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Abstract: Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10%
in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and
shares similar genetic and molecular properties in animal and plant species. Studies conducted over
the last few years on D. melanogaster and other organisms led to the discovery of several functions
associated with constitutive heterochromatin. This made it possible to revise the concept that this
ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to
focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of
heterochromatin, which are implicated in different steps of cell division.

Keywords: constitutive heterochromatin; heterochromatic genes; drosophila; mitotic apparatus;
cell division

1. Introduction

“But there’s no such thing as the unknown, only things temporarily hidden, temporarily
not understood.”

Captain James T. Kirk, from movie: Star Trek Beyond

The term heterochromatin was originally defined cytologically by Heitz in 1928 [1]
as chromosomal regions that appear deeply stained at the prophase and retain a compact
state throughout all stages of the mitotic cell cycle, as opposed to euchromatin, which
undergoes decondensation and condensation cycles. Later on, heterochromatin was further
categorized into facultative and constitutive [2]. Facultative heterochromatin corresponds
to euchromatic portions of the genomes (chromosome regions, entire chromosomes, or even
whole chromosome sets), which undergo silencing during development [3–5]. By contrast,
constitutive heterochromatin occurs primarily in large blocks made up of several DNA
megabases that include centromeric or telomeric regions, is enriched in repetitive sequences
compared to euchromatin, and shows the same cytological and molecular characteristics
on both homologous chromosomes [6].

Constitutive heterochromatin is a ubiquitous and quantitatively significant component
of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and
up to 90% in certain nematodes). A number of characteristic properties have historically
been assigned to constitutive heterochromatin in nearly all animal and plant species,
which are antithetical compared to those of euchromatin [6]: (i) strongly reduced level of
meiotic recombination; (ii) low gene density; (iii) mosaic inactivation of the expression of
euchromatic genes when moved nearby, a phenomenon termed position effect variegation
(PEV); (iv) late replication during the S phase; (v) transcriptional inactivity; (vi) enrichment
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in highly repetitive satellite DNA and transposable elements; and (vii) the presence of
silent epigenetic marks (mainly H3K9 methylation). Together, these properties have led to
the view that constitutive heterochromatin is a “genomic desert” made up of junk DNA.
However, studies conducted over the last few years have contributed to revising the concept
of constitutive heterochromatin, and the notion that this ubiquitous genomic component is
incompatible with gene expression no longer seems to be a general rule [6].

Sequencing and annotation of the genome of D. melanogaster combined with high-
resolution cytogenetic analyses have greatly facilitated studies aimed at characterizing
the organization and function of constitutive heterochromatin [6–15]. It emerged that
this model organism contains a minimum of 230 protein-coding genes [9] mapping to
constitutive heterochromatin, whose borders were defined by cytogenomic and epigenomic
approaches [6]. Thus, the gene number in constitutive heterochromatin of D. melanogaster is
significantly greater than that originally defined by a classical genetic analysis [16,17]. This
result can be explained by assuming that most genes escaped mutational analysis because
they are nonessential or, alternatively, that some loci with complex complementation
behaviors indeed contain several vital genes, as in the case of l(2)41Ae [13].

Intriguingly, the expression of these genes is compromised if they are moved away
from the pericentromeric regions by chromosome rearrangements [6,17]. Thus, they can
“live and work” properly within a genomic environment with silencing properties, a
conclusion that represents a kind of paradox. A combination of negative and active histone
modification marks, together with the contribution of key epigenetic regulators such as
the HP1 protein [18,19], may be crucial players in the regulation of gene expression in
constitutive heterochromatin [6,20]. However, these aspects have been extensively reviewed
elsewhere and will not reexamined in detail here.

The genomic size of D. melanogaster heterochromatic genes is, on average, up to
ten time larger than that of euchromatic ones, due to the presence of large transposable
element-rich introns, and together, they account for a significant fraction (at least 40%) of
the entire constitutive heterochromatin [6]. Thus, this peculiar genome component is not
that gene-poor as previously believed and, in spite of its ability to induce silencing, can be
quite dynamic.

According to the 5.1 release of the D. melanogaster heterochromatin, the gene ontol-
ogy (GO) analysis showed that heterochromatic and euchromatic genes encode similar
categories of functions [9]. However, some classes of functions appear to be overrep-
resented in constitutive heterochromatin, relative to euchromatin. It is the case of the
35-fold enrichment for putative membrane cation transporter domains or for DNA or
protein-binding domains [9].

Here, we will focus our attention on a group of single-copy protein-coding genes
resident in constitutive heterochromatin (Table 1) with experimentally validated or puta-
tive functions implicated in the proper execution of cell division. The functions of these
genes were selected according to the biological role described in the scientific literature or
according to the associated Gene Ontology terms in FlyBase.

In eukaryotes, a failure of mitosis and cytokinesis results in aneuploid or polyploid
cells that promote tumorigenic transformation [21,22]. Thus, the study of genes controlling
mechanisms underlying different steps of cell division can contribute to both cancer and
human developmental diseases.

Finally, it is worth noting that the heterochromatic genes studied here are active during
different tissues and developmental stages of D. melanogaster, and their average expression
levels are comparable to those of euchromatic cell cycle genes (Figure 1).



Cells 2022, 11, 3058 3 of 19

Table 1. List of the examined heterochromatic genes with their functions and cytogenetic and genomic locations. In this review, CG17493 and CG17528 were named
CentrinB and Dmel-doublecortin, respectively (names not reported in FlyBase). Map positions as described in the HDGP project and FlyBase. Hsap = human
orthologs; Ortho map = chromosome map of human orthologs; n.d. = not detected; n.a. = not allowed.

Chrom Name Annotation Polytene Map Mitotic Map Hsap Ortho Map Function

X Cp110 CG14617 20C1-20C1 n.d. CCP110 16p12.3 centriole length regulation, ciliogenesis, cytokinesis

X su(f) CG17170 20E n.d. CSTF3 11p13 mRNA binding

2L tsh CG1374 40A5-40A5 h35 [6]
TSHZ1
TSHZ2
TSHZ3

18q22.3
20q13.2
19q12

chromatin organization

2L CentrinB CG17493 n.d. h35 [6]
CETN1
CETN2
CETN3

18p11.32
Xq28

5q14.3

ciliogenesis, centriole duplication,
calcium ion binding

2L tio CG12630 40D3-40D3 h35 [6]
TSHZ1
TSHZ2
TSHZ3

18q22.3
20q13.2
19q12

chromatin organization

2L CG10834 CG10834 40E3-40E3 h35 [6] DYNLRB1
DYNLRB2

20q11.22
16q23.2 dynein intermediate chain binding

2L CycK CG15218 40E4-40E4 h35 [6] CCNK 14q32.2 cyclin-dependent protein serine/threonine
kinase regulator

2L Slmap CG17494 40F7-40F7 h35 [6] SLMAP 3p14.3 protein kinase binding

2R rl CG12559 41A [8] h41 [6] MAPK1 22q11.22 MAP kinase activity, transcription factor binding

2R Yeti CG40218 41A [8] h41 [6] CFDP1 16q23.1 chromatin remodelig, kinesin binding

2R Haspin CG40080 41B-C [8] h45 [6] HASPIN 17p13.2 ATP binding, histone kinase activity,
serine/threonine kinase

2R Nip-B CG17704 41B3-41C1 h46 [6] NIPLBL 5p13.2 kollerin complex, sister chromatid cohesion

2R conu CG17082 41C1-41C1 h46 [6]
ARHGAP18
ARHGAP40
ARHGAP28

6q22.33
20q11.23
18p11.31

GTPase activator activity

2R Dmel-doublecortin CG17528 41C2-41C2 h46 [6]
DCLK1
DCLK2

DCX

13q13.3
4q31.23
Xq22.3

microtubule binding,
calmodulin-dependent protein kinase

2R Nip-A CG33554 41C-D [8] h46 [6] TRRAP 7q22.1 chromatin remodelig, kinase activity
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Table 1. Cont.

Chrom Name Annotation Polytene Map Mitotic Map Hsap Ortho Map Function

2R d4 CG2682 41E3-41E4 h46 [6] DPF1
DPF3

11q13.1
14q24.2 chromatin organization, zinc ion binding

2R IFT20 CG30441 41E5-41E5 n.d. IFT20 17q11.2 centrosome localization,
cilium-related functions

3L Chro CG10712 80B1-80B2 eu-het junction [8] n.d. n.a. cell division regulator, chromatin organization

3L CkIIα CG17520 80D1-80D1 h47 [6]
CSNK2A1
CSNK2A2
CSNK2A3

20p13
16q21

11p15.4
ATP binding

3L vtd CG17436 80F-80F n.d. RAD21
RAD21L1

8q24.11
20p13 kollerin complex, sister chromatid cohesion

3R sac CG14651 82B3-82B3 h57 [6] n.d. n.a. cytokinesis, ciliogenesis,
microtubule motor activity

3R tacc CG9765 82D2-82D2 h57-h58 [6]
TACC1
TACC2
TACC3

8p11.22
10q26.13

4p16.3
microtubule binding
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Figure 1. Heatmaps showing expression profiles of the examined single-copy coding genes. Devel-
opmental stages (left panel) and tissues expression (right panel). Shades of color from red to green 
indicate the expression bin classification from 1 (no/extremely low expression) to 7 (very high ex-
pression). Developmental stages and tissues expression data were obtained from FlyBase. Tissues 
(heads, ovaries, testis, carcasses, digestive system, CNS, fat, imaginal discs, and salivary glands) 
were obtained from different developmental stages, different timing, or different physiological con-
ditions, as indicated (em: embryos; A: adults; L1–L3: larvae 1st–3rd instar; WPP: pupae early stage; 
P1–P15: late pupae; F/M: females/males; Mate/Vir: Mated/Virgin), as described in 10.1038/na-
ture09715 10.1126/science.1198374. “ALL cell cycle:” mean expression of 745 genes whose products 
are involved in cell division and for which expression data are available from ModEncode and ob-
tained from FlyBase (textual search query “cell division”). “HET cell cycle”: mean expression of 22 
heterochromatic genes discussed in this review. 
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dGAS41, dPontin, dReptin, Nipped-A, e(Pc), dYL1, dDMAP1, Act87B, dMrg15, dMrgBP, 
dTRA1, dIng3, and dEaf6) and is required for the replacement of acetylated phospho-
H2A.V by unmodified H2A.V via Domino (Dom) ATPase [26–30]. 

A role of the YETI protein in cell cycle control during both mitosis and meiosis was 
also suggested [23,31,32]. Notably, YETI was found to undergo relocation from interphase 
chromatin to the midbody and play a direct extra-chromatin role in the control of cytoki-
nesis in D. melanogaster S2 cells [33]. 

Figure 1. Heatmaps showing expression profiles of the examined single-copy coding genes. De-
velopmental stages (left panel) and tissues expression (right panel). Shades of color from red to
green indicate the expression bin classification from 1 (no/extremely low expression) to 7 (very
high expression). Developmental stages and tissues expression data were obtained from FlyBase.
Tissues (heads, ovaries, testis, carcasses, digestive system, CNS, fat, imaginal discs, and salivary
glands) were obtained from different developmental stages, different timing, or different physio-
logical conditions, as indicated (em: embryos; A: adults; L1–L3: larvae 1st–3rd instar; WPP: pupae
early stage; P1–P15: late pupae; F/M: females/males; Mate/Vir: Mated/Virgin). “ALL cell cycle:”
mean expression of 745 genes whose products are involved in cell division and for which expression
data are available from ModEncode and obtained from FlyBase (textual search query “cell division”).
“HET cell cycle”: mean expression of 22 heterochromatic genes discussed in this review.

2. Functions Related to Chromosome/Chromatin Organization and Gene Expression
2.1. Yeti and Nipped-A Genes Encode Two Subunits of the dTip60 Chromatin Remodeling Complex
2.1.1. Yeti

Mutations in this gene are recessive lethal, and affect individual viability and proper
chromosome organization in both mitosis and meiosis [6,8,16,23–25].

The YETI protein was originally identified as a kinesin-binding protein and was
later found to be a component of the D. melanogaster Tip60 (dTip60) chromatin remodeling
complex [23–25]. The dTip60 complex is made up of 14 other core subunits (BAP55, dGAS41,
dPontin, dReptin, Nipped-A, e(Pc), dYL1, dDMAP1, Act87B, dMrg15, dMrgBP, dTRA1,
dIng3, and dEaf6) and is required for the replacement of acetylated phospho-H2A.V by
unmodified H2A.V via Domino (Dom) ATPase [26–30].

A role of the YETI protein in cell cycle control during both mitosis and meiosis was
also suggested [23,31,32]. Notably, YETI was found to undergo relocation from interphase
chromatin to the midbody and play a direct extra-chromatin role in the control of cytokinesis
in D. melanogaster S2 cells [33].

The human ortholog of the Yeti gene is the Craniofacial Development Protein 1 gene,
CFDP1 (OMIM number 608108), which maps to chromosome 16 in 16q22.2-q22.3. As
for the YETI protein, the CFDP1 protein is a subunit of the human SRCAP chromatin
remodeling complex [34,35], evolutionary related to the dTip60, and functions beyond
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chromatin remodeling, being required for the proper execution of cell division in HeLa
cells [33]. Interestingly, the chicken CFDP1, also called CENP-29, has been reported to
be associated with kinetochores [36]. In a human proteomic study, CFDP1 was found to
interact with Ewing sarcoma related protein (EWSR1) whose mutations leads to Ewing’s
sarcoma, a type of cancer that forms in bone or soft tissue [37].

According to the role of YETI in meiosis [23], CFDP1 has been found to physically
interact with TALDO1 [38–40], a hallmark of human and murine spermatogenesis [41,42],
and with HIST1H2BA, a testis/sperm-specific member of the histone H2B family [43].
Taken together, the above-mentioned studies suggest that YETI, CFDP1 and their family
of orthologs are multifaceted proteins that play essential roles for proper execution of cell
division [24,25,33], in addition to their canonical functions in chromatin remodeling.

2.1.2. Nipped-A (Nip-A)

Mutations in this gene are also recessive lethal [44] and RNAi depletion of the Nip-A
protein causes early larval lethality [45]. The Nip-A gene encodes the Tra1/TRRAP protein,
a conserved subunit of both dTip60 and SAGA chromatin remodeling complexes [36,37,45].
In yeast and humans, the Nip-A ortholog interacts with transcriptional activators to recruit
Tip60 and SAGA complexes [46–48].

2.2. Nipped-B and Verthandi Encode Two Subunits of the Cohesin Complex
2.2.1. Nipped-B (Nip-B)

Mutations in this gene are recessive lethal and affect sister chromatid cohesion [49–52].
In accord with the lethal phenotype, the Nip-B protein was found to interact with the Co-
hesin complex that is required for sister chromatid cohesion and chromosome segregation
in different organisms [50–56]. The Cohesin complex consists of a heterodimer of the Smc1
and Smc3 (structural maintenance of chromosome) cohesin, and of other proteins [57,58].
According to the current cohesion models, this complex forms a ring-like structure in which
the cohesins encircle the two sister chromatids and is required but not sufficient for sister
chromatid cohesion [57–60].

The human ortholog of Drosophila Nip-B is NIPBL, whose heterozygous mutations
account for about 60% of the cases of Cornelia de Lange syndrome (CdLS), a genetic disor-
der with multiple developmental abnormalities [61]. NIPBL, interacting with Mau-2 (Scc2)
cohesion, forms the Kollerin complex, an evolutionary conserved complex crucial for chro-
matin loading of the Cohesin complex [52,54]. Mau-2 mutations can also cause CdLS [62].
As for D. melanogaster Nip-B, depletion of NIPBL and of the vertebrate homologs in vivo or
in cultured cells also cause chromatid cohesion defects [55,63,64]. A functional cooperation
between NIPBL and the bromodomain-Containing Protein 4 (BRD4) in regulating gene
expression at the promoter level has been highlighted [65]. Notably, mutations of BRD4
were also described to cause a CdLS-like phenotype [66].

2.2.2. Verthandi (vtd)

It was identified by genetic analyses and mapped to the pericentromeric heterochro-
matin o chromosome 3 [67–69]. Ten vtd alleles have been originally found, some in screens
aimed to identify recessive lethal mutations mapping to 3L heterochromatin while others
were in additional screens either for dominant suppressors of a dominant gain-of-function
allele of hedgehog or for of dominant suppressors of Polycomb (Pc) mutations [67,68].

Later on, in the process of annotating the D. melanogaster heterochromatin genome se-
quence, vtd was found to encode the RAD21 protein, a subunit of the Cohesin complex [70].
In accordance, vtd mutations disrupt sister chromatid cohesion and chromosome segre-
gation [70]. The vtd protein was detected in pericentric heterochromatic regions [71,72],
in polytene chromosome interbands [73], and along the synaptonemal complex [74]. Mu-
tations of the human ortholog of vtd, RAD21L1 (RAD21-like 1) cause a mild Cornelia de
Lange syndrome phenotype [75,76].
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2.3. Other Genes Involved in Chromatin Organization
2.3.1. Teashirt (tsh)

Loss of function alleles of tsh were found to be recessive lethal at the stage of third
instar larvae and caused metaphase arrest in mitosis a phenotype was also observed after
RNAi mediated depletion in S2 Drosophila culture cells [77]. These results suggested that
the tsh gene exerts a positive control on cell proliferation. The tsh product is a homeotic
protein that play a role in chromatin organization and transcription modulation acting as
both repressor and activator [78].

The tsh gene shares common activities with the nearby located tiptop (tio) gene, whose
protein product is also involved in chromatin organization and gene expression control.
Notably, there is a molecular cross-talk between tsh and tio proteins, which repress each
other’s expression [79].

The human orthologs of tsh, TSHZ1, TSHZ2, and TSHZ3 (teashirt zinc finger home-
obox), may act as transcriptional repressors during developmental processes [80,81].

2.3.2. D4

It encodes a noncatalytic subunit of the BRG1/BRM-Associated Factor (BAF) chromatin-
remodeling complex [82,83], which plays a role in the epigenetic regulation of transcrip-
tion through the identification of histone modifications [84]. Indeed, pull-down exper-
iments have shown that the d4 protein only interacts with BAF-specific complex mem-
bers [83]. Heterozygous mutations of DPF2, the human ortholog of Drosophila d4, are
responsible for eight unrelated cases of Coffin-Siris syndrome-7, which includes several
developmental alterations [85].

3. Functions Related to Mitotic Apparatus/Microtubule Binding
3.1. Mitotic Genes Also Implicated in Ciliogenesis

Despite the restricted cilia expression in Drosophila, ciliary proteins could play essential
roles in cell division control, as suggested by the experimental evidence on the following
four genes.

3.1.1. Centriolar Coiled Coil Protein 110 (CP110)

Studies carried out in C. elegans and mammals have shown that the CP110 protein is
implicated in several aspect of cell division control: centriole duplication and length, mitotic
spindle assembly, cytokinesis, genome stability, and suppression of ciliogenesis [86–89].
The D. melanogaster CP110 protein localizes to the distal end of both mother and daughter
centrioles, where it “caps” the centriole [90]. In another study, D. melanogaster mutant flies
lacking CP110 were viable and fertile with no obvious defects in cell division, centriole
duplication, or cilia formation [87]. However, in cells lacking CP110, the centrioles were
10% longer than those in WT cells, while, in cells overexpressing CP110, they were 20%
shorter [87]. Based on these results, the authors suggested that, in contrast to mammals,
D. melanogaster CP110 may play only a minor role in regulating centriole length [87].

3.1.2. CentrinB

It encodes a protein orthologous to human Centrin-1 (CETN1) and Centrin-2 (CETN2)
proteins. CETN1 is specifically expressed in ciliated cells, while CETN2 is expressed in
all epithelial proliferation cells [91]. Centrins are small calcium-binding proteins that are
ubiquitous centrosome components and regulate microtubule organizing center (MTOC)
duplication [92,93]. This evidence is suggestive for an involvement of the CentrinB protein
in centriole duplication during mitotic cell cycle. However, in a screen of 17,759 RNAi
lines for searching genes involved in muscle morphogenesis, depletion of CentrinB did not
significantly affect the viability or other phenotypic traits [94]. Thus, additional targeted
experiments are needed to elucidate the function of CG17493 protein and to test its possible
involvement in centriole duplication/function.
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3.1.3. Intraflagellar Transport 20 (IFT20)

It was identified by comparative genomic analyses to search genes involved in cilia
biogenesis and function [95,96]. However, no functional data from both forward and reverse
genetics analyses are thus far available. Some information comes from the mouse and
human orthologs, mIFT20 and hIFT20, respectively. The mIFT20 plays roles in controlling
the Wnt signaling and cell proliferation and is required for proper positioning of the
centrosome in nondividing cells and correct orientation of the mitotic spindle in mouse
kidney cells [97]. Moreover, conditional ablation of the mIFT20 gene in adult mouse results
in loss of primary cilia and Shh signaling in the hippocampal stem cell population and
consequently in a reduced numbers of proliferating amplifying progenitors [98].

Recent studies indicate that mutations of hIFT20 are associated with numerous system-
related diseases, such as those of the nervous and respiratory systems [99]. The hIFT20
protein moves back and forth between the Golgi body and ciliated microtubules and
regulates the length of primary cilia [100–102]. It also promotes the organization of Golgi-
associated MTs and reorientation of the Golgi toward the direction of invasion in colorectal
cancer (CRC) cells, probably by regulating the growth dynamics [103].

3.1.4. Sterile Affecting Ciliogenesis (sac)

Mutations of this gene affect D. melanogaster spermatogenesis and results in male
sterility, a phenotype associated with aberrant cytokinesis, immotile flagella, and altered
localization of subcellular structures. The sac gene encodes a component of the flagellar
axoneme [104]. These observations are suggestive for a role of sac in ciliogenesis and
cytokinesis during spermatogenesis.

3.2. Other Genes Related to Mitotic Apparatus
3.2.1. CG10834

The protein encoded by this gene belongs to the LC7/roadblock dynein light chain (LC)
family of D. melanogaster [105]. Members of this family show two human orthologs: Dynein
Light Chain Roadblock Type 1 (DYNLRB1) and Type 2 (DYNLRB2). DYNLRB1 was first
identified in D. melanogaster during a genetic screen, in which roadblock mutants (i.e., roblz)
exhibited mitotic defects [106,107]. The CG10834 protein is predicted to enable dynein
intermediate chain-binding activity and to be active in centrosome. It may be also involved
in microtubule-based movement and participate to the cytoplasmic dynein complex [108].

3.2.2. Sarcolemma Associated Protein (Slmap)

It encodes a subunit of the evolutionary conserved Striatin-interacting Phosphatases
and Kinases, STRIPAK, a complex of Drosophila. This complex was found to be involved in
numerous cellular and developmental processes [109–112]. A possible role of the SLMAP
protein in cell division derives from studies carried out in mouse, where a novel isoform
of SLMAP was found to be a centrosomes component and its overexpression caused
lethality, whereas its loss affected cell cycle progression [113]. Interestingly, the human
SLMAP was found to be one of the causative genes of Brugada syndrome, a cardiac
channelopathy [114,115].

3.2.3. CG17528 (to Be Named Dmel-doublecortin)

The function of this gene still needs to be elucidated due to the lack of functional
studies in the literature. Our preliminary experiments using the GAL4-UAS system suggest
that in vivo the RNAi depletion of CG17528 results in a reduction of individual viability,
suggesting that this gene is essential for fly development (Prozzillo Y., Bizzochi G., and
Messina G., unpublished).

Additional information comes from bioinformatic analyses. Three orthologs of the
CG17528 gene are found in humans: DCLK1, DCLK2, and DCX. The corresponding encoded
proteins, DCLK1, DCLK2, and DCX, are members of the Microtubule-Associated Proteins
(MAPs) family [116–118] and show a significant sequence/domain conservation with the
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CG17528 protein (Figure 2A). When considering the entire aminoacid sequence, DCLK1 and
DCLK2 show about 45 and 42% sequence similarity with CG17528, respectively, and also
share three conserved functional domains showing significant levels of identity (Figure 2):
two N-terminal doublecortin (DCX) domains with microtubule binding activity [116] and
a C-terminal domain (STK) with protein kinase activity. The DCX protein, in addition
to the N-terminal doublecortin domains, carries a Ser/Pro-rich region, which interacts
with several protein kinases but lacks the C-terminal STK domain. The evolutionary
conservation of the doublecortin domains showed by the protein product of the CG17528
gene, strongly suggests that it encodes for a doublecortin-like protein; thus, in the absence
of a specific name, we decided to call it D. melanogaster doublecortin (D. mel-doublecortin).
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Figure 2. The CG17528 (d-doublecortin) protein. (A) Sequence conservation of CG17528 with
its human orthologs. Schematic representation of specific functional domains showing identity
levels. Pairwise sequence alignment and protein domain analyses were performed using EMBOSS
Needle (www.ebi.ac.uk/Tools/psa/emboss_needle/ (accessed on 4 August 2022)) and PROSITE
(www.expasy.org/resources/prosite (accessed on 28 July 2022)), respectively. (B) Expression and
localization of a HA-tagged human DCX fusion protein in larval brain cells of D. melanogaster.
Squashes preparation stained with DAPI (blue), anti-α-tubulin (green), and anti-HA (red). After
expression with the Tubulin>GAL4 driver, the HA signals were found at both the spindle poles and
fibers. The signals were absent in the control flies carrying the HA-tagged human DCX fusion gene,
in absence of the driver.

The DCLK1 and DCX genes are co-expressed in migrating neurons, suggesting that
they may act cooperatively to regulate microtubule dynamics in migrating neurons [117].

www.ebi.ac.uk/Tools/psa/emboss_needle/
www.expasy.org/resources/prosite
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Interestingly, the DCX protein physically interacts with the microtubule cytoskeleton and
its localization overlaps with that of microtubules in cultured cortical neurons [117].

Notably, the DCX gene, which map to the X chromosome, is the causative gene of
the X-linked lissencephaly 1 and subcortical band heterotopia [119]. The pathological
mutations map in DCX protein domains and impair its binding to microtubules leading
to a failure of neuroblasts migration from the proliferative ventricular zone toward the
pial surface.

Using the GAL4-UAS system, we expressed a HA-tagged human DCX fusion protein
in neural ganglia of D. melanogaster third instar larvae and found that it colocalizes with
α-tubulin at the mitotic spindle (Figure 2B, Prozzillo Y., Bizzochi G., and Messina G.,
unpublished). The results of these experiments could be also of importance for studies
aimed at identifying evolutionary conserved DCX interactors in the mitotic apparatus.

3.2.4. Chromator (Chro)

The Chro protein, localizes to polytene interbands and to the spindle and the cen-
trosomes during mitosis. It was originally identified in yeast two hybrid screening as an
interactor of the putative spindle matrix component, Skeletor. Its role in spindle function
and chromosome segregation has been confirmed by RNAi-mediated knockdown in S2
cells [120,121]. The Chro protein localization to polytene interbands is also suggestive for
a role in maintaining chromatin structure during interphase. This peculiar localization
is due to the interaction with the interband-specific zinc-finger protein Z4 [122]. An in-
volvement in chromatin organization was also supported by experiments showing that
the lack of Chro protein leads to disorganization and misalignment of band/interband
regions resulting in coiling and folding of the polytene chromosomes [121]. More recently,
ectopic tethering of the Chro protein to intercalary heterochromatin causes local chromatin
decondensation, formation of novel DNase I hypersensitive sites, and recruitment of sev-
eral “open chromatin” marks, while retaining late-replicating behavior, similarly to the
wild-type untargeted region [123]. Thus, Chro, like YETI, appears to be a multifaceted
protein. No human orthologs of Chromator have been described since this gene was found
to be invertebrate-specific.

3.2.5. Transforming Acidic Coiled-Coil Protein (tacc)

It encodes a centrosomal protein that helps to stabilize microtubules [124]. The tacc
gene is essential for proper spindle function in early D. melanogaster embryo. The TACC
protein seems to influence microtubules indirectly, primarily through its interaction with the
product of the mini spindles (msps) gene [125]. The TACC protein is phosphorylated by the
Aurora A kinase and this modification activates its ability to stabilize microtubules [126].
In humans, gene fusions of TACC1/TACC3 orthologs with FGFR1 were associated to
gliosarcomas and giant cells glioblastomas [127].

4. Functions Related to Kinase Activity and of Cell Cycle Regulation
4.1. Suppressor of Forked Gene (su(f))

Temperature-sensitive mutations of this gene display an increased number of metaphases
with overcondensed chromosomes and asymmetric or reduced mitotic spindles in. larval
brain and in imaginal discs suggesting a role in cell proliferation. The Su(f) protein is a
homolog of the 77-K subunit of human cleavage stimulation factor required for cleavage
of pre-mRNAs. In D. melanogaster, the Su(f) protein accumulates in mitotically active cells
during different developmental stages [128] and is required for proliferation of both somatic
and germ cells [129].

Mutations of the S. pombe ortholog Rna14 exhibit defects in cell cycle progression with
high level of septation, and the double mutant of rna14-11 and bub1 knockout exhibits
high degree of chromosome mis-segregation [130].
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The potential role of the su(f) protein in cell cycle progression could be indirect,
as suggested by its role in processing the 3′ end of mRNA required for progression
through metaphase [130].

4.2. Cyclin K (CycK)

It encodes a cyclin-homologous subunit that forms a complex with the transcriptional
kinase encoded by Cdk12 [131]. This complex phosphorylates the carboxy terminal domain
of the large subunit of RNA polymerase II and contributes to pre-mRNA processing,
transcription, and chromatin structure. Human CycK is a 70-kDa protein with a C-terminal
proline-rich region [132,133]. It associates with Cdk12 and Cdk13 in two separate complexes,
playing roles in cell cycle regulation as other cyclin-dependent kinases (CDKs) [134].

4.3. Rolled (rl)

It was one of the first genes associated with pericentric heterochromatin by genetic
analyses [135] and later was cytogenetically mapped to the region h41 of the deep hete-
rochromatin of the right arm of chromosome 2 [16].

The rl gene encodes a mitogen activated protein (MAP) kinase, the Drosophila or-
tholog of human mitogen-activated protein kinase 3 (MAPK3), a core component of the
RAS/MAPK pathway [136]. Null mutations of the rl gene are recessive lethal at early
larval stages [16]. In addition, they result in a reduced mitotic index in the larval central
nervous system, consistent with an interphase block to cell cycle progression, associated
with a low frequency of cells showing chromosome over-condensation in mitosis and
abnormal anaphase figures [136]. Moreover, loss-of-function mutations of rl impair the
ability to arrest in mitosis in the presence of the microtubule-destabilizing drug colchicine
and enhance the mutant phenotype of abnormal spindle (asp) gene, while rl gain-of-function
mutations suppress the asp phenotype [137]. The asp gene encodes a microtubule-binding
protein that associates with the spindle [138], and asp mutations result in abnormal arrays
of spindle microtubules in both meiosis and mitosis [139–141]. Furthermore, the somatic
activation of rolled downstream of EGFR is required to synchronize the mitotic divisions
and regulate the transition to meiosis [142].

A central role for rolled in the proper targeting of axons has been suggested based on
observations that rolled MAP kinase loss affects the axonal organization in both Drosophila
and zebrafish [143,144].

4.4. Haspin

The Haspin protein is a serine/threonine-protein kinase a highly conserved kinase
in eukaryotes [143–145]. Most of the findings on D. melanogaster Haspin gene came from
the work of Fresan et al. [127]. They found that the Haspin protein phosphorylates histone
H3T3 and is involved in sister chromatid cohesion during mitosis. The loss of Haspin
causes a decrease in adult longevity and fertility in flies, while, at the cellular level, it affects
the nuclear size and morphology and compromises the insulator activity in enhancer-
blocking assays. In accord, Haspin mutations are suppressor of position–effect variegation.
In conclusion, the Haspin protein may play roles in both genome organization of interphase
cells and in chromatin regulation in D. melanogaster [146].

In humans, in addition to histone H3T3 phosphorylation and chromatid cohesion [147],
the Haspin protein is involved in the proper recruitment of the Chromosomal Passen-
ger Complex (CPC) at the centromeric chromatin to activate Aurora B, thus allowing
kinetochore–microtubule attachments. The detection of the Haspin protein and its mRNA
in murine male germ cells was suggestive for a role of this kinase in cell cycle regulation
of haploid cells [145,148,149]. When ectopically expressed in HEK-293 cells, Haspin local-
izes to the nucleus, shows DNA-binding capacity, and led to reduced cell proliferation.
It was therefore suggested that Haspin could play a negative control of cell-cycle and
differentiation of haploid germ cells [148].
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4.5. Conundrum (conu)

Genetic analyses have shown that conu is not required for viability [150]. It encodes
a Rho GTPase activating protein (RhoGAP) that negatively regulates Rho1 activity at the
cell cortex via interaction with the product of Moesin (Moe), an ezrin, radixin, and moesin
(ERM) protein [150]. Consistent with its sequence similarity to other RhoGAP proteins, the
conu protein has GAP activity for Rho1 in vitro and negatively regulates Rho1 in vivo and
promotes cell proliferation in Drosophila epithelial tissues [150].

The mammalian ortholog of conu is ARHGAP18. The ARHGAP18 protein has a
GAP activity for RhoA, the human homologue of Drosophila Rho1, and is required in cell
shape, spreading, and migration control [151]. ARHGAP18 overexpression suppress cell
proliferation, migration, invasion, and tumor growth in gastric cancer [152].

4.6. Casein Kinase-II Alpha (CkIIα)

It encodes a protein of the casein kinases family defined by their preferential uti-
lization of caseins proteins as substrates. The alpha chain contains the catalytic site.
The involvement of CKIIa in cell progression was originally suggested by RNAi stud-
ies in S2 cells [153,154]. Later, the critical role of CKIIa in the cell cycle was shown by
Ducat et al. [155] in an effort to identify novel proteins important for microtubule assembly
in mitosis.

More recently, microarray and flow cytometry-based approaches identified CKIIa in
transcriptional networks controlling the cell cycle [156].

Finally, it has been recently suggested that the physical interaction of CKIIa with
the ribosomal protein RPL22 [157] may be relevant in the regulation of transposon activ-
ity in D. melanogaster [158,159], implying a role for CKIIa in the stability of the genome
during the cell cycle progression. CKIIa activity has been linked to behavioral disor-
ders since it regulates slgA, the homolog of human PRODH, in the brain, suggesting
its involvement in the generation of the phenotypes observed in Drosophila model for
neuropsychiatric disorders [160].

5. Concluding Remarks

Constitutive heterochromatin is an ubiquitous and quantitatively significant compo-
nent of eukaryotic genomes but it has been regarded for a long time merely as a “genomic
desert” of functions or “graveyard” for dead transposable elements.

Recently, the “dogma” of silent heterochromatin has been revisited, providing a new
interpretation of D. melanogaster constitutive heterochromatin in functional terms [6]. In
particular, in this model organism, due to the great progress achieved by genetic and
genomic analyses, hundreds of transcriptionally active genes have been identified in the
constitutive heterochromatin [6–15]. However, despite this, the function of most genes has
yet to be elucidated, and other genes may still remain undisclosed due to the gaps in the
assembly of the Drosophila heterochromatin genome sequence.

Here, we have focused our attention on heterochromatic protein-coding genes in-
volved in different steps of cell division, including chromatin/chromosome organization,
mitotic apparatus, and cell cycle regulation. Cell division is a fundamental event common
to most lifeforms. Thus, we think that presenting an overview of these genes will be also
useful for a wide range of researchers who are interested in elucidating the molecular path-
ways and mechanisms underlying proper execution of cell division and its dysfunctions,
which is relevant to both basic and applied research.

Interestingly, the heterochromatic genes under analysis are expressed during differ-
ent developmental stages and are evolutionary conserved, with most human orthologs
involved in genetic diseases. It is indeed already known that 75% of human genes involved
in genetic disease have a functional ortholog in D. melanogaster [161–163].

It follows that studying the genes described here in Drosophila or in other animal
models will also help to better characterize the corresponding human disease-causing
genes, their protein products, and corresponding interaction networks.
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The results of different studies showed that the present-day heterochromatin genes
of D. melanogaster arose through an evolutionary repositioning of ancestral gene clusters
located in the euchromatin of progenitor species [164]. Interestingly, the human orthologs of
the D. melanogaster genes studied here are found in euchromatin (Table 1), and this appears
to be a general rule. Thus, it is conceivable that during genome evolution these genes
maintained similar functions, being properly expressed independently of their genomic
locations, albeit some differences may exist in the regulation pattern during development
and differentiation. This can be an interesting aspect to be investigated in future studies on
Drosophila species.

In conclusion, multiple complementary approaches and experimental efforts are
required to get a more complete view on the coding genes harbored by D. melanogaster
constitutive heterochromatin and to elucidate their roles and regulatory requirements.
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