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Preface 
 

Brain is a complex network of billions of interconnected cells called neurons, communicating with each 

other sending electrochemical signals unceasingly. It is incomprehensible how each action or thought, 

voluntary or involuntary, can be traced back as the aftermath of millions of these electrochemical signals 

sent and received in specific groups of neurons in a few milliseconds.  

Hundreds of years of neuroscience research has led us to where we are today, some mysteries unraveled 

and some still inexplicable. One of them is the relationship between mind and brain. How are mental 

processes being translated to the firing activity of neurons? How do different brain areas partake in 

processing an idea, thought, or action? 

Out of the many facets of the mind-brain relationships, in this thesis, we will explore the neuronal 

correlates of a very specific cognitive process called Transitive Inference. Humans and many other 

animals have been shown to exhibit a capability of making a decision not just based on information 

acquired through direct experiences but also through linking the previously acquired knowledge and 

making a decision about something not experienced before. A classic example of such decision-making 

can be found in the question:  if John is older than Mary, and Mary is older than Jack, then who is elder, 

John or Jack? The answer to this question relies on the inferential capabilities requiring the person to 

retrieve the relationships learned beforehand, recombine and reorganize them to deduce a novel 

relationship whose knowledge had not been acquired directly. This ability to deduce is hypothesized to 

be achieved through the mechanism of flexibly manipulating the previously acquired information to 

make a decision, termed as inferential or relational reasoning. 

To this end, we analyzed the single-cell activity recorded from macaque prefrontal and premotor 

cortices while they performed a Transitive inference task. The prefrontal cortex is a mosaic of 

psychological faculties, one of the frontal areas responsible for cognitive control and executive 

functions. On the other hand, the premotor cortex is considered a control center for motor execution 

and preparation, likely transforming abstract plans in more concrete motor outputs. Interestingly, recent 

findings point to its role in more complex cognitive processes. The organization of this thesis is as 

follows. 

The Introduction presents an overview of Transitive Inference as an aspect of deductive reasoning, the 

experimental models to test it, various theories devised to support the underlying cognitive mechanisms. 

In particular, we will consider how decision making in this task is supported by referring to an organized 

mental schema. Furthermore, we briefly discuss the roles of prefrontal and premotor cortices in this 

kind of reasoning problem. 

Study1 investigates “Different Contribution of the Monkey Prefrontal and Premotor Dorsal Cortex in 

Decision Making during a Transitive Inference task”, where we explored the neuronal correlates of 
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these two areas during the manipulation of the supposed mental schema. Here we present a comparison 

of the roles these areas partake in target selectivity as an aspect of decision making in the transitive 

inference task. The findings from this study have been accepted to be published in Neuroscience.  

Study 2 presents the contribution of the dorsolateral prefrontal cortex to the learning and acquisition of 

the mental schema during a transitive inference task. In this study, we take a step back to study how the 

prefrontal activity encodes the acquired information from the learning to the test, hypothesized to 

support the building of the mental schema to be manipulated for taking decisions. The aim of this section 

is conceptualized as “Neuronal encoding of ranked items in primate prefrontal cortex during different 

phases of a transitive inference task”. 

Lastly, the Conclusion summarizes all the findings while pointing out some shortcomings, and a few 

future directions for the results presented in this work. 
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Introduction 

 

 

 
1.1 Transitive Inference 

 
1.1.1 Transitive Inference: an aspect of deductive reasoning 

The quest to explore how the brain functions during complex cognitive processes such as problem-

solving has led to several experimental paradigms (Funahashi, 2001; Gold and Shadlen, 2007; Jensen, 

2017; Zeithamova et al., 2019). Problem-solving based on deductive reasoning by highly intelligent 

species being one of them.  

Transitive Inference (TI) is one such problem, which has been considered one of the aspects of logical 

deductive reasoning (Vasconcelos, 2008; Lazareva et al., 2020). The following example can give a 

simple illustration of TI: “Meg is older than Jo and Jo is older than Amy”. Then the question, who is 

older between Meg and Amy can be quickly answered based on the preliminary relational information 

presented before. Although the information to answer this question wasn’t presented directly, it can be 

deduced indirectly using the information’s partial overlapping (relationship of Meg and Amy to Jo). 

This problem exemplifies a simple task that can be solved using TI, and the fact that humans are readily 

able to deduce this information is evidence of the TI abilities exhibited by them. TI can be described as 

a form of reasoning in which, given the preliminary information (the premises), the subject deduces a 

logical conclusion. 

An anthropological perspective regards TI as a hallmark of reasoning based on logical deduction in 

humans. In modern psychology, this task was first introduced by (Burt, 1911, 2011) in the early 19th 

century to evaluate the reasoning abilities of children. In 1928, swiss psychologist Jean Piaget explored 

the basic cognitive abilities of children using syllogisms as illustrated above. The various studies 

conducted by him (Piaget, 1930, 1955, 1970) have presumably precluded the children younger than 

around seven years of age from being able to form transitive inferences correctly. These studies theorize 

that only after the acquisition of logic is the child able to solve problems involving syllogistic 

reasoning.  

However, in 1971, a critically important study (Bryant and Trabasso, 1971) contradicted Piaget’s view 

by illustrating the inability to solve TI problems by younger children was attributed to the memory 

deficits rather than the deficits of logic. They stated, “Contrary to the conclusions of Piaget, young 

children can make transitive inferences if precautions are taken to prevent deficits of memory from 

being confused with inferential deficits,” which proved to be one of the seminal findings in 

developmental psychology.  
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This study found that four years old children are capable of making correct TI-based decisions during 

a semi-verbal instantiation of the TI task, given that they have clearly learned and memorized the 

premises. Hereafter, TI was started to be considered as a general ability to reason and to correctly 

manipulate the premises according to the rules of logic. The ability of humans to solve the syllogistic 

problems prior to the development of cognitive abilities pointed towards strong evidence of a simpler 

mechanism involved in TI than the ones acknowledged before. As a result, more studies have 

emphasized the mental model approach in relation to the TI task (Johnson et al., 1996; Acuna et al., 

2002b; Merritt and Terrace, 2011; Jensen et al., 2021). 

These new findings consequently paved the way to the scientific question, which was incongruous 

previously, “Are non-human animals correctly able to solve TI tasks?” This question was first 

addressed by McGonigle and Chalmers in 1971, where they were able to successfully demonstrate a TI 

task with squirrel monkeys. Consequently, many others have followed and studied the TI processes in 

rats (Dusek and Eichenbaum, 1997; Van Elzakker et al., 2003), chimpanzees (Gillan et al., 1981; 

Boysen et al., 1993), monkeys (Treichler and Van Tilburg, 1996; Brunamonti et al., 2014, 2016), 

pigeons (Weaver et al., 1997; Wynne, 1997), pinyon jays (Paz-y-Miño C et al., 2004), hooded crows 

(Lazareva et al., 2004) and fish (Grosenick et al., 2007) and chicks (Daisley et al., 2021).  

These studies are landmarks for establishing cognitive and neuronal models in non-human animals for 

understanding complex mechanisms involved in deductive reasoning in this form of decision-making. 

In many of the species these abilities are directly linked to the social hierarchy formation.  

1.1.2 The transitive inference task 

Experiments on Transitive inference have employed different versions of the TI task to study the 

behavioral and neuronal basis of deductive reasoning in humans and animals. However, most research 

aimed at studying TI in non-human animals is based on the n-term series task. This form of TI task 

design was originally developed for children (Bryant and Trabasso, 1971) and later modified to be 

implemented with non-human animals (McGonigle and Chalmers, 1977) into a non-verbal version. The 

simplest form of this task involves five different stimuli, and Figure 1.1 shows the example of stimuli 

pairs presented during the training and the test.  

 

 



 
 

5 

 

 

Figure 1.1. Illustration of an n-item series TI task schematic (n=5). Each letter represents a unique stimulus, 

paired with another stimulus to be presented simultaneously during training (left panel) and the test (right panel). 

The + and – sign in each of the presented pairs indicates the reinforced and the non-reinforced choice respectively 

in that particular pair. (adapted from Vasconcelos, 2008) 

 

In Figure 1.1, each pair represents the simultaneous comparisons of the stimuli, with the ones indicated 

with a “+” under them are being reinforced while the ones indicated with “– “sign are non-reinforced. 

Each letter in the task design represents a unique stimulus associated with it. Depending on the 

experimental model and species involved in the experiment, the stimuli are chosen to be visual or 

olfactory. The schematic of n-series items here shows a 5 item series task, with the overlapped 

information presented with the pairs comprising B, C and D; e.g., when presented with A, B is not 

reinforced, but with C, it is. The presentation of pairs within the training set seemingly creates a linear 

rank-ordered series represented as A>B>C>D>E. The pair B vs D accounts for a critical pair during the 

test, as these two items were never presented together during the training, and they were partially 

reinforced. The reinforcement history of both of them was 50%, i.e., they were reinforced during half 

of the presentations in training. The correct choice, i.e., stimulus B during the test phase, suggests that 

the subject could deduce the relationship using the TI strategy. One of the most critical aspects for 

testing TI using an n-series is the value of n, which cannot be less than 5, as the contemplated test pairs 

in an item series consisting of less than five items would always include an end-anchor item of the 

series, making it the choice discrimination uninformative of inferential reasoning.  

The training for this simplistic task design has been reported to be implemented using two strategies: 

Sequential and Intermixed designs (Vasconcelos, 2008). Sequential training is described by the 

procedure of training on one discrimination by itself until the performance criterion of 90% or above is 

achieved, and then the subsequent discrimination in the sequence is trained using the same criterion 

until all the discriminations are learned (Weaver et al., 1997; Benard and Giurfa, 2004). On the contrary, 

the Intermixed design follows the presentation of all the discriminations concurrently in an arbitrary 
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order, making the training time considerably longer (McGonigle and Chalmers, 1977; Boysen et al., 

1993; Wynne, 1997; Van Elzakker et al., 2003; Lazareva and Wasserman, 2006; Brunamonti et al., 

2011, 2016). Most studies have implemented the TI task training using intermixed training, with a 

preceding sequential training block concluded by a training block of concurrent presentation of all the 

training pairs.  

Some exceptions to an n-term series TI task design have been reported in a few studies (Paz-y-Miño C 

et al., 2004). In this unique study, the task design consisted of the pinyon jays subjected to a social 

interaction task, where the wild-caught birds were divided into two groups. After establishing the social 

dominance within the groups, each of the birds from both the groups observed two other birds interact 

over a peanut, one from its own group and one from the other group. The critical test allowed a social 

interaction between the observer and a member of the other group, observed previously by the observer, 

being dominant with the dominant member of its group. This experimental design tested the hypothesis 

if this highly social species can infer the social status using the strategy of transitivity by exhibiting a 

submissive behavior when tested for the critical social interaction. This study demonstrated that pinyon 

jays used TI in social settings and such cognitive capabilities are prevalent in a large number of social 

species. This task design can account for TI in social dominance in many species, except the ones where 

physical features can infer dominance. 

1.1.3 Transitive inference task: performance considerations 

As stated previously, one of the procedural restrictions to be considered in using an n-term series task 

design is the value of n, which cannot be chosen to be less than 5. A more extended series of items in 

the task design (>5) facilitates more number of transitive tests (i.e., the test pairs excluding the anchor 

items). Another possibility provided by a more extended series is the number of intervening terms in 

test comparisons, i.e., the terms between the items compared in the test pairs. For example, in a 6-term 

series task, A>B>C>D>E>F, the number of intervening terms between the transitive test pair B vs D is 

one (C), while in the pair B vs E, it is two (C and D). Numerous studies in humans and non-human 

animals have demonstrated that performance accuracies and reaction times are governed by the effect 

of the number of intervening terms. The difference in the number of intervening terms directly refers to 

the rank differences between the items of the test pairs and is termed as symbolic distance on the scale 

of linearly ordered series. 

Symbolic Distance Effect: The response accuracy during the test increases, and the reaction time 

decreases as the number of intervening items (symbolic distance) increases. This phenomenon is termed 

the Symbolic Distance effect (SDE). Among the numerous studies which have reported the observance 

of SDE in subject’s behavior, however, in some of them, the SDE is considered to be confounded by 

two primary concerns, the first-item effect and the different number of data points for each symbolic 

distance (Von Fersen et al., 1991; Wynne, 1997). Figure 1.2 shows the schematic of a test session after 

the training for a TI task using a seven-term series task. The first item effect refers to the observation 
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of higher performance accuracy for the pairs belonging to the same symbolic distance but closer to the 

always-reinforced end-anchor of the series. This confound can be taken care of by considering the mean 

accuracies across all the symbolic distances. Another concern is unequal data points for different 

symbolic distances; e.g., the more prolonged the distances would be; the fewer data points would 

contribute to the average. This problem can be evaded by only studying the SDE within a given distance 

from the always-reinforced item of the series (e.g., BD vs BE vs BF; Figure 1.2). 

 

Figure 1.2: Task schematic during the test session of a 7-term series TI task. The Xn on the x-axis represents 

the symbolic distance, and the pairs shaded in grey are the pairs characterizing true Transitive test pairs (adapted 

from Vasconcelos, 2008).  

 

Another behavioral effect accounting for the behavioral performance during a TI task is how accurately 

the subject learns the series? However, the ideal case would be to have a comparable, above chance 

level performance for every premise, but it is not the case most of the time. The performance accuracy 

follows a ‘U-shaped’ analogy, where the pairs containing the end anchors are solved with higher 

accuracy than the interior ones.  

Serial Position effect: This effect is exhibited as a typical retention function obtained in the immediate 

serial recalls is referred to as the serial position effect (Figure 1.3; (Bryant and Trabasso, 1971; 

Woocher et al., 1978).  

 

Figure 1.3: Serial Position curve. U-shaped performance curve during the training of adjacent pairs of a 5-term 

series TI task (adapted from Vasconcelos, 2008).  
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Together SDE and SPE have been suggested to be the evidence of integration of list items learned by 

humans and monkeys to form a linear representation of the list items (D’Amato and Colombo, 1990; 

Treichler and Van Tilburg, 1996; Merritt and Terrace, 2011; Brunamonti et al., 2016). 

1.1.4 Transitive inference models 

Among several lines of research proposing the plausible mental mechanisms involved in solving the TI 

task, some are based on cognitive models like the mental representations of the series items or the 

mental line. At the same time, most consider the models which are behaviorally explainable, like the 

reinforcement history and the relative frequency of the item occurrences.  

Cognitive models accredit the phenomenon of TI to problem-solving based on formal logic or the use 

of a mental model. In the context of human studies, this ability is ascribed to the arrangement of 

information as mental models or logic to solve these problems. According to Piaget’s view in the 19th 

century, transitive syllogisms are solved by coordinating the information acquired during the premise 

learning and logical rules based on the language. As stated in the previous section, Piaget’s was based 

on the idea that the children who had not reached the concrete operational stage (old enough to 

apprehend and use the rules of logic fully) were incapable of TI. However, this view was questioned, 

and the view on the logical mechanism to solve everyday problems involving TI changed in the 

following years. In humans, the possibility of the decisions based on an arrangement of information in 

the form of a mental model was instead proposed and studied (Trabasso and Riley, 1975; McGonigle 

and Chalmers, 1977; Sternberg, 1980; Acuna et al., 2002b). In particular, these studies have focussed 

on spatial paralogical models instead of relying on logical principles. This paralogical model assumes 

that the acquired knowledge on the premises learned independently during an n-term series task training 

and is integrated by the subject to form a series of mental representations or a spatial schema of 

information. When the subject is required to solve a TI problem, a decision is supported by the 

information that how far is the items in the presented test pairs located from the series end items on this 

spatial representation of the information. Hence, a correct TI decision is based on accessing this mental 

representation rather than using a formal logical deduction.  

The theories of spatial representation of premise information have also been accounted as a fundamental 

cognitive model in non-human animals. It is proposed that the animals integrate the premises to form 

an ordered series while solving a TI task. Most studies based on postulating this theory have reported 

the premise information to be integrated as a symbolic spatial representation. However, different studies 

have reported this integration at what stage this integration occurs. For instance, a model proposed by 

the study (Bryant and Trabasso, 1971) supports the idea that the subject forms independent 

representations of the premise pairs during the training, and these representations are integrated into a 

mental line only during the test phase. Contrarily, most spatial paralogical models favor the theory of 

the integration of information directly during the training (e.g. De Soto et al., 1965) 
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Aside from these theories, the fundamental questions still persist. How is this mental schema 

constructed? Moreover, how are these spatial representations lead to the signature performance effect? 

One explanation for these models is that the end anchor items of the series (always-reinforced or non-

reinforced) are located at the ends of the supposed mental line before all the other items. The other 

acquired premises (stimuli) are then ordered between these end-anchors as the training progresses. Once 

this line is formed, it is used to solve any discrimination during training or testing via a spatial search 

along the imaginary line. In addition to this, the way the mental line is constructed, i.e., inwardly, 

explains the SDE and SPE.  

The SDE is explained by the positions of representations of the stimuli in the series. The closer the 

stimuli would be in the series, the more similarity would be observed in the spatial representations, 

giving rise to more difficulty in discriminating the items. At the same time, the SPE is accounted for by 

the unambiguous nature of the end anchor items. Since the pairs including these items do not have an 

ambiguity of reinforcement, the accuracy of choosing the correct item is higher, while the pairs with 

non-end anchors have an ambiguous reinforcement history, resulting in a greater difficulty in making 

the correct choice. 

However, this argument explains the translation of the performance signatures from the mental 

representation; it does not accommodate the possibility of a sequential training, where the end anchors 

are cannot be placed first on the mental lines, and the last item of the series is presented at last. This 

type of training clearly violates the end-inward construction of the mental line, suggesting the 

integration of information during the test after acquiring individual premises during the training.  

1.2 Neuronal basis of Transitive Inference 

Many studies have explored the brain mechanisms and circuits underlying deductive reasoning and, in 

particular, the neural substrates of transitive inference. A transitive inference task is essentially a 

decision-making task. The choice decision relies on integrating past experiences characterized by 

overlapping features and using that learned information to make decisions about those indirectly related 

experiences. It represents the form of reasoning that humans and other species solve by internally 

manipulating spatially organized information rather than relying on formal logic for deducing the 

correct decision of the problem.  

Several human neuroimaging studies have identified the cortical regions activated during the 

experimental paradigms related to reasoning and internal knowledge formation. This domain of 

neuroimaging studies has employed various task designs to study neural processes underlying TI. For 

instance, (Acuna et al., 2002a) used a non-verbal 11-item ordered list TI task to train human subjects, 

and they found activations in bilateral PFC, pre-supplementary motor areas, insula, precuneus, and 

lateral posterior parietal cortex. Another study by (Heckers et al., 2004) found task-related activations 

in the bilateral frontal-parietal-temporal system, including the hippocampal cortical circuit. Other 

neuroimaging studies employing human paradigms using explicit verbal inference, like ‘George is 
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taller than Mike; Mike is taller than Lynn; George is taller than Lynn’ have reported the activations in 

bilateral parietal-frontal and bilateral temporal systems (Goel and Dolan, 2001; Knauff et al., 2003). A 

paradigm involving the transitive inferences based on the knowledge of previously learned information 

like familiar geographical locations invoked activation in the bilateral hippocampus, in addition to 

activations in parietal-frontal systems (Goel, 2004, 2007). These studies suggest that this aspect of 

reasoning involves large brain circuits functionally connected in a complex network. Figure 1.4a shows 

the overall network of the activated brain areas during a TI task (Goel and Dolan, 2001). Based on the 

content and context of the presented stimuli, these human neuroimaging studies suggest that the left-

lateralized frontal-temporal system processes familiar or conceptually coherent contexts of reasoning 

(Figure 1.4b), e.g., all apples are red, red fruits are nutritious; hence all the apples are nutritious. On the 

other hand, the processing of an unfamiliar or non-conceptual set of information, e.g., arbitrarily 

selected stimuli linked to a set of rules, A>B and B>C, hence A>C leads to activation of bilateral parietal 

visuospatial systems consisting of bilateral parietal lobes and dorsal PFC (Figure 1.4c; (Goel et al., 

2000).  

  

 

Figure 1.4 Network of activated brain regions during a transitive reasoning task in humans, a. The main 

effect of reasoning observed in the bilateral network including the occipital, temporal, parietal and frontal lobes 

and basal ganglia. b. Reasoning about a familiar context or conceptual information activates the left frontal 

temporal system. c. Bilateral activations parietal lobes and dorsal PFC during the reasoning task performed with 

a set of unfamiliar or non-contextual information. (adapted from Goel 2007). 
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Apart from these neuroimaging studies, the neurophysiological research in animal models has provided 

with the knowledge of cortical and hippocampal areas participating in the information accumulation 

and manipulation after retrieval during tasks involving reasoning (Dusek and Eichenbaum, 1997; 

DeVito et al., 2010; Pan et al., 2014; Falcone et al., 2016; Mione et al., 2020). These studies have 

highlighted the Prefrontal cortex to be responsible for manipulating the information during deductive 

reasoning and managing the mental schema by reflecting the behavioral effects of TI task in the single-

cell activity in the primate brain (Brunamonti et al., 2016). Likewise, the premotor cortex is reported to 

encode the task difficulties during the test phase of the TI task with non-human primates during the 

selection of the target item (Mione et al., 2020). Led by these findings, the following section reviews 

the role of Prefrontal and Premotor cortices during decision making in the context of deductive 

reasoning and transitive inference. 

1.2.1 Role of prefrontal cortex in deductive reasoning 

The prefrontal cortex has been proven to play a crucial role in higher cognitive functions like attention, 

working memory learning, and manipulating task variables. PFC is an elaborate neocortical area in the 

primate brain that sends and receives projections from virtually all the cortical sensory and motor 

systems and other neocortical areas, making it a fundamental cortical region participating in executive 

control. Damage to PFC has been reported to cause deficits in planning, judgment and decision making 

(Goldman-Rakic, 1988; Funahashi, 2001). An inability to perform all these functions was considered a 

decline in executive controls; however, the executive control cannot be explained by one single mental 

process. It is an umbrella term including adequate planning, judgment, decision making, reasoning, and 

monitoring external and internal states. Animals and patients with prefrontal lesions have been reported 

to show normal IQs and long-term memory functions. However, they exhibit a diminished capacity of 

insight and foresight, poor planning and judgment, and deficits in working memory (Stuss and Benson, 

1986; Funahashi, 2001). In the context of deductive reasoning during a transitive inference task, rule 

formation and episodic memory are some of the most important aspects. Various neurophysiological 

studies have accounted for the PFC activity during a spatial working memory task, such as the 

oculomotor delayed-response task has revealed that a large population of PFC neurons exhibit a delay 

period activity (Watanabe, 1986; Funahashi et al., 1989; Carlson et al., 1997). The neurons from 

dorsolateral PFC (DLPFC) primarily represent spatial information of visual cues during the delay period 

as a labeled line code. Different neurons code different spatial locations of the cues while the same 

neurons keep encoding the same visual cue repeatedly. These findings support the evidence that the 

DLPFC participates in episodic or working memory, and also it contains the complete memory map of 

the visual space, where the cues are presented at different locations (Funahashi et al., 1989). Similar 

studies using a delayed response task have reported delay period activity in PFC neurons exhibit the 

positional preference as well as the information regarding the saccade direction (Funahashi, 2001). 

These results indicate that the PFC neurons encode the task goals and features during a working memory 



 
 

12 

task (Funahashi, 2001). Considering the involvement of PFC in distinct cognitive mechanisms, the role 

of PFC in terms of working memory has been postulated as a working memory model (Figure 1.5).  

 

Figure 5: Model explaining the role of PFC working memory processes in executive control. The model 

emphasizes on the dynamic interactions among different processes and dynamic interactions between storage 

processes (adapted from Funahashi 2001) 

 

In addition to the role in working memory, the PFC has been studied to be involved in associative 

learning during a conditional visuomotor task. The findings suggest that PFC activity ideally represents 

the specific cue response conjunctions, signifying that PFC neurons can integrate diverse behaviorally 

relevant information (Asaad et al., 1998). Visual stimuli can be categorically represented by the lateral 

PFC (LPFC) neurons. (Freedman, 2001) has shown that the LPFC neurons encode the category 

information distinctly during a delayed match to a sample task. The stimuli used in their study were 

created using partially morphed images of two distinct categories blended using different proportions 

and systematically modified to vary the shape and a defined category boundary. At the same time, the 

neuronal populations during the sample presentation and the delay periods have been shown to 

distinguish between the categories but not within the categories (partially morphed images of two 

categories). Involvement of LPFC in reward prediction during the pair association tasks and 

manipulation of information during a variation of the delayed match to sample task have also been 

reported (Pan et al., 2008; La Camera et al., 2018). The DLPFC neuronal activity has also been shown 

to form associative representations, e.g., associations between pairs of pictures or colors and sounds, 

which is an indispensable mechanism in relational reasoning. These associative mechanisms in DLPFC 

were highlighted in the study (Diester and Nieder, 2007), where they showed that the DLPFC neurons 

signal the meaning of signs. They recorded single-cell activity from the DLPFC and posterior parietal 
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cortex of macaque monkeys trained to associate the Arabic numerals (symbols) with the numerosity of 

dot patterns within the range of one to four. The performances of the monkeys while associating the 

symbols to the numerosity exhibited typical patterns of analog magnitude judgments, such as the 

numerical distance and size effect.  

In addition to all these neurophysiological evidence of involvement of PFC in higher cognitive functions 

in various contexts, a few studies have studied the direct involvement of PFC in transitive inference. A 

lesion study (DeVito et al., 2010) reported that damage to the medial prefrontal cortex (mPFC) in mice 

leads to a delay in learning the series items during a TI task. However, a severe impairment was reported 

in making the transitive judgments, while the performance of the mice with mPFC damage for the non-

transitive probe trials was comparable to the control group. These results indicate an important role of 

PFC in learning overlapping associations and in deduction-based reasoning. Another study has deeply 

explored the neuronal modulation in PFC in a TI task (Brunamonti et al., 2016). The authors have 

reported that the DLPFC activity recorded from the macaque brain while they performed a 6-term series 

TI task was found to be modulated by the task-related variables like the SDE (symbolic distance effect) 

and the SPE (serial position effect). They further argue that the activity patterns in DLPFC during the 

test phase of the task reflect the task’s behavioral effects and indicate the manipulation of underlying 

mental schema constructed during the TI task leading to inferential deductions.  

1.2.2 Premotor cortex: involvement in reasoning based on deductions 

In the macaque brain, the premotor cortex (PMC) is a functionally distinct cortical field located between 

the primary motor area (M1) and the prefrontal areas. It corresponds to the Brodmann area 6, further 

divided into the ventral and dorsal premotor cortex (PMv and PMd). The premotor cortex is reported to 

be involved in motor preparation and especially in the synthesis of skilled motor sequences (Wise, 

1985). The PMC receives the inputs from the parietal lobes and indirectly from the DLPFC, which is 

believed to be transmitting them to the primary motor area, M1 (Wise et al., 1992; Fine and Hayden, 

2022). Many physiological studies have found that PMC is a heterogeneous frontal area containing 

distinct sub-regions (Barbas and Pandya, 1989). Previous studies have accounted the role of PMC in 

set-related activity in motor-preparation and signal the arm movement directions during the reaching 

tasks (Weinrich and Wise, 1982; Kurata and Wise, 1988; Caminiti et al., 1991). Different sub-areas in 

PMC partake differential roles in motor control; PMd is more important than PMv in conditional motor 

behavior and plays a role in preparation for forthcoming movements. In contrast, the PMv is more 

specialized for a role in the execution of visually guided movements (Kurata and Hoffman, 1994). First 

accounts of the role of PMd has been limited to the code the movement-related parameters such as the 

set related activity, the direction and the speed of the movement, action preparation by temporal 

structure in cortical activity and other aspects of motor preparation, and subsequently the execution 

(Weinrich and Wise, 1982; Kurata and Wise, 1988; Caminiti et al., 1991; Churchland, 2006).  
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Another role of PMd widely discussed in the literature is action planning. Action or motor planning 

refers to the preparation of the behavioral outcome when more than one option or piece of information 

is presented to the subject, and this information is to be integrated to plan the execution of an action. 

As an experimental model for action planning, a behavioral paradigm was developed by Hoshi and 

Tanji, which required the monkeys to learn the cue response relationship in a two cue task (Hoshi and 

Tanji, 2000). The first cue was the arm to be used and the second cue was the location of the target on 

the screen. Hence, making a decision required the monkeys to execute a reaching movement by 

remembering the information about the first cue, which was separated by a delay from the second cue. 

The authors finally reported different populations of neurons in PMd, encoding both the instructional 

cues and the integration of the information required to plan and execute the action. In another study, the 

experimental model of action planning was designed using multidirectional choices, and the correct 

target was to be chosen as a result of the consequent non-spatial cue (Cisek and Kalaska, 2005). The 

authors have reported that initially, the PMd neurons represented potential reach directions if one of 

them was near their preferred location and subsequently represented the direction of the selected reach 

target. They proposed that multiple reach options are initially specified in the PMd and then gradually 

eliminated in competition for overt execution, while the response choice was still represented by PMd 

activity. 

In addition to the response and visual target information during an action selection task, abstract rules 

during a task performance can also be represented by the PMd activity similar to PFC (Wallis and 

Miller, 2003). On the contrary to the assumption of a top-down flow of information from frontal areas 

to PMd, this study reports a prolonged and earlier representation of abstract task rules when compared 

to PFC. However, the information of the individual visual cues was only encoded by the PFC neurons. 

This opens the possibility of involvement of PMd in higher cognitive functions while representing the 

abstract variable, such as the task rules in addition to the behavioral response and the action execution.  

Further elaborating the role of PMd in a more demanding cognitive process, the recent study by (Mione 

et al., 2020) has illustrated the manipulation of the PMd neuronal activity during a TI task. The monkeys 

were trained using a 6-item series and then tested for the transitive problems as the potential targets 

(target-distractor pair) were presented on two distinct spatial locations on the screen. The neuronal 

activity was studied during the delay in the preferred spatial position of the neurons. The neuronal 

activity, in turn, reflected the difficulty in making the decisions as an effect of symbolic distance 

(SDist)1, i.e., the correct target was encoded by the neuronal population earlier if the decision was easy 

(higher SDist). In contrast, high latency of target selection was observed when the test pair was 

characterized by more difficult decisions (lower SDist). These results emphasize the SDE in the target 

selection latencies and the percentage of neurons participating in this selection. 

                                                      
1From here, while referring the published experimental works, the acronym SDsit refers to the Symbolic 
Distance Effect, referred elsewhere as SDE. 
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1.2.3 Acquisition and manipulation of the mental schema during TI 

It is evident from the previous sections that the transitive inference task is an experimental paradigm 

that can be used to study the mental and neuronal correlates of deductive reasoning in many species. 

The literature aimed at explaining the mechanisms of TI provides an insight into how the mental model 

is created and manipulated during task performance. A vast literature is available on the involvement 

of various neural circuits involved in TI (learning and test). However, from a neurophysiological 

perspective, limited research is conducted to address the role of more than one brain area in this type of 

task where the decision is guided through a mental model. With this pretext, the next section of this 

thesis presents a comparison of “Contribution of the Monkey Prefrontal and Premotor Dorsal Cortex 

in decision making during a Transitive Inference task”, which is Study 1 in chronological order. This 

study highlights the different timing of PFC and PMd in the terms of target selection while the monkey 

engages in decision making during the TI task. The decision making in this task is hypothesized to be 

driven by the already acquired mental schema.  Consequently, after exploring the interplay of these two 

areas reported to be involved in TI processes in the previous literature, we study the neuronal basis of 

learning during a TI task in the Prefrontal cortex neuronal activity and how does the PFC activity 

modulate as the animal traverses from learning to testing. This work is indexed as Study 2, 

titled “Neuronal encoding of ranked items in primate prefrontal cortex during different phases of a 

transitive inference task”. 
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Study 1. Different Contribution of the Monkey 

Prefrontal and Premotor Dorsal Cortex in Decision 

Making during Transitive Inference Task2 

 

 

 
Abstract 

Several studies have reported similar neural modulations between brain areas of the frontal cortex, such 

as the dorsolateral prefrontal (DLPFC) and the premotor dorsal (PMd) cortex, in tasks requiring 

encoding of the abstract rules for selecting the proper action. Here we compared the neuronal 

modulation of the DLPFC and PMd of monkeys trained to choose the higher rank from a pair of abstract 

images (target item), selected from an arbitrarily rank-ordered set (A>B>C>D>E>F) in the context of 

a transitive inference task. Once acquired by trial-and-error, the ordinal relationship between pairs of 

adjacent images (i.e., A>B; B>C; C>D; D>E; E>F), monkeys were tested in indicating the ordinal 

relation between items of the list not paired during learning. During these decisions, we observed that 

the choice accuracy increased and the reaction time decreased as the rank difference between the 

compared items enhanced. This result is in line with the hypothesis that after learning, the monkeys 

built an abstract mental representation of the ranked items, where rank comparisons correspond to the 

items’ position comparison on this representation. In both brain areas, we observed higher neuronal 

activity when the target item appeared in a specific location on the screen with respect to the opposite 

position and that this difference was particularly enhanced at lower degrees of difficulty. By comparing 

the time evolution of the activity of the two areas, we observed that the neural encoding of target item 

spatial position occurred earlier in the DLPFC than in the PMd. 

Keywords: transitive inference task, prefrontal cortex, premotor cortex, monkey, decision making 
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2.1 Introduction 

When reaching a target, visual information about the target properties and location must be transformed 

into spatially oriented motor acts. Cortical circuits behind these transformations embed neurons that 

show spatial preference, i.e., higher neuronal activity for a specific target position compared to others 

(Wise et al., 1992; Caminiti et al., 1998; Ferraina et al., 2001; Lebedev and Wise, 2001). When more 

potential targets are simultaneously presented, neurons with different spatial preferences compete for 

signaling the proper target location and reaching direction (Cisek and Kalaska, 2005). An open question 

is whether and how perceptual or cognitive factors affect this decision-making process and subtending 

neuronal activity. The manipulation of perceptual variables, such as visual discriminability, 

demonstrates that the difficulty in encoding the target position was reflected in less sharp spatial 

preference in different brain areas (Coallier and Kalaska, 2014; Coallier et al., 2015; Chandrasekaran 

et al., 2017). However, how cognitive variables influence spatial preference-related activity in brain 

areas involved in visuomotor transformation is still poorly investigated. It has been recently 

demonstrated that in the dorsal premotor cortex (PMd), a brain area with a key role in visuomotor 

transformation in primates (Johnson et al., 1996; Boussaoud et al., 1998), neurons express their spatial 

preference depending on the cognitive difficulty in selecting the target when simultaneously presented 

with a non-target (Mione et al., 2020). In the quoted work, by using a Transitive Inference (TI) protocol, 

monkeys were first required to create a mental representation of a rank-ordered set of visual items as 

A> B> C> D> E > F and then to use this representation to select the higher-ranking item (target item) 

within all possible pairs by performing a reaching movement. In different trials, the target item was 

randomly presented  on the left or the right side of a computer screen and paired with a non-target-item 

presented at the opposite spatial position. Within this experimental design, cognitive difficulty was 

modulated by pairing target and non-target items as a function of their proximity to the item in the 

mental representation of their ordinal position. The degree of proximity of pairs of items is quantified 

by their difference in rank and referred to as the symbolic distance (SDist) effect at the behavioral level. 

Depending on the symbolic distance, target selectivity for item B - for example -  was easier when 

paired with non-target item E (higher distance between items on the mental representation 

corresponding to SDist = 3) and more difficult when paired with non-target item C (lower distance 

between items on the mental representation corresponding to SDist = 1). The authors found that this 

cognitive difficulty affected the neural spatial preference (spatial selectivity) in PMd. 

Several neurophysiology studies have revealed comparable neural activation between the PMd and 

DLPFC while encoding a given task-relevant variable, thus suggesting an overlapping competence of 

the two brain areas (Cromer et al., 2011; Yamagata et al., 2012; Fine and Hayden, 2022). It is known 

that the prefrontal cortex can flexibly encode different task-relevant variables (Donahue and Lee, 2015; 

Fusi et al., 2016; Astrand et al., 2020), including the position of the target in oculomotor delayed visual 

search and delayed-response tasks (Iba and Sawaguchi, 2002). Here, we first asked if target position 
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selectivity of the DLPFC emerges during the decision process of a TI task, and then we tested for 

differences between the DLPFC and PMd. 

We observed that the spatial selectivity of both DLPFC and PMd neurons was modulated by cognitive 

difficulty in target selectivity. Importantly, the comparison between the time evolution of neuronal 

activity in the two brain areas revealed that the selection of target position occurred with different 

timings in the DLPFC and PMd. In this work, in line with previous studies (Cromer et al., 2011; 

Yamagata et al., 2012), we support the idea of a tight interplay between the lateral PFC and PMd in the 

target position encoding for action execution. 

2.2 Materials and Methods 

2.2.1 Subjects and Data Acquisition: 

Animals: Neuronal activity was recorded from the DLPFC and the PMd of three male rhesus monkeys 

(Macaca mulatta), weighing 5.50 kg (Monkey 1), 6.50 kg (Monkey 2), and 10.0 kg (Monkey 3) 

respectively, while performing a TI task. Monkey 1 and Monkey 2 were used to record the data from 

DLPFC as reported in (Brunamonti et al., 2016); Monkey 1 and a third monkey, Monkey 3 (Mione et 

al., 2020; Monkey 3 is referred as Monkey 2 in the referred article) were used for the PMd recording. 

DLPFC Recording: In Monkey 1 and Monkey 2, the cells in the dorsal area of the prefrontal cortex 

(DLPFC; Figure S1) were targeted, and the neural activity from these cells was recorded extracellularly 

using a five-channel multielectrode recording system (Thomas Recording, Germany) acutely and in 

different sessions. The recording chambers were surgically implanted in the left frontal lobe at 

stereotaxic coordinates: anterior-32 and lateral-19 in Monkey 1 and anterior-30 and lateral-18 in 

Monkey 2 along with head restraining devices (Brunamonti et al., 2016). At the end of the 

neurophysiological experiment, the location of the electrodes was confirmed by visual examination 

following the surgical opening of dura for the implantation of a chronic array in Monkey 1 (given the 

following recording from PMd neurons), while in Monkey 2, the electrodes’ location was confirmed 

using a structural MRI scan. 

PMd Recording: Neural activity was recorded extracellularly from the left PMd of Monkey 1 and 

Monkey 3 (Mione et al., 2020; Figure S1) using chronic electrode arrays (96-channels; Blackrock 

Microsystems, Salt Lake City, Utah). 

The surgical procedures in all three monkeys were performed under aseptic techniques while keeping 

the animal under general anesthesia (1-3% isloflurane-oxygen, to effect). 

The monkeys were housed and cared for following the European (Directive 2010/63/EU) and Italian 

(D.L. 26/2014) laws, regulating the use of nonhuman primates in scientific research. The Italian 

Ministry of Health approved the research protocol. Housing conditions and experimental procedures 

were in line with the Weatherall report (use of nonhuman primates in research). 
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Behavioral data recording and task implementation: The task was controlled using the Cortex Software 

package (https://nimh.nih.gov/) and administered by presenting the task stimuli on a touchscreen 

(MicroTouch, sampling rate of 200 Hz) connected to the computer through a serial port to detect the 

response. An RX6 TDT recording system (Tucker-Davis Technologies, Alachua, FL, USA) was 

employed during the DLPFC recording sessions, which was synchronized to the behavioral events to 

detect and record neuronal activity during each trial. During the PMd recording sessions, an RZ2 TDT 

system (Tucker-Davis Technologies, Alachua, FL, USA) was used, since a higher number of 

simultaneously recorded channels were dealt with. 

2.2.2 Test stimuli and task design 

For this study, at the beginning of every session, six stimulus images were randomly selected from a 

database of 80 abstract black and white images (16o X 16o visual angle, bitmaps) and arbitrarily ordered 

to form a ranked series (Figure 2.1A). To avert the familiarity of the stimulus/rank association, any of 

the stimuli were not repeated or assigned to the same rank for a significant number of consequent 

sessions (Brunamonti et al., 2014, 2016; Mione et al., 2020). The monkeys were trained to learn the 

relationship among all the items of this ranked series. 

Each experimental session (for both DLPFC and PMd neural recordings) comprised a learning phase, 

requiring the monkeys to learn the novel relationship between all the adjacent items (Figure 2.1B: 

SDist1) in the ranked series, and a test phase in which the monkeys were asked to infer the relationship 

between novel pairings of nonadjacent items (Figure 2.1B; SDists >1). The learning phase was 

accomplished by means of two different methods: 1) sequential learning and 2) a chained learning 

procedure, as reported in our previous works (Brunamonti et al., 2016; Mione et al., 2020). More 

specifically, in the sequential learning sessions, monkeys were required to progressively learn the 

reciprocal rank order of pairs of items adjacent in the sequence, while in the chained learning procedure, 

monkeys were required to link two lists of 3 rank-ordered items previously acquired by sequential 

learning. 

Sequential learning was implemented in two steps: learning phase 1 and learning phase 2. During 

learning phase 1, the monkeys were presented with the pairs comprising adjacent items sequentially, 

and they were required to identify the higher ranking item by trial and error in blocks of 15 (Monkey 1: 

DLPFC recording) or 20 (Monkey 2: DLPFC recording; and Monkey 1 and Monkey 3 PMd recording) 

trials. Each block was repeated until the monkey achieved a performance of at least 90% (DLPFC 

recording) or 80% (PMd recording) for the pair. Once the desired performance was reached for every 

pair in the series, learning phase 2 followed, where the previously experienced pairs were presented in 

a random order in larger blocks of trials, and a different criterion (> 60% correct trials) was used. 

In contrast, during the chained learning procedure, the six-item list was divided into two smaller three-

item lists (A>B>C and D>E>F). The rank order of the two three-item lists was learned independently 

by the sequential learning method in separate blocks until the monkeys achieved a criterion of at least 
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80% correct trials. The two lists were then linked by learning the association C>D in blocks of 20 trials. 

The chained learning procedure allowed us to study the manipulation of the ranked order of the series 

according to the newly acquired information of the linking pair C>D; hence, the rank of the items in the 

second series was redefined in the unified list, supporting the behavioral strategy of inferential 

reasoning. 

Both learning procedures allowed the monkeys to perform the test phase with a performance 

significantly above the chance level. We have previously reported that the performance in the test phase 

after the two different learning methods was comparable (Mione et al., 2020). 

For the DLPFC experiment, all the sessions were recorded with Monkey 1 and Monkey 2 using 

sequential learning only (see Brunamonti et al., 2016 for further details), whereas during the PMd 

recording, Monkey 1 and Monkey 3 were tested for 7 sessions each using different learning procedures: 

chained-list learning in 6 (Monkey 1) and 4 (Monkey 3) sessions and sequential learning in 1 (Monkey 

1) and 3 (Monkey 3) sessions (see Brunamonti et al., 2016; Mione et al., 2020 for further details). 

In the test phase, all the possible pairs of items were presented in a random order (Figure 2.1B; SDist1 

– SDist5). Each pair was presented at least 14 or 18 times during the DLPFC and PMd experiments, 

respectively, with an equal probability of the target item being presented on the left or the right position 

of the screen. 

The time course of each trial was identical for the learning phase and the test phase during all the 

recording sessions from the DLPFC and PMd (Figure 2.1C). At the beginning of each trial, a red dot 

(central target) was presented at the center of the screen, and the monkey had to respond within 5 s by 

pressing a button fixed on the monkey chair (DLPFC sessions) or by touching the red dot on the screen 

(PMd sessions; as depicted in Figure 1C) until the appearance of a pair of items on the screen. The 

monkey was required to maintain the touch (or the button pressed) for a random variable Delay period 

(600-1200 ms) after the Pair Onset until the red spot disappeared from the screen (Go Signal). The Go 

Signal instructed the monkeys to select (to reach) the higher-ranking item on the screen to obtain the 

reward. 
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Figure 2.1. Task design and Analysis Epochs: A. An example of a 6-item ranked series chosen at the beginning 

of the experiment. The letters under each symbol are used here for illustrative purposes only. B. All the possible 

combinations of pairs from the items of the ranked series and their symbolic distances (SDist) associated with 

each combination; target items represented in green and non-target in red, following the link of each symbol with 

a letter as in A. C. Time course of a single trial during each session. The epochs used for analysis of neuronal 

activity are highlighted (dark grey). 

2.2.3 Data Analysis 

Selection of DLPFC and PMd recording sessions: 

One of the goals of the present work is to compare the temporal evolution of the neuronal encoding of 

the target position between the DLPFC and PMd while performing a TI task. Since this comparison was 

performed by analyzing the neuronal activity recorded in different experimental sessions, we first 

assessed that differences in the time evolution of the brain activity between the two areas were 

independent of different levels of accuracy and response time of monkeys in different sessions. To this 

aim, we evaluated the mean performance and the RTs of the DLPFC and PMd sessions from all three 

animals and observed that sessions from both experiments were characterized by significantly different 

RTs (Table 2.1). Additionally, we observed that the RTs of monkey 1 from the DLPFC (296 ms) and 

the PMd (393 ms) sessions were significantly lower than those of monkey 2 in the DLPFC sessions 

(386 ms) and monkey 3 in the PMd sessions (437 ms). To account for these differences, in the following 

analyses, data obtained from Monkey 1 were analyzed independently from those obtained in recording 

sessions with Monkey 2 and Monkey 3. To compensate for the differences between RTs from DLPFC 

and PMd sessions in each comparison, we calculated a range of RTs from PMd sessions (μ ± 3σ, where 

μ is the mean and σ is the standard deviation). As there were only 7 sessions recorded from the PMd of 

Monkey 1 and Monkey 3, we selected all the sessions recorded from PMd and selected a subsample of 
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DLPFC sessions (14 sessions from Monkey 1 and 22 sessions from Monkey 2) conforming to the 

defined range of RTs. As a result of this selection, we obtained comparable RTs between Monkey 1 

DLPFC and PMd sessions (all ps>0.05), Monkey 2 DLPFC, and Monkey 3 PMd sessions (all ps> 0.05; 

see Table 2.1 for details). 

 

 DLPFC PMd Two- sample t test 

 All sessions; both 

animals 

All sessions; 

both animals 

 

Average accuracy (SD) 0.89 (0.07) 0.85 (0.06) t (105)= 1.89, p=0.06 

Average Reaction Time (SD) 346 (91) ms 411 (53) ms t (105)= -2.06, p=0.01 

 Monkey 1 

(selected sessions) 

Monkey 1 

(all sessions) 

 

Average accuracy (SD) 0.90 (0.05) 0.86 (0.08) t(19) =1.28, p=0.21 

Average Reaction Time (SD) 350 (75)  ms 386 (32) ms t(19) = -1.99, p=0.24 

 Monkey 2 

(selected sessions) 

Monkey 3 

(all sessions) 

 

Average accuracy (SD) 0.92 (0.10) 0.85 (0.09) t(1,27) = 1.77, p=0.08 

Average Reaction Time (SD) 433 (46) ms 437 (60) ms t(27) = -0.19, p=0.85 

Table 2.1: Comparative analysis of average behavior average behavior across PFC and PMd sessions, 

before and after selection of sessions; SD-Standard Deviation 

Behavioral correlates of TI at test: We first investigated whether the behavior during the selected 

sessions from DLPFC (Monkey 1: 14; Monkey 2: 22) and PMd (Monkey 1: 7; Monkey 2: 7) recordings 

was modulated by the SDist. This analysis was performed to assess whether the monkeys’ ability to 

select the target item over the simultaneously presented nontarget item depends upon the distance of 

the two items in their mental representation. To this aim, we tested whether the probability of selecting 

the correct item significantly increased and the corresponding RT significantly decreased with 

increasing symbolic distance. To further investigate if the monkeys employed the mental models to 

solve the task during the selected sessions, we calculated the performance and the normalized reaction 

time for the selected DLPFC (Monkey 1: 14 and Monkey 2: 22) and all the PMd (Monkey 1: 7 and 

Monkey 3: 7) sessions for each pair comparison. Using a linear regression, we analyzed if the 

performance and the RTs for individual item comparisons correlated with the SDist (Figure S2). 

Neuronal correlates of TI in the test: We studied 141 neurons from the DLPFC (Monkey 1: 56, Monkey 

2: 85) and 186 neurons (Monkey 1: 59, Monkey 3: 127) from the PMd obtained during the test phase 

of the TI task of the selected recording sessions. The data analysis was performed on trials in which the 
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monkey correctly selected the position of the target item. Error trials in which the monkey selected the 

non-target items were not considered in the following analyses. To address whether the activity of 

DLPFC neurons correlated with the difficulty in selecting the position of the target item, we first studied 

spatial preference for the target that emerged in the neuronal activity of DLPFC, and then we tested 

whether this preference was modulated by the SDist. As a further step of the analysis, we compared the 

pattern of neuronal activity in the DLPFC and PMd to evaluate how it differed between the two brain 

areas during different epochs of the task. In doing so, we studied the neuronal activity from each neuron 

during two task epochs, 1) the Delay epoch, lasting from 50 ms to 600 ms after the Pair Onset; 2) the 

Reaction Time epoch, lasting for 300 ms before the Movement Onset (Figure 2.1C).  For each neuron, 

we calculated the mean spike rate from the correct trials corresponding to each of the two target 

positions (left and right) at every SDist (SDist1-SDist5). Furthermore, we normalized the mean spike 

rate across different task conditions by applying a z score transformation. 

To quantify the degree of preference of each neuron for the left or right target position, we first 

represented the neuronal activity as a point in a 2-dimensional space having the neuronal activity for 

the right and left positions of the target as x and y coordinates, respectively (Figure 2.3, 2.4). Then, we 

computed the shortest distance (Dn) of each point from the equality line (representing a preference or a 

lack of preference for any of the two target positions) as follows: 

Dn=
𝑅𝑖𝑔ℎ𝑡𝑛−𝐿𝑒𝑓𝑡𝑛

√2
 

where Leftn and Rightn are the coordinates of the nth neuron in the defined space, representing the 

normalized mean neuronal activity during the trials with the target located in the left and right positions, 

respectively. Dn represents the difference between the neuronal activity between these two target 

positions in this graphical context (Figure 3B), where the negative values represent the neuronal 

preference for the left target position and positive values for the right target position. A high magnitude 

of Dn (positive or negative) indicates a greater degree of preference for one of the two positions of the 

target, which we further utilized to identify the neurons showing a significant target position preference. 

Across the population of neurons from each area, we calculated the maximum range of variation during 

the two analysis epochs: Dpopulation = (Dn_max – Dn_min). Then, we defined a neuron to be selective for the 

left or the right target position if the corresponding positive or negative value Dn was lower (Dn < 0) or 

higher (Dn > 0) than 10% of the total range of excursion (Dpopulation). To study how the preference for the 

target position was modulated by the task difficulty, we first identified the DLPFC and PMd neurons 

displaying a target position selectivity at SDist5 (the easier condition of the task), and then we observed 

how this selectivity changed across other SDists. We used a linear model fit to test whether the target 

position selectivity was significantly modulated by the rising SDist for each target position (left and 

right).      

We applied a Receiver Operating Characteristic (ROC) analysis on neuronal activity recorded during 

the selected sessions to study the time course of target position selectivity in DLPFC and PMd 
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((Thompson et al., 1996; Mione et al., 2020)). Once the preferred target position of each neuron at 

SDist5 was identified, we computed the area under the ROC curve (auROC) in consecutive time bins 

in a time epoch starting 500 ms before to 1300 ms after the pair onset using a moving time window of 

200 ms with a 20 ms step. Thus, for each time window of every neuron, we obtained a probabilistic 

measure of encoding the target when it was presented in the preferred position compared to the opposite 

position. We estimated the latency of target position discrimination by calculating the time when the 

auROC value crossed the threshold of 0.6 for 60 ms (3 consecutive time bins) in the trial time ranging 

from 80 ms to 1300 ms after the Pair Onset. We repeated this estimate for the comparisons at SDist 

lower than 5 to test if the latency of spatial discrimination changed in pairs comparisons of increasing 

degrees of difficulty in both, DLPFC and PMd. The auROC values were calculated for a balanced 

number of trials for all the task conditions, corresponding to the minimum number of correct trials 

across all the task conditions. On average, the number of trials for each position of the target was 17 

(SD=5) for DLPFC sessions and 31 (SD=16) for PMd sessions. 

To account for the differences in RT detected in Monkey 1 and the other two monkeys (see previous 

section), we performed latency estimates of target position selectivity in different groups of neurons: 1) 

neurons obtained by Monkey 1 in which the RT in DLPFC (47 neurons) and PMd (55 neurons) 

recording sessions was not significantly different; 2) neurons obtained by Monkey 2 in DLPFC (79 

neurons) sessions and neurons recorded in Monkey 3 PMd (119 neurons) sessions with RT were not 

significantly different. 

The latency of target position discrimination in neurons measured in Monkey 1 and those measured in 

Monkey 2 and Monkey 3 were analyzed separately. To test for the differences between latencies across 

different task conditions and different areas, we calculated the probability of observing latencies in the 

initial 75% of the distributions (< 900 ms). Consequently, we applied a Kolmogorov Smirnoff test to 

identify the interarea differences between these probabilities if any. At test was used to compare the 

interarea differences between the average latencies across the different SDists. To explore further how 

the neuronal populations of two areas encode target positions with varying difficulties, we computed 

the fraction of cells showing sustained coding for the target position (auROC>0.6 for more than 70% 

of the total time) as a function of SDist. The differences in the measures between the two areas were 

tested using a Kolmogorov Smirnoff test. All data analyses were performed using custom-made 

functions developed in MATLAB (The MathWorks) and Wolfram Mathematica. 

2.3 Results 

2.3.1 Choice difficulty modulates the ability to select the target position during the TI task 

The accuracy and RT for target position selection exhibited a significant SDist effect during the pair 

comparisons of the test phase in both the DLPFC and PMd recording sessions (Figure 2.2, Figure S2). 

A linear regression analysis revealed a significant increase in the proportion of correct to incorrect 
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choices and a decrease in the RT with the rising SDist (see table 2.2 for details on the regression 

analysis) for each monkey. These results are in line with the hypothesis that, at the end of the learning 

phase, ranked items are arranged on a mental line, and the difficulty in pair comparisons at test depends 

on the relative proximity of the items’ representation on this line (Brunamonti et al., 2011, 2016; Mione 

et al., 2020). 

DLPFC Sessions Monkey 1 Monkey 2 

Accuracy (left target) Pleft=-0.51(SDist)+0.76, p<0.05 Pleft=-0.037(SDist)+0.80, p<0.05 

Accuracy (right target) Pright= 0.50(SDist)+0.78, p<0.05 Pright=0.022(SDist)+0.89, p<0.05 

RT (left target) RTleft= 0.10(SDist)+0.32, p<0.05 RTleft= 0.22(SDist)+0.67, p<0.01 

RT (right target) RTright= -0.15(SDist)+0.42, p<0.05 RTright=-0.20(SDist)+0.60, p<0.01 

PMd Sessions Monkey 1 Monkey 3 

Accuracy (left target) Pleft=-0.056 (SDist)+0.74, p<0.01 Pleft=-0.075 (SDist)+0.66, p<0.01 

Accuracy (right target) Pright=0.058 (SDist)+0.71, p<0.01 Pright=0.067 (SDist)+0.69, p<0.01 

RT (left target) RTleft= 0.46 (SDist)+1.37, p<0.01 RTleft= 0.46(SDist)+1.38, p<0.01 

RT (right target) RTright= -0.49(SDist)+1.48, p<0.01 RTright= -0.42(SDist)+1.25, p<0.01 

Table 2.2. Linear Correlation Coefficients of SDist with behavior of each monkey during DLPFC and 

PMd recording sessions 
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Figure 2.2. Influence of SDist on behavioral performance: Proportion of correct choices (top plots) and 

corresponding z scored RT (bottom plots) for target selection at every SDist when the target was presented on the 

left and the right position of the screen during ‘N’ recording sessions from DLPFC (A: Monkey 1 and Monkey 2) 

and PMd (B: Monkey 1 and Monkey 3). Squares and diamonds correspond to the average performance and z 

scored RT, respectively; across the sessions, vertical bars represent the S.E.M. Linear regression fit across sessions 

is reported in Table 2. 

2.3.2 Populations of DLPFC and PMd neurons encode the task difficulty while differentiating 

between the target positions 

Here, we investigated whether the neuronal correlates of target position selectivity in the population of 

DLPFC (n=141) and PMd (n=186) neurons were modulated by the difficulty of the task. 

Figures 2.3 and 2.4 display the scatterplots of the normalized neuronal activity in response to the 

presentation of the target on the left (y-axis) or right (x-axis) position on the display for each SDist 

during the Delay (Figures 2.3A and 2.4A) and Reaction Time (Figures 2.3B and 2.4B) analysis epochs. 

By representing the activity of each neuron as a point in such 2-dimensional space, we quantified the 

degree of preference of the target position as the distance from the equality line. According to this 

criterion, a neuron was classified as spatially selective if its distance from the equality line exceeded 

10% of the total range of excursion of the distances calculated across all the neurons and SDists. DLPFC 
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neurons were considered target selective for the left or right position of the target during the Delay 

epoch, if their distance from the equality line was lower than -0.49 or higher than 0.49, respectively. 

The same criterion in the RT epoch identified -0.51 and 0.51 as the threshold for left and right target 

selectivity. Similarly, a PMd neuron was distinguished to be spatially selective if the magnitude of the 

distance from the diagonal exceeded ±0.54 and ±0.46 during the Delay and RT epochs, respectively. 

For each neuron, we first identified the left (blue dots) or right (red dots) preference for the target 

position, and then we tested whether the encoding of the target location changed as the difficulty in pair 

comparisons gradually increased, i.e., during the pairs comparisons from SDist5 to SDist1. 

We quantified the proportion of neurons exhibiting target position selectivity at each SDist. The colored 

density distributions on the top of diagonals in both Figures 3 and 4 show that the proportion of target 

position-selective neurons identified in the DLPFC and PMd during the Delay epoch gradually 

decreased as the difficulty in pair comparisons increased (see Figure 2.3D and 2.4D for details). At the 

same time, the proportion of neurons not showing a significant target position selectivity gradually 

increased from SDist5 to SDist1 (gray density distributions). This effect was not observed during the 

RT epoch in either area. 
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1.  

Figure 2.3. Encoding of target position in the population of DLPFC neurons 

A-B, Scatter plots comparing the normalized mean neuronal activity from 141 DLPFC neurons during the delay 

(A) and RT epochs (B), calculated across all the SDists when the target was presented in the left (y-axis) and right 

(x-axis) positions on the screen. Each dot in the plots represents a single neuron. The preference for the left (blue 
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dots) or right (red dots) target position of each neuron was detected as its distance (Dn) from the equality line 

(diagonal in each plot). Neurons with a distance lower than 10% of the total range from the equality line were 

labeled nonselective for the target position (gray dots). The density plots (dotted line) on the top of each diagonal 

show the distribution of the spatial selectivity of neurons at each SDist, while the colored density plots represent 

the corresponding subdistributions for the neurons showing selectivity for left, right, or no target preference. C. 

Mean distances of all the target position selective DLPFC neurons from the diagonal at each SDist for their 

preferred target positions (left or right), and their linear correlation with the SDist during the delay and RT epochs. 

They represent the strength of selectivity for left and right target positions exhibited collectively by      the neurons, 

and the regression lines indicate a modulation of target position selectivity during delay (left: p<0.01 and right: 

p<0.01) and the RT epochs (left: p<0.01 and right: p<0.01). Vertical bars indicate the Standard Error of Mean. D. 

Percentage of neurons showing directional target preferences at varying choice difficulties. 
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Figure 2.4: Encoding of target position in the population of PMd neurons 

A-B, Scatter plots comparing the normalized mean neuronal activity for two target positions in 186 PMd neurons 

at each SDist during the Delay(A) and RT(B) epochs. The modulation of the neuronal activity is represented with 

the same codes as in Figure 3. C. The plots show the average strength of target position selectivity by overall 
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target position selective PMd neurons at each SDist during the Delay and RT epochs for left and right target 

positions. It indicates a linear correlation between the strength of selectivity with the SDist during the Delay (left: 

p<0.01 and right: p<0.01), and a weaker modulation for the right target position and no modulation (p>0.05) for 

the left target position during RT by the SDist. D. Percentage of the PMd population showing target preferences 

at different SDists. 

 

We further investigated the strength of target position selectivity as a function of the degree of difficulty 

in comparing the pairs of items by quantifying the average distance from the equality line for each SDist 

(leftward and rightward shifting of the blue and red subdistributions in Figure 2.3 A-B and Figure 2.4 

A-B). By means of regression analysis, we detected that for both left and right target position selective 

neurons, the distance from the equality line significantly increased with the increasing SDist in DLPFC 

neurons during the delay and RT epochs for each of the target positions  (left and right: p<0.     01; 

Figure 2.3C). However, in the PMd neurons (Figure 4C), this effect was mainly detected only in the 

delay epoch (left and right: p<0.     01) but not in the RT epoch (p>0.05). We tested the robustness of 

these results by detecting that a comparable effect was still present in subpopulations of neurons selected 

using different criteria (Dn > 5% and Dn > 20%; supplementary Table S1 and corresponding 

description). 

Figure 2.5 (A and B) displays the pattern of activity from four representative neurons from DLPFC and 

PMd. Figure 2.5A shows the temporal evolution of the activity of two different DLPFC neurons during 

the time around the Pair Onset (upper panels) and the time around the Movement Onset respectively 

(lower panels).  In these neurons, the average neuronal activity during the corresponding epochs was 

higher for the right position of the target and increased with increasing SDist. Figure 2.5B displays a 

similar plot for two PMd neurons. The first of the PMd neurons (upper panels) displays a preference 

for the left position of the target during the Delay epoch that increased with the growth of SDist, while 

the second neuron (lower panels) displays a preference for the right position of the target during the 

time around the movement onset, but this preference was not modulated by the SDist. 
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Figure 2.5: Modulation of activity in DLPFC and PMd neurons during pairs comparisons: Time evolution 

of the neuronal activity of four different neurons recorded from DLPFC (Panel A) and PMd (Panel B), exhibiting 

a target position selectivity during the Delay epoch (from 100 ms before to 800 ms after the pair onset; first row) 

and Reaction Time epochs (from 600 ms before to 200 ms after the movement onset; bottom row), respectively. 

For comparisons at each SDist, the raster plots (upper part) and the corresponding spike density functions (lower 

part) are plotted for correct trials grouped according to left (blue) and right (red) target positions. The rightmost 

panels show the mean spike rate as a function of SDist, calculated during the Delay and RT analysis epochs 

(shaded area). Both the DLPFC example neurons exhibit a preference for the right target position (red) and an 

increasing difference in neuronal activity for the left and right target positions with increasing SDist. In contrast, 

only one of the PMd example neurons (top one) modulated its preference for the left position with the rising SDist. 
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We also observed that the DLPFC example neuron exhibiting a target position selectivity during the 

RT epoch (Figure 2.5A, bottom panel) displays a decreasing spike rate for the left target position at 

higher SDist (easier target discrimination). We further evaluated whether this effect was shown by more 

neurons in the DLPFC population using a linear regression analysis, and we observed that 21/141 

(14.8%) neurons studied by us in this area exhibited a negative correlation of neuronal activity with the 

SDist during at least one of the epochs. 

We further asked how many neurons contributed to the encoding of the same target position at each 

level of difficulty and whether the contribution of a single neuron emerged only for specific levels of 

difficulty. We observed that a small proportion of DLPFC neurons (8% of all the target position 

selective neurons) exhibited a preference for the same target position at every difficulty level of the 

task, while in the PMd, we quantified that 41% of all the target-selective neurons maintained the same 

directional preferences at every SDist. 

To summarize, easier pair comparisons in the TI task are related to the recruitment of a higher 

percentage of target position selective neurons than for more difficult comparisons, both in the DLPFC 

and PMd. In addition, the spatial selectivity was found to be stronger for easier pair comparisons. 

However, in PMd neurons, this trend occurred only during the Delay epoch; in the RT epoch, this 

selectivity was encoded with comparable strength at each level of difficulty. 

2.3.3 The selectivity of the target position occurs earlier in the DLPFC than in the PMd 

The previous results indicate that the target position selectivity in both the DLPFC and PMd was 

influenced by the task difficulty during different epochs of the task. Here, by using an ROC analysis, 

we explored the time evolution of spatial selectivity of the target position to determine the time at which 

it occurred in the selected DLPFC and PMd neurons. Figures 2.6A and B show the temporal evolution 

of the ROC in the time around the pair onset in 47 neurons recorded from the DLPFC and 55 neurons 

from the PMd of Monkey 1 obtained from the recording sessions with comparable RTs (see methods). 

Neurons in each plot were sorted according to the time of target position selectivity (see methods for 

more details). The top histograms on each plot illustrate the distribution of the neuronal estimation of 

target position selection latencies for each SDist and the corresponding average values. We tested 

whether the latency in the emergence of the spatial selectivity differed between the two brain areas and 

whether it depended on the task difficulty by quantifying the probabilities of observing these latencies 

during the initial 75% (<900 ms) of the distributions at each SDist. We observed a significantly higher 

probability of finding shorter spatial target selection latencies in the DLPFC than in the PMd (Figure 

2.6C - Kolmogorov Smirnoff test; p<0.05). 

Furthermore, we found that the average target position selectivity latency across all conditions was 

significantly longer in the PMd than in the DLPFC (DLPFC: 329.2 ms; PMd 403.5 ms; t test: t (398) = 

2.4079; p<0.05). The probability of observing shorter latencies was also found to be higher with the 

increase in SDist in both areas. We fitted these trends with a linear model and observed a goodness of 
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fit of 0.78 in DLPC and 0.91 in PMd. Additionally, we detected that the proportion of cells showing 

sustained encoding for the target position (Figure 2.6D) was greater in the PMd than in the DLPFC 

(Kolmogorov Smirnoff test; p<0.01). This effect did not depend on SDist (goodness of fit: DLPFC R2 

= 0.08; PMd R2 =0.53). 

 

 

Figure 2.6. Estimate of the time of target position selectivity in the DLPFC and PMd neuronal population 

from Monkey 1: A-B. Time course of target position selectivity, measured as auROC values between the two 

target positions, in the time from 500 ms before the pair onset to 1300 ms after it, at each SDist from Population 

of DLPFC neurons(A) and PMd neurons(B). In each plot, the neurons are aligned sorted to the achievement of 

the set criterion (crossing the threshold value of 0.6 for 60 consecutive ms), highlighted by the black circles in 

each row. The histograms on the top show the distribution of these onsets of discrimination between target 

positions over trial time, and their mean is represented by a vertical arrow for each SDist. C. The probability of 

observing the target selection onsets in the plots (A and B) before 900 ms after the pair onset (75% of the 
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distribution) as a function of SDist in DLPFC and PMd neurons. D. Proportion of total DLPFC and PMd cells in 

Monkey 1 significantly coding the target position for more than 70% of the total time. 

These results were confirmed by comparing the evolution of target position selectivity in the neurons 

recorded from the DLPFC of Monkey 2 (79 neurons) and PMd of Monkey 3 (119 neurons) during the 

recording sessions with comparable RT (Figure 2.7A and 7B) across the same trial epoch. We detected 

a higher probability of finding lower values of target position selection latencies for the DLPFC than 

for the PMd (figure 2.7C; Kolmogorov Smirnoff test, p<0.01), with a significant modulation by the 

SDist in both brain areas (goodness of fit: DLPFC R2 = 0.76; PMd R2 =0.82). Correspondingly, the 

mean latencies revealed a significantly earlier target position selectivity in the DLPFC than in the PMd 

(DLPFC: 338.0 ms; PMd 552.8 ms; t test: t (741) = 9.2980; p<0.05). The fraction of cells encoding the 

target position was significantly higher in PMd (figures 2.7D and 2.7E; Kolmogorov Smirnoff test, 

p<0.05) than in DLPFC in the current comparison, with no significant modulation by the SDist 

(goodness of fit: DLPFC R2 = 0.02; PMdR2 =0.49). 



 
 

36 

Figure 2.7. Estimate of the time of target position selectivity in neuronal populations from DLPFC of 

Monkey2 and PMd of Monkey3: Time course of target position selectivity, measured as auROC values between 

the two target positions, from the duration of 500ms before the pair onset to 1300 ms after it for each SDist for 

DLPFC neurons of Monkey2 (A) and PMd neurons of Monkey3 (B). C and D: Comparison of the probabilities 

of finding shorter target selection onsets and the fraction of cells exhibiting significant coding, respectively. 

 

Collectively, these results indicate that both the DLPFC and PMd contribute to target position 

discriminability decisions in inferential tasks. In both areas, the latencies and the durations of neuron 

involvement in spatial selectivity depended upon the degree of task difficulty in detecting the target. 

More importantly, the two areas partake their role in decision making with earlier involvement in target 

position coding of DLPFC neurons over PMd neurons. PMd neurons maintained the target position 

encoding for a longer time, with a higher fraction of cells exhibiting sustained coding. 
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2.4 Discussion 

Building mental models by linking isolated events or situations allows appropriate decision making or 

conceptualizing new knowledge by relying on linked information (Acuna et al., 2002b; Treichler et al., 

2003; Jensen, 2017). The spatial structures of these models have been studied in humans and animals 

(Constantinescu et al., 2016; Jensen et al., 2019; Sheahan et al., 2021) to assess how linked information 

could be mapped. Recently, it has also been demonstrated how spatially organized models allow the 

generalization of knowledge across contests (Sheahan et al., 2021) and which computational 

mechanisms subtend these functions (Brunamonti et al., 2016; Mione et al., 2020). The transitive 

inference task is one of the experimental approaches used to investigate behavioral and neuronal 

modulations during this form of decision-making in many brain areas, including frontoparietal and 

hippocampal regions (Acuna et al., 2002a; Zeithamova et al., 2012; Basile et al., 2020). The recent 

developments of TI tasks in monkey neurophysiological studies have allowed us to investigate the 

neuronal correlates of this function with improved spatial and temporal resolution (Brunamonti et al., 

2016; Mione et al., 2020; Munoz et al., 2020). A view on cortical neuronal processing subtending the 

manipulation of spatial models of linked information will provide data to validate or refine the 

biological reliability of the computations modeled by artificial neural networks (Sheahan et al., 2021). 

By relying on this approach, we addressed the question of how the difficulty in comparing pairs of items 

of a learned ranked list modulates the activity of single neurons of both the DLPFC and PMd, two brain 

areas of the circuit involved in transforming abstract goals in spatially oriented actions (Pezzulo and 

Cisek, 2016; Grafton and Volz, 2019). The occurrence of the symbolic distance effect in the test session 

supports our working hypothesis that the symbolic distance effect is consequent to the difficulty arising 

while making a decision between the rank of two items closely located on the mental representation 

(Brunamonti et al., 2016; Mione et al., 2020). The analysis of the neuronal data revealed that the degree 

of difficulty in pair comparisons influenced the spatial selectivity of both DLPFC and PMd neurons. 

These results confirm our previous observation that the symbolic distance effect modulates the spatial 

selectivity of PMd neurons (Mione et al., 2020) and document comparable effects in DLPFC neurons. 

More specifically, 89% of the DLPFC neurons showed a target position preference, responding with 

higher levels of activity when the target item was specifically presented at one side of the screen, at 

least in one of the epochs of the analysis. The proportion of DLPFC neurons preferring the left (45%) 

and right (54%) directions was comparable and in line with previous studies showing comparable 

proportions of DLPFC neurons recorded in monkeys performing a motion detection task, while the 

symbolic distance effect modulated the task difficulty (Lennert and Martinez-Trujillo, 2013). Similar 

proportions of neurons were observed in PMd (92% neurons selective for the target location; 48% left 

preference; 52% right preference). 

Within this population of target position-selective neurons, we observed an increasing number of 

neurons exhibiting a preference for the target position in both areas, as the degree of difficulty in 
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distinguishing between the target and the non-target decreased (Figure 2.3-2.4). However, the 

distribution of the target position-selective neurons in the two epochs of analysis, as well as their 

corresponding level of activation, was modulated differently in the two brain areas. More specifically, 

in the DLPFC, task difficulty modulated the magnitude of neuronal activity both at the time of target 

presentation and during the time preceding the onset of movement (Figure 2.3C), while in the PMd, 

task difficulty modulated the magnitude of neuronal activity only at the time immediately following 

pair presentation. For instance, although PMd neurons encoded the target position in the time preceding 

the movement onset, the magnitude of the encoding was not modulated by the task difficulty. These 

results reveal that the activity of PMd is more sensitive to the degree of difficulty of the task soon after 

the pair presentation but not in the later part of the trial and suggest that the neuronal activity of this 

area was modulated by the uncertainty in target selection only during the earlier part of the trial. In the 

time immediately preceding movement onset, the neuronal activity of PMd at lower symbolic distances 

was comparable to that observed at higher symbolic distances, indicating that the target was already 

selected at this time. 

We also observed differences in the DLPFC and PMd neuronal populations in the way they encoded 

the effect of task difficulty. In both brain areas, we observed an increasing proportion of neurons 

recruited for easier pair comparisons; however, while in PMd, approximately 40% of neurons were 

engaged in encoding the target position at different SDists, only 8% of DLPFC neurons kept encoding 

the same target position at each SDist. These results reveal that the neuronal population encoding the 

task difficulty was more heterogeneous in the DLPFC than in the PMd, suggesting a higher level of 

mixed selectivity properties of this area. Additionally, temporal analysis of target position encoding 

revealed earlier involvement of DLPFC neurons than PMd neurons. Furthermore, PMd cells, after an 

initial encoding for the target position that depended on task difficulty, kept encoding the target position 

with higher sustained activity than DLPFC. However, the fraction of cells exhibiting sustained activity 

was not modulated by task difficulty in either brain area (Figure 2.6D-2.7D). 

All these results are in line with the hypothesis that PMd is mainly involved in managing the task 

variables related to motor preparation, while DLPFC activity appears more dependent on abstract 

variables, such as task difficulty (Yamagata et al., 2012). 

However, when performing this last analysis, we needed to consider the different RTs between the three 

monkeys. This control led us to obtain two separate estimates of the target position encoding time in 

the DLPFC and PMd, one performed by using the brain activity of the same monkey and the other on 

the brain activity recorded from different monkeys. Even though in both cases we detected an earlier 

encoding of target position in DLPFC than in PMd, we observed a larger difference in the time lag in 

the estimate relaying on the sessions coming from two different monkeys (74.3 ms vs 214.7 ms), likely 

due to the individual differences. To obtain a reliable estimation of the target selection time of the two 

brain areas, a simultaneous recording from both the DLPFC and PMd would be preferred. A comparable 
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pattern of neuronal activity in the PFC and PMd evolving with different timings has been observed 

during the execution of tasks requiring the encoding of abstract rules in matching to sample or quantity 

comparison tasks (Wallis and Miller, 2003; Vallentin et al., 2012), goal selection in conditional 

visuomotor tasks (Yamagata et al., 2012) or visual categorization tasks (Cromer et al., 2011). In all 

these tasks, the PMd cortex was observed to use the task variables to form a motor plan during the time 

of movement onset and poorly engaged in the encoding task variable not linked to a motor decision 

(Cromer et al., 2011; Vallentin et al., 2012; Yamagata et al., 2012). 

In contrast, the DLPFC is a higher-order brain area involved in encoding abstract variables of decision, 

such as decision rules (Kim and Shadlen, 1999; Bongard and Nieder, 2010), strategy (Genovesio et al., 

2006), behavioral goals (Yamagata et al., 2012; Falcone et al., 2016) or the rank order representation of 

related information (Brunamonti et al., 2016). There is agreement that the DLPFC sends top-down 

information to downstream motor areas, such as the PMd, to convert the processing of these variables 

into motor decision commands (Barbas and Pandya, 1987, 1989; Luppino et al., 2003). According to 

this model, the involvement of the DLPFC in decision making should occur earlier than the PMd. 

However, an earlier involvement of the PMd compared to the DLPFC in encoding the characteristics 

of the task has also been found (Wallis and Miller, 2003; Cromer et al., 2011). These authors ascribe 

this early involvement to the familiarity of the monkeys with the task demands and stimuli, which would 

allow solving the task without the need for an abstract manipulation of the information, a competence 

supported by PFC (Muhammad et al., 2006). Our experimental protocol hinders such an eventuality. 

For instance, the monkeys were required to learn the ranked series from a set of never-experienced 

items randomly selected at the beginning of each experimental session. Thus, this protocol aimed to 

prevent familiarity with the task stimuli and increase the involvement of the PFC in driving the decision-

making-related activity of PMd. In contrast to the discussed results (Wallis and Miller, 2003; 

Muhammad et al., 2006; Cromer et al., 2011), the time course of the decision-making-related activity 

of the PFC and PMd observed here fits more with the proposed anatomo-functional model of the 

relationship between the two brain areas (Barbas and Pandya, 1987, 1989; Luppino et al., 2003) 

A further possible role played by the PFC is the orientation of spatial attention (Lennert and Martinez-

Trujillo, 2011; Messinger et al., 2021) before the formation of the proper motor plan. Symbolic distance 

has been observed to modulate the time and magnitude of target selection-related neuronal activity by 

decreasing the intensity of the neuronal response when the distracting item is easily distinguishable 

from the target (Lennert and Martinez-Trujillo, 2011). In our data, we observed such modulation of 

neuronal activity in the DLPFC only in a minority proportion of neurons (14.8%), suggesting that 

attentional allocation would also act with a different mechanism. 

Our results are in accordance with several lines of research on perceptual decision-making in monkeys, 

converging on the hypothesis that the resolution of the ambiguity of perceptual stimuli supports the 

selection between competitive motor actions simultaneously available (Cisek and Kalaska, 2005, 2010; 
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Klaes et al., 2011; Kubanek et al., 2013; Shushruth et al., 2018). Enacting this process, higher-order 

association areas continuously support the motor system on this decisional computation (Pezzulo and 

Cisek, 2016; Shushruth et al., 2018). Here, we show that this mechanism can be valid even when 

ambiguity relates to the representation of information stored in memory. 

In summary, the present results support the hypothesis of a hierarchal organization between brain areas 

in which the DLPFC encodes the variables for decision processes and PMd uses this information to 

transform abstract decisions in motor programs. 
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Study 2: Neuronal encoding of ranked items in 

primate prefrontal cortex during different phases of 

a transitive inference task 

 

 

 
Abstract 

Provided with the knowledge that A > B and B > C, individuals are able to infer that A > C. This ability 

to link the partially overlapping information and extend it to deduce a novel relationship is the basis of 

a Transitive Inference (TI) capability. Previous neurophysiological studies have described the pattern 

of neuronal activity from the Prefrontal Cortex being modulated while an abstract mental schema of 

ranked items is accessed during the inferential reasoning test phase. However, the question of how the 

neuronal encoding of the rank of individual items subtending this representation is shaped by the 

learning items’ reciprocal relationships is relatively unexplored since very few behavioral 

neurophysiology studies on animal models are available. In this study, we aimed to answer this question 

by investigating the single-neuron activity recorded from the dorsolateral prefrontal cortex of two 

monkeys that learned the rank-ordered series of items as (A>B>C>D>E>F) for solving TI problems. 

Each session was organized around two consequential Learning phases (learning and consolidation 

phase), where the relationship between the adjacent items (e.g., A>B, B>C) of the series were first 

learned separately and then consolidated by presenting them in an intermingled order. Finally, the same 

pairs, along with the inferential pairs, were presented in the test phase. In each of the experimental 

sessions, we first searched for a signature of the acquisition of the mental schema in the monkey's 

performance during Inference. This was behaviorally assessed by observing a symbolic distance effect 

in each session, which characterizes the comparisons between items with greater rank differences as 

easier than the ones with smaller rank differences, subtending a comparison between their positions on 

the mental schema. Then, we studied the single-cell neuronal activity recorded from DLPFC in these 

sessions while the monkeys fixated each item of the series to define a tuning curve of activity of these 

neurons during the Test Phase. The tuning activity from the same neurons was then studied during the 

two previous phases of learning of the task to explore if and how the acquisition of the items’ rank order 

modified the neuron's response. Our results emphasize the involvement of PFC neurons in the learning 

phases of the TI task by reorganization of rank-ordered activity.  
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3.1 Introduction 

Problem-solving based on deduction is one of the aspects of decision-making widely studied in humans 

and other species. The ability to make a decision on the basis of manipulation and reorganization of 

previously acquired knowledge or experiences is termed as reasoning, exhibited by highly encephalized 

species (Bryant and Trabasso, 1971; McGonigle and Chalmers, 1977; Acuna et al., 2002b). If A>B and 

B> C, then it can be inferred that A>C. This form of reasoning, when the information is internally 

manipulated to infer the solution to a novel problem, is called Transitive Inference (TI). TI task is an 

extensively employed paradigm to study inferential reasoning in humans and non-human animals on 

mental and neural level (Bryant and Trabasso, 1971; McGonigle and Chalmers, 1977; Dusek and 

Eichenbaum, 1997; Lazareva and Wasserman, 2006; Brunamonti et al., 2011, 2016; Merritt and 

Terrace, 2011; Mione et al., 2020). During a TI experiment, the subject is required to learn the 

preferences between two item pairs presented in a ranked order (A>B, B>C, C>D, D>E, E>F), with 

each presented pair containing one overlapping item with the previous pair. This learning inherently 

implies a ranked order A>B>C>D>E>F. Followed to the learning, the subjects are tested for the pairs 

which have never been presented to them (e.g., B-E), and they are required to make a choice for the 

higher ranking item by accessing the schema constructed previously. This process accounts for 

inferential reasoning in such tasks (Acuna et al., 2002b; Brunamonti et al., 2011; Gazes et al., 2012).  

A transitive inference task requires the subject to learn, memorize, encode, retrieve and manipulate the 

information to be able to make inference-based decisions throughout the experiment. Behaviorally, the 

encoding of the learned information in the form of a mental schema during a TI task is demonstrated 

through two main effects, the Symbolic distance effect (SDE) and the Serial position effect (SPE) 

(Acuna et al., 2002b; Merritt and Terrace, 2011; Gazes et al., 2012; Falcone et al., 2016). The SDE 

refers to the linear increase in performance as the rank difference between the compared items increases 

(e.g., the comparison between B vs E yields a higher performance as compared to B vs C), while the 

SPE is a significant decrease in performance as the test pairs (both learned and novel) include the middle 

items from the ranked series (e.g. the comparisons A vs B and E vs F elicit a higher performance as 

compared to C vs D).  

A vast number of studies have reported how this type of relational memory organization and logical 

reasoning is supported by a complex hippocampal-cortical network (Acuna et al., 2002a; Kumaran and 

Maguire, 2006; Zeithamova et al., 2012). Neuroimaging studies in humans have identified the cortical 

regions activated during tasks involving reasoning and information manipulation during TI (Acuna et 

al., 2002a; Goel, 2007; Kumaran et al., 2009). Among other cortical regions, these studies have 

highlighted the role of PFC during the TI task performance attributing it to the executive function of 

information integration and manipulation in addition to short-term memory (Kumaran et al., 2009). 

Damage to PFC has been shown to hinder the ability to perform a transitive inference (deductive 

reasoning; Waltz et al., 1999). In addition to the abundant evidence of major involvement of PFC while 
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solving a TI task in the aspects of reasoning and manipulation of information by accessing the mental 

schema, some studies have associated the lateral PFC to sequential and associative learning (Asaad et 

al., 1998; Reinert et al., 2021). In one of our previous works previous work (Brunamonti et al., 2016), 

we demonstrated how the activity from dorsolateral PFC (DLPFC) in monkeys is modulated by the 

behavioral effects (SDE and SPE) during a TI task performance. This study shows that the single-cell 

activity from DLPFC supports the construction and manipulation of a mental schema of ordered items 

during the testing phase of the TI task.  

However, the question of how this area aids in the acquisition of the information during the learning 

and how this information is encoded and reorganized from learning to testing during a TI task is still 

unexplored. To address this question, we recorded and analyzed extracellular activity from the DLPFC 

of two macaque monkeys while they learned a six-item rank-ordered series (learning phase) and solved 

the TI problems (test phase). The experimental design of the task is the same used in our previous 

studies (Brunamonti et al. 2016 and the task schematic for the DLPFC recordings of Sections 2). To 

study the encoding of the items comprising the ordered series, we studied the tuning activity of the 

neuronal activity in single cells during each phase and compared this neuronal encoding of items across 

different phases of the task while the monkeys chose the target item. We also explored if the rank of 

the series items is encoded by the neuronal population during each task phase and, if so, how it is 

manipulated from the learning to the test phase. 

3.2 Materials and Methods 

3.2.1 Subjects 

Two male rhesus macaque monkeys (Macaque mulatta), Monkey 1 and Monkey 2, weighing 5.50 kg 

and 6.50 kg respectively, were trained to learn and perform the TI task. The monkeys were surgically 

implanted with the recording chambers over the left frontal lobe at the stereotaxic coordinates: anterior- 

32, lateral-19 (Monkey1); anterior-30, lateral- 18 (Monkey 2). Extracellular neural activity (single unit) 

was recorded from both the monkeys targeting the dorsal portion of Prefrontal cortex (DLPFC) using a 

five-channel multielectrode system by Thomas Recording.  

All the surgical procedures and animal care considerations were the same as reported for the DLPFC 

recordings for Monkey1 and Monkey 2 in the previous study (Study 1), which were in accordance with 

European (Directive 210/63/EU) and Italian (DD.LL. 116/92 and 26/14) laws for non-human primate 

use for scientific research and were approved by the Italian Ministry of Health. 

3.2.2 Behavioral and neuronal data recording 

To perform the experiment, the monkeys were seated in a primate chair with their heads fixed. The task 

was administered by presenting the task stimuli on an interactive 17-inch touchscreen (MicroTouch, 

sampling rate: 200 Hz). The task stimuli and the behavioral responses were controlled using the 

freeware software package CORTEX (https://nimh.nih.gov). The eye-movements were monitored and 
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recorded using an infrared eye tracking device (Arrington Research) at a sampling rate of 220 Hz. The 

eye position signal and the neuronal activity were synchronized to the behavioral events and they were 

recorded using an RX6 TDT recording system (Tucker-Davis Technologies, Alachua, FL, USA) during 

each trial at a sampling rate of 24.4 kHz. 

In the current study, we analyzed the data from 13 experimental sessions, with 80 neurons recorded 

across the sessions of different TI task phases. 

3.2.3 Task Design 3 

To implement the transitive inference task for this study, six random stimulus images were selected 

from a database of 80 abstract black and white images (16o X 16o visual angle, bitmaps) at the beginning 

of each session and ordered arbitrarily to construct a ranked series of items. (Brunamonti et al., 2014, 

2016; Mione et al., 2020).  

The TI task in this study was implemented through three task phases, the learning phases 1 and 2, and 

the test phase for each experimental session. During the learning phases, the monkeys were required to 

learn the reciprocal relationship between the pair of items with adjacent ranks from the ranked series, 

while during the test phase, the monkeys experienced all the possible combinations of paired items from 

the series (adjacent and non-adjacent) and they were required to solve the problems using transitive 

inference (Figure 3.1A). 

The learning phase 1 was executed using a sequential learning approach, according to which the pairs 

with adjacent items in the ranked series were presented and trained in a sequential order to a 

performance criterion of 90% (Figure 3.1A).  

Once the monkey achieved the learning criteria, all the previously learned pairs of items were presented 

in a random order in larger blocks of trials (learning phase 2). This phase of learning is also termed as 

the consolidation phase, as all the acquired knowledge during the initial learning phase is consolidated 

to represent the ranked series of the items in the form of a mental schema.  

Following the learning phase 2, the test phase started, during which the monkeys were presented with 

the learned and the novel pairs of items. To solve the novel pairs, the monkeys had to infer the rank of 

the individual items learned by them during the learning phase (e.g., in the pair CE, it can be inferred 

that C is the target item as in the learned pair, CD, C is the reinforced item and in the consequent 

adjacent pair DE, D is the reinforced item). All the pairs were presented in a random order with at least 

14 trials for each pair.  

The sequence of the behavioral events for each trial was identical during all the three phases, starting 

with the appearance of a central target (Red circle with 13.5° × 13.5° visual angle) on the screen to 

which the monkey had to respond by pushing a button close to the chair within 5 seconds. 200 ms after 

the button was pushed, the pair of items was presented for a variable epoch (referred as delay; Figure 

                                                      
For more details on the experimental and training procedures, refer to Study 1, Section 2.2 
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3.1B). After the delay was over, the disappearance of the central target indicated the Go signal, and the 

monkey was required to choose the higher ranking item by touching it and holding it for 300-350 ms 

on the monitor. The duration of the delay period in each trial varied from 600 to 1200 ms, while it was 

0 ms during the learning phases. The eye-movements were monitored and recorded during the whole 

session. 

 

Figure 3.1. Example of an ordered ranked series and the task schematic 

A. An example of the ordered series of items and the corresponding Symbolic Distances used for the learning and 

the test phases of the task. B) The schematics of the events during a single trial of the task, followed by the 

illustration of horizontal eye position signal (bottom plot) for multiple trials during a single session. The eye 

position signal is represented from the Pair-onset to the target selection, while the fixations on the target (marked 

in red) were detected between the Go signal and the Item choice. It is to be noted that the eye movements here 

represent signals from multiple trials, owing to equal probability of the target item to be on the left or the right of 

the screen (the same item on the two spatial positions represent the probable positions of the target item) 

 

3.2.4 Behavior during test and learning 

One of the major behavioral controls during a transitive inference task is the formation of the mental 

schema at the end of the learning. We tested the presence of this mental schema through the behavior 

of the animals by testing their performance accuracy and looking for an effect of Symbolic Distance 

(SDist), defined as the rank difference between the pair items. The Symbolic distance effect explains 

the formation of a mental schema on the basis of higher probability of picking the correct target, if the 

distance between the rank of the presented items is higher (i.e. it’s easier to identify that B is the correct 

target item when presented with E as compared to when presented with C). We calculated the percentage 

of correctly performed trials over total for each SDist. 
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Following the analysis of behavior in regards with SDist during the test phase, we studied the encoding 

of each target item comprising the series in the behavior of the subjects throughout the session during 

the three different phases of the task. To do so, we categorized the trials on the basis of target item 

during the learning phases and calculated the choice accuracy for each of these subsets of trials. 

However, during the test phase, we selected the trials characterized only by SDist1 for direct comparison 

with the trials from learning phases, as only the pairs with adjacent item ranks (SDist1) were presented 

to the monkey during the learning. Then, we calculated the choice accuracy for each target item for the 

selected trials of the test phase test phase, and studied if any modulation occurred for the item position 

in the series. 

In addition to the performance accuracy, we analyzed the eye position data for each trial and isolated 

the time periods when the eye was fixated on one of the target items on the proximity (left or right) of 

the screen for every session. We identified the fixation duration starting from the target pair onset/go 

signal to the time when one of the target items was selected by the animal. The target was presented at 

left (-20̊) or right (+20)̊ visual angles in different trials, and we defined a fixation if the eye position 

signal remained on the target position for at least 100 ms (as illustrated in Figure 3.1B).  

3.2.5 Neuronal correlates of rank order during learning and test 

Once, we identified the fixation durations during each trial when the animal correctly selected the target 

item, we analyzed the neuronal activity during these fixation epochs to find a modulation in the neuronal 

activity from one task phase to another. Subsequently, we studied if the encoding of the items rank was 

maintained across the three phases of the task. In doing so, we divided the trials based on the target item 

in the presented pair and selected the epochs from the correct trials when the animal fixated on the 

correct item to analyze if the neuronal activity evoked by target items characterized by different ordinal 

ranks differed from each other.  

To test if neurons acquired a preference for a specific rank during learning, and if learning modified 

this preference, we ordered the magnitude of the neuronal activity of neurons from most preferred to 

the least preferred target item (referred as preferred rank order; Figure 3.3E) during each phase.  

Followed by this sorting of the neuronal activity according to the rank preference, we fit linear equation 

y=ax+c to the ordered data and checked if the activity was significantly correlated with the preferred 

rank order. To see how many neurons were significantly showing a preference for target item ranks, we 

quantified the number of neurons from each task phase showing a significant linear fitting with the 

preferred rank order. To test if the rank preference was modified by the learning, we tracked back the 

neuronal activity according to the ordered data in the test phase and test if a comparable trend was 

maintained in the two learning phases.  

Using this approach, we identified neurons that acquire the preference of a ranked item at the end of 

learning and neurons that modified it from learning to test. 
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3.2.6 Decoding analysis 

Using a Decoding analysis, we studied differences in the encoding of the item rank across the three 

different phases of the task on the population level in the studied sample of neurons. To implement this 

analysis, we used the Neural Decoding Toolbox as described by Meyers, 2013. We calculated the 

decoding accuracy using the maximum correlation coefficient classifier which makes a mean vector for 

every class by calculating the average of training data for every class defined for the analysis, and 

consequently the predictions are made if a test point belongs to a class on the basis of maximum 

correlation coefficient between the test point and the mean vectors for every class.  

To implement this analysis, we analyzed 36 out of 80 neurons, which were recorded from the sessions 

with at least 5 correct trials for each of the target item correctly selected independently during the 

learning, consolidation and the test phases. The classifier was trained with the data recorded during the 

learning, and tested for the consolidation and test phases, and then trained for consolidation and tested 

for learning and the test phase, and finally trained for test phase and tested for the learning and 

consolidation phases.  

To perform the analysis, we first converted the raster data to the binned format for a bin of 600 ms, 

starting 600 ms before the target selection. The binned data was therefore characterized by a N-

dimensional vector containing the mean spike rate labelled by corresponding conditions for each neuron 

during the defined bin. 

To validate the accuracy of classification process, we randomly selected and grouped the data points 

equal to the number of splits (k=5; in this case) for each condition from all the available data points for 

every neuron and created a pseudo-population of neurons. Subsequently, the data was normalized using 

z-score normalization in order to avoid the differences arising pertaining to the differences in magnitude 

of the spike rate across the neuronal population. Thereafter, we performed a k-fold cross validation 

approach, where we used all except one trials for each target rank and task phase were used to train the 

classifier and the remaining one trial was used for testing the same or the other two task phases. This 

procedure was repeated the number of time of split using a different test trial in every run. To increase 

the robustness of the decoding results, the decoding was run 50 times, randomly resampling the trials 

for training and test splits for the classifier. The decoding accuracy was then averaged over all the runs 

to calculate the classification accuracy.  

To further explore the encoding of the target rank after the learning had been achieved, we repeated the 

decoding analysis considering two subsets of trials from the test phase, characterized by the SDist1 and 

the higher symbolic distances. We trained the classifier using the trials from SDist1 from the test phase 

and then tested the classifier with the subset of trials characterized by SDIst1 and SDist2 to SDist5. This 

procedure was repeated with the subset of trails from SDist2 to SDist5 as the training set. 
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3.3 Results 

3.3.1 Behavioral performance during the test phase reflects formation of a mental schema 

In order to assess if the behavior of the animals during the test phase reflected the formation of a mental 

schema, we calculated the probability of selecting the correct item as a function of rank differences 

between the target and the non-target items in the presented pairs (SDist). We observed that the average 

performance of both the monkeys showed a modulation by the SDist (Figure 3.2A), i.e. the probability 

of selecting the target item was higher for the higher SDists. This effect was confirmed by a significant 

correlation between the performance and the SDist (p<0.01). 

3.3.2 Selection accuracy for different target items is shaped from Learning to Test phase 

We calculated the average choice accuracy for the each ranked item in the series, throughout the session 

and compared them across the different task phases. Figure 3.2B shows the mean performance accuracy 

when each item was presented as the target with a non-target item. As, observed by the behavior during 

the learning phase, the choice accuracy for each of the target items is high and does not depend upon 

the rank of the target item (Figure 3.2B, represented on the x-axis). However, when the session proceeds 

to the consolidation (learning phase 2), the probability for selecting the target item, when the target item 

is closer to the extremes of the series is found to be higher as compared to that for the middle items in 

the series. Subsequently, this reshaping of the choice accuracy for different rank items was prevalent 

even during the test phase. Here, during the test phase, we analyzed the data only for the SDist1, for a 

more congruent selection of conditions throughout the task phases. The performance for consolidation 

in test phases, in Figure 3.2B shows a significant difference across the target items (ps<0.05).   

Overall, results from the behavioral data analyzed by us are in line with the hypothesis that at the end 

of the learning procedure the related items are represented on an organized mental schema. 

 

Figure 3.2. Behavioral Correlates of the TI task 

A. Mean choice accuracies for both the monkeys (number of sessions=15) during the test phase of the task to 

select the correct target item as a function of Symbolic Distance. B. Mean Choice accuracies for selecting the 

target item for each pair presentation during Learning Phase, Consolidation Phase and the trials characterized by 

symbolic distance 1 (SDist1) during the Test Phase. 

A B 
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3.3.3 Encoding and reorganization of neuronal representation of items 

Next, we analyzed if items’ rank was encoded by the population of studied neurons and how does it 

change from learning to the test phase of the task. In doing so, we considered the activity from all the 

neurons in the sample (n=80) across all the three task phases.  

Figure 3.3 shows an example neuron of our population of cells exhibiting a significant tuning activity 

for the ranked list of items only during two phases of the task. Specifically, the neuronal activity is 

maximal for the item D and decreased for item ranks (Figure 3.3D; test phase). In the other two phases 

of the task the average activity of the neuron is different from the test phase, even though in 

consolidation the trend of the tuning activity is comparable to the test phase.  To evaluate if the tuning 

activity was kept across phases, we rank ordered the neuronal activity of the neuron in the test phase, 

then we used the same order for sorting the neuronal activity during the other two phases (Figure 3.3E, 

see methods for more details). A linear regression analysis revealed a significant modulation of the 

ordered activity (p<0.05) that was maintained in the consolidation (p<0.05) but not in the learning phase 

(p>0.05).  

 

Figure 3.3. Neuronal activity from an example neuron exhibiting an encoding for the item rank during the 

learning phase. A-C. The top panels show the raster plots for the spikes during each trial, with the activity aligned 

to the Choice Selection, followed by the spike density function for the mean spike rate corresponding to the trials 

for each target item during the learning (panel A), the consolidation (panel B) and the test (panel C) phase. The 

bottom plots show the horizontal eye positions signals, with the fixations on the target item marked in red. D. The 

mean spike rate calculated during the fixation epochs indicated for each trial, plotted as a function of the target 

item rank. The vertical bars represent SEM, E. The rearrangement of the neural activity according to the target 

rank preferences in test phase.  
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We repeated this analysis to assess during which phase of the task, the items’ rank modulated the 

neuronal activity and how it changed across the tasks phases. By using this method, we identified 

different subpopulations of neurons exhibiting an encoding of preferred rank order specifically only 

during one of the task phases, during two different phases or across all the task phases (Figure 3.4). We 

found that 75(91.25%) of the total population showed a significant correlation of the neuronal activity 

with the preferred rank order during at least one of the task phases. Out of this subpopulation, 27 

(38.7%), 5 (6.7%) and 12 (16%) cells showed a significant correlation only during the learning phase, 

the consolidation phase and the test phase respectively. Other group of cells identified by us showed an 

encoding during two of the task phases, i.e. learning and consolidation, learning and test and lastly the 

consolidation and test; as represented by the corresponding overlapping areas in the Figure 3.4. And 

lastly we found that 7(9.3%) cells show a significant encoding of the target rank during each of the task 

phases (intersection of the three circles in Figure 3.4).  

 

 

Figure 3.4. Different subpopulations tune for target rank during the TI task phases 

The respective percentages of neuronal sub-samples showing a significant linear regression with a preferred rank 

order during at least one of the task phases. 

 

To further test if the learning of the item relation across the three phases of the task modified the items 

neuronal encoding we performed a population analysis on three different groups of neurons: 1)  neurons 

displaying a significant linear modulation for the ordered neuronal activity during the learning phase, 

that was eventually lost in one or both the other phases (n=36; 45 %); 2)  neurons displaying a significant 

linear modulation for the ordered neuronal activity during the test phase, that was eventually lost in one 

or both the other phases (n=30; 37.5 %); 3)  neurons displaying the same encoding of the target ranks 

across all the three phases (n=9; 11.25%). 

Figure 3.5 displays that successive occurrence of the three phases of the task modified the neuronal 

encoding of the items’ set by modifying the initial response tuning of the cells (Figure 3.5A) or by 
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shaping the response of the neurons at the end of the learning (Figure 3.5 B). Only in a smaller (~11 %) 

population of neurons did not change the way the items’ set modulated the neuronal activity cross the 

three phases (Figure 3.5 C). Likely this population of neurons kept encoding features of the stimuli that 

were constant across the task phase as pictorial variables, rather than the items rank order acquired at 

the end of learning.  

 

 

 

Figure 3.5: Mean spike rate from the subpopulations of cells showing an encoding for the preferred rank 

order during different task phases. 

A. Normalized mean spike rate from the subpopulation encoding the items’ rank during the Learning Phase 

(n=36). The activity of this group of neurons followed a significant linear trend during the learning phase (p<0.05) 

but not in the other phases (P>0.05) B. during the Test phase (n=30). The activity of this group of neurons followed 

a significant linear trend during the test phase (p<0.05) but not in the other phases (P>0.05) and C. showing a 

similar encoding during all the three phases (n=9). The activity of this group of neurons was followed a significant 

linear trend in all the phases of the task (p<0.05); vertical bars represent the SEM. 

3.3.4 Neuronal population encodes the target rank differently during different task phases 

To have a deeper insight into the differences exhibited by the neurons at a population level while they 

encode the target rank at different phases of the task from learning of the ranked series to solving the 

novel problems during the test phase, we performed a decoding analysis using a maximum correlation 

coefficient classifier (refer to material and methods for further details). This analysis provided us with 

a classification accuracy calculated on the basis of the spiking patterns for the studied population, to 

A B 

C 



 
 

52 

identify the rank of the target item when the classifier was trained in one of the task phases and tested 

in the same task phase and the other two task phases. Successively, the classifier was trained for each 

of the task phases and tested in the similar manner. From the above analysis, we concluded that the 

classification accuracy is the highest when the classifier is trained and tested in the same block to predict 

the target item rank. Each plot in the Figure 3.6A shows the average classification accuracy(percentage) 

when the classifier was trained for one of the task phases and tested with all the three phases of the task 

(test block: represented on the x-axis). We found that, when the classifier was trained with the learning 

phase, and tested with consolidation and test phase, the classifier performed significantly above the 

chance level (p<0.01) with the greatest level of accuracy within the same block. The classification 

accuracy was higher than chance level, when consolidation phase was used as the test block, but still 

significantly lower (p<0.001) than the classification accuracy obtained as a result of training and testing 

performed within the learning phase. However, when the classifier was tested with the Test phase of 

the task, the performance of the classifier was close to the chance level and significantly lower than the 

classification accuracy of within block testing (p<0.001). A similar pattern of the performance of the 

classifier was observed when the classifier was trained with the consolidation phase. Significantly 

higher classification accuracy was obtained for the testing within the same block when compared with 

the testing with learning phase (p<0.001) and the test phase (p<0.001). On the contrary, when the 

classifier was trained with the test phase, the classification accuracy when tested within the same phase 

was significantly higher (p<0.001) as compared to the performance of the classifier when tested with 

the learning and consolidation phases. The classifier exhibited a below chance level performance in this 

case when the training was performed with the test phase and the testing with the two learning phases.  

Subsequently, using the same population of the neurons, used for the above analysis, we repeated the 

decoding procedure to compare the spiking activity within the test phase with a different subset of trials 

from the same task phase. We compared the spiking pattern of the trials from the learned pairs (SDist1) 

from the learning phase to the trials characterized by the novel pairs during the test phase (SDist 2 to 

5). Using this analysis, we observed that once the rank is acquired, the classifier is able to predict the 

item rank in any condition of the task.  

 Figure 3.6B shows the plots when the classifier was trained with the trials characterized by SDist1 and 

tested within the same task conditions (SDist1) and then tested with different task conditions (SDist>1). 

The classification accuracy obtained by both the testing sets was significantly similar (p=0.48). Similar 

results were found when the classifier was trained with the trials from SDist>1, revealing significantly 

similar classification accuracies (p=0.85). The classifier in all these comparisons was able to efficiently 

predict the rank of the target item irrespective of the item (non-target) presented alongside, confirmed 

by the above chance classification accuracies in all the comparisons. The above results indicate that the 

rank of the target items is encoded by the neuronal population in each of the task phases, however the 
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same encoding cannot be mapped when looking at the successive phases. Additionally, it suggests, once 

the learning is achieved, the encoding of the target items is maintained during the test phase of the task. 

 

 

 

Figure 3.6. Classification accuracies for decoding of the target rank during different task phases 

A. The classification accuracies of the classifier for predicting the target item rank when the classifier was trained 

with the trials from Learning phase (left most plot), Consolidation phase (middle plot) and the Test phase (SDist1; 

rightmost plot). The x-axis labels represent the test position of the classifier (i.e. Le- Learning, Cons- 

Consolidation and TP- SDist1 of the Test Phase). The horizontal line represents the chance level and the vertical 

bars indicate the SEM. B. Classification accuracies to identify the target rank calculated as a result of the training 

and testing the classifier with different task conditions within the Test phase. Learned pairs (SDist1) and the novel 

pairs (SDist>1). 
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3.4 Discussion 

The learning of new information, encoding it in the memory and inferential reasoning relying on the 

information indirectly provided during the learning is one of the remarkable cognitive capability of 

humans and many other species. We studied the neuronal correlates of the encoding of information 

from learning to testing using an experimental design involving a TI task, where the monkeys had to 

learn a novel six-item rank ordered series during each session (learning phases) and deduce novel 

relationships between paired items not experienced previously (test phase). We recorded and analyzed 

the neuronal activity from the DLPFC of two monkeys while they learned the ordered series and 

performed choice based decisions by selecting the higher ranking item during a TI task. The results 

from our study indicate that the DLPFC neurons change the neuronal encoding for the items rank order 

during the different phases of the task, likely reshaping it in function of the acquired ordinal relation 

between them. 

Previous studies have demonstrated that the monkeys arrange the information in a spatially organized 

mental schema and it is accessed and manipulated while solving the inferential problems soon after the 

learning (Merrit and Terrace, 2011; Brunamonti et al 2016; Mione et al 2020). In line with these 

findings, the behavioral performance from our analysis revealed that the choice accuracy during the test 

phase of the experiment was directly correlated with the Symbolic Distance, implying the organization 

of the overlapping relational information as a mental schema.  

Furthermore, we observed that the performance related to each target item in the presented pairs was 

significantly different across the task phases. However, during the learning phase, the performance was 

not tuned to the rank order of the items. During this phase, each item pair was presented in a sequential 

order, and the monkey learned the correct target by trial and error which did not necessitate the use of 

rank order (Acuna et al. 2002b).  The learning phase was characterized by the acquiring the relational 

rules when novel overlapping information was first experienced by the monkeys. However, during the 

consolidation phase, soon after the hierarchy of the series items was learned by the monkeys, the 

performance was tuned by the ranked order of the target items i.e. the pairs with extreme series items 

as target or non-target elicited higher performance than the pairs with middle series items. This effect 

of Serial position of the target items has been reported by (Merritt and Terrace, 2011), where a SPE has 

been observed in the performance of the monkeys during the training. However, the effect reported by 

them is the performance observed during two consecutive training blocks, which by design is similar to 

the learning and consolidation phases in our task design. We observed a similar tuning of the 

performance during the test phase, with comparisons between adjacent series items. These results along 

with the SDE observed during the test phase indicate the formation of a mental schema right after the 

learning phase. 

The role of PFC in solving TI problems and relational reasoning is evident from the previous studies 

(Waltz et al., 1999; Acuna et al., 2002a; Brunamonti et al., 2016; Spalding et al., 2018). Although there 
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are very few animal studies which have explored the importance of PFC during the acquisition of the 

mental schema. (DeVito et al., 2010) have found that a damage to ventro medial PFC hinders the 

animal’s ability to acquire the series of overlapping items (odors in this case) and a major deficit in 

relation reasoning. These results have shed light on the importance of PFC, not just while performing 

the transitive problems, but also while forming the mental schema. In our study, we observed that a 

large proportion of the studied DLPFC neurons encodes the target item ranks even during the learning 

phase of the task. These results can signal the involvement of DLPFC at this stage of the task in learning 

new associations in a serial order (Asaad et al., 1998; Kumaran and Maguire, 2006). 

By the analysis of DLPFC neuronal activity during the visual attention epochs in the learning phase, 

the intermediate consolidation phase and the test phase, we found that a huge subpopulation ~92% of 

the studied sample exhibited a target rank encoding during at least one of the three phases, with only 

11% of these neurons exhibited the same target preferences after learning. The majority of the 

population displays a different encoding of the target rank throughout the task phases. A plausible 

argument to this observation can be given by the role of these neurons in identifying the individual item 

(stimulus picture), rather than the relational hierarchy associated with the series items, as reported in a 

previous study, where the authors have reported a perceptual bias in the dorsal PFC neuronal activity 

(Wallis and Miller, 2003). 

We compared this encoding across the phases while monkeys made a choice from the learned pairs of 

the items (SDist1). These results are in line with the hypothesis that the overlapping information of the 

relationships between the adjacent pairs of items is reorganized and manipulated as mental schema is 

formed and PFC partakes in integration of context based information (Acuna et al., 2002a; Watanabe 

and Sakagami, 2007; Zeithamova et al., 2012).  

The previous studies on TI in animals have reported a modulation of PFC activity with the symbolic 

distance which is a signature if the task difficulty in this experimental paradigm (Vallentin and Nieder, 

2008; Brunamonti et al., 2016). In addition to the modulation by task difficulty during the mental 

schema retrieval in an inferential reasoning task, PFC has been widely reported to be involved in the 

short term memory storage (Funahashi, 2006) and encoding of abstract variables during various kinds 

of decision making like rule encoding (Bongard and Nieder, 2010; La Camera et al., 2018), category 

learning (Pan et al., 2014), abstract response strategy (Genovesio et al., 2006) and behavioral goals 

(Yamagata et al., 2012; Falcone et al., 2016). These studies place the PFC in a broader spectrum of 

learning based functions during a TI task.  

The results at a population level also confirm that the target rank is encoded by the DLPFC population 

across the three different phases, but the way the ranks of the target items are encoded are different for 

each task phase when looked at the neuronal activity patterns. However, during the test phase, when the 

target encoding is compared between the learned pairs and the test pairs, no significant differences were 

observed. These inter-phase differences and similar encoding within the test phase, even when target 
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items were paired with different non-target items support our hypothesis that the DLPFC activity first 

supports the construction of the mental schema by aiding to the learning of task rules. Once the 

information is acquired, it helps in manipulation the information and helps in the construction of a 

unified mental schema. 

Conclusively, these results suggest a role of DLPFC during the learning of the information as the task 

variables, which has not been explored this form of decision making tasks. Additionally, our results 

confirm that the DLPFC neurons reshape the activity once the rank order (task rules) is acquired, helping 

in the organization of the rank ordered information into a mental schema during the inferential 

reasoning. 
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Conclusions 
 

 

 

In the present work, we investigated the neuronal substrates underlying some of the most complex 

cognitive mechanisms in the macaque brain. The experimental design used for exploring the effects of 

deductive reasoning was based on a 6-items series Transitive Inference task. In this thesis, we explored 

two aspects of neuronal mechanisms underlying inferential reasoning. First, the neuronal correlates of 

decision-making process leading to the target selection as the constructed mental schema is 

manipulated. To this aim, we analyzed the single-cell recordings from DLPFC and PMd during the test 

phase of the task. And second, the neuronal basis of encoding of each series item and the manipulation 

of mental schema from learning to test phase in DLPFC.  

Our results from the first study provide evidence that the DLPFC and PMd, two key areas in decision 

making, represent the information of the target item in the neuronal activations. However, we found 

that the DLPFC encodes this information before the PMd, but the activity in PMd, mostly believed to 

represent more the motor and behavioral response variables, was found to encode the task variable 

(symbolic distance) during the delay epoch with a comparable degree as the PFC. The representations 

of target selective activity in PMd modulated by the task difficulty strengthens the hypothesis of the 

involvement of PMd in more complex cognitive mechanisms. Our findings, along with the findings by 

Mione et al., 2020, strongly suggest that the PMd plays a major role in decision choice even when the 

ambiguity in the task performance arises by the representation of the information in memory. 

Additionally, the involvement of DLPFC in target selectivity before the PMd supports the hypothesis 

of hierarchical organization of frontal and motor areas, where the decision variables are encoded in 

DLPFC and then projected onto the PMd, indirectly aiding to motor plan.  

The findings from the second study reported in this thesis, however, further explore the involvement of 

DLPFC in the process of learning and mental schema construction in addition to the previously reported 

modulation of DLPFC activity during mental schema management (Brunamonti et al., 2016). Our 

findings highlight the role of DLPFC in the process of acquisition of mental schema during the premise 

learning in a TI task. These findings are novel in the sense of neurophysiology, as most of the 

neurophysiological research has explored the involvement of PFC during inferential reasoning. Based 

on the reported literature from neuroimaging, lesion studies and mice models, the hippocampal cortical 

circuits enact the information storage as episodic memory, and further, the information is manipulated 

to deduce inferential problems. Our results show that the DLLPFC neurons show a preference for the 
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rank of the single items, even during the learning; however, this preference of the rank order changes 

from learning to the test phase.  

From a neurophysiological point of view, these results help us get a step closer to understanding the 

intricate connections between different brain areas and understanding the functionality of one of the 

major cognitive control centers of the brain, i.e., DLPFC. The framework involving macaques provides 

an excellent model for studying the cognitive mechanisms, as their capability to show complex 

cognitive behaviors, like transitive inference, is comparable to humans. The analysis of the single 

neuron activity enables a deeper understanding to study area-specific brain functions, as the neuron is 

the smallest functional unit in the brain, hence providing a very high spatial and temporal resolution. 

Albeit, there are some considerations that could increase the scope of the results obtained from the 

above experiments, like the simultaneous acquisition of the neuronal activity from different brain areas. 

This would provide for a much better temporal comparison across different areas. The scope of these 

studies can be extended to various directions. The associative learning during the training in TI can be 

studied in other brain areas (like the motor and visual areas). The analysis of hippocampal activity 

during a TI task in non-human primates is another promising approach to attain a better understanding 

of mental schema acquisition. Another notable domain to explore is the task design itself. For example, 

the implementation of a longer rank-ordered series can augment the chances to study truly transitive 

test pairs, which are often argued to be non-transitive in nature.  
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Appendix: Supplementary Information (Study 1) 

 

 
 

Figure S1: Recording locations 

Recording sites and array location during DLPFC (Monkey 1 and Monkey 2) and PMd (Monkey 1 and Monkey 3) 

experiments. 

 

 
 
Figure S2: Performance and normalized reaction times for each paired comparison at different symbolic 

distances: The performance and RTs in selecting the correct target during A) DLPFC (Monkey 1: n=14; Monkey 

2: n=12) and B) PMd (Monkey 1: n=7; Monkey 3: n=7) sessions are represented for each pair organized according 
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to the symbolic distance characterizing each pair. The vertical bars represent the standard error of mean across 

the sessions. The proportion of correct choices and the normalized RT for each target item was significantly 

correlated by the symbolic distance from the presented non-target item (linear regression analysis, all p<0.05), 

except for the RTs of Monkey 1 DLPFC recordings in comparison of item D; and RTs for comparisons of items B 

and C in the PMd recordings from Monkey 3 (p>0.05). The emergence of symbolic distance effect on the 

performance and RTs for individual items, especially in the case of the item A, which was always rewarded, 

supports the hypothesis of a mental representation of the ranked items. 

 

 

Mean abs (Dn) SDist1 SDist2 SDist3 SDist4 SDist5 Linear Regression 

Coefficients and statistics 

DLPFC 

Delay Epoch 

(5%) 

0.78 0.90 1.08 1.16 1.19 Dn=0.10(SDist)+0.70;p<0.001 

RT Epoch 

(5%) 

0.87 0.89 1.08 1.15 1.04 Dn=0.05(SDist)+0.83;  p<0.001 

Delay Epoch 

(20%) 

1.36 1.36 1.52 1.56 1.54 Dn=0.05(SDist)+1.13; p<0.01 

RT Epoch 

(20%) 

1.39 1.43 1.55 1.66 1.68 Dn=0.08(SDist)+1.30; p<0.001 

PMd 

Delay Epoch 

(5%) 

0.84 0.96 1.00 1.01 1.31 Dn=0.09(SDist)+0.73; p<0.001 

RT Epoch 

(5%) 

1.08 1.01 1.09 1.10 1.19 Dn=0.02(SDist)+1.05; p=0.08 

Delay Epoch 

(20%) 

1.13 1.47 1.57 1.52 1.63 Dn=0.05(SDist)+1.37; p<0.001 

RT Epoch 

(20%) 

1.40 1.36 1.39 1.43 1.46 Dn=0.01(SDist)+1.35; p=0.06 

Table S1: Spatial selectivity (mean abs Dn) for DLPFC and PMd neurons at different selection thresholds and 

their correlation with SDist. 

The evaluation of effect of task difficulty on target position selectivity with different selection criteria of (Dn>5%) 

and (Dn>20%) revealed higher (DLPFC: 97.1% and PMd:97.2%) and lower (DLPFC: 64% and PMd: 84%) 

percentages of target selective neurons respectively, when compared to the target position selective population 

obtained using a criterion of (Dn>10%; DLPFC: 89.3% and PMd: 91.9%). Table S1 reports the mean absolute 

values of Dn, showing the strength of overall target position selectivity at each SDist. A linear regression analysis 

revealed that the strength of target position selectivity is significantly correlated with the task difficulty during 

both the analysis epochs in DLPFC neurons but only during the delay epoch in the PMd neurons even with these 

selection criteria. Overall these results confirm that at a population level SDist influences the spatial selectivity 

and that this effect can be detected even applying different criterions of selection of populations of neurons. 
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