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CRITICAL POINTS OF THE MOSER-TRUDINGER
FUNCTIONAL ON CLOSED SURFACES

FRANCESCA DE MARCHIS, ANDREA MALCHIODI, LUCA MARTINAZZI,
AND PIERRE-DAMIEN THIZY

ABSTRACT. Given a closed Riemann surface (X, go) and any positive weight
f € C°°(X), we use a minmax scheme together with compactness, quantization
results and with sharp energy estimates to prove the existence of positive
critical points of the functional

B
2 —p (pllullf. | *7 »
I, 8(u) = 5 < 26H — ln/; (eu+ — 1) fdvgg ,

for every p € (1,2) and 8 > 0, or for p =1 and 8 € (0, 00) \ 47N. Letting p 1 2
we obtain positive critical points of the Moser-Trudinger functional

F(u) := /; (6“2 — 1) fdvg,

constrained to £g := {U s.t. ||v||§[1 = ,8} for any 8 > 0.

INTRODUCTION

We consider a smooth, closed Riemann surface (3, go) (2-dimensional, connected
and without boundary) and a smooth positive function f, and we endow the usual
Sobolev space H! = H'(X) with the standard norm || - | g1 given by

2 = / (IVul2, +u?) dvg, . (0.1)

Building up on previous works, see e.g. |3, 241 25| 30, 42, 44} [45] [51], Yuxiang Li
[34] proved that the following Moser-Trudinger inequality holds

sup / (3“2fdvg0 <400 & p<d4m, (MT)
ueH, |lull}, =82

(see also Remark [0.2) and that there is an extremal function for (MT)) even in
the critical case 8 = 4w (see also Remark BEI)). Such an extremal is (up to a sign
change) a positive critical point of

F(u) ;:/ (6“2 - 1) Fdvg, , (0.2)
by
constrained to
ue&gi={veH st |vl|j =5} (0.3)

when S € (0,4n]. A positive function w is a critical point of F' constrained to &g if
and only if it satisfies the Euler-Lagrange equation

Agou+u = 2/\fue“2 , u>0in X, (0.4)
1


http://arxiv.org/abs/2010.07397v2

2 F. DE MARCHIS, A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

where our convention for the Laplacian is with the sign that makes it nonnegative
and where A > 0 is given by

27 [ uet” vy, =5 =l (0.5)
>

For 8 < 4m, finding critical points of F' constrained to £z reduces to a standard
maximization argument. Finding such critical points for larger 8’s is a more chal-
lenging problem, since upper bounds on the functional fail, and this will be the
main achievement of this paper. Some results in this direction, for planar domains
and in slightly supercritical regimes 0 < 8 — 4w < 1 were obtained in [45] and [31].

In order to do handle the case of general 3’s greater than 4w, we would like to use
a variational method, more precisely a minmax method, to produce a converging
Palais-Smale sequence. The two main analytic difficulties are that the functional F’
does not satisfy the Palais-Smale condition and that its criticality is of borderline
type, which prevents us from using the methods of [31] 45] for S large. To overcome
these problems we will introduce a family of subcritical functional I,, 3, p € [1,2),
that, in some sense, interpolate between a Liouville-type problem and our critical
Moser-Trudinger problem, apply the minmax method to obtain critical points of
I, 3, and then prove new compactness and quantization results for such critical
points.

More precisely, given p € [1,2) and 3 > 0, we let I, 5 be given in H' by

2 — 2.\ 77 .
Islw) = =2 (PII;QH ) _m/E (e —1) fvg, (0.6)

where uy = max{u,0} and we set I, g(u) = +o0 if u < 0. By Trudinger’s result
[51], for p € (1,2), I, 3 is finite and of class C! on the subset of H' of functions
with non-trivial positive part, and its critical points are the solutions of

Agou+u=pAfuP e | u>0inX, (0.7)

where the positivity follows from the maximum principle, see Lemmal[l.T], and A > 0
is given by the relation

2(p—1)
Ap? (pllullin ) =7 P _
& ( iR ) /Z (e - 1) fdvg, = 8. (0.8)

While I; g is not differentiable at functions u vanishing on sets of positive measure,
it is differentiable at any w > 0 a.e., and v > 0 is a critical point if and only if it
solves (0.7)-(08) with p = 1. Smoothness follows by standard elliptic theory and
[51], see Lemma [[I1 Now, multiplying (7)) by « and integrating by parts in X,
([08) may be rewritten as

2(p—1)

%92 (/Z (e“p - 1) fdvgo>2pp (/E ul’e“pfdvgo> T =3 (0.9)

By (MT) and Young’s inequality, I, g is bounded from below for all 8 < 4, and for
B < 4r finding critical points of I, g reduces to a standard minimization argument,
as it happens for the constrained extremization of F": similarly, finding such critical
points for larger £’s is much more difficult. As we shall discuss, compactness and
quantization (see Corollary [1]) give that, as p approaches the borderline case
po = 2, the critical points of I, 3 converge to critical points of the functional F' in
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([@2) constrained to £z, at least when 8 > 0 is given out of 47N*, where N* denotes
the set of the positive integers.
Our main results read as follows:

Theorem 0.1. Let (3, go) be a smooth closed surface and f be a smooth positive
function. Let p € (1,2) and B > 0 be given. Then the set Cp 3 of the positive
critical points of I, g is not empty and compact. The same is true for p = 1 and

every 8 € (0,00) \ 47N*.

Letting p 1 2 suitably, we will obtain the following result, which according to us
is the most relevant achievement of this paper.

Theorem 0.2. Let (3, go) be a smooth closed surface and f be a smooth positive
function. Let B > 0 be given. Then the set Ca g of the positive critical points of the
functional F constrained to Es is not empty and compact in C*.

A notable fact in Theorems and is that, except for p = 1, the full range
B > 0 is covered and in particular also the case 8 € 47N*. If fact we will also prove

that the sets
U Cp, 8 U Cp,8

Be[An(k—1)+35,47k] Be[An(k—1)+8,47k—3)
pe([1+4,2] pe(l,2]

are compact for any § > 0, i.e. blow-up can occur only for 5 | 47N* or for p — 1
and 8 — 47N*, as we shall see.

Let us explain the strategy of the proofs. We shall start with the existence part
of Theorem [0l Here with a minmax scheme based on so called baricenters, as
originally used in [18], we show that given p € (1,2) and 8 € (4w, +00) \ 47N*,
the very low sublevels of I, 3 are topologically non-trivial, see Proposition [l
This would allow to construct a Palais-Smale sequence at some minmax level, but
it is only with a monotonicity trick introduced by Struwe, see [46], that we are
able to construct Palais-Smale sequences that are bounded for almost every 5 > 0
and for p € (1,2). Then, again using the subcriticality of e’ with respect to
(MT), a H'-bounded subsequence strongly converges to a positive critical point of
I, 3, see Proposition [[3] (see also [9, Thm. 5.1] for counterexamples to the strong
convergence of bounded Palais-Smale sequences when p = 2).

The next step is to extend this result from the existence for a.e. 3 to the existence
for every 8 € (0,00)\ 47rN*. This is done via the crucial compactness Theorem F.]
showing that a sequence (uc). of positive critical points of J,. 5. with p. € [1,2)
and B — B € [0,00) can fail to be precompact only if 3 € 4xN. If fact, as
De T 2, this also allows to show that the positive critical points of J,_ g. converge
to positive critical points of F|g, if 3 ¢ 47N, (see Corollary A1), hence proving
Theorem [0.2] except for § € 4wN*. This quantization property (8 € 47N* in case
of blow up) can be seen as a no-neck energy result, but not only. Indeed, in the
specific case where p = 2, extending the quantization of [20] to the surface setting,
Yang [52] already proved a no-neck energy result for such sequences, but without
excluding that some nonzero weak limit ug #Z 0 appears. We know now that ruling
this situation out, or in other words getting the sharp quantization (L5H]) instead
of (LH), is a very sensitive property, which depends also on the lower-order terms
appearing in the RHS of (0.I6) (see for instance [40] for counterexamples with a
perturbed version of the nonlinearity 6“2) and which requires to be more careful
in the way we approach the border case p = 2. In this sense, our Theorem [4.1]
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cannot be seen as a perturbation of previous results, but it is a novelty in itself.
We also mention that the proof of Theorem .1l never uses the Pohozaev identity,
which is however quite classical in proving such quantization results. Instead, we
first compare in small disks our blow-up solutions with some radially symmetric
functions solving the same PDE, sometimes called "bubbles", and we directly show
that the difference must satisfy some balance condition (see (BI)). From this
balance condition, we get that the union of these separate disks is large in the sense
that the complementary region cannot contribute in the quantization ([H]). In this
last part of the proof, we also show that our specific family of nonlinearities forces
the Lagrange multipliers to converge appropriately to 0 (see Step 2) as blow-up
occurs. One delicate consequence is that each disk only brings the minimal energy
47 in [@3) (see also Remark [A]).

Finally, covering the case § € 47N* relies on delicate energy expansions of the
blowing-up sequences carried out in Theorem[E.Tlbelow. When 8 = 47 and p = 2, it
was already observed in a slightly different setting (see [38,[39]) that such expansions
do not clearly depend on the geometric quantities of the problem and that the
energy always converges to 47 from above. In the present paper, we observe that
this is still true at any level 8 € 47N* and for all p € (1,2], so that if we let
Be T B € 47wN* no blow-up occurs, while it could occur for g, | 8 € 47wN*. In striking
contrast, the analogous expansions in [5], dealing with an equation qualitatively
similar to the case p = 1 (see Remark below), are different in nature: for
instance, the Gauss curvature of the surface appears and compactness is not always
true at critical levels 8 € 47N* (see the discussion below [5, Corollary 1.2]).

We conclude this introduction with some remarks.

Remark 0.1. When ¥ is a non-simply connected bounded domain in R?, in [21]
the authors compute the Leray-Schauder degree of the Euler-Lagrange equation of
the functional F|g,, showing that it is non-zero if ¥ is not simply connected. Even
if we were able to adapt the strategy to the case of a closed manifold ¥, when the
genus of ¥ is 0 (i.e. if ¥ is topologically a sphere), the Leray-Schauder degree of the
Euler-Lagrange equation is expected to be 1 for 8 € (0,4x], —1 for § € (4w, 87| and
0 for B > 8m. Hence this topological method fails to completely answer the question
of the existence of critical points of Flg, on a closed surface.

In any case, the Leray-Schauder degree does not depend on p € [1,2] by
compactness (except for p =1 and B € 47N*), and coincides with that of the mean
field equation (with the full H'-norm, slightly different from [6] or [36]), namely
(@I2) p = 1. For the case p € (1,2] and 8 = 4nk the L-S degree is equal to the
degree for 8 € (4n(k — 1),4nk) by Theorem [5.1l

Remark 0.2. It is worth mentioning that, on a surface, there is a Moser-Trudinger
inequality with a zero average constraint, namely

sup/eu2dvgo<+oo & f<Am, (MTz)
ucZg JX

where Zg = {u € H s.t. [ [Vul2 dvg, = 8 and [, u dvg, = 0}. This inequality
was already proven in the original paper of Moser [42], if (X,g) is the standard
2-sphere, and in the general case by Fontana [25], dealing also with the higher
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dimensional case. The functional I, qualitatively related to I, g in ([08) forp =1,

1
Is(u) = @/E|Vu|godvgo —l—/Eu dvg, —ln/Ee“dvgo (0.10)

attracted a huge attention in the literature (see [33, 6, I7] and references therein)
and its critical points give rise to the very much studied mean-field equation. As a
remark, for all B < 4w, as (MT) implies that I g is bounded below, we get from
(MTZ) that Is is bounded below.

Remark 0.3. In the papers [1], [4], [35], [48] some uniqueness results for Liouville
equations in planar domains or on closed surfaces were proved, while in [10], [11]
some multiplicity results as well. It would be worthwhile to consider such issues for
the critical points of the Moser-Trudinger functional as well.

Remark 0.4. Different kinds of bubbling solutions for the Moser-Trudinger in-
equalities on domains and surfaces were built in [13], 14 23].

PRELIMINARIES

It is convenient to get rid of the smooth weight function f and to reformulate
the problem by introducing the norm || - ||, given by

w2 :/E(|Vu|§—|—hu2) dv, (0.11)

where h :=1/f € C°°(X) and where the new metric g is conformal to gy and given
by g = fgo. Keeping then the notation in (@1l), we have |ju||, = |Jul|g for all
u € HY(X). Besides, since A, = Ayy, = f71A,, by the conformal covariance of
the Laplacian, we obtain that u solves (07) if and only if it solves

Agu+hu=puP~ e, u>0in¥. (0.12)

Then, for all p € [1,2), the aforementioned critical points u of I, g solving ([0.7)-(0.8)
are exactly those of the functional .J, g given by

2—p (plulF)™ ¥
JIp,p(u) = — ( 25 h —1In . (e + = 1) dvg , (0.13)
solving (0I2)) with A > 0 given by

2(p—1)
A2 (pllulli u? _

Again, multiplying (.12 by w and integrating by parts, ([0.14]) may be rephrased
as

2(p—1)

= ATPQ (/E (e = 1) dvg)sz (/Z upe“pdvg) t (0.15)

Now, even for p = 2, we have that u € H! solves our problem (0.4)-(@.H), if and
only if we have (I.I2) for p = 2, namely

Agu+hu =2 e, u>0in Y, (0.16)
with A > 0 given by (@.I5).
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Remark 0.5. Working with [O12) instead of ([O7) will considerably simplify the
choice of constants and the writing of some estimates in the blow-up analysis. Yet, if
one consents to burden the presentation, a straightforward adaptation of our proofs

can handle the case where two independent weights appear, namely for the equation
Agu+ hu = pAfuP— et

1. VARIATIONAL PART

The main goal of the section is to prove the following theorem, with J, g as in

3.

Theorem 1.1. Let (2, g) be a closed surface, a positive function h € C*(X) and
let p € (1,2) be given. Then, for almost every 5 > 0, Jp g possesses a smooth and
positive critical point u, where J, g is as in ((13).

As discussed in introduction, u given by Theorem [[T] is smooth, positive and
solves (0.I2)-(@I4) for some A > 0, as we shall now prove.

Lemma 1.1. Every non-trivial critical point of Jp g, p € (1,2), is a smooth and
positive solution to (IZ). Moreover, for every p € [1,2] every solution to ([IL12) is
smooth.

Proof. Assume p € (1,2). One easily verifies that the Euler-Lagrange equation of
Jp”@) is

Au+ hu = )\uﬁ_le"i, (1.1)

where A > 0. Since ¢t € Li(X) for every ¢ € [1,00) thanks to [51], elliptic
estimates imply that u € C?(3).

We first claim that u > 0. Indeed, assume that ¥_ := {z € ¥ : u(z) < 0} # 0.
Then Au = —hu > 0 in X_, violating the weak maximum principle at a point of
minimum.

Now consider X := {z € ¥ : u(xz) > 0}. We claim that ¥, = X, ie. u >0
everywhere. Otherwise 9%, # 0. Let then zy € X4 be a point satisfying the
interior sphere condition, and let D C ¥, be a disk with xg € D and such that

Au=P"'e" —hu>0 inD.

It is possible to find such D because u(xg) = 0, A > 0, and p < 2. Then, by the
Hopf lemma, see e.g. [26, Lemma 3.4],
Ju

$($0) < 0,

where v is the outer normal to 9% at xy. This violates the non-negativity of w,
leading to a contradition. Hence v > 0. Going back to (II)), we can now bootstrap
regularity, hence u € C*° ().

Also for p = 1, 2 the regularity of solutions to (0.12)) follows from elliptic estimates
and [5I], which implies that the right-hand side of (12 belongs to L%(X) for
q €[1,00). O

In the rest of the section we consider p € (1,2) and the positive function h €
C*> (%) fixed. The first tools we shall need in the proof of Theorem [[Tlare improved
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Moser- Trudmger inequalities. Let us first observe that from Young’s inequality

ab< < -t —T applied with ¢ = ; and r = ¢ T we obtain, for u Z 0,
u 8w b
up = (i ) (/2
[ulln V' p
2-p (P \7%
<4 =5 ( )
g M ()

hence with (A1) we get

2—p (pllullj
ln/ e’ — 1) dv, < ln/ ™ qo g <—— < —|— C. 1.2
E( ) g > 2 8m (12)

It follows that

2 2 ([1N\TF [ 1\77
Jp,@w)sz(pnuui)“((%) (&) )—c,

so that Jp, g is coercive for § < 4.

On the other hand, if the density e/*” —1 is spread into k+1 > 1 disjoint regions
we have the following improved Moser-Trudinger inequality which gives a uniform
lower bound on J, g(u) for each 5 < 4w(k + 1), see [§] for a related argument.

Lemma 1.2. For any fived k € N, let Qq,...,Qr1 be subsets of ¥ satisfying
dist(2;,Q;) > do for i # j and some &g > 0. Let also v € (O, k+1) 0 €
(0,87(k 4+ 1)). Then there exists a constant C = C(k, o, 01,70, %) such that

, 2 - laf2  \*F
[ul? _ < p p h
ln/E(e 1) dvg < 5 <87r(k—|—1)—61 +C (1.3)

for all the functions u € H*(X)\{0} satisfying

fsz ( Jul? _1) duyg

Js (el = 1) dvg

Proof. Fix u satisfying (L4)). We can find k + 1 functions ¢, ..., gk+1 such that

>q0, Vie{l,...,k+1}. (1.4)

gi(z) € [0,1] for every z € &;
gi(x) =1, for every = € Q“ (1.5)
gi(x) =0, if dist(x, ;) > 2 ’

lgillcr < Csy,5

For ¢ > 0 small (to be fixed depending on &k and d;) using the inequality 2ab <
£a®+e71b? we can find a constant C. s, (the dependence of the constants on ¥ and
h will be omitted) such that, for any i € {1,...,k + 1} and v € H*(X) there holds

||giv||%§/gi2|Vv|2dvg—|—a/ |Vv|2dvg—|—05,50/2v2dvg. (1.6)

Now let A 5, be an eigenvalue of A, + h such that Ce 50 < ¢, where C 5, is as in

(CH), and write

u = PVEY%U + PV;SOU =: uj + uo,
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where V. 5, C H'(X) is the direct sum of the eigenspaces of A, +h with eigenvalues
less than or equal to Ac 5., and Py, ; , P+ denote the projections onto Vz s, and
, 50

V;.J);;O respectively.
‘We now choose 7 such that

/ 97| Vus2dv, < / 93| Vus*dvg  for every j € {1,...,k+1}.
) )

Since the functions ¢i, ..., gr+1 have disjoint supports, (I.G) applied with v = us
gives
1
k+1 / |Vuz|2dvg +€/ |VU2|2d’Ug + Ce 5, / u%dvg.
b 5 .

This, together with the inequalities

lgsuz|l7 <

Ces
Cusy | udde < S fuaf} < el
» [

£€,00
implies
1 1
lowual} < (g + 2¢) el < (g + 2¢) ol 1.7

In particular from the Moser-Trudinger inequality (I2) and (L), we have for
small enough, which we now fix depending on §; and k,

2 9 \ =%
1n/ e(lJrE)\giuz\pd,U < 2 -p p(l + E)p ”giu?HH1 +C
- =2 87
(1.8)
2-p(_pluwli 77
< C.
- 2 <87r(/€+1)—51 *

Notice also that since V; s, is finite dimensional, we have
vl < Cesyllvllzz < Cosollvfln,  for v e Ve,

hence
[u || Lo (@) < Ce oo llunln-
Now, using the inequality
(a4 b)P < Cepa? + (1 +€)bP,
we get

P P o |P
/ eIl gy < Cenllmn / c+2)locual? g,
b b))

hence, from ([4) and (LC8) we deduce

p 1 P
ln/ (elu‘ - 1) dvg <In— + ln/ (e‘“l - 1) dvg
by ‘ Yo Qi '

1 »
<Iln— +ln/ elgiul dvg
Yo D)

1 ) (1.9)
<In—+Cpllualf < + ln/ eI telgiuz| dvg
Yo by

2-p plluzll; =
C p O/
-2 <87r(k—|—1) — 5 + Cepllur|ly, + €7,
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with C" = C'(k,d0,01,70,%). A further application of Young’s inequality to the
term C. p|luq]]} and the inequality a? 4 b? < (a+ b)? for ¢ > 1 then gives

, 2—p (pllusllZy + Juall2)\*?
1 lul® _ < H h
D/E(e )dvg— 2 ( 8r(k+1)— 0y +C

with C = C(k, do, 81,70, X), and since |Juz||? + ||u1|7 = |lul|? we conclude. O

The next lemma, proven in [I8, Lemma 2.3], is a criterion which implies the
situation described by condition (4.

Lemma 1.3. Let k be a given positive integer, and consider €, > 0. Suppose that
for a non-negative function f € LY(X) with | f||z1 = 1 there holds

/ fdr<1l—¢ for every k-tuple x1,...,z, € 2. (1.10)
Uiz Br(2i)

Then there exist £ > 0 and 7 > 0, depending only on e, r, k and Q (but not on f),
and k + 1 points T1,f,...,ZTrp41,r € X such that

/ fdx>&, forj=1,....k+1,
Brez; 1)
and Bg;(i‘@f) n Bg;(fj)f) =0 fori#£j.

Lemma and Lemma [[.3] then imply the following other result.

Lemma 1.4. If § € (4nk, 4w (k+ 1)) with k > 1, the following property holds. For
any € > 0 and any r > 0 there exists a large positive constant L = L(e,r,p, ) such
that, for every u € HY(X) with J,g(u) < —L there exist k points x1,... 75 € 3
such that uf?
fz\u;c:lBT(mi) (el —1) du,
J5, (el = 1) dvy
Proof. Fix e, r, p, and 3 as in the statement of the lemma and let u € H'(X) be
such that Jp g(u) < —L for some constant L > 0, and assume by that (L.II) fails
for every k-tuple of points z1,..., 2. Then setting
el“” —1
lell” — 1|2
we have that (LI0) holds. Therefore, by Lemma we can find £ = &(e,r, k, X),
7 =7(e,r k,X) and points Z1,...,Tr+1 € ¥ such that the assumptions of Lemma
L2 hold with Q; = B#(Z:), 70 = € and o = 27. Fix also d; = 87(k+1) —23. Then
by Lemma [[.2] there exists a constant C' depending on k, &g, 41, Yo, p and X, hence
depending on €, 7, p, B, k and ¥ such that

_p
ul? 2—p (plul?n \*7 | A
ln/z(el‘ _1>dv9§T<TH1 +C,

hence J, 5(u) > —C, and up to choosing L > C we obtain a contradiction, unless
(LII) holds for a suitable k-tuple z1, ...,z € 3. O

(1.11)

Given k € N we introduce the set of formal barycenters of ¥ of order k, namely

k k
Ekz{azztiémIxiEE,tiZO,Ztizl},

=1 i=1
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where d,, is the Dirac mass at z;, see [I8], [37].
We will see X, as a subset of M(X), the set of all probability Radon measures on
Y., endowed with the distance defined using duality versus Lipschitz functions:

Aww—éww,

which receives the name of Kantorovich-Rubinstein distance.

dist(p,v) :=  sup w, v € M(2), (1.12)

Il Lipesy <1

Lemma 1.5. For any € > 0 there exist § > 0 and r. > 0 such that, for any
r € (0,7:], if f € LY(X) is a non-negative function such that

Js\oe, B, F40
fz fdvg

<6 (1.13)

for some x1,...,x, € X, then

dist< Jdv, ,a) <e,
fz fdug

. fdv
D R T L
i=1 fuf Br(mj)fdvg

where

Proof. Consider a function ¢ on ¥ with |4 zips) < 1, which we can assume to
have zero average, and let us estimate for fz fdv, =1 (otherwise, we can rescale f
by a constant)

‘/fwdvg /wda < /BT(%)fdevg—/BT(m)dde—F

Since f > 0, with fE f dvg =1, and since ¥ is uniformly bounded by the diameter of
Y (due to the fact that it is 1-Lipschitz and has zero average), by ([LI3]) we clearly

have that
/ fdug
Z\UleBT (x4)

On the other hand, for the same reason we have that ka

/ Fipdug| .
S\U*_, By (1)

i=1

< Sdiamy(%).

ooy Jvg =1+ 0(9),

which implies that ¢; = (1 + O( f B, dvg and in turn that

Br(zi)
= f d 0(9).
e )/Br(xi)f vy +00)

Again from the fact that 1 is 1-Lipschitz, we get that

/ foduy = 1/}(3:1)/ fdvg + O(r).
Br(xi) Bv‘(zi)
Since 1 was arbitrary, the conclusion follows from the last four formulas. O

An immediate consequence of Lemmal[l.4land Lemma[l.5lis that the low sublevels
of Jp. g can be mapped close to Xy, in the sense of the following lemma.
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Lemma 1.6. Given 8 € (4dnk,4nw(k + 1)) with k > 1, € > 0 there exists L =
L(e,p,B) such that for every u € H () with J, 3 < —L we have

W 1)
dist <f(e ) dvy ,2k> <e.

. (e‘“|p — 1) dvg

Let us first recall a well known result about X, endowed with the topology
induced by dist(, -).

Lemma 1.7 ([37]). For any k > 1 the set X is non-contractible.

Our goal is to show that, if 8 € (4nk,4nw(k + 1)), X) can be mapped into very
negative sublevels of J,, 3 and that this map is non trivial in the sense that it carries
some homology. Then, as a consequence of the previous Lemma we will get the non
contractibility of low sublevels of .J, 3.

Let us first define the standard bubble ¢~ : R?* — R for v > 0,

et (37 (- 5)

where - is chosen so that
ry=0 (e”yp) , In (rve'yp) = o(v?), (1.14)

for instance, 7y = y e,
Now, given x € ¥ we define the function ¢, , : ¥ — R as

1

2
e (2) (1= (10 L))
D P L 4

Notice that ¢, ,(y) > 0 if and only if y € Bs_ (z), where
2 . 20,77
65 :=r3(e" —1) =0 asy— oo (1.15)

For a barycenter o = Ele ti0z, € X we now want to construct test functions ¢, o
continuous with respect to o (from M(X) into H!(X)) concentrating mass near the
points z;, in the sense that

(e¥5e — 1)du,
Jx (eg)g’a —1) dvg

In order to do so, to each ¢t € [0,1] and v > 0 we associate 7 = 7(t,y) such that

ng (e(%_ﬂi — 1) dx
Jre (e‘/’g —1)dz

— 0, as‘y — 0. (1.16)

—t. (1.17)

P
for every v > 0. We will need the following elementary estimate.

1
Notice that 7 is decreasing with respect to t and that 7(0,v) = (2) P 7(1,4) =0

Lemma 1.8. For any fized t € (0,1] we have 7(t,v) — 0 as v — oo uniformly for
tel,l].
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Proof. Given ~, 7 > 0, consider L > % to be fixed later. We easily see that

/ (e(“"”ﬂ')i — 1) dx < / (e“’s — 1) dx
{py<L} {e~<L}

< (e = 1) 702 = 0,(1).

(1.18)

Moreover, for =y such that
2 In2\”
z (1—n—> >14e>1,
p P
also using that ¢, > L on B, (0) for v large, we get
/ (e“’s — 1) dx > / (e%"p(k%)p — 1) dx
{py2L} B, (0)

> / (6(1“)”17 - 1) dz (1.19)
B, (0)

> Wri (e(HE)'yp — 1) — 0.

By the Taylor expansion

2P =1— M2 — 2 1
(1-ax)P =1 px+2(1 €)2_17:1: <1—pzx+ Cpax®, O<§<:1:<27
we get for ¢, > L > 27
—_ —_ p _
(ch—T)ﬁ<g0’V’—pT<p§1+Cp72cp£;2<g0’v’—§ﬂpgl

up to choosing L > Lg(p) sufficiently large. We then infer

/ (em—r)i N 1) I / e d
{ey=>L} {¢y=>L}

:oL</2(e“’:—1)dx), as L — oo.
R

Putting (LI8)-([20) together it follows that

Jres (e(%’w*"’)i _ 1) dz
Jra (97 = 1) dx
for any 7 > 0. This implies that 7(¢,v) = o(1) as v — oo for any ¢ € (0, 1] since

otherwise there would be sequences 7. — 0 and 7. € (0,~.] such that 7-(¢,v.) >
T+ > 0, and by monotonicity

(1.20)

t(r,y) := =o0(l) asy—

0<t=1t(Te,Ve) <t(T,7e) =0(1) ase—0,
a contradiction. Using the monotonicity of 7 with respect to ¢ the conclusion follows
at once. (I
Now call 7; = 7(¢;,7), 1 < i < k and define ¢, , by the formula

k

o123 (e 1)

i=1
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or, explicitly

k
0y0 = In7 (1 +y (e<%~mr”>i - 1)) : (1.21)
=1

Notation. Until the end of the section o(1) (resp. O(1)) will denote a quantity
tending to 0 (resp. a bounded quantity) as 7 — oo, uniformly with respect to
r € X and o € Xy.

Lemma 1.9. For every x € X3, we have

2 2\ 2
/ [Voy 2| dug = (—) 4ry=7P(140(1)), asy — oo.
by p
Proof. By a straightforward computation, for any y € Bs_(z), we get

1 _
2) F o @)

\Y% T = — |- )
#ra(y) <p 14+ 752d2(y, x)

while Vi, »(y) = 0 in X\ Bs_(x).

Using geodesic coordinates centered at x, with an abuse of notation, we identify
the points in ¥ with their pre-image under the exponential map. Using these
coordinates, and recalling that ¢, — 0 we have that

dly, ) = ly —z|(1+o(1)), [Vy(d®*(y,2))| =2ly —z|(1+0o(1)), y € Bs,(x)
hence

Veral = (2) 11 4 of1)

2|y — |

-5, Y€ DBs (x). (1.22)
72 + |y — x|?

Thanks to the change of variable s = 72 + p?, we are able to conclude that

2
2\ » Aly — 2
= (2) rason [ A
p B

22 (@) (75 + |y — 2]?)?

yielding the result. (Il

Lemma 1.10. In the above notation we have, uniformly for o € Xy,

2
2\ P
/2 Vo ol dvg < <1—7> Amky*7P(1 + o(1)).
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Proof. We compute
VSO B Zle((p%mi -7 )]-’7_ le(wv,zi*Ti)ivsD’%Ii
v,0 T — P :
% (1400, (P 1)) (14 b (et 1))

Notice that

(Py,0, — )y telPrmm L
% (1 +E§:1 (eww]-—mi _ 1)) (1 +Ef:1 (emzj—mi _ 1))

S @iX{py,0, >}

0<

where
e(‘%”y IlfTi)i
a; ‘= > s
30 (et 2 1)
hence
k
Vs o(a Z D) Veor o ()X (g, 0, 5r0y ().

Split now ¥ as a disjoint (up to sets of measure zero) union 3 U- - - Uy, such that

|VSO'Y;1]( )| - 1r2a'<xk |VSDV ml(x)l for x S QJ,

and further split ¥ as ¥ =3, UX_, where

k
Yi=RzeX: Ze(“"*wz‘(w)_”yi >y, X_:=X\2,.

i=1 -
Notice that
Zai(:zr) <1+o04(1) forzeX,.

Then, with the help of Lemma [I.9] we obtain

2
/ IVr ol da:<Z/ < ai|V<p%1j|> dz
245 \5—1
§(1+0(1))Z/ Vo, | 2da (1.23)
j=17%+
2

< (1+0(1)) (g) ’ Amk~2P.

We now want to prove that the integral over ¥ _ is negligible. Indeed we have
k

ZM(I) <k forzxel_,

i=1
since ;=77 < k for s > k, and similarly to (LZ3) we get

/ Ve, oda < k22/ IV or ;[ da.
>_ j=1 Efﬁﬂj



CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL 15
In order to estimate the right-hand side, observe that
1< elei (@)=} <~ forzxeX_.
This implies that
¥_NQ; C Bg,(z;)\ By, (z;) forevery j,

where R; and ry are given by the relations

Lol (=) ) e, ()

This yields

d*(x,z;)

r2

¥ - C'p_lTj'yp_l >In (1 +
2

> > 4P = Cylry? ™ — 4P I
and

1
P —-1_ . p—1 P —-1_ . p—1 p—1 o
R% - (6V Cp i — 1) T?ya T% = ((37 Cp T3y v Inpy _ 1) 7"'27.

We now integrate as in Lemma[l.9, and with the same change of variables s = 12 4 p?
we obtain

2 poopy [T s =13
/ Vo ,a;1 dvg = O (7 p)/ 5 ds
Br,y (z)\Bry (z;) 7‘3-{-7‘% S

p_o—1.. . p—1
T’de'y CP iy

ds
1 L

Tgewpfc; TiyPTl—yP~lmP 5 g
1-p 1

=0 (7 Plnry

_ 2—p

=o(y"").

S O (,72—2;0)

Together with (L23), we conclude. O

Lemma 1.11. We have the following estimates, uniformly for o € X

/E he? , dvy = 0(*7).

Proof. Let us first evaluate, for z € ¥, [, 92 , dv,. Being

/ ( )gai@ dvg = o(1), ¢y =0in X\ Bs_ (z),
B’”'v x
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it is enough to estimate [, (@)\Br.. (2) @2, dvg.
R Y ’

Using normal coordinates at x and the change of variables s =1 + :—j, we get
v

/ 2 dvy = O( 2)/67 <1 2 14Dy 4 L 12(1+T2))d
ps pdvg = O(y r{l——1In — ——In — T
S\B, @) r P r3’ % r3

¥ v
~P

_0(?) /2 2 <1 - 721)1n(s) + 7—; 1n2(s)> ds

p

.
2 1 ¢
= (727“3) [s - %(_S +slns) + @(23 —2slns + sln® S):|2
=0(y'™")
=o(y*7P).
(1.24)

Splitting X as a disjoint (up to sets of measure zero) union Q) U --- U Qy, so that

P (@) = max o, (x) fora e,

we have

hS|
2w
a
—
8
S—
INA
—
=}
=
R
<
I M»
—
)
€
2%
3
&
v
IN
~
Il ES
>0
foll
S
—
)
S~—
—
=}
k<1 [V
—
)
€
2%
&
3
N

IN
-
_—
=
>
_|_
S
2
&
5
S—
N—

< 0)+0(M)> ¢, (x),

<
Il
-

where in the last inequality we used the convexity of the map ¢ — to.
As a consequence, since h is bounded,

k
[ 16 do, =0+ 0 Y [ & @) o, N o7,
p) =/
as desired. O

Lemma 1.12. We have, uniformly for o € 3y,

P 2 -
ln/ (e“"w - 1) dvg > pvp(l +o(1)), as~y— oo.
by p

Proof. Given o0 = Zle tiby, € X, fix ¢ such that ¢; > % Then, according to
Lemma [[L§ we have 7; = o(1) as v — oo, hence

[N

2 In2 P
o lna — 2 20 (1= 22— 0,)) 2 29014 01) o By, (00)
+
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for v sufficiently large. Then, also using (LI4), it follows

ln/ (e“’g«’ - 1) dvg > ln/ (e“’g«’ - 1) dvg
= By, (xi)

> In (14 o(1))mr2eb?"(1+00)

2 P
= (2—? —1—|—0(1))~y
2= Pop(1 + of1),

as claimed. O

Lemma 1.13. Given § € (4nk,4nw(k+ 1)), with k > 1, then as v — 400 we have:
i. Jp,a(¢y,0) = —00 uniformly for o € Xy,

e#Ho 71) dvg

11. dist <p—,a) — 0 uniformly for o € Xy, see (LI2).
Js (e“’%“—l)dvg

Proof. i. By definition of ¢, , and Lemmas [[10, [LTT] and we have

2—p (plleyol2) 7 v
Jp,ﬁ(@%o) = 5 ( ” ;B Hh —1In g (ew%f’ — 1) dvg

_ 22 k2 P14 o1\ 2P 9
S22p<p(p) ’72ﬁ( + ())) _2 p”yp(l—ko(l))

p

_2-p | (4nk ﬁgp o _27P w4,
-2 KB) pv<1+<1>>] L9714+ 0(1)

2-p , (47rk)2pp
===y |(—=) -1
p l s

uniformly for o € Xy.
1. Let us first collect some simple calculations.
Let o = Zle ti0z, € Xy then, since 0, — 0 when v — 400,

/ (e“"w—”)«’i - 1) dvg = (1+ 0(1))/ (e(w”_Ti)i - 1) dx
Bs, (w2) BE(0)

TID (1 1 o(1) 1, /

R2

(14 0(1)) = —o0,

(evﬁ _ 1) de,  (1.25)

as a consequence

k
/ e —nas, B[ (Z (e 1)> v,
Uk_, Bs,, (z;) U¥_, Bs., (z;)

=1

k

(@v,zif‘ri)T’ _1)d
;‘/Baw(mi) (6 " ) Vg
= (1+o(1))/

R

2 (ewi - 1) dz, (1.26)
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where in the second identity we used that ¢, ., =0 on X\ Bs_(z;). Given € > 0,
we need to show that

dist (fy,0dvg,0) < 2¢ for v sufficiently large,

uniformly for o € ¥, where

(o)
Fro = fz (esa‘%,n - 1) dvy'

Let 6 > 0 and 7. > 0 be the positive constants of the statement of Lemma

It is immediate to see that f, , satisfies (ILI3)), being ¢+, =0 in X\ UYL, B;_ (z;),

then by Lemma (which holds with r = ¢, if 7 is sufficiently large)

i fBé (@1 (e“"v o —1)dv,
dist (fy,5,04) <& where oy := 2 ;.- (1.27)
fUJ 1357 (I])(e%,n — 1)d1)g

In virtue of (28 and (L20) 0., = Z t;(1+0(1))dy,, and so
dist(o,,0) <e for ~ sufficiently large. (1.28)
The thesis follows from ([L27) and (L28). O
Let us set for L > 0
Tk fue HAE) : Jyslu) < ~L}.

Proposition 1.1. Let 8 € (dnk + 6,4n(k + 1) — §), with k > 1 and § € (0, 3).

Then, there exist L > 0 and v > 0 sufficiently large depending on p, k and 6, and
a continuous function
Uk — 5

such that i) ®(0) == ¢, € J;;L for every o € ¥y, and i) the map Vod : ¥j — Xy,
is homotopically equivalent to the identity on X.

Proof. By [2, Proposition 2.2] there exist £ > 0 and a continuous retraction
U {oe M(D) : dist(o,3)) < e} — .
By Lemma [0l there exists L = L(e, p, 8) such that for every u € J;g

dist (e'“‘p — 1) dvg = <
1S fz (6‘71'? — 1) dvg7 k g

(e‘”‘p—l)dvg
fz(e\“\pfl)dvg
such L the map ¥ : Jp_ﬁ — Y, defined as

X elul” — 1 dvg
e <f( iy d)

is well posed and continuous with respect to the H!(X) topology.
In turn, by Lemma [[.T3] there exist v > 0 such that

(6@5,0 — 1) dvg
2L .
Oyo €J, 5, dist T, (%o = 1) dvg’a <e, foranyo € Xy. (1.29)

Since the map u — is continuous from Jgé C HY(Y) into M(X), for
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Hence ¥ o ®(0) = ¥(py,s) is well defined and we only need to show that ¥ o & ~
Idy, . Consider the homotopy H : [0,1] x ¥ — M(X) given by

(e“"gﬂ*l) dvg
Js (esa‘%,n —1)dv,

H(s,0) =s0+(1—23s)

From (L29) we infer that
dist(H (s, 0),Xk) < dist(H(s,0),0) <e for s €[0,1], o € Z,
so U is well defined on the image of H and we can then define the homotopy
H:[O,l]xEk%Ek
H(s,0) = W o H(s, o).
Clearly H(0,-) = ¥ o ® and H(1,-) = Idy, . O
We are now ready to construct a minmax scheme in the spirit of [18]. Given p,
kand § >0, fix L >0,v>0and ®: X, — H'(X) as in Proposition [l
Consider the topological cone Cy over X, defined as
Cr = (B x [0,1])/ ~

where (01,71) ~ (02,72) if and only if r; = ro = 1. We shall also identify ¥; x {0}
with ;. Set

A == {® € C°(Cy, H'()) s.t. D|s, = },
and call

ap = inf max Ip,6(®(£)) (1.30)

the minmax value.
Lemma 1.14. With the above choice of L and vy, depending on p, k and 8, we have

ag > —L, sup sup Jps(®(£)) < —2L. (1.31)
i)G.Ak £eXy

Proof. The second inequality follows immediately from Proposition [LT Assume
by contradiction that ag < —L: then we can find ® € Ay such that

@(Ck) C J;é‘
By Proposition [Tl the map
Vo (i) : Ck — Ek
is well-defined and continuous. Moreover, on the one hand
Vod|y, =Vod~ Idy,, (1.32)

and on the other hand ¥ o ® gives a homotopy between W o ®(-,0) = ¥ o @[y, and
the constant map ¥ o ®(-,1). This and (L32) imply that Xj; is homotopic to a
point, which contradicts Lemma [[.7] O

We will now use a well-known monotonocity trick by Struwe to construct bounded
Palais-Smale sequences for .J, g at level ag, as defined in (30):

Proposition 1.2. For almost every B > 4x the functional J, g admits a bounded
Palais-Smale sequence at level ag, i.e. a sequence (u.) bounded in H'(X) such that

Jppluc) = ag, J,5(uc) =0 ask— oco. (1.33)
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Proof. Since for all u € H' 8 +— J,g(u) is monotone decreasing, the function
B — ag is non-increasing, hence it is differentiable almost everywhere. Set

D, = {0 € (47, 0) \ 47N : a is differentiable}.

Take 3 € Dy, fix § € (0, 3) and k € N* such that 8 € (47k + 6,47 (k + 1) — §), and
choose a sequence . T 8 with . € (47k + 0,47(k + 1) — J). For every e > 0 let a
function ®. € Ay be given such that

max Jp 5. (®-(8)) < ap. + (B — Be), (1.34)

and let also & € Cj, be given such that

J:Dﬁ((i)s(gs)) > og. (1.35)

Notice that the set of (®.,&.)’s satisfying ([L34)-(L35) is non-empty thanks to
(C30) (used with 8 and 5;).

Set ve := ®.(£.). Then, posing C), := 2;—” (%)rp”, we have that

2p 1 1
Ip.p. (V) = Jpp(ve) = CP||U€||}21 g T T 1 |
BEQ—;J /82—;)

hence, setting g = %, ap = dg%, and writing

B~ B2 = —qB7 (B — B) + o(B: — B),

we bound
||1) ||2q _ (ﬂsﬂ)q prﬁs (UE) — Jpvﬁ(’UE)
ellh ™ Cp Bq _Bg

< (ﬂsﬂ)q o, —og+ ﬂ - ﬂs
-G p1—pe (1.36)
B 4o(l) —aj+1+4o(1)
= c, . e
< Opyg.

2p
In particular [|v.||;~* = O(1) as ¢ — 0 for any sequence v, = ®.(&.), where ®. and

& satisty (L34) and (L35).

We now proceed similarly to [I6]. For every § > 0 (not the same as in Lemma
[LI4) consider the set

Nog = {u € H'(Z) : |lulln < M, |Jpa(u) — ag| < &}

_p=2 _

for M > C,’5 + 1, where Cp, 5 is as in (L30). Notice that Ns s is non-empty by
the previous discussion.

Assume that the claim of the proposition is false, so that there exists 6 > 0 small
such that

[} sl -1 := sup (J, g(u),v) >28 for u € Nj.
llvlln<1

Since Jp g is of class C' (on the open set of H'(X) where it is finite), we can
construct a locally Lipschitz pseudo-gradient vector field (see e.g. [47, Lemma 3.2|)

X:HY(X) = H'(D)
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such that
sup | X(u)lln <1,  sup (J) 5(u), X (u)) < —6.
uENs a1 wENs. a1
We have
. e pul e udu,

(Tp,5(w),0) = Cppllull g {u,v),,

e (1.37)

D

where (u,v), = fE(Vqu + huv)dvg and Cp 3 = p (%) 27?, hence, for any se-
quence (. 13
3p—2
[7p.5(w) = Ty 5. (Wl =10 < (Cpg = Cpp.) ull, " =o(1) ase—0,
uniformly for u € Nj as. Then for € small we have

sup (J), 5 (u), X (u)) <0.
UGN(LM

p

We now choose a Lipschitz cut-off function 7 : H'(X) — [0, 1] such that
n(u) =0if u € H'(S)\ Nour
and
nu)=1ifu e N%Mfl,
and consider the flow ¢; : H'(X) — H!(X) generated by the vector field nX.
Assuming with no loss of generality that —2L < ag — §, since ®(Xy) C JI;;L, it
follows that
¢t 0 @y, = s, =,

hence
pro® € Ay for every ® € A, t>0.
Moreover
@Ip,p. ($1(1)) <0, forueH'(D), (1.38)
dt t=0

hence if @, satisfies (L34), so does ¢; o @, for t > 0. Moreover, for & small, given
any ®. € A satisfying (L34)

o S pchusGB) = ek Bs(@O), (139)

since every & € Cj attaining the maximum of J, 5(¢(®(-))) satisfies (L3H), so
(T39) follows from (L36) and our choice of M. Therefore, since

s 5 e,
dt — ’ S M—1>
we infer ;
— sup Jp, (6 (®2(€))) < —6 for t >0,
dt ¢cc,
which contradicts (39). O

Proposition 1.3. Given p € (1,2) and 8 > 0, let (u.) C HY(Z) be a bounded
Palais-Smale sequence for J, g. Then up to a subsequence we have u. — ug strongly
in H*(X), where ug > 0 is a positive critical point of Jp 5.
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Proof. Up to a subsequence we have u. — ug in L4(X) for every ¢ < oo, almost
everywhere and weakly in H'(X). Moreover, by Young’s inequality and the Moser-
Trudinger inequality we infer

||e“§+||Lq < C(p,q, ||ucl|n) for every ¢ < oo, (1.40)

hence from Vitali’s theorem

/e“€+dvg — / e“ordv, ase— 0. (1.41)
s s

From (L31) we deduce that
(J} p(ue),ue —ug) =o(1) ase— 0.
Using u. — ug as test function in J;ﬁ(us) — 0, we obtain
o(l) = < ;,5(%) - J;,g(uo)aua - U0>

4p—4
2-p

4p—4
=Cpp <||ua||h2p Ue — ||UO||h P ug, ue — U0>
h

B fz pu£;16“5+ (ue — ug)dvy N fz puglle“& (e — ug)dvg
fz el dvg fz e"or dvg .

Taking (C40), (TAI) and the Sobolev embedding into account we notice that the
last two terms sum up to o(1), so that

ap-a ap-—a
o(1) = <||ua||h“ e — ol o, e — u>
h
ap—a ) ap—a ap—a
el B e — o2 + (nuanh” ol B ) (o, e — ),
4p—4

= [luelly™ ue — uoll, + o(1),

hence u. — ug strongly in H'(X).
In order to prove that ug is a critical point of .J, 5, for v € H'(X) we write

Iy, (o) (v) = Jj, 5(uo) (v) = Jj, 5(ue)(v) + o(1)

ap—a ap—4
—Cys <||ua||hp e — [luoll u>
h

p—1 4P p—1 u?
B prug_,_ e=+vdug n fzpu0+ e“o+udug

up up
fz etdug fz e“o+dug

+o(1)

ap—1
= Cpglluolly, ™ (ue — uo,v),,

ap—4 ap—a
n (Ilusll;f” = ol E ) (e 0}y, + (1)

=o(1),
hence J), 5(uo) = 0.
Were ug = 0, with (L4I]) we would infer that J, g(u.) — oo, which is impossible
since (u.) is a Palais-Smale sequence. Then Lemma [Tl implies that ug > 0. O

Remark 1.1. The analogue of proposition does not hold in the case p = 2 as
proven by Costa-Tintarev (Theorem 5.1 in [9]).
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Proof of Theorem [I] (completed). For every 5 € (0,4m) the functional Jp, 3 has a
minimizer, hence a critical point, which can be obtained via direct methods, using
(C2), (T40) and (I4I). The existence of critical points for a.e. 8 > 4x follows at
once from Propositions and [[3] O

2. A FIRST ANALYSIS IN THE RADIALLY SYMMETRIC CASE

Let (py)y be any family of numbers in [1,2], and let (u,), be a given family of
positive real numbers. Let A, > 0 be given by

Apiy* P s =8, (2.1)
and let t,7, be defined in R? by

2

ty(z) =1n <1—|—|$—2> ; ty=t,+1, (2.2)
Hy

for all v > 0 large. In the sequel, for any radially symmetric function f around

0 € R?, since no confusion is then possible, we often make an abuse of notation and

write f(r) instead of f(z) for |z| =r. Let n € (0,1) be fixed. Let also (), be any

family of positive real numbers such that

lim 2 =0, (2.3)
Y—+o00 Ty
_ Py
by (my) < n=5—, (2.4)
VP2 = O(1) (2.5)

for all v > 1 large. Given a positive constant hg > 0, we study in this section the
behavior as v — +oo of a family (B, ), of functions solving

AB, + hoB, = Ayp, B2 1B
B,(0) =7 >0, (2.6)
B, is radially symmetric and positive in By (0),

where A = —9,, — 9, denotes the Euclidean Laplace operator in R%. For  fixed,
([28) reduces to an ODE with respect to the radial variable r = |z|: then we may
assume that B, defined in [0,s,), is the mazimal positive solution of (Z6]) and
it may be checked that it does not blow-up before it vanishes, namely s, < +o00
implies lim _, - B, (r) = 0. Actually, the proof of Proposition 2] below shows that

”")S’y

our assumptions (2.4)-(Z3) ensure that B, is well defined and positive in Bz (0)
for all v > 1. Let w, be given by

_ 2t Wy
B, =~ (1 — A + VTV> . (2.7)

Then we have the following result:
Proposition 2.1. We have B, < v,

wy =0y Pty), w,=0(n""t,),

8 —2ty Mty
Aypy BD BT = = (1 +0 <e >> :
M’Y'yp'y pv fyp’v

and
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uniformly in [0,7,] and for all v > 1 large, where 7 is any fized constant in (1, 1)
and w~ is as in 2.1).

Once Proposition 2.1]is proven, we obtain first

_ 2 1 2 2 1-p
B’Y(T)—’Y—W<ln’u—%+ln(ﬂ7+r)>+O(’7 'Y)

using (Z4) to handle the remainder term, so that we get from (21

By = (2 -1 :

T e +0 (') (28
Py > Pyt Ay (3 4+ 2) () @8

uniformly in r € [0,7,] and for all 4 > 1 large. While the principal part of the
expression in ([2.8)) becomes negative for > 0 large enough, writing it in its initial
form (21), condition (Z4) and the pointwise estimate of w, in Proposition 2.1
clearly ensure its positivity in the considered range r € [0,7,], as claimed in (2.0]).

Proof of Proposition[21] Let r., be given by

t
Ty = Sup {T €[0,7] s.t. Jwy| < — in [O,T]} (2.9)
v

for all v. We aim to show that
Ty =Ty (2.10)

for all v > 1. We start by expanding the RHS in the first equation of (Z.6]) uniformly
in [0,7,] as ¥ — o0, using in a crucial way the control on w, that we have by
@3). Fix n1 < m2 < n3 such that g € (n,1) for all k. When not specified, the
expansions of this proof are uniform in [0, r,] as v — +oo. First, since |w,| = o(t),
we get from (Z7) that B,/y > (1 —n;) in [0,7,] for all v > 1 large. First, for all
p € [1,2] and all = < 1, we notice that

2
Og(l—x)p—(l—px)g%x2.

Then, we have

B 2t — £
0< ; - (1 _ ppvwv> < 2’; (1+0(1)),
A ¥ Py

so we get from (2] that

t2
exp (BY) = 7" e 2t Py (1 +0 (7716"1”>> )

Here and several times in the sequel, we use the elementary inequality

n—1
z z? || ||
€ — E - < - ¢
. n:
— J
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for all € R and all integers n > 1. Using also (1)) and (Z9) again, we get that

)‘vaBsw_leB:W
—2t t
:728671 <1+O<7)>x
u’yfyp'y p,y fyp’v
t2 Dt 2 (2.11)
il el 0 omt
(14—19ywy+0<7pw exp (7107/2))) <1+O<7m€ g ,

8 e~ 2ty 3
= |14+pw, + 0| L™ .
(2P 1p, ( T Py

In view of (29), to conclude the proof of ([2.I0), it is sufficient to obtain
t
jwy| =0 <7;> , (2.12)
which we prove next. By (2Z3)), we have that B, < v in [0,7,] for all 7 > 1. Set
Wy = wy(-/p1y). Then, since Ty := In(1 + | - |?) solves

ATy = —4e 270 in R? (2.13)
we get from (2.6]) and (ZTIT)) that

Aty =8¢ *T0wy 4+ O (u2~P7) + O (

e(_2+773)T0
7) , (2.14)

yP

uniformly in [0, r,/p,] as v — +oo, applying A to (27). By integrating (ZI4) in
B,(0) and also by parts, writing merely [, | < r[|@/, ||, we get that

—2mr ), (r) = O (r’p3yP") + O " +0 1 e
v Hyy ~APv (1 4+ 7r2) 1473 ’

where ||/, || stands for ||@ ||z ([0,r,/u,)) and where @/ = 4 1p,,, so that we get

/
v

W () = O i o= i 1 2.15
|, ()] = 2y + T2 (|07 oo + 57 ) (2.15)
uniformly in r € [0,7,/p,] as v — o0, using @I) and ry < 7. If |0 [lc =
O(y~P) for all v, 2I2) follows from (23], (ZI3) and from the fundamental the-

orem of calculus, using again @.,(0) = 0. Then, assume by contradiction that the
complementary case occurs, namely that

lim AP ||@] ||l = +00, (2.16)

Y—+00

maybe after passing to a subsequence. Let p, € (0,7, /1] be such that [} (p4)| =

@7, |oo- By @3), 2I5) and 2.I6), up to a subsequence, p, — [ and r /p, — L as
¥ — +00, for some | € (0, +00), L € (0, +oc], [ < L. Setting now w,, := - /||@0,||oc,
we then get from (radial) elliptic theory and from (2I4]) with (Z3]) and (Z3) that,
up to a subsequence, W, — e in CL ([0, L)) as ¥ — 400 , where s solves
Aty = 8¢~ 2104, in Br(0),
e (0) =0,
W 18 radially symmetric,
| (D] = 1

(2.17)
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but by ODE theory, the only function satisfying the first three conditions in (Z.17)
is the null function, which gives the expected contradiction. Observe that we get
also a contradiction in the most delicate case where | = L. Indeed, since we
then have L € (0, 4+00), writing (Z14) in radial coordinates gives in this case that
([l (1o, 1)) )y s bounded, so that @/, € C*([0,1]) is well defined at I, so that
the fourth line in (ZI7) makes sense and holds true. As explained above, this
concludes the proof of (ZI0). Proposition 1] clearly follows. O

3. NONRADIAL BLOW-UP ANALYSIS: THE CASE OF A SINGLE BUBBLE

Let (pe)e be a sequence of numbers in [1,2], let (uc)e and (7). be sequences of
positive real numbers. Let (u.). be a sequence of functions such that u. is smooth
in the closure of Br_(0), where Br_(0) is the ball of center 0 and radius 7 in the
standard Euclidean space R?. We assume that

Vu:(0) =0 (3.1)
for all € and that
Ve := us(0) = 400 (3.2)
as € — 0. As for (2)), let (A\c)c be given by
ApZnZ P VpZer™ =38 (3.3)
and let t.,%. be given by
.2 _
t8:1n<1+|l>; te =t +1
€
for all e. Let € (0,1) be fixed; assume also that
Be o), (3.4)
g
De
ta(ﬁ:) < 772% ) (35)
/ ulde < C, (3.6)
Br. (0)
for all ¢ < 1 small and for some given C' > 1, and that
.. P — .
lim 2927 (e = ue(per) = In (14 ]+ ) in G (R?), (3.7)

up to a subsequence. As we will see in the subsequent blow-up analysis and in
Lemma [£]] the last two assumptions are indeed natural ones.
Let (ve)e be a sequence of smooth functions solving

Ave + h(0) ve = )\Epsvff_le”:gE in Br_(0),

0:(0) = e (3.8)
ve is radially symmetric around 0 € R?,

for all €, where h is a given smooth positive function on a neighborhood of 0 € R2.
Let (p-)c be a sequence of smooth functions such that

lin% @e (=) = g in C? (Bl (O)) and p.(0) =0 (3.9)
E—r
for all € small. We assume that u. solves

Au, = %= (—huE + A€p€u§5_16“55> ,  ue>0in By (0), (3.10)
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for all e. At last, we assume that the following key gradient estimate holds true:
there exists Cg > 0 such that

|2]| Ve (2)|ue (z)P= = < Cg for all = € Br_(0) (3.11)
for all e. Letting w. be given by
Ue = Ve + We , (3.12)
the following proposition holds true:

Proposition 3.1. We have that

C
lwe(z)] < Pﬂi for all x € B;_(0), (3.13)
€ £
and that
Co
vaa‘HL""(B;E(O)) " (3.14)
Ve Te

for all e < 1 small, where Cy is any fized constant greater than (Ca/(1 —n)) + 4,
for Cq as in BII)) and n as in BI). Up to a subsequence, there exists a function
o, harmonic in B1(0), such that we have

lim 2w (7o) = do in Clo(B1(0)\{0}), (3.15)
Vipo(0) = 0. (3.16)

In order to make sure that the estimates of Section [2] can be used to control
the v.’s, it will be checked in the proof below that our assumptions of this section
actually imply

2Pz = 0(1), (3.17)
for all € (see (2])). Besides, if we strengthen assumption (B.6) and we assume
/ e *dr = 0(1), (3.18)
Br. (0)

for all e, again guaranteed by Lemma (1] we will also show that (BIT7) may be
improven to

Inv. = o (m i) (3.19)

Te
as e — 0.

Proof of Proposition [31l. We first prove (3.13). By (3.8), we have that v.(0) = 0;
by B2) and (B8], we have that u.(0) = v.(0) and we then find

we(0) =0 and Vw:(0) =0 (3.20)

for all , using (B.1]) and (312). Then, in order to get [B.I3)), it is sufficient to prove
BI4). Let r. be given by

2 \v4 - < C
re =sup r € [0, 7] s.t. 72 9 7l ZUC?HL (Br(0) = ™0 (3.21)
Ve S w-ae

for all e, with Cp > (Cg/(1 — 1)) + 4 fixed as in Proposition Bdland C as in (3.0).
Then proving ([14) reduces to show that

e = 7. (3.22)
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for all e < 1. By 4) and B7), there exist numbers 7. such that p. = o(7:),
7e < 7 and such that ue = 7.(1 + o(1)) uniformly in By, (0): then, we get from

(B6) that
/ uﬁdw = 7T’7§’F§(1 +o(1)) < C
B (0)

and that v2P<72 < 2C /7 for all ¢ < 1. Then, we may use Proposition 2lin B, (0),
with assumption (1)), to get that

lim 592~ (7 = ve(ue)) = (L +| - ) in Ol (B?)

e—0 2
which implies with B7) that 2=~ p||Vwe || Lo By, (0)) = 0(1) as € = 0, for all

given R > 1. Summarizing, both conditions in B.21)) give that u. = o(r.) ase — 0
and we may now apply Proposition 2Iin B,_(0): we have that

sup 22aPeLs|ul(s)| < 2+ o(1) (3.23)
s€[0,r] 2

for all ¢ <« 1. Using w:(0) = 0, we get from the first condition in (Z2I)) that
lwe| < Coy2P so that u. = v.+O (72 77¢) in B, (0) for all ¢ < 1. Independently,
we get from Proposition 1] and from (3.3) that

Ve > (1l —n+0o(1)) in [0,7], (3.24)

for all € < 1. Then, writing |Vwe| < |Vue| + |Vve|, using first .II) and [B23),
and then ([B3.24) together with p. € [1,2], we get that

||vw€||L°°(aBTE(O)) < 755717"5 <(1 — n)pa*l +4| < W (325)

for all ¢ < 1, using our assumption on Cy. Independently, Proposition 2] gives
that ve(r)’ = O (r~'927P¢), so we first get that

or.
ue = ve(re) + O (wéps 1nﬁ> , (3.26)

_ 27, _ 27, *
1+0 [ (PP ln— )+ (P In—
r r

uniformly in r € (0,7.], and at last, with (3.6]), that

then, with (324)), that also

us(r)4 = vs(r5)4

mve(re)*r2(1 +o(1)) = / uldr < C :
Br.(0)
summarizing, the second inequality in (3.2I)) is strict at r = r. for all ¢ < 1, using
B24) again. However by (B.23]), the first inequality in (2] is strict as well at
r = re, which concludes the proof of ([B:22]) by continuity and then, as discussed
above, those of (313) and (3I4). Since p. < 2, we get at the same time from (321
that (3I7) holds true, so that we may apply Proposition[Z1lfrom now on to estimate
the ve’s in Bz, (0). We turn now to the proofs of B.I5) and (BI6). First, using
[3:24) and that v. < . by Proposition 2.1 since |w.| = O (v277¢) by B.I3), we



CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL 29

may first write uPe = vPs +p.oPe " lw. (1+0(1)) and uPs =1 = vP= =1 (1 + O (|Jwe|/7e)),
then

pe—1 ube
Ug es

= vpeTle® (1 + pevls T we {1 +0 (M +v§5‘1lwal>} +0 (M»

Ve Ve
= Ug’fle”?s (1 + povPetw, [1 +0 (75571|w5|) +0 (7;7”5)]) ,

and, observing also ¢# = 1+ O(-|) by @), fw.| = O (17| - |/7.) by BT,
and using (3.8) and (3.I0), we may write at last

Aw, = — 62tpsw€ +0 (l : |U€)

e . 1 3.27
+ )\Epsvgflevs <p5vgslwE [1 + O <y + .z )] +O(| - |)> ( )

€ €

uniformly in B;_(0) and for all ¢ < 1. Setting now 1w, = P! %wa(ua-) and given
any R > 1, we get from Proposition 2] and (8:27) that

—2T,
pe—1 (1 + O(%_ps))] X

MG = O (j2.) + O (u27r) + [ 5
p

€

(p57§5_1u75 |:1 + (@) (% -+ '7;P6>:| + [0) (,755—1,,,5)>

uniformly in Bgy,_(0), for all e. Then, by (34)), 14), (3I7), the first assertion in
(B20) and elliptic theory, we get that, up to a subsequence,

lim @, = wy in CL.(R?), (3.28)

e—0
where wg satisfies
3.29
|w0|§C'0|-|inR2. ( )

By the second assertion in 20) and ([B3:28]), we have Vwy(0) = 0. According to the
classification result stated by Chen-Lin [5, Lemma 2.3] and also in the generality
on the growth assumption that we need here by Laurain [32] Lemma C.1], this last

property and ([.29) imply

{ Awy = 8exp(—2Tp)wp in R?,

wo =0. (3.30)

In order to conclude the proofs of ([B:I5]) and (BI6]), we establish now the following
key estimate:

lim 7217 |V (we = (v = $e(0)) . = 0, (3.31)

where || - [|o,c denotes || - ||z (p,_(0)) and where ¥). is given by

{ At =0 in By, (0), (3.32)
¢8 = W ON aB’Fs (0) ’

for all e. Let G() be the Green’s function of A in By, (0) with zero Dirichlet
boundary conditions (for an explicit formula for G(*), see for instance Han-Lin |27,

Proposition 1.22]). Then (see also for instance |22, Appendix B]), there exists C > 0

such that
C

|z —y|’

VG (2)] <
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for all z,y € Br,(0),  # y and all . Let (y.). be any sequence such that y. €
By (0) for all e. By the Green’s representation formula, we may write

V.~ = [ V6@ ) @y
Br. (0

for all e. Then, using also (B3), B27), Proposition 21l and the first assertion in
B20), we get that

[V (we — e ) ()]

-0 / (”vws”oms +7e)|z|dz
Br. (0) lye — 2 (3.33)

n O / |x|e(_2+ﬁ)ts(w) (vaEHOO,E + ’761_175) de'
Br. (0 ’

12|y — |
for all e, where 7] is some given constant in (7, 1). By the change of variable z = 7.y,
we first deduce
d
[ o).
B

) l9e =2
If we have |y.| = O(u.), we get that
(=247t (z) g
/ |I|e2—$ =0(1)
By (0) us|y8 - ‘T|
for all €, by the change of variable x = u.y; otherwise, up to a subsequence, we
have pe = o(|y.|) and

|| e(— 2Dt (%) gy 1 1 ly|dy _
e 2 Tl —y - O
Br (0)  ME|Ye Br. /1y (0) HE (1+|z_|2) Ye — Y

for all ¢ < 1, by the change of variable @ = |y.|y, where §. = y./|y:| has norm 1
and fi = pe/|ye|. Plugging these estimates in ([3.33]), we get in any case

[V (we — (1 —¥:(0)))(ye)|

] 1 )
= O ((IVwellooc +7e)72) + 0 <W (IVee | c,e + 72 p5)> ,
T+ 5 (3.34)

He
1 1
= Pe—1_ O ‘ I +0(1)
Ye© Te 14 %

for all e. The last line in (334) uses (BI4) and BIT7). We claim now that (¢:)e
from (332) satisfies

[VYelso,e = O (%) . (3.35)
v

3 Te

Writing V. = Vw, + V(¢ — w,), using (334) which gives

1
906 = 0l =0 ()

Ve Te

we indeed get (335) from ([B.14]). Thus, we find from ([B.35]) and elliptic theory that
limm 92 (e (rer) = 62(0)) = Yo i Cloo(B1(0)) (3.36)
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up to a subsequence, where g is harmonic in B;(0), and we obtain at last
. 1T .
lim 72271 == (e (o) — 1 (0)) = (Vo (0), ) in Cpoe(R?), (3.37)
e—0 e
by B.4), where (-,-) denotes the standard scalar product in R2.

Assume now by contradiction that (33I]) does not hold true, in other words that,
up to a subsequence,

1

ps_lf

=0 (IV(we = ve)lloc.e) (3.38)

for all e. First, we claim that (3I8) holds true, for ¢ as in (330)-B3T). Indeed,
let R > 1 be given and let (y.). be such that y. € 0Bg,_(0) for all ¢ < 1. We get

from (B25), (B30) and (B37) that
21_1)%755_1775v(w5 - ws)(ys) = Vi/JO(O)

This estimate, combined with ([334)), proves (8I6) since R > 1 may be chosen
arbitrarily large. Secondly, we may pick (y.)e, such that y. € Br_(0) and

IV (we = e)lloo,e = [V(we = (¢ = =(0)))(ye)| (3.39)
for all , and we get from (B34) and B38) that |y.| = O (u) for all e. However,
B30) and B37) with BI6) contradict (B.38) with (8:39), which concludes the
proof of (331). Then BI3) and EI8) follow from both assertions in ([320), from
@B31) and from @B36]), which concludes the proof of Proposition Bl To end this
section, we assume (B1I8) and prove BI9). We have (3:222) and (320). Then, using
m)?

(1463 =14+0(t|/3) for all t > —1,
pe > 1 and v (7e) < 7., we get first

27\ \ 27\ '/*
ul/3 = o (73 (1 +0 ('y;pf In ﬁ)) =v:(7)3 4+ 0 (ln ﬁ)

uniformly in Br_(0)\{0}, so that we eventually get

N 1/3 B
/ e’y = eve(7)? / exp | O (ln %) de > (57 )1/3f§ ,
B, (0) B, (0) |-

for all € <« 1, which concludes the proof of [BI9) by BIF). O

4. NONRADIAL BLOW-UP ANALYSIS: THE CASE OF SEVERAL BUBBLES

The following theorem is the main result of this section. It is a quantization
result determining in a precise way the possible blow-up energy levels. Notice that
assumption [3) will follow from variational reasons.

Theorem 4.1. Let h be a smooth positive function on X. Let (\:)e be any sequence
of positive real numbers and (p:)e be any sequence of numbers in [1,2]. Let (uc)e
be a sequence of smooth functions solving

Ague + hue = )\apauigs_le“gs , u:>01in X, (4.1)
for all e. Let (B:)e be given by

Be = Ang (/E (e —1) dvg)

2—pe 2(pe—1)

(/2 uPe e dvg> (4.2)
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for all €. If we assume the energy bound

lim ﬂs = ﬂ € [05 +OO) ) (43)
e—0
but the pointwise blow-up of the ue’s, namely
lim max u. = 400, (4.4)
e—=0 X

then, there exists an integer k > 1 such that
B =4nk. (4.5)

A quantization result on a surface and in the specific case p. = 2 was partially
obtained by Yang [52], following basically the scheme of proof developed in [20] to
get an analoguous result on a bounded domain. However, even in this specific case,
Theorem [ T]is stronger (see also Remark [41]). Indeed the analysis in [52] does not
exclude that a nonzero H'-weak limit ug of the u.’s contributes and breaks ({@.H),
that would become

B = 4k + |Juo|7 - (4.6)
On a bounded domain and still in this specific case p. = 2, starting from the so-
called weak pointwise estimates and using the first quantization in [20], a more
precise blow-up analysis was carried out and in particular the precise quantization
(£X) was obtained recently in [22]. Here on a surface and for general p.’s in [1, 2],
our proof starts also from the weak pointwise estimates, but gives at once the
precise quantization, without using any intermediate one, by pushing techniques in
the spirit of [22]. As mentioned in introduction, perturbing the standard critical
nonlinearity in the RHS of (0.I6]), as we do here, requires to be very careful, if one
wants to keep the precise quantization (L)), which is crucial for the overall strategy
of the present paper to work. Indeed, it was recently proven in [40] that (£5) may
actually break down for some perturbations of the nonlinearity in (016 which are
surprisingly weaker in some sense than the ones that we consider here.

As a byproduct of Theorem [l we easily get the following corollary, allowing
to get critical points of F' in ([0.2]) constrained to &g in ([03)), as the limit of critical
points of J, g as p — 2, for any fixed 3 & 47N*.

Corollary 4.1. Let h be a smooth positive function on Y. and let 8 € (0, +00)\47wN*
be given. Let (p:)e be any sequence of numbers in [1,2) such that p. — 2 as e — 0.
Let (us)e be a sequence of smooth functions such that @) holds true for Ae > 0
given by (E2) and for B. := B for all e. Then, up to a subsequence, we have that
ue — w in C%, where u > 0 is smooth and solves [I4) for p =2 and (0.I6).

For any A > 0, p € [1,2] and u satisfying (0.12]), observe first that we necessarily
have
22 < mzaxh, (4.7)

by integrating (Q.12) in X, by using ¢t 'et” > 2t, for all t > 0 and all ¢ € [1,2],
and the assumption in ([.12)) that w is positive on 3.

Proof of Corollary[{-1. Let B, (pe)e, (ue)e and (A:): be given as in Corollary .11
Since 8 ¢ 47N*, we get from Theorem [L]] that (£4)) cannot hold true. Then, by
D) and by standard elliptic theory as developed in [26], up to a subsequence,
Xe = X and u. — uin C? as € — 0, for some C?-function v > 0 and some A > 0
satisfying the equation in (O.I6) and ([@I4) for p = 2. If u = 0, we clearly get



CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL 33

a contradiction with (0I4]), since 8 > 0. Then, v Z# 0 and v > 0 in ¥ by the
maximum principle, which concludes the proof of Corollary [£.1} O

We now turn to the proof of Theorem F.T] itself. From now on, we let (\.). be
a sequence of positive real numbers, we let (p.). be a sequence of numbers in [1, 2]
and we let (uc). be a sequence of smooth functions solving ([1]). Let (8:). be given
by @2). We also assume ([@3). Then, since

2—pe + 2(pe — 1)

=1, 4.8
Pe Pe (4.8)
Holder’s inequality gives that
/\5/ u2Pe=1) (e“? - 1) dv, = O(1). (4.9)
b
By (1), pe € [1,2] and the fact that ¥ has finite volume
)\5/ uPe=Yy, = )\5/ u2Pe=Ydy, + )\5/ u2P==Yy,
> {’U.ESQ} {u€>2}
< 0O(1)+ )\8672/ e 2Py, (4.10)
b
then as a consequence
AE/ uPe' dvy, = O(1) (4.11)
by

for all p € [0,2(p: —1)] and all e. We get (£I1), for p = 2(pe — 1), combining ([9)
and (@I0), and then also for p € [0, 2(p. — 1)), using that ¥ has finite volume and
fiw)

As a first step, observe that we may directly get the following rough, subcritical
but global bounds on the u.’s.

Lemma 4.1. There exists C > 0 such that
/ e“ysdvg <C
p)

for all €. In particular, for all given p < +00, (uc)e is bounded in LP.

Lemma HET] strongly relies on (£3]) and is actually the very first step to get
Proposition [41] below, already obtained in [52] for p. = 2. This lemma is relevant
to handle the term hu,. in the LHS of (4.I]), appearing in the present surface setting.

Proof of Lemma[{.1]l Integrating ([AI)) in X, we get from the consequence (A.I1)) of
[@3) that (u.). is bounded in L. Set now i = max{uc,1}. Multiplying (@I]) by

az '3 and integrating by parts in ¥ (see for instance |28, Proposition 2.5]), we get

3/ IV (al/3)>dv, = +/ a2 hucdv, — )\Epg/ a1 BuPe e du, .
b b =

Since @. > 1 and (uc). is bounded in L', it is clear that [ ﬁ;l/guadvg = O(1).
Concerning the last integral, writing ¥ = {z s.t. u. > 1} U{z s.t. u. <1}, we find
that the integral on the latter set is of order O(1) since ¥ has finite volume and by
([#0), while the integral on the complement is of order O(1) by @11 for p = p. —1,
using . > 1. Similarly, since (u.). is bounded in L', (it/®). is bounded in L2.
Then, by the Moser-Trudinger inequality, (exp(ﬁi/ 3))E is bounded in L. Obviously,

the same property also holds for (exp(u;/ 3))5, which concludes the proof. O



34 F. DE MARCHIS, A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

From now on, we also assume that the u.’s blow-up, namely we assume that
(@A) holds. In order to prove Theorem Al we need to introduce some notation
and a first set of pointwise estimates on the u.’s gathered in Proposition A1l below.
As aforementioned, these estimates have already been proven by Yang [52] in the
case where p. equals 2 for all €. Yet, if this last specific condition is not satisfied,
note that, even in the case p. — 27, we are not here in the suitable framework to
use the results from [52], since the nonlinearity appearing in the RHS of (&) is not
of uniform Moser-Trudinger critical growth (see [20, Definition 1]). However, as it
was already observed in the literature (see for instance [12]), the technique of the
pointwise exhaustion of concentration points introduced in [20] is rather robust and
may be successfully adapted to a much broader class of problems. Once Lemma
4Tl is obtained, the proof of Proposition 1] for general p.’s is very similar to the
corresponding proof for p. = 2 in [52].

Concerning the notation, for all i € {1,..., N} and € < 1, we may choose isother-
mal coordinates (By, (2i.c), $i,e, Uie) around z; ., such that ¢; . is a diffeomorphism
from By, (x;.) C X to U; . C R2, where 1 > 0 is some appropriate given positive
constant and B, (z;.) is the ball of radius x; and center z;. for the metric g,
such that ¢; .(z;.) = 0, such that By,(0) C U, ., for some £ > 0, and such that
(¢ic)wg = €2?i=€, where R? is endowed with its standard metric ¢ (see for instance
[19] [49]). We may also assume that (¢; ). satisfies

Ve, ¢ic(0)=0and lim g; . = @; in C},.(B2x(0)). (4.12)
E—r
At last, we set
Uj e :uaoqﬁi}l and h; . =l"L0¢;E1
in Ba(0). We denote also by dy(-,-) the Riemannian distance on (%, g).

Proposition 4.1. Up to a subsequence, there exist an integer N > 1 and sequences
(@ie)e of points in ¥ such that Vue(x; ) = 0, such that, setting v; . == ue(Tiz),

3 3
Wi = — - -0, (4.13)
) <Aapivf,(f5 l)e”ff)
such that p
Vi e {1,... N\ {i}, % — 400, (4.14)
i,€
and such that
%ﬁjl(%s — i (i) = To:=In (14| 2) in Gl (R?), (4.15)
ase — 0, for alli € {1,..., N}. Moreover, there exist C1,Co > 0 such that we have
min _ ul= ", (w0, )? | Agus| < Cyoin 2 (4.16)
i€{1,...,N} : ’ :
and
il (e ) Vel < G in 3 (4.17)

for all . We also have that lim._,o x; . = x; for all i, and that there exists ug €
C?(X\S) such that
lim u. = ug in CF(X\S), (4.18)

e—0

where S 1= {z1,...,zN}.
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Observe first that v; . — +00 as € — 0 by ({1) and @I3)). As an other remark,
by (£I14)) and (£I5]), we have that

Ap? pe
47N =N [ 4e ?Tdz < liminf 52p€ / ug(ps_l)e“E dvg ,
b

R2 e—0

so that (@3] and its consequence ([@II) for p = 2(p. — 1) are not only used to get
(@I3) from the classification in [7], but also to get that the extraction procedure
of the blow-up points (z;.). has to stop after a finite number N of steps, which

eventually gives (18] (see |20, Section 3]).

Remark 4.1. At this stage, we have only extracted the "highest bubbles" in (EI3)
and it is not yet clear at all whether N in Proposition [{.1] is a good candidate to
be k in ([@H) (see also the discussion in |22, Section 2])). Indeed, for p = 2, it is
now known (see [41]) that a tower of k-bubbles may exist for nonlinearities which

are lower order perturbations of the one in ((L16) and we may then have only one
"highest bubble" (i.e. N =1) with any k € N* in ([ZL5]).

We get from (@) that
Au; . = e*Pie (—hi,sum + )\Epsuif__fle“ﬁ) . Uie > 01in Bag(0), (4.19)
for all 7 and e, where A = A, throughout the paper. For all ¢ € {1, ..., N}, we set
Kif N=1,
Tie = { min (% minjeqi,. N}\{i} dg(Tie, Tje)s n) otherwise, (4.20)
for all €, so that we get from (I3) and [@I4) that

R
lim
e—0 Ti,E

=0. (4.21)

We set t; . := In (1 + )ﬂ‘z ) in R%. We set also

Vie = By, ., (4.22)

where B, is as in (Z0) for (p,), and (p~), satisfying p,, . = pe and p, . = i,
for all e and all 7 € {1,..., N}. Up to renumbering, we may also assume that

e < T2e <..< TN, (423)
for all €.
In order to link the present situation to the results of Sections 2l and Bl we need

some preliminary observations. Let | € {1,..., N} be given. Given a parameter
(m) b
e

n € (0,1) that is going to take several values in the proof below, we let T e

given by

pE
e () =, (4.24)
and, for r; . as in (L20), we set
fl(z) = min (7“175, rf?) (4.25)

for all e. By collecting the above preliminary information, we can check that Propo-
sition [3.1] applies with 7, = fl(z), Oe = Qles Ue = ULe, Ve = V1,e and ve = V. In
particular, the definition ([@20) of r; . is used to get (311 from (@I7), while Lemma
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[Alis used to get (3:6) and (3I8). As a remark, the metrics (¢, )«g and € are equiv-
alent in B, (0) by [@I2): we use this fact here and currently in the sequel. We get

in particular (see (319)) that fl(z) = o(1) and even that

1
Iny.=o0 <1n m) , (4.26)

Tl,a
so that Proposition Bl also applies (see the remark involving (3.17)), and so that
we get

2t ¢ (1 +0 (y{fs)) .
Vie 2 Ve = Ve 1- De > (1 - 77)”)7,5 +0 ('Yl EPE) , (427)
PeT e ’
uniformly in [0, fl(?} and for all £ < 1, using Proposition 21l and (£24). We also
get from Section [ (see (313)) that

ue — vl =0 <7p5|_'1|(n)> (4.28)

’7l,5 rl,s

and (see (B.14)))
V(e — i) = O <#> (4.29)

pe—1 *(77)
/Yl,s Tl,s

uniformly in B_, (0) and for all ¢ < 1. We get now the following result:
le

Step 4.1. For alli € {1,..., N}, we have that

2t; ;
lim inf 71’5(7;5’5)
e—0 pa’yi)s

and that there exists C' > 1 such that

2 2 C
0<Te(r)<-— (— - 1) Yie + P In 50pe=1) +0 (1‘3/2> (4.31)
DPe P<Yie As%‘,gps 7

>1, (4.30)

uniformly in r € (0,k] and for all e < 1, where U, is continuous in [0,2k) and
given by
1
Uj =5 ie doe, 4.32
Ui e (r) or ~/BBT(O) Ui,e GO¢ ( )

for allr € (0,2k), where dog is the volume element for the metric induced in 0B, (0)
by the standard metric & in R2.

Proof of Step[4-1 We divide the proof of Step A1l into two parts.

Proof of ([@31]). Here we show (L31]), assuming that (£30) is already obtained for
some . Let 71 < m2 be two given numbers in (0,1). Then by [@24), (£25) and
[E30), we get

and ﬁ(f) = ()

=(m) _ (m)
5 _Ti,s 1,€

T,
for all € < 1. Then (431 holds true uniformly in (O,rgf)] using (2.8) and (£.23)
for | =i and parameters 7, or 15. We get also from ([@.27) and (£28) that

Ui e (rle)) = Ve (7‘57;)> +0 (’71-1;%) <Vie +0 (%1;1%) , (4.33)
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and from ([£29) that

1
19 (e = w3 _o<————> (4.34)
(o) "\

for all e < 1. For f a C? function around 0 € R? and r > 0, we let f(r) (see (£32))
be the average of f on dB,.(0); integrating by parts, we get

o f(r) = / (Af)(z)do (4.35)
B (0)

with the usual radial (abuse of) notation. We write with ([@I2)) and (@I9) that

/ (Au; e )dx > / (Au; e )dz + O / wjedx |
BT(O) B,,(Wl) (O) BT(O)\BT(jM) (0)

that fBT(O) u;edz = O (r®?) by Holder’s inequality with Lemma @Il for p = 4, and
then, with (£35), that

() < —5— (—2ml Pl (10)) + 0 (+177) (1.36)

uniformly in r € [T(m) Ii} and for all ¢ < 1. We get from the definition (£.24)) of

,€ )

rl(g)forl*zandje{l 2} that

(771) Pe
T Pe7i,
In S = = = m) +ol1) (437)
Z 1>
as € — 0. We now write
t/ (771)
ﬂis:vzs_"(ﬁis Uii)i psfl 1+0(%5 )+O< (772)>‘| 7
Pei e Tie

at r(m) for all ¢ <« 1, using Proposition 2] and (£34]). This implies with (£37)
that

’LE 1,€

)y () 8 1-2p.
— 27er{ (r ) T+ 0 (7.1 ) , (4.38)
€
using also that
(1) (1) ? -
e () =20 (2. (12))") =240 ()

for all ¢ < 1, by the definition (#:24) of r(m) Then, integrating ([36)) in [r Z(Zl), 3]
and using the fundamental theorem of calculus and [#38), we get that

4 _

T (8) — Tie ( (’Z;)) < (140 (777)) + 0 (53/2) (4.39)
’ ps,yi;sa 7"1-:'751 )

uniformly in s € [7“(771) k], for all ¢ < 1, and conclude the proof of (@31) by

2,€ )

evaluating ;. (Hm)) with (2.8) and (@33)). To get the existence of C' > 0 in

i€
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(@31) from the remainder in (A39), we use that (I39) and @; (k) > 0 imply

s 1 _
0<lIn W =0 (wffs 1ui)8 (rﬂ”)) +0 (%p; 1) = O(vf;)
1,€

uniformly in s € [r(nl) k] and for all £ <« 1, thanks to (£33). O

i,

Proof of ([@30). We now turn to the proof of [@30). We prove it by induction on
i €{1,..., N}. In particular, we assume that (£30) holds true at steps 1,...,4 — 1 if
i > 2. By contradiction, assume in addition that (30) does not hold true at step
i. Thus, by [@24)-(25), up to a subsequence, we may choose and fix n € (0,1)
sufficiently close to 1 such that

A =7 (4.40)

for all e < 1. Set J; = {j € {1,..., N} s.t. dg(zic,xjc) = O (rie)}. Obviously, we
get from ([4.20) that
e = O (rie) (4.41)

for all e < 1 and all I € J;. We also find from (£26) for [ =i and from (£40) that
rie = 0, so we get from (£I2) that

gle ‘= [(¢l,€)* g} (TLE') — § in Olzoc(Rz) ) (442)
as ¢ — 0 for all [ € J;. Up to a subsequence, we may assume that
lim Peee) _ o g2
e—0 T’i,s

for all [ € J;, and we have that S; := {&;,l € J;} contains at least two distinct
points, by (£20), since r; . — 0 as ¢ — 0. We may now choose and fix 7 € (0,1)
small enough such that
3T < min |z — vy
{(z.y)€82 z#y}
and such that S; C By /(37)(0). We can check that there exists C' > 0 such that any
point in
Qiﬁ = BTi,a/T(O)\ UjEJz' BTTi,E ((bi,tf(xjﬁ))
may be joined to 0B, .(0) by a C* path in ;. of ¢length at most Cr; ., for all
e < 1. Therefore, by [@A0) with (I27) and [@28)) for [ = i, we may estimate first
uie on OBry, (0) and then get from (@IT) and (£42) that

e = Te(7rie) + 0 (¥27) 2 (1= m)ee + O() (4.43)
uniformly in ©; . and for all ¢ <« 1, with 5 € (0,1) still as initially fixed in ([@40).
Independently, we get from (2Z8), 28] for [ = ¢ and (@40) that

_ 2 2 1
Ui e(Trie) = — <p_ - 1> Yie T — 7 <ln D= + O(l)) (4.44)

e Peie Yi Tie

€ li,e

for all e < 1.
e We prove now that, for all j € J;

j<i = lim 2= =0, (4.45)
e—0 /Yj,é‘
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up to a subsequence. Then, let j € J; such that j < i. By ([@23]), we have that
rje < 1ie and, by our induction assumption, we know from (€30) at step j and
from (@24)-(£25)) that, given any 12 € (0,1),

) = ) (4.46)
for all ¢ < 1. Then, by [@27), by [@28) for | = j with parameter n = 7, and by
the definition (£24) of 7“3(-752) we have that

e () < (1= m)y5.0(1 + 0(1)

as e — 0. For all [ € J;, let w; . be given by

Awl@ = —62“‘”’5}11,5%1,5 in Brm/(%)(o)v (4 47)
Wi e = 0 on 8BTI.,E/(27)(O) .

By observing that A(u;c —wi.) > 0 in B, _@2-)(0) by (@I9), the maximum
principle yields that u; . —w; . attains its infimum on B, _;2-)(0) at some point
in 0By, _;@2r)(0). Moreover, for all given p € (1, +00), we get from Lemma [£1] and

@I that
2(p—1)
nMwwﬁmmwwﬂm—OGJ )

so, by elliptic theory, ([4.24)-(4.26)) and ([4.40]), we get
2(p—1)
wie(rie) = O (TZ-)E” > —o (%{;ps) (4.48)

uniformly in By /(2,)(0) as € — 0. Summarizing this argument for I = j, we get

(1 =n)yie < (1 =m2)ye(1+0(1)) (4.49)
as ¢ — 0, using also ([@42)-([@43). Indeed, by ([@42), observe that we may choose
7 > 0 sufficiently small from the beginning to have

aBn-,g/(2‘r) (O) C (b;; © d)i,s (Qi,s) ) (450)
so that we may estimate u; . on 0B, _/@2-)(0) with [EZ3), for all I € J; and all
e < 1. Since 72 < 1 may be chosen arbitrarily close to 1, (£49) gives ([@45).

e We prove now that, for all j € J;,

Ve =0 (Vi) - (4.51)
By contradiction, if (@51 does not hold true, we choose j € J; such that
lim 222 =0, (4.52)
e—0 FYj,E
up to a subsequence. In particular, we have j # i. If j > i, we may write that
72
tie(ric) =In—5=+o(1),
j.e
r? u?
s€ 1,€
=In ]2 +ti7€(Ti7€) —I—IDT +O(1), (453)
i€ je

p 1= £ =
=0(1) + 7735757,5 +7e = e + O (Invie +1Invy;.)

= 7521 +0(1))
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as € — 0. The first two equalities use (L.2I]); the third one uses first our assumption

j > i with ({23) and (£A4I)), then the definition [@24) for n as in (£40), and at
last (@I3)); the last equality uses [@52). Thus, given any 72 € (0,1), we get in
complement of ([@4H) and the paragraph below that ([£46]) holds true also if j > 1.
As a first consequence, for all given 0 < 1} < 72 < 1, we get that

(n2)
lim 25— =0, (4.54)

e=0 14 ¢

using (L41). We get from (Z8) and (28], for [ = j and parameter n}, that

) _ (2 ) 2 1
e (1) = = (2= —1) .+ In +0(1) | (4.55)
Je ( i ) Pe " pet U2y (T<7 >)2

<Vj,e J€

for all e <« 1.

In order to have the desired contradiction with (£.52]), fixing 72 € (0,1), we prove
now the following estimate

2 r?
Uje (rgna)) 2 Uie(Trie) + ——In < —|—O(”yll€p€) (4.56)
PeYje (7“3(-"5))

for all e < 1. Let 1. be given by

A =0in B, _/2:(0),
Ye = uj on OB, _/2:)(0),

for all . We get first
e = Ui e(Tre) + O (szpf) (4.57)

foralle <« 1, by (@43]), (A50) and the maximum principle for the harmonic function

. Let (2c)c be any sequence of points such that |z.| = r(m) for all e. Let G¢ be
the Green’s function of A in B,, | /(27)(0) with zero D1r1chlet boundary conditions.
We know that G.(z,y) > 0 by the maximum principle for all z,y € B, _@2-)(0),
x # y and for all . Let n; € (0,72) be fixed. By Green’s representation formula
and ([@IJ), using the positivity of Auj. + e?*¢i=h; .u;. and that of G:(z, "), we
have that

(Uje — Ye — wje)(2e) > )\apa/ ( )Gg(za,y)ewj’suj,a(y)ps etie Y dy (4.58)
Br(ﬁl) 0

for all ¢ < 1, with w; . given by (@47). There exists C' > 0 (see [22] Appendix B])

such that
1

Ge(z,y) — |Z_y|

for all y € By, _/(2r)(0), for all z € B5ri’5/(127)( ), y # z and for all € < 1. Observe
also that (£37) holds true for I = j. Then, since |z;| = ry’;), we first get that

Tie

_ 1 ,
Gelze,) = 27T1 |€| S| )+O(|z5| % 1nr;7?) +0(1) (4.59)
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uniformly in Brﬁf’;)(o) and for all ¢ < 1. Now, by (217 and [@28)) for [ = j with
parameter 1 = 12, computing as in Proposition 2.1] or in the argument involving
B21), we get that, for some given 7 € (0, 1),
4.60)
571 (
Gl e Jﬁ>>

in B () (0) and for all ¢ < 1. Resuming arguments in (L53) and using (£.54), we
have that

— 5 8 _2tj‘5 ~ . 1
Aepeereartents = 8T gy o (e | L L
DPe Y5

0<In—5 <n ; +1n Z— = 7% (1 + o(1)) (4.61)
Tje i,e Jre

as € — 0, since ([A52)) is assumed to be true. By ([@59), [@60) and (LEI]), we get

that

AeDe / Ge (25, y)uj,s (y)Ps—leuffE(y)dy
BT(_Wl) (0)

J,€

(m)
1 Tie 8 (n1) 2 Tie 1
— 5o+ 00) )| 5 (140 [me/r] ) 40| 955+ o
(2” i) | )> Vi lps< < el r g

2 r? _
= pe—1 In = 7t o (W;yaps>
PeVje (7“3(-"5))

for all ¢ < 1, using the definition of r{""’ (@37) and ([@46) with (@26) for [ = j.

J,€

By plugging this last estimate with (£48), (52) and @57) in (@358), since (z¢)e

is arbitrary, this concludes the proof of ([Z50]).

We now plug (£44) and (£55) in [@L56) and we get
(i—qymu+w»+i%§%@7%+mi>go@;%mwg
still using (£52]). However this estimate gives a contradiction for ¢ < 1, by (£7)

and ([{.26) for I = ¢ and ([@40): (EI) is proven.
e Then, using (23) and ([@45), (@E5I) implies that for all [ € J;

Tie < Tle (4.62)
for all ¢ < 1. We now claim that there exists n3 € (n,1) such that

wm) = (4.63)

J,€
for all j € J; and all ¢ <« 1. Coming back otherwise to ([@24)-(@25), up to a
subsequence, we may assume by contradiction that there exists j € J; such that
2t5,6(rj,e)
PeYie
ase — 0. As aremark, we must have j # ¢ by (£40). Then, for all given 15 € (0, 1),

([#48) holds true and the argument between ([A46) and ([EI) gives ([E52)), which
does not occur by (@51 and proves [@G3). For j € J;, since

Gic 0 ;L (0B, 2(0)) C Qi

>1+0(1)
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by (@20), (@22), (@62) and the definition of 7, we get from the equality in (@43
Uje(Tj,e/2) = Uie(Trie) + O (ﬁ,i_l) ;
so that we eventually have
Yie =0 (Vj.e) » (4.64)

using the inequality in (Z43) and since ﬁj,s(f§-23)/2) < 2v;. by @Z27), @28) and
#E5T), for all e < 1.

e We are now in position to conclude the proof of [@30]). Setting
- —1 _
Ue 1= ’sz,a (Uie(rie) = Wie(Tie))

with an argument similar to the proof of (£43]) one deduces from ([@I7) and (£42)
that (@.). is uniformly locally bounded in R?\S; for all € < 1, where S; is given

below [@A42)). Then, using (£27) and (@28) for | = ¢ with [@40), we get from (L12)
and (@LI9) that

Aie =0 (422 ) + 0 (A (ol es ) (i) = o(1)

uniformly locally in R?\S; for all ¢ < 1. To get the last estimate, we use ([Z286])
for I = ¢ to control the first term, while we estimate the second one first by

O((uiya/mya)z(l*ﬁ)) (see Proposition 2.1)) and then we conclude with (£21]). Hence,
there exists a harmonic function @y such that 7. — g in Clloc(R2\Si) as ¢ — 0.
Now observe that (£I7) also gives the existence of C' > 0 such that

|Viio| SCZ 1_

z€S;

in R2\Si N

using the local convergence of the @.’s in R?\S; and the lower estimate in ([Z27)
for [ =¢. Then, by harmonic function’s theory, there exist real numbers «, and A
such that

|z

in R?\S; . (4.65)

g = A+ Zamln

1
z€S; |5L‘ - |

However, by ([@41)) and [@62)), by (L3I and (@64, Proposition [B1] gives that the
oy are positive and in particular BI6]) gives that

1
\v4 <ﬁ0 —ozmln—> () =0
|z —-|
for all z € S;. Picking now y an extreme point of the convex hull of S;, we get

from (@63 that this last property fails for x = y, since S; possesses at least two
points. This gives the expected contradiction to (£40) and concludes the proof of

@E30). O
Step .l is proven. O

Up to a subsequence, we assume from now on that
lim pe = po, (4.66)

for some pg € [1,2]. As a first consequence of Step Il we improve (7)) and
conclude the proof of @35 and thus that of Theorem Al in the subcritical case.
A key ingredient to get the sharp quantization (3) (and not (L) for ug # 0, for
instance) is given by (£.31]) in Step AT} roughly speaking, the only way for the RHS
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of @3I)) to be positive at some r not too small is that . is quite small (see (LGS)

and ([@I07) below).

Step 4.2. In any case, we have that
5113% Ae=0. (4.67)

Moreover, assuming that pg € [1,2), (@A) holds true for k = N and N given by
Proposition [{-1]

Proof of Step[4.3 By evaluating ({.31)) at r = /vyz(l*pi)/g, we get that

€

_ pe pe 2 — < i
(1 5 ) Ve T 3P = DInyie <In =+ 0(1) (4.68)

for all e < 1 and all ¢ € {1,..., N}, which clearly proves (L.67)). Now assume that
po < 2 in ([@GE). Up to renumbering, fix ¢ such that ; . is the largest of the v;.’s
for all e < 1 and all j. Given any n € (0,1) to be chosen later, setting rl(z) as in
(24)), we know from (A30) that fl(z) = rl(z) for all e < 1 and all . Then, we get
from (£27) and (£2])) (see also Proposition 2.1]) that

Aep? c _
/ 52]95 u;);euﬁg e2Pledy — (47 + 0(1)) %2’5 Pe that
B (0)
L (4.69)
/ APE ute 2o gy AT F0(1)
B 2(pe—1)
Bﬁ(@ (0) Ve

and that
Ule = (1 — 7’])")/1)5 + 0] (’Yll,;ps) ,

) ) 1 4.70
=—|—=1)me+ —In +0(1) ( )
' pe—1 ()
De PV e Ae(m) )?

uniformly in 9B ) (0) for all ¢ < 1 and for all I. The second equality uses also (2.5)
l,e

with v = v, and py = p.. Up to a subsequence, by comparing the two RHS of

&70), by using py < 2, rl(z) < k and that n (moving only here) may be arbitrarily

close to 1, we may complement ([£L68]) here and get that

1
(1 - @) VP2(1+0(1)) = In — (4.71)
2/ e Ae
for all [ as € — 0, so that we have in particular
Ve = (1 +0(1))vie (4.72)
for all I. Given any 77 € (0,7), we claim that the first equality in (Z70) implies that
we < (1=1) %1 in Qe i= D\ UY, 672 (B, (0) (4.73)

for all ¢ <« 1. Otherwise, as when proving Proposition Il if z. € Q. satis-
fies ue(z:) = maxq, ue, then z. is a good candidate to be another concentra-
tion point for u.: we get that p; . = o(dg(z1e,2.)) for all | by (@I0) and that
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mingegy, Ny ule (@ )dg (2, )| (Ague)(2e)| — +oo as e — 0, which contra-
dicts (£I6]) and establishes ([@73). Independently, (@71 gives

A /g (1 ugs) e dvy = O (exp (L= = (1= 22) ) 422 +0(129)))

for all e < 1. Choosing 0 < 7 < n < 1 sufficiently close to 1 from the beginning
(depending on the smallness of 2 — pg > 0 here), we may plug this estimate and

(469) in ([E2) to conclude the proof of (AH), using also [AJ) and [ET2). O

In contrast to the case pg = 2 handled below (see also [20]), it is interesting to
note that, due to the global nature of both integrals in (£2), we need also ({.72)
to get the quantization (LX), at least for K > 1 and 1 < pg < 2 in ([@66). At that
stage, we are left with the proof of (£3)) in the more delicate borderline case py = 2.
We assume from now on that po = 2 in (L60).

Conclusion of the proof of Theorem[{.1] We still use the notation and observations

of (£24)-(@25) and below. On the other hand, by (@30) in Step E.T], for all given
n € (0,1), we have that

) =otn = D= (a74)

foralle « 1 and alll € {1,..., N}. Then, as a consequence of Propositions 2T and
Bl we get that ([@26])-(@29) hold true. In particular, for all given ' < in (0, 1),
we get from ([@29) that

1
IV(ue —vie)l =0 <m> (4.75)

/Yl,s Tl,s
uniformly in B, (0) for all ¢ < 1 and all I. Then, for all given " € (0,1), since
Tl,a

we also have

l,e

(n
’ 2 1 T
0<we—ve (r(" )) <=2ty o(l) In b€

using the estimate in w’, in Proposition 2.} we eventually get that

(n")
/ 2 1 2r
(77 ))’ S +0( ) 1 l,E (476)

Ule — Uy, (r — In

‘ € €\'le %172 1 | . |

uniformly in B (,(0)\{0} for all ¢ < 1 and all /. During the whole proof below,

Tl,a
we choose and fix 79 € (0,1) and set
Vje =

|uje = tje(r)l

< 5(7T02ﬂj,a(7“)1_”5 (4.77)
17p5 6r

+2 Ele]j,s("‘) ’lea 1n "_¢j,5(1l,5)|)
in B-(0)\ User, . (r) Brl(m)) (dje(x1,6))

for all j € {1,..., N} and all ¢ < 1, where Cy > 0 is as in (£I7) and where I; .(r)
is given by

J.e

supi r € (r(m’) n] s.t.

L) = {1 € {1,., N} sit. ¢jc(mn) € By (0)] -
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As a first remark, it follows from the very definition [@.77) of v; . and from (@.70)
that, for all given 7, € [, 1), we have

Ve > 1" (4.78)
foralle < 1 and all [ € {1,..., N}. Our main goal now is to show that
tje(vje) = O(1) (4.79)

for all e < 1 and all j € {1,..., N}. For all j, we may assume up to a subsequence
that either [@79) or

lim @; . (v).e) = +o0 (4.80)
—

e—0

hold true. Assume from now on by contradiction that [@79) does not hold true for
all j so that we may choose and fix i € {1,..., N} such that

v; e = min{v;. s.t. ([@80) holds true} . (4.81)
Clearly, we then have
lim ’ai,s(yi,s) = +400. (482)
e—0
By (EI8)), we also have that
limvy, . =0, (4.83)
e—0

so that, using ([@I2), the following property currently used in the sequel holds true:
e = ((d1e), 9) (i) = € in Cfo(R?) (4.84)
as € — 0, for all [ € I, where
I'={le{1,..,N}st. dy(zie, 1) =0 (v;) foralle < 1} .
Up to a further subsequence, we may also assume that

lim 2e@e) _ 5 ¢ g2

e—0 Vie
for all { € I. Set also S = {&; | | € I} so that clearly 0 € §. Fix 7 € (0,1) and
R > 1 to be chosen properly later on such that

3T<{ 1if S = {0},

ming (g ) es2|aty} |x — y| otherwise,

and such that S C B3r(0). Set D. = Bry,.(0)\ Uier Bry, . /3(¢ic(r1c)) for all
€ < 1. Let now w, be given by

{ A, = —€2#i<h,; cu; . in By, (0),

4.85
we = 0 on 0BRy, .(0), ( )

for all €. Observe first by @.I9) that A(u; —we) > 0in Bg,, (0) so that u; . — w.
is radially nonincreasing in [0, Rv; ¢]. Moreover, the maximum principle gives that
uje — W attains its infimum in Bpg,, (0) at some point on 0Bg,, . (0). Indepen-
dently, for all given p > 2, by elliptic theory, we get from Lemma E.1] and (£12)
that

2(p—1)
[0 (Vi) | oo (Br(0y) = O (II1A (We (Vi) e (Bri0))) = O <Vi,€p ) (4.86)
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for all ¢ < 1. Summarizing, by ([£83) and since 7 < 1, this argument for R = 1
(only there) gives that @; -(Tvie) > Ui c(vie) + 0o(1), so that (£82) leads to

I.:= ai,a(TVi,a) — 400 (487)
as € = 0. Then, as a consequence of [@IT) (and ([@84) again), we get that
uie =T+ O (D7) (4.88)

uniformly in D, and for all € <« 1, using once more the mean value property on
0B:,, .(0) and the definition of 7. Then, by the maximum principle-based argument

below (£35), with ([A83]) and ([Z0]), we get that

inf w; > min wu;.+o0(l)=T:+o0(1 4.89
0 i 2 it o(1) = T o) (4.89)

ase — 0.
We prove now that
Ie = 0(vj¢) (4.90)
as e — 0, for all j € I, up to a subsequence. Consider first the case j =4 in (£90).
For all given 72 € [no, 1), we have that

e (1) = (1 = m)75-(1 + 0(1)) > T (1 + 0(1) (4.91)

for all ¢ < 1. The first equality comes from the definition (£.24]) of rfff), from ([({.74),
from the equality in (@27) and from ([@28)) for [ = i, while the inequality comes
from (L7]), EZBY) and the above largeness assumption S C Bsgr(0) on R > 1.
Observe that (A78) implies that [@92) below holds true for ¢ = i. Since 1, may be
arbitrarily close to 1, ([@91) concludes the proof of [@90) for j = i. If now I # {i},
we may pick j € I'\{i} and we get from the very definition of I with (£20) and
(84) again that r; . = O (v;) for all e. Then, also in the last present case j # i,
using now (£74) for [ = j, we get
(mo)
lim Tt
e=0 Ve

for all t € I, and then similarly (£91)), to conclude the proof of ([90).

At that stage, we may improve the estimate in ([£80). As a consequence of

(@.87), (E88) and Lemma A1l writing merely that [|u;||L»(p.) = O(1), we get that
v; .I'? = O(1) for all &, so that [@SG) gives

| = O (T27F) = o(T77*) (4.93)

uniformly in D,, for all € < 1, since p is fixed greater than 2 just above (£36). Let
(e be given by

=0, (4.92)

AC. =0 in Bg,, . (0),

(e = Uj,e on 0BRy, . (0)
for all e. By keeping track of the constant Cy of ([@IT) and choosing R > 1 large
enough (depending only on S) from the beginning, using a mean value theorem on

OBry, .(0), @.84) and ([@.8T), we may get a slightly more precise version of (L.8g)
on 0BRr,, . (0), namely we have that

_ _ 27C
sup  [¢e — “iya(RVi,aﬂ < sup |ui7€ - ui,E(RVi,aﬂ e

< = 4.94
Bruy,; . (0) 9By, . (0) rP- 1 ( )
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for all € < 1, using also the maximum principle. Observe in particular that u; . =
(1 + o(1))I'c uniformly in D.. Let G. be the Green’s function of A in Bg,, _(0)
with zero Dirichlet boundary condition. Let (z.). be any sequence of points such
that

% € Bry, . (0)\ Vier B oo (9ie(21.2)) (4.95)
for all e. We have that
~ 1 2RVZ' e
0<@G )< —1 :
< Gelze,) < 27 . |ze — |

in Bry, . (0)\{2:} for all ¢ < 1. Thus, the Green’s reprentation formula gives that
0< (Ui,a — We — CE) (28)
S Asps / 1 2Ryi75 (EQ@i,Eups—leuz‘i) (y) dy (496)
BRVi,E(O)

27 ey

for all e, using ([19). Using Step ATl as above to employ Proposition 2T and ([@29),
we have that for all [ € {1,..., N}

1 . .
[Vue| =0 <W> uniformly in B?Wl(,”f) (0) \Bﬂ (0)
3

Tl,a l,e

so that, for all j € I, we get as a byproduct of (L7T) and @8I with 7 < 1 that

! U B 1 4Ty,
|Uj7€(ﬂ/i’€) B Uj,a| =0 (ujvff(ﬂ/i,&)l pE) +0 Z pe—1 In |- =, l(7€ )
l€lj,o(rvie) e —Pj,e\Tle

uniformly in Br,, (0)\ Uier, . (rv,.) B (¢je(z1e)), and then we eventually

2r(") /5
obtain with (£88]) and our definition of 7 that

1 4Ty
I.—u.|=0(T?)+0 In 497
| € ,El ( € ) Z pe—1 |'—¢i,5($l,€)| ( )

€] (i) '7[75
uniformly in Dj. = By, _/2(¢ic(2e))\ Uier, . (rui.0) BTz(”(’)/2 (¢ie(21,0)) for all €,

still using (A.84). Independently, using that |ze — ¢ (21.)] > TI(ZO), we have

(mo)
2Ry; 2Ry;

In e _ 1y Yie 10 e (4.98)
|ze — | |2e — ¢ie(1,e)] Tllo + |z — ¢i,a($l,a)|

uniformly in B (10 5 (pie(z1,)) and for all e <« 1. By [@TH) for some given 1’ €
Tl,s ’ ’

(10, 1) and since u;.(0) = v;(0), we get uy . — vy = o(vl{;ps), so we eventually get
for all given 77 € (1o, 1) that

8e2te (1 4 o(eMie))

2 A pe—1
HicVe DPe

1 oPe
AePe u?i; efe =
)

(4.99)



48 F. DE MARCHIS, A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

uniformly in B (4, (0) and for all € < 1, still applying Proposition 2l Then, using
Tl,s

also (£12) and (£&4), we get from (AI8) and (@3I9) that

)\ 2R 7 . — €
AePe I —2Wie (62%@”11?55 16%5) (y) dy
27 B () (el 17 Y ’
e /2 (4.100)
4+ o0(1 i 1
= ( 12(71)) ln Vﬁ +O pe—1 5
Pz |2e — ie(w1,6)] e
as € = 0 and for all [ € I. Using the basic inequalities
[(A+2)P =1 < O ([t + [¢]*)
for all t > —1, and
N p N
(o] <oy
t=1 t=1
for all a; > 0 and all p € [1, 2], we get first from (L97) that
1 4 Pe
TVi,
ufs =T +0(1) + 0 > < —In = (; )|>
1€, (rvie) \ e hehe (4.101)

o\t 41y
o ¥ () et
Z Ve | ) _¢i,a (:El,a)|

le]j,s(TVi,s)
uniformly in D, . and for all . Independently, we get from (@7, (£13), (@.24) and
(@.74) that
In— = —t;.( () 1) +1 €L
5 = 1,e\T ¢ )+0()+Il 5
T(ﬁo) ’ Ky e
e (4.102)

< (B +1+0m)

as ¢ — 0 and for all [. Recall that we are now assuming that py = 2 in (L60).

Then, we may get from (£83]), ([£92) and [@I02) that

1 4TVZ')5 b
T ()P
Vie i,e\Ll,e

pafl
_ L In 4TVi,€ In 4TVi,a (4103)
Ne | —die(we)]? |- =ie(z1e)?

4TV¢7€

| ) _¢i,€(xl,€)|2

uniformly in Dj. as € — 0 and for all [ € I. Choose now ji, ..., jis| in I such that
{%41, 75,5} = S. We compute and then get from (ZI0T)-(£I03) and from (E90)

<C(1—mno+o(1))In
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that
)\ 2R 7 . — €
=Pe / In SVie (ewmufi 16#‘) (y) dy
2 Jp |Za - yl ’

Jts€

=0 ()\EI";E_l exp (I'2¢) x

5 / 1 2Rvic ( AT, )1‘"5
n 3 dy |,
Brvie (0ie(w5,.6)) lze =yl \ |y — dic(z1,e)]
2

lGIjhE(Tvi,E)
=0 ()\51"125_1 exp (I'2¢) UZE) ,

for all t € {1,...,|S|} and all € < 1, using that o > 0 to get the last estimate. At
last, it readily follows from (L88]) that

A<D / In 2Rvie (ez‘/’“ups_leuf;) (y) dy
27T [)0,E |ZE - y| “e

(4.105)
=0 (/\EFpaf1 exp (I'?¢) I/ZE)

£

for all ¢ < 1, where
Do = Brui,.(0\UZ) Bruy .jo (91 (x),.e)) -
Summarizing, by plugging (LI3), (L), (EI00), EIT) and [EI05) in @I, we

get that
|ui,s(zs) - ﬁi,s(RVi,s”
2 1 4Ty
< 27TO2Fi_pE + Z +TOEI) <2 In _ TVie
el pEFYl; |Z€ - ¢i>5($l>5)|
+0 ()\81"’5’5_1 exp (I'2<) UZE)

for all e, given (z). as in (@35). By the estimate v7 T = O(1) just above (E93)

+ 0(1)) (4.106)

for p > 4/3, we get that I/i£2 = o('L7P¢). Then, evaluating (£31) at Tv; . and by
[ERT), we get that
r<—2 (m ! +0(1) | +0(r17) (4.107)
T\ A2, :

then with (£90) that

) o0~ 1
exp (I7¢) < exp el T e v +o(1) |,
PeVie AVie | Wie

that
Aeyi P VV2 . < exp (—p—;Fs(l + 0(1))75271)
and eventually that
ALP 12 exp (TPe) = o(TL7P+) (4.108)
for all e < 1. By (@70) and (@I06) with (£I08), we get that

1 3Ry;
Uie — Ui c(Rvie)| < (27Cy + o(1)) TP + 0O — In—— 7%
sse = Tue(Rrae)l < (2nCs + o(L))T (; e |-—¢i,a<m,a>|>
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uniformly in Bry, . (0)\{¢i,c(j, ¢), -+ $i,c(Tj5.c) }- In particular, using (A90) again,
we get
|’ﬁi7€(%7€) - ﬂi7€(RVi7€)| < (271’02 + 0(1))1—‘;71)‘€ (4109)

as ¢ = 0. Then, py = 2, ([£90), (£I06), (£I08) and [EI09) give that

|ui,s - ai,s(yi,s)|

9 _ 2+ 0(1) AT, ¢ (4.110)
< —mwCol'LPe 1 ’ :
B 27T 2 " Z pe=T |ze — bie(w1,e)

l€l; e (vi,e) e

uniformly in B, . (0)\ Uer, () B ) (¢i,e(m1c)) and for all e. But by (LT8) for

[ =i, our assumption (£80) and by m the inequality in (T77) for j = i and
r = v;. should be an equality somewhere on 9B,, _(0) of this set for all ¢ <« 1,

which gives a contradiction to ([AI10) and concludes the proof of (£79).

Then, picking now a sequence (fs)s such that lim, oI = +ooand I, = o(Vj.e),
and setting

Uj e = inf {7‘ >0s.t. @, > in [O,r]} ,
we get from (@79) that

forall j € {1,...,N}and alle < 1. By (@I5), 7. = o(1). Asin (£8]), we get from
&1 and ([EIR) that we can fix 0 < R < 1 such that u. = I'.(1 + o(1)) uniformly
in 0¢; Y (Bry,.(0)) for all e < 1 and all j. Arguing now as below ([T3), we get

from (IZjEI) that

ﬂjya < Vje (4111)

sup u. < 2L, (4.112)
S\U;¢;.L(Bro;, . (0))

for all € <« 1. Then choose and fix (f‘a)e growing slowly to +00 and more precisely
such that

ATPe exp ((21:‘5)7”5) =0 ('yfsps) and

(4.113)
(2 —pe)In (1 + )\Evj)(sprl) exp((QFe)p5)> =o(1)

for all j as e — 0. The first condition is clearly possible by (G7). The second
one is also possible since A.v; Eps_l) O(1) by ([@68) and since now py = 2 in
(£.66). We may now compute and use either (LI12)) in ¥\ U, ¢;§ (Brs,;..(0)), or the
controls given by the inequality in (@77 for r = ©; . thanks to (£I11), allowing to
estimate the nonlinearity as in ([EI0T)-(@I04). This leads to the following integral

estimates:

Aep?

2 /z\uquj,; (B (0 (@)
J.€
Ap? / ug® )
—1)dr =0 (Xexp((2T)P)),
2 Z\Uj¢;sl(BT(no>(O)) ( ) ( 5 ( 5 ))
J.€

D uPe _ 2 Pe
ubee"= da:—o(’yj8 )

(4.114)
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while, computing as in (£I00), we get that

)\Epg Pe uPe _ 2—p5
- ul=e"s dx = (4m +o(1)) v; .,
672 (B, () (0))

Aep2 e 4 1
7 O
2 Jo; (B oy @) Ve

J,€

(4.115)

as ¢ — 0. Thus, by plugging (AIT4)-(@ITH) in (@2) and by using our conditions
#EII3) on (Ty)e, we get that

2—pe 2(pe—1)
N Pe Pe

N
47+ o(1 _
B = ZQ(T,(”) (4774‘0(1))2%2-,5% ;
j=1

j=1 lje

2(pe—1)

_47T(1—|—0(1))<1—|— > (7;_)21’) = |

. j0,€
J#Jjo Yo

()
using that

2—pe
Pe

’7j0,8 2(175_1) B
I =1+o(1)

g N Tie

since p. — 2, where we choose jo € {1,..., N} such that v, . = minje(1,.. N} Vje
for all e, up to a subsequence. Then, in order to conclude the proof of (@A) for
k = N, it is then sufficient to get that the term (x) converges to N, namely that

vje{l,.,N}, ;%(Q_ps)lnﬁ —0.

Yioe
To get this, we use ([L.671), ([A6]) and argue as below [{T0) for n = 1/2 to write

E L1ty
(2=pe)rje < (1—|—0(1))1n/\—g < Twis

for all j, so that 1 < (vj.c/7jo.e)’" = O (1/(2 — pc)) < +oo. Theorem {1l is proven.
(]

5. COMPACTNESS AT THE CRITICAL LEVELS [ € 47N* FOR p € (1, 2]

Our main goal in this section is to prove the following result:

Theorem 5.1. Let (\.). be any sequence of positive real numbers. Let p € (1,2] be
given and set p. = p for all . Let (uc)e be a sequence of smooth functions solving

@), Let (B:)- be given by D). Assume that [EA) holds true, so that [E3) holds
true for some 8 € 4nN* (see Theorem[{.1)). Then we have that

Be > p (5.1)
forall e < 1.
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More precisely, if (v1,)e, .-, (Yr,e)e are the sequences of positive real numbers
diverging to +o0o given by Proposition [£.1] we show in the proof below that

k
b > dn (k 4 2= O oll) Z%f”) (52)

=1

as e — 0. As a remark, according to the proof of Theorem[4.I] N in Proposition [£.]]
equals k in (£3). Interestingly enough, the cancellation of terms of order ; ? still
occurs here on a surface for all p € (1,2] and for arbitrary energies, as pointed out
in [38] concerning the unit disk for p = 2 and in the minimal energy case 8 = 4.

5.1. Further estimates in the radially symmetric case. Let p € (1,2] be
given, let (uy) be a family of positive real numbers, and let (\,), be such that
(1) holds true, where p, = p for all 7, let ¢, ¢, be given by ([2.2]) and let (B,), be
given by (2.0). Let also (7,), be a family of positive real numbers such that ([2.3)
holds true, and such that

ty(Py) < V7,
Y2 = 0(1) (5.4)

for all v > 1. In this section we aim to get more precise estimates on the B,’s than
in Section Bl but at smaller scales around 0, in order to be technically as simple as
possible: namely, (£3)-(E4) imply @24)-(231]). We also restrict here to the specific
case where p is fixed. As already mentioned in the introduction, some issues may
arise when studying compactness at the critical levels f € 47N* in the case p = 1.
Following |38, [39] and still abusing the radial notation r = |z|, we let wgy be given
by

272 1 5y 1—172 g
wolr) = =Tolr) + 15 = 31"+ 13 A

for Ty as in ([22I3)), so that, by ODE theory, wy is the unique solution of
Awg = 4e7210 (2w + T3 — Tp) in R?,

wy(0) =0, (5.5)
wp is radially symmetric around 0 € R?.

We further set
8p — 10

F= 2(p—1)wo+ (p—2)T5 —8(p — 1)Towy — T3
+4(p— 1w +4(p— DTdwo + (p — VT,
and let w; be the unique solution of
Aw; = 4e 270 (2w1 + —4(1;);1)F) in R?,
w1(0) =0, (5.7)
wy is radially symmetric around 0 € R2.
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Resuming the strategy and the explicit computations in [39, Section 3], even if we
do not have w; in closed form, we know that

Awyde = %‘1) |:(p —1) (”_3 n 33_”)

2 3 2
‘ 3 ’ 7(4 5) (5:8)
T p—5)w
+ ) (p—2)— 5 } )
We also have that

wo(r) = =To(r) + O(1),
5.9
wi(r) = _To() Awidz + O(1) (5:9)

471' R2

as r — +o00. Note that the convention on the sign of the Laplace operator here is
not the same as that in [39]. In complement of the computations already done in

[39], we compute also
|z|? —1 5 3
I Ty(a)2de = X
| wrpm e =5

to get (B.8). Let wo 5, wi,, be given by wo . = wo(-/py) and w4 = wi(-/py), and

let w, be given by

2ty n Adlp—Dwoy | Wi+ Wy
p")/p71 p272p71 73;071

Proposition 2.1l already gives B, < 7 and some estimates on w, given by (G.10) in

[0,7,] for all v > 1. Much more precisely here, we get that w, is actually a small
remainder term in the following sense:

B, =~ (5.10)

Proposition 5.1. We have
Wy = 0(7_ptv) ;W= 0(7_ptfy) )

¥
and
2 etr/? 4(p—1) Aw
p—1_BP _ 1,y
ApBE ey = pypflAtV (1 +0 ( i )) + 21 Awg , + 1

uniformly in [0,74] and for all v > 1 large, where wy is as in (5.10).

The proof of Proposition 5.1l follows the strategy of the proof of Proposition 2]
but the stronger assumption (B3] basically reduces now the computations to Taylor
expansions.

Proof of Proposition [51] Let r., be given by
ry =sup {r € [0,7,] s.t. |wy| <y}

for all . Taking advantage of the control on w., in [0,7,] given by this definition,
we may perform the following computations uniformly in [0,r,] as v — +oo. We
first get

2(p

-1
p ) (2w, + t?y) + Dl + 1)
py

ohd
8-, S-D -2 ( t )

BY = P —2t, +

p2y2P 6p2~2P W
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and
Br—1_— ,Ypfl 1— 2(p - 1)t, + 4(p — 1)21”0,7 + 2(p=1D(p - 2)t3 +0 ﬁ
Y P 2~2p 2~2p 3p :
Py p= b=y 0

We use for this (53] and (5.9) and the expansions of (1+¢)? as e — 0. Then, using
1), we similarly compute and get

A, pePt
8e 2t 2(p—1
= 201 2[ + (pp)(
py2P— 2 Py

1 4
p2,}/2p (pB(wL’Y + w’Y) - 8(]? - 1)2tvw0,y - g(p - 1)(]? — 2)t3

2w, +12) +

3
1 ci,x( =5
+8(p— l)ztiwoﬁ +2(p— 1)2t§ +8(p— 1)2wgw> + O<We (7 ))] ,
so that we eventually have

/\.YpB,’;_leB5

Re~ 2ty 2p — 1 ty/2
e . [14_ (p . )(2w077+t3—t7)+0<6 )}_’_

T2 Yy ~3p (5.11)
4e~ 2t [ 4(p—1) < . )]
—_|2(w, Hwy) + ———F(—]],
,ygp_lu’zy ( 1y ’Y) pg [y

for F' as in (5.6), using again (5.3) to write ¢3/9°" = o(1). Then, setting v, =
Wy (+/4y), using now not only (ZI3)), but also (5.5 and (7)), we get from ([2.0)

that

—3Tp/2
Aty =8¢ M0y + O (u2~4°F) + O (e po7 ) : (5.12)

uniformly in [0,74/p,] as v — +oo, applying A to (EI0). The second-last term
in (2.I4) is obtained when controlling B, in the LHS of (2.6]), since our definition
of 7y implies B, <« in [0,r,] for all v > 1. Then, (ZI5) may be obtained from
2I4) by using also (&4]). At that stage, we may conclude the proof of Proposition
Bl by following closely the lines below (2.I5) and showing mainly that (ZI0) holds
true for all v > 1. O

As a direct corollary of Proposition [5.1] we get the following estimates:

Corollary 5.1. Assume that [B3)) is an equality, namely that

t(7) = VA (5.13)
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for all v > 1, then we have that
2
)W—p/ BgeBsdx
2 .,

2(p—2 1
=i 25 o ()

p—1 272 72 33
+p272p< 8 3 +2(p 1)<3+2 +3(p—2)—7M4p-5) ||,

_/\pr / eBrdx
2 J.,

and then that

as y — +00.

Since the computations to get Corollary[B.Ilfrom Proposition 5. basically resume
those in [39], we leave them to the reader. In particular, proving the first two
estimates in Corollary 5.1l uses (B.8)) and the following computations

1
Awgdr = — ATydx = —/ ToATydx = ——/ TOQATodI =4,
R2 R2 R2 2 R2
273
(wQ(ATQ) + ToAwp) de = 87 + BN
R2
Once the first two estimates of Corollary 5] are obtained, proving (&.14)) is quite
elementary: in particular, we observe in (&.I4) the aforementioned cancellation of
the term y~P. Besides, the term vy 2P vanishes as well for p = 1. That is the
technical reason why the approach of this section does not work for p = 1 and why

we assume p > 1 in Theorem [B5.1] (see also the paragraph above Remark [0.T]).

5.2. Conclusion of the proof of Theorem Bl Let ()\.). be any sequence of
positive real numbers. Let p € (1,2] be given and set p. = p for all €. Let (ue): be
a sequence of smooth functions solving (@I)). Let (5:). be given by [@2]). Assume
that (£4) holds true, so that (£3) holds true for some 8 € 47N* by Theorem A1
We may also apply Proposition [4.1] getting in particular sequences (i ¢)e, (Tie)e,
(Vie)e and (¢;c)e, and we resume the notation r; ., ¢; . and v; . in (@20)-(@22);
let also 7; . be given by

ti,s(fi,s) = VYie (5.15)
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for all s € {1,...,k} and all e. By (@30) in Step 1], we know that fl(yla/m given by
#EZT) equals Tl(’1€/2) in @24) for all I € {1,...,k} and all e < 1. Moreover, since
ri.e = O(1) according to (L20), we get that

r1/2) o(rie) = o(1) (5.16)

i,€

for all e < 1 and all i. By (@24) and (E.I5), we deduce that

,,:2

In % =t (Fie) — tic (T§18/2)) +0(1) < =3v;¢
( (1/2)) o ’ ’ ’
Ti,s
for all ¢ and all ¢ < 1. Then, we find from (510 that
Fie =0 (e77) (5.17)

for all £ <« 1 and all i. Proposition 2] may be applied as below ([{.25). We get
that

'Fi,s _ —Yie
[ui,e — vie| = O (W) =0 (e7)
i€ i€
uniformly in By, _(0) for all e < 1 and all 4, using also (4.28). Then, using similarly
Proposition 21 to get that v; . = 7;.(1 + 0(1)), we obtain that

—Yi,e
upe =vp, <1 +0 (ev‘ >) : (5.18)
i,e

p p 1
eui,s e evi,s 1 _|_ o Tp (519)
71’,5

uniformly in By, , (0), for all € < 1 and all i. An easy consequence of ([AI12), ([£20)
and (B.I0) is that the domains (;5;__.1 (Bz,.(0)) are two by two disjoint for all € < 1.
Then we may write that

k
Aep? P Aep? P
= [ uPe%dv, > uP _etice?iedy
2 . € g = ; 2 Bf., 1,€ ’
) dvy >

so that we have

:=b; e

Using @12), (17), (GI8) and (G.19), we write e*#ic =1+ O (7;.) and get

/ ufyae“ssem‘”‘dx = </ Uﬁaevf’sdx> (1 +o (%Tfp)) , (5.21)
By, . (0) Br. (0)

for all e < 1 and all 4. Similar arguments give that

/ (euf,g _ 1) e2Pie dp = / eVheda (1 +o0 (%-_8217)) ’ (5.22)
By, (0) 5. ©) |

Ti,e

Ti,e
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for all e < 1 and all ¢. By plugging (5:21))-(522) in (520) and coming back to the
definition ([£.2)), we obtain

2-p 2(p—1)
k D k D 2-p 2(p-1)
Be = Z bi,a Z Qe > Z blﬁ ai7€p )
=1 =1 :

by Hélder’s inequality for vectors in R*. In order to compute the RHS, since we
have (B.I7), so that (see (5.4)) we may apply also Proposition 5.1l to v; . in By, _(0)
and thus use (5I4). This proves (52) and concludes the proof of Theorem 511

Remark 5.1. The minimization of Iz in (OI0Q) for = 4w attracted some attention
(see for instance |15 [43]): in this case we basically have p = 1. Then, turn now
to the case p € (1,2] of this section. First if p = 2, we may get by following the
strategy in [39] that the convergence of (Bc)e to 4w from above in [&2) for k =1
gives back the existence of a mazimizer for (M) if B = 4w (see also |3, 45} [24] ).
Now, if p € (1,2), we already pointed out in the introduction that

—00 < Oy = uienfgl Jp,47r(1—8) (u)

for alle € [0,1), where Jp, g is as in (OI3). Moreover, the existence of a minimizer
ue for Jp ar(1—e) follows from a standard minimization argument for all given e €
(0,1). Here again, the convergence of (B:)e to 4w from above in (B2) for k = 1
gives the attainment of ©, 0, since the present uc’s then have to converge strongly
in C? as e — 0.

We conclude this remark by a curiosity. If G > 0 is the Green’s function of
Ag+ h in S, we may write G(z,y) = (lnﬁ +7—[(:1:,y)) for all x #vy. We

know that H € CY(X x X) and we set M = max,ex H(x,z). As a byproduct of the
analysis in the present paper, it can be also checked that

1 2, 2(p—1)

In— = (1— 73)7§+1HIL + Hy(2)+ (p— 1)+ o(1),

Ae 2 8
as e — 0, if the u:’s blow-up at some x € ¥ for k =1 in [@3H) and solve [@Il), with
Ae given by [E2), for B. = 4n(1 —¢), p. = p and v, = maxs u. for all e. We may
also get that

) (5.23)
The large inequality in (523)) is a byproduct of a by now rather standard test func-
tion computations (see for instance |50, Step 3.1]). The strict inequality is more
subtle and can be seen as a consequence of the convergence of the B.’s from above,
picking the refined test functions provided by the blow-up analysis, in the
spirit of |50, Section 4]. At last, observe that the exponential of the opposite of
the RHS of ([B.23)) converges to mexp(1+ M) as p — 2, which turns out to be
consistent with the original works [3, [24].

2 - -1
Opo = infg Ipam(u) < — <1n7r—|—M—|— p—1)+ %> .
u€H?!

CONCLUSION OF THE PROOFS OF THEOREMS [(.2] AND [0.T]

Let 8 > 0 be given. Assume first that p is given in (1,2). By Theorem [[1]
there exist a sequence (8¢). increasing to 5~ as € — 0, and u. such that (ZI)
is satisfied for p. = p and A. given by [@2) for all e. Now, we claim that the
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u’s are uniformly bounded: this is a direct consequence of (@3] in Theorem [T
if 8 & 47N* and follows from Theorem B.1]if 8 € 47N*, since the present sequence
(B:)e is assumed to increase. By elliptic theory in (£I)) and ({7, we easily then
get that, up to a subsequence, the A\.’s converge to some A and the u.’s converge
in C? to some u solving the equation in ([0.12) and (0.I4). Observe in particular
that since 8 > 0, (0I4) gives that w > 0 is not identically zero, so that u > 0 in
Y by Lemma [Tl Then Cp 3 > u is not empty in Theorem [I.J] The compactness
of Cp  also clearly follows from Theorems .1l and b1l For p =1, and S ¢ 47N*,
we take a sequences (p:), pe 4 1 and u. € C,_ 3. As before, by Theorem E.I] up
to a subsequence (u.) converges to a positive function v € Cq g, and Theorem [0.1]
is proven. Assume now that p = 2. By Theorem [[LI] again, there exist a sequence
(B:)e increasing to 87, a sequence (pe)e increasing to 27 as ¢ — 0, and u. such
that (4I) is satisfied for A. given by ([@.2) for all . First, if we have in addition
B & 4wN*, we get similarly from Theorem [£.1] that, up to a subsequence, the \.’s
converge to some A and the u.’s converge in C? to some u solving the equation in
(0I8) and ([@I4)). Then, we use again that S is positive to get from (0I4) that u
is actually positive in ¥ and then that u € C3 g. Thus, if we have now 8 € 47N*,
setting 8. = f — ¢ and p. = 2, there exists u. such that ([@I) is satisfied for A.
given by [@2]) for all 0 < ¢ < 1. By Theorem 5.1l we similarly get that the u.’s
converge in C? to some u € Ca g solving (0.I4)-(@I6), up to a subsequence. The
compactness of Ca g follows from Theorems .1l and 5.1l again, which concludes the
proof of Theorem in any case.
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