds 20% and the TSG score

exceeds 5%, or if the ONG score is less than 20% and the TSG score is

greater than 20%, the gene is labeled as a tumor suppressor. Finally, genes

that do not meet either of these criteria are designated as "unclassified."

Table 4.1: Criteria implemented for the in-silico classification of genes as onco-
genes or tumor suppressors. The table presents the threshold values, correspond-
ing to the indicated types of mutations, employed to categorize a given gene into
different groups (namely, oncogene, tumor suppressor, or unclassified) based on
available mutation annotations. These threshold values, which are implemented in
our computational procedure, are derived from Pavel et al., 2016 [11].

ONG score

(x/total_mutations × 100)

TSG score

(y/total_mutations × 100)

Classification

> 20% ≤ 5% Oncogene

> 20% > 5% Tumor suppressor

< 20% > 20% Tumor suppressor

< 20% < 20% Unclassified
x = substitution_missense + deletion_in-frame + insertion_in-frame +

complex_deletion_in-frame

y = substitution_non-sense + deletion_frameshift + insertion_frameshift

To evaluate the accuracy of our classification, we compared results with

two publicly available compendia of oncogenes and tumor suppressor genes.

The first was taken from the Molecular Signatures Database (MSigDB),

which provides a comprehensive collection of annotated gene sets for hu-

man and mouse genomes. Specifically, a set consisting of genes documented

in the literature as being mutated and implicated in cancer development
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were retrieved from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb).

Specifically, we retrieved the lists of oncogenes and tumor suppressors,

which can be accessed after logging in from the main menu of the MSigDB

webpage through the following path: [from left panel] Gene Families →

then select “oncogenes” and “tumor suppressors” from the table listing all

the available gene families. The list was last updated in 2004 [67]. The

second compendium was obtained from the study conducted by Tokheim et

al., 2016 [68]. In their work, the authors provide a selection of genes clas-

sified as oncogenes or tumor suppressors based on the integration of results

obtained by applying multiple prediction methods.

4.3 Identification of targets for exon skipping

To identify potential exons suitable for therapeutic ES approaches, the fol-

lowing steps were performed for each gene under investigation. Firstly, all

alternative transcript isoforms annotated were collected from GENCODE

(www.gencodegenes.org/) (Release 43, GRCh38.p13). Specifically,

we retrieved the GFF3 file "gencode.v43.annotation.gff3" (content descrip-

tion: “Comprehensive gene annotation”; regions: CHR) which contains

comprehensive gene annotation concerning reference chromosomes of the

human genome. Additionally, the corresponding sequences of each tran-

script and its respective exons were downloaded from Ensembl (Release

109) (www.ensembl.org/).

4.4 Prediction of degradation via Nonsense Mediated Decay

We performed Nonsense Mediated Decay (NMD) degradation prediction

exclusively to the shortened transcripts labeled as out-of-frame resulting
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from in-silico simulation of ES events. This is because out-of-frame tran-

scripts have the potential to generate premature termination codons (PTCs),

which are relevant for NMD analysis. To determine whether NMD would

be triggered for these transcripts, we applied a set of well-established rules

associated with NMD evasion. These include two canonical rules, which are

known as the ‘50-55 nt rule’ and ‘last-exon rule’, and a noncanonical rule

called the ’start-proximal rule’ (illustrated in Figure 4.1). Under the ’50-55

nt rule’, a PTC located less than 50-55 nucleotides upstream of the last exon-

exon junction typically does not activate NMD [77, 78]. Specifically, in

our analysis, we adopted the more stringent threshold of 55 nucleotides, in

line with previous research findings [79, 80]. The ‘last-exon rule’ of NMD

evasion states that PTCs within the last exon are usually not recognised as

premature codons because normal termination codons are predominantly

found in this exon. Our procedure, therefore, considered PTCs in the last

exon not to be subject to NMD [81, 82]. Finally, the ’start-proximal rule’ of

NMD evasion, which is a noncanonical rule discovered in cancer data, states

that the efficiency of NMD decreases within the 5’-most nucleotides of the

coding region of a transcript. Specifically, PTCs located approximately be-

tween 150 nucleotides from the start codon typically do not trigger NMD

[77, 82, 83]. These rules collectively guided our assessment of the potential

for NMD activation or evasion in the transcripts under analysis.
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Figure 4.1: Rules to predict the occurrence of Nonsense Mediated Decay
(NMD) based on the position of a premature termination codon (PTC). This
figure shows a schematic representation of an mRNA, indicating the positions of
translation initiation (START) and termination (STOP) codons that define the main
open reading frame. The figure illustrates the application of three rules associated
with NMD evasion: the ‘50-55 nt rule’, the ‘last-exon rule’, and the ‘start-proximal
rule’. Distinct colors are used to highlight regions where PTCs may be located and
the predicted consequences. Specifically, blue shading denotes PTC positions that
are more prone to trigger NMD, while red shading indicates positions less likely to
elicit NMD. Figure modified from Carrier et al., 2010 [79].

4.5 Antisense oligonucleotide design

The implemented procedure employs two distinct approaches to generate

25-nucleotide-long ASO sequences aimed at inducing ES. The chosen length

(25-mer) is indeed recommended for designing Morpholino-type ASOs [64].

The first approach involves designing ASOs that target splicing regulatory

sites at the splice junctions (donor and/or acceptor splice sites), while the

second approach focuses on splicing enhancer sites located within the exon,

also known as ESEs. For each exon, a fixed number of 14 ASOs (i.e., a

set of 7 ASOs each for both donor and acceptor splice sites) are designed

to target splicing regulatory sites at the splice junctions, while the number

of exonic ASOs designed depends on both the exon length and number of

annotated ESEs therein. To generate the ASO sequences, a sliding window
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of 25 nucleotides is used. Specifically, for ASOs designed within exonic re-

gions, the window is shifted by one nucleotide at each step, starting from the

first position of the exon and ending with the last window within the exon

region. Subsequently, only the 25-mer sequences that completely overlap

with at least one annotated ESE site are retained for further evaluation of

physicochemical parameters. In the case of ASOs designed to target the

acceptor splice site, a set of 7 ASO sequences that overlap the intron-exon

border is collected. The first ASO in this set begins at intronic position -18

(i.e., ASO sequence -18 to +7 from the intron-exon border, where negative

and positive numbers indicate intronic and exonic nucleotides, respectively).

Starting from there, the next ASO sequences are drawn by sliding a 25-mer

window by one nucleotide at the time until reaching the last ASO sequence

in the set, which begins at intronic position -12 (i.e., ASO sequence -12 to

+13). Similarly, in case of the set of 7 ASOs designed to target the donor

site, the first 25-mer window starts at position +12 from the exon-intron

border within the exon (i.e., ASO sequence +12 to -13), and this window

is shifted by one nucleotide until reaching the beginning of the last ASO in

the set, which is exonic position +7 from the exon-intron border (i.e., ASO

sequence +7 to -18). Annotated ESE regions were taken from the SpliceAid

database (www.introni.it/splicing.html), a database of experi-

mentally validated target RNA sequences that are bound by splicing regula-

tory proteins in humans [84]. In particular, each binding site in the database

is assigned a score ranging from 1 to 10. In our analysis, we focused only on

sites annotated with positive scores (i.e., splicing enhancers), and mapped

them within target sequences. Concerning ASO nomenclature, we followed

the conventions described by Mann et al., 2002 [75].
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4.6 Candidate-antisense oligonucleotide evaluation and selection

Designed ASOs undergo evaluation and filtering based on reference physic-

ochemical parameters (including CG percentage, G percentage, presence of

tetra G, self-complementarity, temperature of melting (Tm)), and specificity.

The ViennaRNA Package was used to assess self-complementarity, result-

ing in a dot-bracket string notation that indicates both paired and unpaired

bases in the predicted ASO secondary structure. Only ASO sequences with

a maximum of 16 contiguous base pairs of H-bonds are selected [57]. Over-

all, the design of ASOs follows the guidelines provided by Moulton et al.,

2008 [64], including optimal values for physicochemical parameters used

to select the best-candidate sequences (which are summarised in Table C1

for easy reference). Tm, a crucial parameter that significantly affects the

specificity and effectiveness of ASOs, was calculated using three different

methods, with reference to the OligoCalc web tool [56]:

• Melting temperature Basic (Tm) (°C)

Tm =64.9+41(yG+zC−16.4)/(wA+xT+yG+zC)

• Melting temperature Salt Adjusted (Tm) (°C)

Tm =100.5+41(yG+zC)/(wA+xT+yG+zC)− 820
wA+xT+yG+zC

+16.6 log10([Na+])

• Melting Temperature Nearest Neighbor (TmNN) (°C)

TmNN =(∆H−3.4 kcal
°Kmole)/∆S+R ln( 1

[primer])+16.6 log([Na+])
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The thermodynamic parameters were calculated assuming standard con-

ditions (namely, 1M NaCl, pH=7, and temperature of 25°C). The nearest-

neighbor and thermodynamic calculations were performed as described by

Breslauer et al., 1986 [85] but using the values published by Sugimoto et

al., 1996 [86]. RNA thermodynamic properties were taken from Xia et al.,

1998 [87]. The specificity was evaluated by assessing the absence of other

potential binding sites in the genome with up to 2 nucleotide mismatches.

The Bowtie [88] short-read aligner was used to map ASO sequences against

the human genome (release GRCh38) with the following parameters: -v 2

(i.e., map allowing up to 2 mismatches per read alignment) -a (i.e., report

all possible alignments). Only ASO sequences that met both specificity re-

quirement (i.e. unique match in the human genome considering up to 2 mis-

matches) and physicochemical requirements (i.e. recommended threshold

for selected parameters taken from Moulton et al., 2008 [64]) were reported

for any gene of interest as candidates to induce the selected ES products.

4.7 Expression analysis for selected genes in cancer and normal

samples

Expression data from RNA-sequencing experiments [24, 69] were obtained

interrogating resources made available from large genomic initiatives, specif-

ically the Pan-Cancer Analysis of Whole Genomes (PCAWG) for cancer

samples [70] and the Genotype-Tissue Expression (GTEx, v.4) resource

[71], for normal tissues. Expression data matrices summarized at the tran-

script level (Transcripts Per Million (TPM) counts) as well as sample meta-

data for both datasets (i.e. PCAWG and GTEx) were downloaded from the

International Cancer Genome Consortium data portal (https://dcc.
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icgc.org/releases/PCAWG/, and folders transcriptome/ and meta-

data therein) [89]. Sample cohorts included in the PCAWG pan-cancer

expression data matrix (N=1,359 samples) and the GTEx expression data

matrix of normal human tissues (N=3,247 samples) were filtered on sam-

ples by selecting only those cancer samples with available reference normal

tissues and viceversa (based on cancer vs. normal tissue pairing provided in

Kahraman et al., 2020 [72]). Specifically for the NRAS gene, our analysis

covered 1,359 cancer samples across 19 distinct tissue types, and 2,231 cor-

responding normal samples (Table A3 in Appendix D). Expression levels,

measured in TPM counts, for the NRAS gene were retrieved by focusing

on its protein-coding transcript ENST00000369535 annotated by Ensembl.

Regarding the IL-8 gene, we examined 51 colorectal cancer samples with

genomic data labeled as of optimal quality (histology abbreviation equal to

“ColoRect-AdenoCA” and genomic data label equal to “Whitelist” in the

PCAWG metadata file) from the PCAWG expression matrix. Additionally,

we considered 88 colon samples from the GTEx expression matrix (i.e. his-

tological type equal to “Colon” in the GTEx metadata file). Expression lev-

els, measured in TPM counts, for the IL-8 gene were obtained considering

two alternative transcripts annotated by Ensembl and included in the expres-

sion dataset, specifically ENST00000401931 and ENST00000307407.

For each selected transcript, both for the NRAS and the IL-8 gene, the

abundance measurements were tested for differential expression between

the two sets of samples (i.e. cancer and normal samples) by using the

Wilcoxon rank-sum test. A test p-value lower than 0.05 was taken as in-

dicative of statistically significant expression difference.
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Chapter 5

Discussion

The development of personalised therapeutic approaches based on molecu-

lar tumor profiling has made significant advancements in cancer treatment.

However, many cancer driver genes, including frequently altered genes like

the RAS family, MYC, and TP53, remain challenging to target with con-

ventional approaches, leaving them as "undruggable." This poses a major

hurdle to oncology drug development.

This thesis work aims to present an integrated computational procedure

that facilitates the exploration and implementation of exon skipping (ES)-

based therapeutic strategies for cancer treatment. The developed computa-

tional procedure leverages existing knowledge of annotated transcripts and

disease-causing mutations for a specific gene of interest. It guides the se-

lection of target exons and the design of antisense oligonucleotides (ASOs)

to induce selected ES events. The procedure also provides insights into the

consequences of exon exclusion, including the potential degradation of tran-

scripts through Nonsense Mediated Decay (NMD). This enables the evalu-

ation of the impact of ES on protein expression and functionality, leading
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to a deeper understanding of the case of interest. The approach presented is

versatile and can support strategies aimed at producing different desired pro-

tein variants, such as variants of inactive oncogenes or partially functional

restored variants of tumor suppressors.

As a proof-of-concept, the study focused on the top 10% most mutated

genes in cancer and ranked them based on their suitability for ES-targeted

interventions. This resulted in a list of the most promising candidate genes

for ES-based therapies that contain the highest percentage of exons meeting

the following criteria: a) The exon, when excluded, should result in desired

protein variants aligning with the intended therapeutic effect; b) The ASOs

designed for the exon skipping should meet recommended physicochemical

parameters and have a unique match in the genome, ensuring their effec-

tiveness in inducing exon exclusion; c) The target exon should rank among

the top ten most mutated exons in cancer patients, indicating its clinical

relevance. Based on these criteria, NRAS, a member of the RAS protein

family, emerged as one of the most promising candidates, with all of its ex-

ons being eligible for skipping. Similarly, other genes such as KRAS, VHL,

CALR, GRIN2A, JAK2, FLT3, IDH1, and IDH2 also exhibited a signifi-

cant percentage of their exons meeting the criteria for optimal skipping tar-

gets. In particular, the percentage of optimal exons ranged from over 20%

for GRIN2A, JAK2, FLT3, IDH1, and IDH2 to over 60% for KRAS (an-

other member of the RAS family). These findings highlight the potential of

these genes as promising candidates for ES-based therapeutic interventions

in cancer.

In order to provide more detailed examples, the study specifically in-

vestigated NRAS and VHL, the top-ranking oncogene and tumor suppres-

sor, respectively, in our list of best candidates for the ASO-induced exon
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skipping procedure. Oncogenic NRAS mutations occur in several cancer

types, notably melanoma, acute myeloid leukemia, colon and thyroid can-

cers, and other hematologic malignancies. While attempts have been made

to action NRAS for therapeutic purposes by targeting either downstream

effectors (e.g., MEK, CDK4/6; [90]) or upstream activators (e.g., STK19;

[91]), the NRAS oncogene itself remains currently undruggable and could

be theoretically targeted by ES-inducing strategies, as proposed here. For

this oncogene, a preliminary evaluation of its expression was undertaken

in the tumor context compared to physiological context. This investigation

aimed to verify the presence of its protein-coding transcript, which could be

potentially targeted, and confirm its overexpression in cancer tissues rela-

tive to normal ones. These findings provide insights into the feasibility of a

strategy aimed at reducing its expression. Similarly, mutations that inacti-

vate the tumor suppressor VHL are a major genetic driver of both hereditary

and sporadic renal cell carcinoma [92]. Although VHL-defective cancers

can be targeted with clinical success by inhibiting its downstream effector

HIF1a or VEGF-driven angiogenesis [93], we hypothesise that VHL func-

tion could be restored, at least in part, by ASO-mediated transcript modi-

fication. The comprehensive in-silico approach successfully identified the

highest-scoring exon for each gene of interest (NRAS and VHL), and de-

signed corresponding ASO sequences to induce its exclusion.

Expanding the scope to include the most frequently mutated genes in

cancer, as notable cases with clinical relevance, the computational pipeline

was applied to the extensively studied oncogene BRAF and tumor sup-

pressor TP53. Small-molecule inhibitors of oncogenic BRAF have proven

highly successful for the clinical treatment of several tumor types. However,

atypical (non-V600E) BRAF mutations and BRAF-dependent acquired re-
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sistance both remain significant challenges and unmet medical needs for

which ES-inducing strategies could provide a targeting approach [94]. On

the other hand, TP53, one of the most frequently mutated genes in can-

cer, remains the prototype of an undruggable tumor suppressor, for which

no successful therapeutic strategies have been devised yet [95]. The com-

putational procedure successfully predicted four potential ES events in the

BRAF gene. These ES events would result in the generation of out-of-

frame transcripts by skipping frequently mutated exons in cancer. The short-

ened transcripts would likely be targeted for degradation through NMD,

thereby reducing the corresponding protein expression level. For each iden-

tified exon, the procedure designed an average of six ASO sequences at

the exon–intron junctions and nine sequences overlapping exonic splicing

enhancers (ESEs) within the exon. Regarding the TP53 gene, two exon can-

didates for ASO-mediated therapeutic ES events were identified. The aim

of these events would be to maintain the transcript frame after exon deletion

and potentially restore, at least partially, the biological protein function. An

average of four ASOs to induce skipping were designed at the exon-intron

junctions, while approximately 53 ASO sequences that cover the ESE re-

gions were designed within the exon.

Subsequently, we applied our computational procedure to the oncogene

IL-8 and investigated the expression of its annotated transcript isoforms

specifically in the context of colorectal cancer (CRC). This exploration was

prompted by a collaboration with the University of Verona and the IRCCS

Regina Elena National Cancer Institute of Rome, focusing on CRC. IL-8

is a pro-angiogenic chemokine that, through activation of specific signaling

pathways (such as the PI3K and the MAPK cascades), may promote CRC

invasion and metastasis [96, 97]. Additionally, circulating IL-8 represents
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a strong prognostic factor in CRC, and this gene emerged as a possible de-

terminant of response to immunotherapy and targeted treatment in several

cancer types [96]. This evidence supports the investigation of IL-8 as a

candidate druggable target for CRC treatments. Within this framework, we

initially investigated expression levels of IL-8 at the transcript level by inter-

rogating public atlases of cancer and normal expression data. Our analysis

confirmed significant overexpression of both annotated isoforms of the IL-8

gene in CRC. Subsequently, utilising our in-silico approach, we success-

fully identified the highest-scoring IL-8 exon for targeted ES strategies and

designed corresponding ASO sequences to induce its exclusion.

The results obtained from applying the entire procedure to these cancer-

relevant case studies demonstrate suitability of the strategy in supporting the

design of ASOs that can be experimentally validated as candidates for inno-

vative therapeutic interventions. This approach aims to induce targeted exon

skipping in oncogenes and tumor suppressors, even in cases with significant

mutation burdens that are difficult to target with conventional pharmaco-

logical methods. It is important to note that the criteria employed in this

procedure are independent of tissue and cancer type, aligning with an ag-

nostic approach. However, the same computational method can be tailored

to specific cases by utilising mutation profiles obtained from individual pa-

tient screenings. Such a personalised approach has the potential to enhance

targeting accuracy and minimise off-target or side effects. In fact, while the

systematic approach presented in this study allows for wide-ranging appli-

cability across diverse contexts, offering several advantages, we recognise

the value of tailoring this computational method to specific cases, devel-

oping further in-depth analysis methods. Among others, the assessment of

whether a target splicing isoform is actually expressed could be more effec-
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tively conducted by analysing expression profile data related to the specific

tissue or tumor under investigation [72–74].

Importantly, the proposed procedure has certain limitations that should

be taken into account. For instance, the current approach relies on genomic

and transcriptomic data available in annotation databases like COSMIC and

GENCODE, which may have limitations in terms of coverage and accuracy.

In addition, it might be advisable to integrate the proposed procedure with a

more detailed examination of the consequences of various mutations that

can perturb splicing regulatory regions [98–100], including synonymous

and intronic mutations, by utilising ad-hoc existing tools [101, 102]. Like-

wise, the potential role of cryptic regulatory sites in influencing splicing out-

comes would deserve further study [103]. Moreover, it should be noted that

the adopted classification of oncogenes and tumor suppressor genes, which

in turn determines the type of molecular effect sought through ES, can be

debatable from several perspectives: classification methods and available

compendia might not cover all potentially relevant genes; a small but non-

negligible percentage of genes may be classified differently using various

procedures; in some cases, the same gene can function as an oncogene or a

tumor suppressor, depending on the type of mutation it undergoes (loss vs

gain of function), such as in the case of TP53 [95]. Furthermore, the delivery

of ASOs to target tissues or cells poses unique challenges that must be over-

come as a prerequisite for their effective therapeutic application. Several

efforts are currently invested in improving the delivery of ES-based ther-

apeutic drugs through innovative chemical modifications and conjugation

with delivery-enhancing agents, such as fatty acids or peptides [26, 104–

107]. Finally, experimental validation is crucial to confirming the actual

impact of predicted ASO-induced exon skipping on protein expression and
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function. For instance, it has been reported that the inhibition of a splice site

may trigger the activation of a cryptic splice site, leading to the formation

of a transcript with an unexpected architecture [64].

Of note the current approach, which prioritises as ES target the most

frequently mutated exon in cancer patients, is flexible and can be adapted

to different scenarios and therapeutic goals. For instance, in cases where

the therapeutic strategy involves inactivating a mutated oncogene, a safer

approach to ASO design may entail targeting frame-shifting exons that are

possibly not mutated and are located upstream of the most frequently mu-

tated one. This approach would result in the desired outcome of an out-

of-frame transcript, reducing the risk that patient-specific mutations might

decrease the affinity for the designed ASO. On the other hand, in more

complex scenarios related to the rescuing of function of tumor suppressors,

where it is critical to safeguard the healthy allele, the existence of patient-

specific mutations may be the key to enable the selectivity needed in the de-

sign of allele-specific therapeutic strategies. A notable example illustrating

the relevance of envisioning allele-specific therapeutic strategies is the hap-

loinsufficiency of the tumor suppressor PTEN [108], frequently mutated in

human cancer. Here, similar to the strategy pursued with Duchenne muscu-

lar dystrophy (DMD) drugs, even subtle changes in PTEN expression levels

seem to have the potential to alter tumor cell behavior [108], motivating at-

tempts to pursue even limited functional rescue obtained by allele-selective

interventions.

In conclusion, the integrated computational procedure developed in this

study presents a strategy and provides valuable tools for investigating ES-

based therapeutic approaches in oncology. ASOs show promise as inno-

vative and personalised therapeutic interventions, particularly for targeting
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currently undruggable driver genes. Further experimental validation, opti-

misation, and technological advancements are necessary to fully harness the

potential of ASOs as clinically effective therapies. These efforts could pave

the way for their effective utilisation in cancer treatment, making a substan-

tial contribution to the field of personalised medicine in oncology.
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Appendix

6.1 Appendix A

To validate our classification, available for 48 genes, the results were com-

pared with two publicly available compendia of oncogenes and tumor sup-

pressors: 1) Futreal et al., 2004 [67], hereafter MSigDB; 2) Tokheim et

al., 2016 [68], hereafter Tokheim. When comparing our gene classifica-

tion results with the MSigDB compendium (N=410, comprising 328 onco-

genes and 82 tumor suppressors), we found 35 shared genes available for

the purpose of classification comparison, while 13 (i.e., 6 tumor suppres-

sors and 7 oncogenes) out of the 48 genes composing our classified list

were not present in the MSigDB compendium. Among the shared genes

(N=35), 30 genes were consistently classified, of which 14 out of 19 tu-

mor suppressors (74%) and all the oncogenes (16/16). However, 5 genes

(CREBBP, NOTCH1, NOTCH2, NPM1, RUNX1) were classified differ-

ently (i.e., MSigDB classified them as oncogenes, while our procedure as

tumor suppressors) (Figure A1, panel A). Next, we compare our gene clas-

sification results to the Tokheim compendium (N=290 genes, including 79
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oncogenes and 211 tumor suppressors) (Figure A1, panel B). Eleven out of

the 48 genes in our classified list were not included in the Tokheim com-

pendium. As for the remaining 37 genes of our classified list (i.e., 24 tu-

mor suppressors and 13 oncogenes) shared with the Tokheim compendium,

all the tumor suppressor genes (24/24, 100%) and most of the oncogenes

(12/13, 92%) were consistently classified. There was only one gene (JAK2)

with conflicting assignments as an oncogene (our procedure) and tumor sup-

pressor (Tokheim).

Figure A1: Cancer-genes classification comparison. Comparison of our classi-
fication of the 72 selected genes as oncogenes (ONG) or tumor suppressors (TSG)
with two compendia of ONGs and TSGs. [A] In this panel, the Venn diagram
shows the overlap between our (TSG, ONG) and the MSigDB (ONG_MSigDB,
TSG_MSigDB) results. [B] In this panel, the Venn diagram shows the overlap be-
tween our (TSG, ONG) and the Tokheim (ONG_Tokheim, TSG_Tokheim) results.
Abbreviations: ONG = oncogene; TSG = tumor suppressor gene; MSigDB = list
of oncogenes and tumor suppressors from Futreal et al., 2004 [67]; Tokheim = list
of oncogenes and tumor suppressors from Tokheim et al., 2016 [68]
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As of today, there are four ASO-based drugs approved by the FDA: Eteplirsen,

Golodirsen, Viltolarsen, Casimersen [38–41]. All four drugs have been de-

veloped to modulate the splicing of the dystrophin gene for therapeutic pur-

poses in patients affected by Duchenne Muscular Dystrophy.

The Casimersen case, showing the largest deviation from the ASO se-

quence identified as a potential drug through our computational approach,

underscores how crucial the need for experimental validation of ASO se-

quences is for tangible improvements in the design phase. In fact, our pro-

cedure initially designs other ASO sequences with better alignment to the

Casimersen drug; however, they are excluded during filtering due to non-

compliance with some recommended physicochemical parameter thresh-

olds (Table C1) [64].

In light of this, cases like Casimersen’s highlight the importance of

aligning computational predictions with an increasing body of experimental

results to optimize the design process.
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Table B1: Comparison between results from ASO designed from our pipeline
and currently approved ASO drugs. This table provides a comparison between
the released sequence of the approved drug (column 3, top line) and the best match
with ASOs designed using our procedure (column 3, bottom line) to target the
corresponding exon. Blue color highlights nucleotides identical between the drug
sequence and candidate ASO sequence designed by our procedure.

ASO drug
Target Exon

Ensembl ID

Drug sequence (length)

Pipeline matching hit (length)

Eteplirsen
Exon 51

(ENSE00003669071.1)
CTCCAACATCAAGGAAGATGGCATTTCT (28nt)

CTCCAACATCAAGGAAGATGGCATTTCT (25nt)

Golodirsen
Exon 53

(ENSE00001258577.1)
GTTGCCTCCGGTTCTGAAGGTGTTCNNN (25nt)

GTTGCCTCCGGTTCTGAAGGTGTTCNNN (25nt)

Viltolarsen
Exon 53

(ENSE00001258577.1)

CCTCCGGTTCTGAAGGTGTTCNNNTTGT (21nt)

CCTCCGGTTCTGAAGGTGTTCTTGTNNN (25nt)

Casimersen
Exon 45

(ENSE00003988228.1)

GCTGCCCAATGCCATCCTGGAGTTCCTG (22nt)

GCTGCCCAATGCCATCCTGGAGTTCCTG (25nt)
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Table C1: Threshold values for physicochemical parameters used to evaluate
the goodness of designed ASOs. The reported values are extracted from guide-
lines published by Moulton et al., 2008 (see Table 2 therein entitled: "Targeting
Recommendations for 37°C Systems") [64].

Parameter Recommendation Comments

CG range 40%-60% At lower GC, affinity may be too

low to inhibit processes; higher

GC favors nonspecific binding

of subsequences. Count(G +

C)/Count(A + T + G + C) × 100%

(https://www.biologicscorp.

com/tools/GCContent/)

G content Up to 36% G Higher G causes loss of water solubility;

avoid upper end of acceptable range, if

possible.

Self-

complementarity
16 contiguous H-bonds maximum For intermolecular (complementary palin-

drome) and intramolecular (stem loop)

binding. Example: AGCGCT has 16 H-

bonds (2+3+3+3+3+2 = 16). Check for

non-Watson-Crick G-T pairing, which can

participate in self-complementarities.

Consecutive G 3 consecutive Gs maximum Runs of ≥4 G can be associated

through Hoogsteen bonding to form oligo

tetramers.

Oligo length 25 bases or shorter by only a few bases Using shorter oligos can decrease the

chance of off-target interaction for high

CG oligos.
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Information regarding the NRAS gene expression in various tissues was ex-

amined to investigate its specific behavior in cancers and assess the poten-

tial for therapeutic interventions aimed at mitigating its recurrent upregula-

tion. Table D1 provides details on the number of samples analyzed for each

tissue, whereas Figure D2 shows distribution of NRAS expression levels

across cancer tissues and their normal tissues as a reference.

Table D1: Cancer and normal tissues datasets used to assay NRAS expression.
This table lists numbers of cancer and normal tissue samples utilised in the NRAS
expression analysis which sum up to a total of 1,359 cancer samples retrieved from
the PCAWG resource [70] and 2,231 normal samples from the GTEx project [71].

Normal tissues (GTEx) Sample number Tumor tissues (PCAWG) Sample number

Bladder 11 Bladder 27

Blood 269 Blood 173

Brain 420 Brain 46

Breast 66 Breast 97

Cervix Uteri 10 Cervix Uteri 20

Colon 88 Colon 51

Esophagus 249 Esophagus 7

Kidney 8 Kidney 211

Liver 35 Liver 187

Lung 152 Lung 95

Muscle 175 Muscle 34

Ovary 39 Ovary 110

Pancreas 70 Pancreas 75

Prostate 42 Prostate 20

Salivary Gland 6 Salivary Gland 43

Skin 343 Skin 36

Stomach 80 Stomach 31

Thyroid 132 Thyroid 51

Uterus 36 Uterus 45

(tot) 2231 (tot) 1359
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Figure D2: NRAS expression across various tumor and normal tissues. Box-
plots show the distribution of expression values (log2-transformed TPM) of the
NRAS gene across 19 tumor tissues from PCAWG (top panel) and corresponding
normal tissues from GTEX (bottom panel). Each boxplot corresponds to a dis-
tinct tissue type (X-axis). Expression values refer to the protein-coding transcript
annotated for this gene: ENST00000369535. Abbreviations: GTEx = Genotype-
Tissue Expression; PCAWG = Pan-Cancer Analysis of Whole Genomes; TPM =
Transcripts per Million

71



6.5. Appendix E

6.5 Appendix E

Table E1: Best candidate ASO sequences designed at the selected exons splice
junctions of the BRAF and TP53 genes. The table provides the ASOs that were
specifically designed at the junctions of the selected exons of BRAF and TP53 to
yield desired ES outcomes (out-of-frame transcripts for the oncogene BRAF and
in-frame transcripts for the tumor suppressor TP53). The listed ASOs, along with
their corresponding sequences indicated in the table, have successfully passed all
physicochemical filters and have a unique match in the genome. The nomenclature
used for the ASOs follows the conventions described by Mann et al., 2002 [75].

Gene Exon-id ASO-id ASO sequence

BRAF ENSE00001907699.1

H18D(10, -15) GGACAGGAAACGCACCAUAUCCCCC

H18D(9, -16) UGGACAGGAAACGCACCAUAUCCCC

H18D(8, -17) GUGGACAGGAAACGCACCAUAUCCC

H18D(7, -18) AGUGGACAGGAAACGCACCAUAUCC

ENSE00003485507.1

H15D(11, -14) GCCUCAAUUCUUACCAUCCACAAAA

H15D(10, -15) AGCCUCAAUUCUUACCAUCCACAAA

H15D(9, -16) UAGCCUCAAUUCUUACCAUCCACAA

H15D(8, -17) AUAGCCUCAAUUCUUACCAUCCACA

H15D(7, -18) AAUAGCCUCAAUUCUUACCAUCCAC

ENSE00003521664.1

H12A(-16, 9) CCACAUCACCUAAAAGGCAAUUGUU

H12A(-15, 10) GCCACAUCACCUAAAAGGCAAUUGU

H12A(-14, 11) UGCCACAUCACCUAAAAGGCAAUUG

H12A(-13, 12) CUGCCACAUCACCUAAAAGGCAAUU

H12A(-12, 13) ACUGCCACAUCACCUAAAAGGCAAU

H12D(13, -12) ACACAAGCUCACCUGAGUACUCCUA

H12D(12, -13) CACACAAGCUCACCUGAGUACUCCU

H12D(11, -14) UCACACAAGCUCACCUGAGUACUCC

H12D(10, -15) UUCACACAAGCUCACCUGAGUACUC

H12D(9, -16) AUUCACACAAGCUCACCUGAGUACU

H12D(8, -17) AAUUCACACAAGCUCACCUGAGUAC

H12D(7, -18) UAAUUCACACAAGCUCACCUGAGUA

ENSE00003559218.1

H11D(13, -12) UUACAUACUUACCAUGCCACUUUCC

H11D(9, -16) CACAUUACAUACUUACCAUGCCACU

H11D(8, -17) CCACAUUACAUACUUACCAUGCCAC

H11D(7, -18) ACCACAUUACAUACUUACCAUGCCA

TP53 ENSE00003670707.1

H5A(-16, 9) GCAAAACAUCUUGUUGAGGGCAGGG

H5A(-15, 10) GGCAAAACAUCUUGUUGAGGGCAGG

H5A(-14, 11) UGGCAAAACAUCUUGUUGAGGGCAG

ENSE00003625790.1

H3D(13, -12) AGGGCAACUGACCGUGCAAGUCACA

H3D(12, -13) CAGGGCAACUGACCGUGCAAGUCAC

H3D(11, -14) UCAGGGCAACUGACCGUGCAAGUCA

H3D(10, -15) CUCAGGGCAACUGACCGUGCAAGUC

H3D(9, -16) CCUCAGGGCAACUGACCGUGCAAGU
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