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CRITICAL POINTS OF THE MOSER-TRUDINGER

FUNCTIONAL ON CLOSED SURFACES

FRANCESCA DE MARCHIS, ANDREA MALCHIODI, LUCA MARTINAZZI,
AND PIERRE-DAMIEN THIZY

Abstract. Given a closed Riemann surface (Σ, g0) and any positive weight

f ∈ C∞(Σ), we use a minmax scheme together with compactness, quantization
results and with sharp energy estimates to prove the existence of positive
critical points of the functional

Ip,β(u) =
2− p

2

(

p‖u‖2
H1

2β

)
p

2−p

− ln

∫

Σ

(

e
u
p
+ − 1

)

f dvg0 ,

for every p ∈ (1, 2) and β > 0, or for p = 1 and β ∈ (0,∞)\ 4πN. Letting p ↑ 2
we obtain positive critical points of the Moser-Trudinger functional

F (u) :=

∫

Σ

(

eu
2
− 1
)

f dvg0

constrained to Eβ :=
{

v s.t. ‖v‖2
H1 = β

}

for any β > 0.

Introduction

We consider a smooth, closed Riemann surface (Σ, g0) (2-dimensional, connected
and without boundary) and a smooth positive function f , and we endow the usual
Sobolev space H1 = H1(Σ) with the standard norm ‖ · ‖H1 given by

‖u‖2H1 =

∫

Σ

(
|∇u|2g0 + u2

)
dvg0 . (0.1)

Building up on previous works, see e.g. [3, 24, 25, 30, 42, 44, 45, 51], Yuxiang Li
[34] proved that the following Moser-Trudinger inequality holds

sup
u∈H1 , ‖u‖2

H1=β

∫

Σ

eu
2

fdvg0 < +∞ ⇔ β ≤ 4π , (MT )

(see also Remark 0.2) and that there is an extremal function for (MT ) even in
the critical case β = 4π (see also Remark 5.1). Such an extremal is (up to a sign
change) a positive critical point of

F (u) :=

∫

Σ

(

eu
2 − 1

)

f dvg0 , (0.2)

constrained to

u ∈ Eβ :=
{
v ∈ H1 s.t. ‖v‖2H1 = β

}
(0.3)

when β ∈ (0, 4π]. A positive function u is a critical point of F constrained to Eβ if
and only if it satisfies the Euler-Lagrange equation

∆g0u+ u = 2λfueu
2

, u > 0 in Σ , (0.4)
1
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where our convention for the Laplacian is with the sign that makes it nonnegative
and where λ > 0 is given by

2λ

∫

Σ

u2eu
2

fdvg0 = β = ‖u‖2H1 . (0.5)

For β < 4π, finding critical points of F constrained to Eβ reduces to a standard
maximization argument. Finding such critical points for larger β’s is a more chal-
lenging problem, since upper bounds on the functional fail, and this will be the
main achievement of this paper. Some results in this direction, for planar domains
and in slightly supercritical regimes 0 < β − 4π ≪ 1 were obtained in [45] and [31].

In order to do handle the case of general β′s greater than 4π, we would like to use
a variational method, more precisely a minmax method, to produce a converging
Palais-Smale sequence. The two main analytic difficulties are that the functional F
does not satisfy the Palais-Smale condition and that its criticality is of borderline
type, which prevents us from using the methods of [31, 45] for β large. To overcome
these problems we will introduce a family of subcritical functional Ip,β , p ∈ [1, 2),
that, in some sense, interpolate between a Liouville-type problem and our critical
Moser-Trudinger problem, apply the minmax method to obtain critical points of
Ip,β , and then prove new compactness and quantization results for such critical
points.

More precisely, given p ∈ [1, 2) and β > 0, we let Ip,β be given in H1 by

Ip,β(u) =
2− p

2

(
p‖u‖2H1

2β

) p
2−p

− ln

∫

Σ

(

eu
p
+ − 1

)

fdvg0 , (0.6)

where u+ = max{u, 0} and we set Ip,β(u) = +∞ if u ≤ 0. By Trudinger’s result
[51], for p ∈ (1, 2), Ip,β is finite and of class C1 on the subset of H1 of functions
with non-trivial positive part, and its critical points are the solutions of

∆g0u+ u = pλfup−1eu
p

, u > 0 in Σ , (0.7)

where the positivity follows from the maximum principle, see Lemma 1.1, and λ > 0
is given by the relation

λp2

2

(
p‖u‖2H1

2β

) 2(p−1)
2−p

∫

Σ

(

eu
p − 1

)

fdvg0 = β . (0.8)

While I1,β is not differentiable at functions u vanishing on sets of positive measure,
it is differentiable at any u > 0 a.e., and u > 0 is a critical point if and only if it
solves (0.7)-(0.8) with p = 1. Smoothness follows by standard elliptic theory and
[51], see Lemma 1.1. Now, multiplying (0.7) by u and integrating by parts in Σ,
(0.8) may be rewritten as

λp2

2

(∫

Σ

(

eu
p − 1

)

fdvg0

) 2−p
p
(∫

Σ

upeu
p

fdvg0

) 2(p−1)
p

= β . (0.9)

By (MT ) and Young’s inequality, Ip,β is bounded from below for all β ≤ 4π, and for
β < 4π finding critical points of Ip,β reduces to a standard minimization argument,
as it happens for the constrained extremization of F : similarly, finding such critical
points for larger β’s is much more difficult. As we shall discuss, compactness and
quantization (see Corollary 4.1) give that, as p approaches the borderline case
p0 = 2, the critical points of Ip,β converge to critical points of the functional F in
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(0.2) constrained to Eβ, at least when β > 0 is given out of 4πN⋆, where N
⋆ denotes

the set of the positive integers.
Our main results read as follows:

Theorem 0.1. Let (Σ, g0) be a smooth closed surface and f be a smooth positive
function. Let p ∈ (1, 2) and β > 0 be given. Then the set Cp,β of the positive
critical points of Ip,β is not empty and compact. The same is true for p = 1 and
every β ∈ (0,∞) \ 4πN⋆.

Letting p ↑ 2 suitably, we will obtain the following result, which according to us
is the most relevant achievement of this paper.

Theorem 0.2. Let (Σ, g0) be a smooth closed surface and f be a smooth positive
function. Let β > 0 be given. Then the set C2,β of the positive critical points of the
functional F constrained to Eβ is not empty and compact in C2.

A notable fact in Theorems 0.1 and 0.2 is that, except for p = 1, the full range
β > 0 is covered and in particular also the case β ∈ 4πN⋆. If fact we will also prove
that the sets ⋃

β∈[4π(k−1)+δ,4πk]
p∈[1+δ,2]

Cp,β,
⋃

β∈[4π(k−1)+δ,4πk−δ]
p∈[1,2]

Cp,β

are compact for any δ > 0, i.e. blow-up can occur only for β ↓ 4πN⋆ or for p → 1
and β → 4πN⋆, as we shall see.

Let us explain the strategy of the proofs. We shall start with the existence part
of Theorem 0.1. Here with a minmax scheme based on so called baricenters, as
originally used in [18], we show that given p ∈ (1, 2) and β ∈ (4π,+∞) \ 4πN⋆,
the very low sublevels of Ip,β are topologically non-trivial, see Proposition 1.1.
This would allow to construct a Palais-Smale sequence at some minmax level, but
it is only with a monotonicity trick introduced by Struwe, see [46], that we are
able to construct Palais-Smale sequences that are bounded for almost every β > 0
and for p ∈ (1, 2). Then, again using the subcriticality of eu

p

with respect to
(MT ), a H1-bounded subsequence strongly converges to a positive critical point of
Ip,β , see Proposition 1.3 (see also [9, Thm. 5.1] for counterexamples to the strong
convergence of bounded Palais-Smale sequences when p = 2).

The next step is to extend this result from the existence for a.e. β to the existence
for every β ∈ (0,∞)\ 4πN⋆. This is done via the crucial compactness Theorem 4.1,
showing that a sequence (uε)ε of positive critical points of Jpε,βε with pε ∈ [1, 2)
and βε → β ∈ [0,∞) can fail to be precompact only if β ∈ 4πN. If fact, as
pε ↑ 2, this also allows to show that the positive critical points of Jpε,βε converge
to positive critical points of F |Eβ

if β 6∈ 4πN, (see Corollary 4.1), hence proving
Theorem 0.2, except for β ∈ 4πN⋆. This quantization property (β ∈ 4πN⋆ in case
of blow up) can be seen as a no-neck energy result, but not only. Indeed, in the
specific case where p = 2, extending the quantization of [20] to the surface setting,
Yang [52] already proved a no-neck energy result for such sequences, but without
excluding that some nonzero weak limit u0 6≡ 0 appears. We know now that ruling
this situation out, or in other words getting the sharp quantization (4.5) instead
of (4.6), is a very sensitive property, which depends also on the lower-order terms
appearing in the RHS of (0.16) (see for instance [40] for counterexamples with a

perturbed version of the nonlinearity eu
2

) and which requires to be more careful
in the way we approach the border case p = 2. In this sense, our Theorem 4.1
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cannot be seen as a perturbation of previous results, but it is a novelty in itself.
We also mention that the proof of Theorem 4.1 never uses the Pohozaev identity,
which is however quite classical in proving such quantization results. Instead, we
first compare in small disks our blow-up solutions with some radially symmetric
functions solving the same PDE, sometimes called "bubbles", and we directly show
that the difference must satisfy some balance condition (see (3.1)). From this
balance condition, we get that the union of these separate disks is large in the sense
that the complementary region cannot contribute in the quantization (4.5). In this
last part of the proof, we also show that our specific family of nonlinearities forces
the Lagrange multipliers to converge appropriately to 0 (see Step 4.2) as blow-up
occurs. One delicate consequence is that each disk only brings the minimal energy
4π in (4.5) (see also Remark 4.1).

Finally, covering the case β ∈ 4πN⋆ relies on delicate energy expansions of the
blowing-up sequences carried out in Theorem 5.1 below. When β = 4π and p = 2, it
was already observed in a slightly different setting (see [38, 39]) that such expansions
do not clearly depend on the geometric quantities of the problem and that the
energy always converges to 4π from above. In the present paper, we observe that
this is still true at any level β ∈ 4πN⋆ and for all p ∈ (1, 2], so that if we let
βε ↑ β ∈ 4πN⋆ no blow-up occurs, while it could occur for βε ↓ β ∈ 4πN⋆. In striking
contrast, the analogous expansions in [5], dealing with an equation qualitatively
similar to the case p = 1 (see Remark 0.2 below), are different in nature: for
instance, the Gauss curvature of the surface appears and compactness is not always
true at critical levels β ∈ 4πN⋆ (see the discussion below [5, Corollary 1.2]).

We conclude this introduction with some remarks.

Remark 0.1. When Σ is a non-simply connected bounded domain in R
2, in [21]

the authors compute the Leray-Schauder degree of the Euler-Lagrange equation of
the functional F |Eβ

, showing that it is non-zero if Σ is not simply connected. Even
if we were able to adapt the strategy to the case of a closed manifold Σ, when the
genus of Σ is 0 (i.e. if Σ is topologically a sphere), the Leray-Schauder degree of the
Euler-Lagrange equation is expected to be 1 for β ∈ (0, 4π], −1 for β ∈ (4π, 8π] and
0 for β > 8π. Hence this topological method fails to completely answer the question
of the existence of critical points of F |Eβ

on a closed surface.
In any case, the Leray-Schauder degree does not depend on p ∈ [1, 2] by

compactness (except for p = 1 and β ∈ 4πN⋆), and coincides with that of the mean
field equation (with the full H1-norm, slightly different from [6] or [36]), namely
(0.12) p = 1. For the case p ∈ (1, 2] and β = 4πk the L-S degree is equal to the
degree for β ∈ (4π(k − 1), 4πk) by Theorem 5.1.

Remark 0.2. It is worth mentioning that, on a surface, there is a Moser-Trudinger
inequality with a zero average constraint, namely

sup
u∈Zβ

∫

Σ

eu
2

dvg0 < +∞ ⇔ β ≤ 4π , (MTZ)

where Zβ =
{
u ∈ H1 s.t.

∫

Σ |∇u|2g0dvg0 = β and
∫

Σ u dvg0 = 0
}
. This inequality

was already proven in the original paper of Moser [42], if (Σ, g) is the standard
2-sphere, and in the general case by Fontana [25], dealing also with the higher
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dimensional case. The functional Iβ , qualitatively related to Ip,β in (0.6) for p = 1,

Iβ(u) =
1

4β

∫

Σ

|∇u|2g0dvg0 +
∫

Σ

u dvg0 − ln

∫

Σ

eudvg0 (0.10)

attracted a huge attention in the literature (see [33, 6, 17] and references therein)
and its critical points give rise to the very much studied mean-field equation. As a
remark, for all β ≤ 4π, as (MT ) implies that I1,β is bounded below, we get from
(MTZ) that Iβ is bounded below.

Remark 0.3. In the papers [1], [4], [35], [48] some uniqueness results for Liouville
equations in planar domains or on closed surfaces were proved, while in [10], [11]
some multiplicity results as well. It would be worthwhile to consider such issues for
the critical points of the Moser-Trudinger functional as well.

Remark 0.4. Different kinds of bubbling solutions for the Moser-Trudinger in-
equalities on domains and surfaces were built in [13, 14, 23].

Preliminaries

It is convenient to get rid of the smooth weight function f and to reformulate
the problem by introducing the norm ‖ · ‖h given by

‖u‖2h =

∫

Σ

(
|∇u|2g + hu2

)
dvg , (0.11)

where h := 1/f ∈ C∞(Σ) and where the new metric g is conformal to g0 and given
by g = fg0. Keeping then the notation in (0.1), we have ‖u‖h = ‖u‖H1 for all
u ∈ H1(Σ). Besides, since ∆g = ∆fg0 = f−1∆g0 by the conformal covariance of
the Laplacian, we obtain that u solves (0.7) if and only if it solves

∆gu+ hu = λpup−1eu
p

, u > 0 in Σ . (0.12)

Then, for all p ∈ [1, 2), the aforementioned critical points u of Ip,β solving (0.7)-(0.8)
are exactly those of the functional Jp,β given by

Jp,β(u) =
2− p

2

(
p‖u‖2h
2β

) p
2−p

− ln

∫

Σ

(

eu
p
+ − 1

)

dvg , (0.13)

solving (0.12) with λ > 0 given by

λp2

2

(
p‖u‖2h
2β

) 2(p−1)
2−p

∫

Σ

(

eu
p − 1

)

dvg = β . (0.14)

Again, multiplying (0.12) by u and integrating by parts, (0.14) may be rephrased
as

β =
λp2

2

(∫

Σ

(

eu
p − 1

)

dvg

) 2−p
p
(∫

Σ

upeu
p

dvg

) 2(p−1)
p

. (0.15)

Now, even for p = 2, we have that u ∈ H1 solves our problem (0.4)-(0.5), if and
only if we have (0.12) for p = 2, namely

∆gu+ hu = 2λueu
2

, u > 0 in Σ , (0.16)

with λ > 0 given by (0.15).
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Remark 0.5. Working with (0.12) instead of (0.7) will considerably simplify the
choice of constants and the writing of some estimates in the blow-up analysis. Yet, if
one consents to burden the presentation, a straightforward adaptation of our proofs
can handle the case where two independent weights appear, namely for the equation
∆gu+ hu = pλfup−1eu

p

.

1. Variational part

The main goal of the section is to prove the following theorem, with Jp,β as in
(0.13).

Theorem 1.1. Let (Σ, g) be a closed surface, a positive function h ∈ C∞(Σ) and
let p ∈ (1, 2) be given. Then, for almost every β > 0, Jp,β possesses a smooth and
positive critical point u, where Jp,β is as in (0.13).

As discussed in introduction, u given by Theorem 1.1 is smooth, positive and
solves (0.12)-(0.14) for some λ > 0, as we shall now prove.

Lemma 1.1. Every non-trivial critical point of Jp,β, p ∈ (1, 2), is a smooth and
positive solution to (0.12). Moreover, for every p ∈ [1, 2] every solution to (0.12) is
smooth.

Proof. Assume p ∈ (1, 2). One easily verifies that the Euler-Lagrange equation of
Jp,β is

∆u+ hu = λup−1
+ eu

p
+ , (1.1)

where λ > 0. Since eu
p
+ ∈ Lq(Σ) for every q ∈ [1,∞) thanks to [51], elliptic

estimates imply that u ∈ C2(Σ).
We first claim that u ≥ 0. Indeed, assume that Σ− := {x ∈ Σ : u(x) < 0} 6= ∅.

Then ∆u = −hu > 0 in Σ−, violating the weak maximum principle at a point of
minimum.

Now consider Σ+ := {x ∈ Σ : u(x) > 0}. We claim that Σ+ = Σ, i.e. u > 0
everywhere. Otherwise ∂Σ+ 6= ∅. Let then x0 ∈ ∂Σ+ be a point satisfying the
interior sphere condition, and let D ⊂ Σ+ be a disk with x0 ∈ ∂D and such that

∆u = λup−1eu
p − hu > 0 in D.

It is possible to find such D because u(x0) = 0, λ > 0, and p < 2. Then, by the
Hopf lemma, see e.g. [26, Lemma 3.4],

∂u

∂ν
(x0) < 0,

where ν is the outer normal to ∂Σ+ at x0. This violates the non-negativity of u,
leading to a contradition. Hence u > 0. Going back to (1.1), we can now bootstrap
regularity, hence u ∈ C∞(Σ).

Also for p = 1, 2 the regularity of solutions to (0.12) follows from elliptic estimates
and [51], which implies that the right-hand side of (0.12) belongs to Lq(Σ) for
q ∈ [1,∞). �

In the rest of the section we consider p ∈ (1, 2) and the positive function h ∈
C∞(Σ) fixed. The first tools we shall need in the proof of Theorem 1.1 are improved
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Moser-Trudinger inequalities. Let us first observe that from Young’s inequality
ab ≤ aq

q + br

r applied with q = 2
p and r = q′ = 2

2−p we obtain, for u 6≡ 0,

|u|p =
( |u|
‖u‖h

√
8π

p

)p(

‖u‖h
√

p

8π

)p

≤ 4π
u2

‖u‖2h
+ ‖u‖

2p
2−p

h

2− p

2

( p

8π

) p
2−p

,

hence with (MT ) we get

ln

∫

Σ

(

e|u|
p − 1

)

dvg ≤ ln

∫

Σ

e|u|
p

dvg ≤
2− p

2

(
p‖u‖2h
8π

) p
2−p

+ C. (1.2)

It follows that

Jp,β(u) ≥
2− p

2

(
p‖u‖2h

) p
2−p

((
1

2β

) p
2−p

−
(

1

8π

) p
2−p

)

− C,

so that Jp,β is coercive for β < 4π.

On the other hand, if the density e|u|
p −1 is spread into k+1 ≥ 1 disjoint regions

we have the following improved Moser-Trudinger inequality which gives a uniform
lower bound on Jp,β(u) for each β < 4π(k + 1), see [8] for a related argument.

Lemma 1.2. For any fixed k ∈ N, let Ω1, . . . ,Ωk+1 be subsets of Σ satisfying

dist(Ωi,Ωj) ≥ δ0 for i 6= j and some δ0 > 0. Let also γ0 ∈
(

0, 1
k+1

)

, δ1 ∈
(0, 8π(k + 1)). Then there exists a constant C = C(k, δ0, δ1, γ0,Σ) such that

ln

∫

Σ

(

e|u|
p − 1

)

dvg ≤
2− p

2

(
p‖u‖2h

8π(k + 1)− δ1

) p
2−p

+ C (1.3)

for all the functions u ∈ H1(Σ)\{0} satisfying
∫

Ωi

(
e|u|

p − 1
)
dvg

∫

Σ

(
e|u|p − 1

)
dvg

≥ γ0, ∀ i ∈ {1, . . . , k + 1}. (1.4)

Proof. Fix u satisfying (1.4). We can find k + 1 functions g1, . . . , gk+1 such that






gi(x) ∈ [0, 1] for every x ∈ Σ;
gi(x) = 1, for every x ∈ Ωi;

gi(x) = 0, if dist(x,Ωi) ≥ δ0
2 ;

‖gi‖C1 ≤ Cδ0,Σ.

(1.5)

For ε > 0 small (to be fixed depending on k and δ1) using the inequality 2ab ≤
εa2+ε−1b2 we can find a constant Cε,δ0 (the dependence of the constants on Σ and
h will be omitted) such that, for any i ∈ {1, . . . , k + 1} and v ∈ H1(Σ) there holds

‖giv‖2h ≤
∫

Σ

g2i |∇v|2dvg + ε

∫

Σ

|∇v|2dvg + Cε,δ0

∫

Σ

v2dvg. (1.6)

Now let λε,δ0 be an eigenvalue of ∆g + h such that
Cε,δ0

λε,δ0
< ε, where Cε,δ0 is as in

(1.6), and write

u = PVε,δ0
u+ PV ⊥

ε,δ0

u =: u1 + u2,
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where Vε,δ0 ⊂ H1(Σ) is the direct sum of the eigenspaces of ∆g+h with eigenvalues
less than or equal to λε,δ0 , and PVε,δ0

, PV ⊥
ε,δ0

denote the projections onto Vε,δ0 and

V ⊥
ε,δ0

respectively.
We now choose i such that

∫

Σ

g2i |∇u2|2dvg ≤
∫

Σ

g2j |∇u2|2dvg for every j ∈ {1, . . . , k + 1}.

Since the functions g1, . . . , gk+1 have disjoint supports, (1.6) applied with v = u2
gives

‖giu2‖2h ≤ 1

k + 1

∫

Σ

|∇u2|2dvg + ε

∫

Σ

|∇u2|2dvg + Cε,δ0

∫

Σ

u22dvg.

This, together with the inequalities

Cε,δ0

∫

Σ

u22dx ≤ Cε,δ0
λε,δ0

‖u2‖2h ≤ ε‖u2‖2h,

implies

‖giu2‖2h ≤
(

1

k + 1
+ 2ε

)

‖u2‖2h ≤
(

1

k + 1
+ 2ε

)

‖u‖2h. (1.7)

In particular from the Moser-Trudinger inequality (1.2) and (1.7), we have for ε
small enough, which we now fix depending on δ1 and k,

ln

∫

Σ

e(1+ε)|giu2|
p

dvg ≤
2− p

2

(

p(1 + ε)
2
p ‖giu2‖2H1

8π

) p
2−p

+ C

≤ 2− p

2

(
p‖u2‖2H1

8π(k + 1)− δ1

) p
2−p

+ C.

(1.8)

Notice also that since Vε,δ0 is finite dimensional, we have

‖v‖L∞ ≤ C̃ε,δ0‖v‖L2 ≤ Ĉε,δ0‖v‖h, for v ∈ Vε,δ0 ,

hence

‖u1‖L∞(Ω) ≤ Ĉε,δ0‖u1‖h.
Now, using the inequality

(a+ b)p ≤ Cε,pa
p + (1 + ε)bp,

we get
∫

Σ

e|giu|
p

dvg ≤ eCε,p‖u1‖
p
∞

∫

Σ

e(1+ε)|giu2|
p

dvg ,

hence, from (1.4) and (1.8) we deduce

ln

∫

Σ

(

e|u|
p − 1

)

dvg ≤ ln
1

γ0
+ ln

∫

Ωi

(

e|u|
p − 1

)

dvg

≤ ln
1

γ0
+ ln

∫

Σ

e|giu|
p

dvg

≤ ln
1

γ0
+ Cε,p‖u1‖pL∞ + ln

∫

Σ

e(1+ε)|giu2|
p

dvg

≤ 2− p

2

(
p‖u2‖2h

8π(k + 1)− δ1

) p
2−p

+ C̃ε,p‖u1‖ph + C′,

(1.9)
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with C′ = C′(k, δ0, δ1, γ0,Σ). A further application of Young’s inequality to the

term C̃ε,p‖u1‖ph and the inequality aq + bq ≤ (a+ b)q for q > 1 then gives

ln

∫

Σ

(

e|u|
p − 1

)

dvg ≤ 2− p

2

(
p(‖u2‖2H1 + ‖u1‖2h)
8π(k + 1)− δ1

) p
2−p

+ C

with C = C(k, δ0, δ1, γ0,Σ), and since ‖u2‖2h + ‖u1‖2h = ‖u‖2h we conclude. �

The next lemma, proven in [18, Lemma 2.3], is a criterion which implies the
situation described by condition (1.4).

Lemma 1.3. Let k be a given positive integer, and consider ε, r > 0. Suppose that
for a non-negative function f ∈ L1(Σ) with ‖f‖L1 = 1 there holds

∫

⋃

k
i=1 Br(xi)

fdx < 1− ε for every k-tuple x1, . . . , xk ∈ Σ. (1.10)

Then there exist ε̄ > 0 and r̄ > 0, depending only on ε, r, k and Ω (but not on f),
and k + 1 points x̄1,f , . . . , x̄k+1,f ∈ Σ such that

∫

Br̄(x̄j,f )

fdx ≥ ε̄, for j = 1, . . . , k + 1,

and B2r̄(x̄i,f ) ∩B2r̄(x̄j,f ) = ∅ for i 6= j.

Lemma 1.2 and Lemma 1.3 then imply the following other result.

Lemma 1.4. If β ∈ (4πk, 4π(k+ 1)) with k ≥ 1, the following property holds. For
any ε > 0 and any r > 0 there exists a large positive constant L = L(ε, r, p, β) such
that, for every u ∈ H1(Σ) with Jp,β(u) ≤ −L there exist k points x1, . . . , xk ∈ Σ
such that ∫

Σ\∪k
i=1Br(xi)

(
e|u|

p − 1
)
dvg

∫

Σ

(
e|u|p − 1

)
dvg

< ε. (1.11)

Proof. Fix ε, r, p, and β as in the statement of the lemma and let u ∈ H1(Σ) be
such that Jp,β(u) ≤ −L for some constant L ≥ 0, and assume by that (1.11) fails
for every k-tuple of points x1, . . . , xk. Then setting

f :=
e|u|

p − 1

‖e|u|p − 1‖L1

we have that (1.10) holds. Therefore, by Lemma 1.3 we can find ε̄ = ε̄(ε, r, k,Σ),
r̄ = r̄(ε, r, k,Σ) and points x̄1, . . . , x̄k+1 ∈ Σ such that the assumptions of Lemma
1.2 hold with Ωi = Br̄(x̄i), γ0 = ε̄ and δ0 = 2r̄. Fix also δ1 = 8π(k+1)− 2β. Then
by Lemma 1.2 there exists a constant C̄ depending on k, δ0, δ1, γ0, p and Σ, hence
depending on ε, r, p, β, k and Σ such that

ln

∫

Σ

(

e|u|
p − 1

)

dvg ≤
2− p

2

(
p‖u‖2H1

2β

) p
2−p

+ C̄,

hence Jp,β(u) ≥ −C̄, and up to choosing L > C̄ we obtain a contradiction, unless
(1.11) holds for a suitable k-tuple x1, . . . , xk ∈ Σ. �

Given k ∈ N we introduce the set of formal barycenters of Σ of order k, namely

Σk =

{

σ =

k∑

i=1

tiδxi : xi ∈ Σ, ti ≥ 0,

k∑

i=1

ti = 1

}

,
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where δxi is the Dirac mass at xi, see [18], [37].
We will see Σk as a subset of M(Σ), the set of all probability Radon measures on
Σ, endowed with the distance defined using duality versus Lipschitz functions:

dist(µ, ν) := sup
‖ψ‖Lip(Σ)≤1

∣
∣
∣
∣

∫

Σ

ψ dµ−
∫

Σ

ψ dν

∣
∣
∣
∣
, µ, ν ∈ M(Σ), (1.12)

which receives the name of Kantorovich-Rubinstein distance.

Lemma 1.5. For any ε > 0 there exist δ > 0 and rε > 0 such that, for any
r ∈ (0, rε], if f ∈ L1(Σ) is a non-negative function such that

∫

Σ\∪k
i=1Br(xi)

fdvg
∫

Σ
fdvg

< δ (1.13)

for some x1, . . . , xk ∈ Σ, then

dist

(
fdvg
∫

Σ
fdvg

, σ

)

< ε,

where

σ =

k∑

i=1

tiδxi , ti =

∫

Br(xi)
fdvg

∫

∪k
j=1Br(xj)

fdvg
.

Proof. Consider a function ψ on Σ with ‖ψ‖Lip(Σ) ≤ 1, which we can assume to

have zero average, and let us estimate for
∫

Σ
fdvg = 1 (otherwise, we can rescale f

by a constant)

∣
∣
∣
∣

∫

Σ

f ψ dvg −
∫

Σ

ψ dσ

∣
∣
∣
∣
≤

k∑

i=1

∣
∣
∣
∣
∣

∫

Br(xi)

f ψ dvg −
∫

Br(xi)

ψ dσ

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫

Σ\∪k
i=1Br(xi)

f ψ dvg

∣
∣
∣
∣
∣
.

Since f ≥ 0, with
∫

Σ
fdvg = 1, and since ψ is uniformly bounded by the diameter of

Σ (due to the fact that it is 1-Lipschitz and has zero average), by (1.13) we clearly
have that ∣

∣
∣
∣
∣

∫

Σ\∪k
i=1Br(xi)

f ψ dvg

∣
∣
∣
∣
∣
≤ δ diamg(Σ).

On the other hand, for the same reason we have that
∫

∪k
j=1Br(xj)

fdvg = 1 +O(δ),

which implies that ti = (1 +O(δ))
∫

Br(xi)
fdvg and in turn that

∫

Br(xi)

ψdσ = tiΨ(xi)

= ψ(xi)

∫

Br(xi)

fdvg +O(δ).

Again from the fact that ψ is 1-Lipschitz, we get that
∫

Br(xi)

f ψ dvg = ψ(xi)

∫

Br(xi)

fdvg +O(r).

Since ψ was arbitrary, the conclusion follows from the last four formulas. �

An immediate consequence of Lemma 1.4 and Lemma 1.5 is that the low sublevels
of Jp,β can be mapped close to Σk, in the sense of the following lemma.
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Lemma 1.6. Given β ∈ (4πk, 4π(k + 1)) with k ≥ 1, ε > 0 there exists L =
L(ε, p, β) such that for every u ∈ H1(Σ) with Jp,β ≤ −L we have

dist

( (
e|u|

p − 1
)
dvg

∫

Σ

(
e|u|p − 1

)
dvg

,Σk

)

< ε.

Let us first recall a well known result about Σk, endowed with the topology
induced by dist(·, ·).

Lemma 1.7 ([37]). For any k ≥ 1 the set Σk is non-contractible.

Our goal is to show that, if β ∈ (4πk, 4π(k + 1)), Σk can be mapped into very
negative sublevels of Jp,β and that this map is non trivial in the sense that it carries
some homology. Then, as a consequence of the previous Lemma we will get the non
contractibility of low sublevels of Jp,β.

Let us first define the standard bubble ϕγ : R2 → R for γ > 0,

ϕγ(x) :=

(
2

p

) 1
p
γ

(

1− 1

γp
ln

(

1 +
|x|2
r2γ

))

+

,

where rγ is chosen so that

rγ = o
(

e−γ
p
)

, ln
(

rγe
γp
)

= o(γp), (1.14)

for instance, rγ = γ−1e−γ
p

.
Now, given x ∈ Σ we define the function ϕγ,x : Σ → R as

ϕγ,x =

(
2

p

) 1
p
γ

(

1− 1

γp
ln

(

1 +
d2(y, x)

r2γ

))

+

.

Notice that ϕγ,x(y) > 0 if and only if y ∈ Bδγ (x), where

δ2γ := r2γ(e
γp − 1) → 0 as γ → ∞. (1.15)

For a barycenter σ =
∑k
i=1 tiδxi ∈ Σk we now want to construct test functions ϕγ,σ

continuous with respect to σ (from M(Σ) into H1(Σ)) concentrating mass near the
points xi, in the sense that

(eϕ
p
γ,σ − 1)dvg

∫

Σ

(
eϕ

p
γ,σ − 1

)
dvg

→ σ, as γ → ∞. (1.16)

In order to do so, to each t ∈ [0, 1] and γ > 0 we associate τ = τ(t, γ) such that

∫

R2

(

e(ϕγ−τ)
p
+ − 1

)

dx
∫

R2

(
eϕ

p
γ − 1

)
dx

= t. (1.17)

Notice that τ is decreasing with respect to t and that τ(0, γ) =
(

2
p

) 1
p
γ, τ(1, γ) = 0

for every γ > 0. We will need the following elementary estimate.

Lemma 1.8. For any fixed t ∈ (0, 1] we have τ(t, γ) → 0 as γ → ∞ uniformly for
t ∈ [t, 1].
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Proof. Given γ, τ > 0, consider L ≥ 2
γ to be fixed later. We easily see that

∫

{ϕγ<L}

(

e(ϕγ−τ)
p
+ − 1

)

dx ≤
∫

{ϕγ<L}

(

eϕ
p
γ − 1

)

dx

≤
(

eL
p − 1

)

πδ2γ = oγ(1).

(1.18)

Moreover, for γ such that

2

p

(

1− ln 2

γp

)p

≥ 1 + ε > 1,

also using that ϕγ ≥ L on Brγ (0) for γ large, we get
∫

{ϕγ≥L}

(

eϕ
p
γ − 1

)

dx ≥
∫

Brγ (0)

(

e
2
pγ

p(1− ln 2
γp )p − 1

)

dx

≥
∫

Brγ (0)

(

e(1+ε)γ
p − 1

)

dx

≥ πr2γ

(

e(1+ε)γ
p − 1

)

→ ∞.

(1.19)

By the Taylor expansion

(1 − x)p = 1− px+
p(p− 1)

2(1− ξ)2−p
x2 ≤ 1− px+ Cpx

2, 0 ≤ ξ ≤ x ≤ 1

2
,

we get for ϕγ ≥ L ≥ 2τ

(ϕγ − τ)p+ ≤ ϕpγ − pτϕp−1
γ + Cpτ

2ϕp−2
γ ≤ ϕpγ −

p

2
τϕp−1

γ

up to choosing L ≥ L0(p) sufficiently large. We then infer
∫

{ϕγ≥L}

(

e(ϕγ−τ)
p
+ − 1

)

dx ≤ e−
p
2 τL

p−1

∫

{ϕγ≥L}

eϕ
p
γdx

= oL

(∫

R2

(

eϕ
p
γ − 1

)

dx

)

, as L→ ∞.

(1.20)

Putting (1.18)-(1.20) together it follows that

t(τ, γ) :=

∫

R2

(

e(ϕγ−τ)
p
+ − 1

)

dx
∫

R2

(
eϕ

p
γ − 1

)
dx

= o(1) as γ → ∞

for any τ > 0. This implies that τ(t̄, γ) = o(1) as γ → ∞ for any t̄ ∈ (0, 1] since
otherwise there would be sequences γε → 0 and τε ∈ (0, γε] such that τε(t̄, γε) ≥
τ∗ > 0, and by monotonicity

0 < t̄ = t(τε, γε) ≤ t(τ∗, γε) = o(1) as ε→ 0,

a contradiction. Using the monotonicity of τ with respect to t the conclusion follows
at once. �

Now call τi = τ(ti, γ), 1 ≤ i ≤ k and define ϕγ,σ by the formula

eϕ
p
γ,σ − 1 =

k∑

i=1

(

e(ϕγ,xi
−τi)

p
+ − 1

)

,
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or, explicitly

ϕγ,σ = ln
1
p

(

1 +
k∑

i=1

(

e(ϕγ,xi
−τi)

p
+ − 1

)
)

. (1.21)

Notation. Until the end of the section o(1) (resp. O(1)) will denote a quantity
tending to 0 (resp. a bounded quantity) as γ → ∞, uniformly with respect to
x ∈ Σ and σ ∈ Σk.

Lemma 1.9. For every x ∈ Σ, we have

∫

Σ

|∇ϕγ,x|2 dvg =
(
2

p

) 2
p

4πγ2−p(1 + o(1)), as γ → ∞.

Proof. By a straightforward computation, for any y ∈ Bδγ (x), we get

∇ϕγ,x(y) = −
(
2

p

) 1
p

γ1−p
r−2
γ ∇y(d

2(y, x))

1 + r−2
γ d2(y, x)

,

while ∇ϕγ,x(y) = 0 in Σ \Bδγ (x).
Using geodesic coordinates centered at x, with an abuse of notation, we identify
the points in Σ with their pre-image under the exponential map. Using these
coordinates, and recalling that δγ → 0 we have that

d(y, x) = |y − x|(1 + o(1)), |∇y(d
2(y, x))| = 2|y − x|(1 + o(1)), y ∈ Bδγ (x)

hence

|∇ϕγ,x(y)| =
(
2

p

) 1
p

γ1−p(1 + o(1))
2|y − x|

r2γ + |y − x|2 , y ∈ Bδγ (x). (1.22)

Thanks to the change of variable s = r2γ + ρ2, we are able to conclude that
∫

Σ

|∇ϕγ,x|2 dvg =
∫

Bδγ (x)

|∇ϕγ,x|2 dvg

=

(
2

p

) 2
p

γ2−2p(1 + o(1))

∫

BR2

δγ
(x)

4|y − x|2
(r2γ + |y − x|2)2 dy

=

(
2

p

) 2
p

4πγ2−2p(1 + o(1))

∫ δγ

0

2ρ3

(r2γ + ρ2)2
dρ

=

(
2

p

) 2
p

4πγ2−2p(1 + o(1))

∫ r2γe
γp

r2γ

(

1

s
− r2γ
s2

)

ds

=

(
2

p

) 2
p

4πγ2−p(1 + o(1)),

yielding the result. �

Lemma 1.10. In the above notation we have, uniformly for σ ∈ Σk

∫

Σ

|∇ϕγ,σ|2 dvg ≤
(
2

p

) 2
p

4πkγ2−p(1 + o(1)).
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Proof. We compute

∇ϕγ,σ =

∑k
i=1(ϕγ,xi − τi)

p−1
+ e(ϕγ,xi

−τi)
p
+∇ϕγ,xi

ln
p−1
p

(

1 +
∑k
j=1

(

e(ϕγ,xj
−τj)

p
+ − 1

))(

1 +
∑k

j=1

(

e(ϕγ,xj
−τj)

p
+ − 1

)) .

Notice that

0 ≤ (ϕγ,xi − τi)
p−1
+ e(ϕγ,xi

−τi)
p
+

ln
p−1
p

(

1 +
∑k
j=1

(

e(ϕγ,xj
−τj)

p
+ − 1

))(

1 +
∑k

j=1

(

e(ϕγ,xj
−τj)

p
+ − 1

))

≤ aiχ{ϕγ,xi
>τi},

where

ai :=
e(ϕγ,xi

−τi)
p
+

1 +
∑k

j=1

(

e(ϕγ,xj
−τj)

p
+ − 1

) ,

hence

|∇ϕγ,σ(x)| ≤
k∑

i=1

ai(x)|∇ϕγ,xi(x)|χ{ϕγ,xi
>τi}(x).

Split now Σ as a disjoint (up to sets of measure zero) union Ω1∪· · ·∪Ωk, such that

|∇ϕγ,xj (x)| = max
1≤i≤k

|∇ϕγ,xi(x)| for x ∈ Ωj,

and further split Σ as Σ = Σ+ ∪ Σ−, where

Σ+ :=






x ∈ Σ :

k∑

j=1

e(ϕγ,xj
(x)−τj)

p
+ ≥ γ






, Σ− := Σ \ Σ+.

Notice that
k∑

i=1

ai(x) ≤ 1 + oγ(1) for x ∈ Σ+.

Then, with the help of Lemma 1.9 we obtain

∫

Σ+

|∇ϕγ,σ|2dx ≤
k∑

j=1

∫

Σ+∩Ωj

(
k∑

i=1

ai|∇ϕγ,xj |
)2

dx

≤ (1 + o(1))

k∑

j=1

∫

Σ+

|∇ϕγ,xj |2dx

≤ (1 + o(1))

(
2

p

) 2
p

4πkγ2−p.

(1.23)

We now want to prove that the integral over Σ− is negligible. Indeed we have

k∑

i=1

ai(x) ≤ k for x ∈ Σ−,

since s
s−k+1 ≤ k for s ≥ k, and similarly to (1.23) we get

∫

Σ−

|∇ϕγ,σ|2dx ≤ k2
k∑

j=1

∫

Σ−∩Ωj

|∇ϕγ,xj |2dx.
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In order to estimate the right-hand side, observe that

1 ≤ e(ϕj(x)−τj)
p
+ ≤ γ for x ∈ Σ−.

This implies that

Σ− ∩ Ωj ⊂ BR1(xj) \Br1(xj) for every j,

where R1 and r1 are given by the relations

1 ≤ e

(

Cpγ

(

1− 1
γp ln

(

1+
d2(x,xj)

r2γ

))

−τj

)p

≤ γ, Cp :=

(
2

p

) 1
p
.

This yields

γp − C−1
p τjγ

p−1 ≥ ln

(

1 +
d2(x, xj)

r2γ

)

≥ γp − C−1
p τjγ

p−1 − γp−1 ln
1
p γ,

and

R2
1 =

(

eγ
p−C−1

p τjγ
p−1 − 1

)

r2γ , r21 =

(

eγ
p−C−1

p τjγ
p−1−γp−1 ln

1
p γ − 1

)

r2γ .

We now integrate as in Lemma 1.9, and with the same change of variables s = r2γ+ρ
2

we obtain

∫

BR1(xj)\Br1 (xj)

|∇ϕγ,xj |2dvg = O
(
γ2−2p

)
∫ r2γ+R

2
1

r2γ+r
2
1

s− r2γ
s2

ds

≤ O
(
γ2−2p

)
∫ r2γe

γp−C−1
p τjγ

p−1

r2γe
γp−C

−1
p τjγ

p−1−γp−1 ln
1
p γ

ds

s

= O
(

γ1−p ln
1
p γ
)

= o(γ2−p).

Together with (1.23), we conclude. �

Lemma 1.11. We have the following estimates, uniformly for σ ∈ Σk

∫

Σ

hϕ2
γ,σ dvg = o(γ2−p).

Proof. Let us first evaluate, for x ∈ Σ,
∫

Σ ϕ
2
γ,x dvg. Being

∫

Brγ (x)

ϕ2
γ,x dvg = o(1), ϕγ,x = 0 in Σ \Bδγ (x),
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it is enough to estimate
∫

Bδγ (x)\Brγ (x)
ϕ2
γ,x dvg.

Using normal coordinates at x and the change of variables s = 1 + r2

r2γ
, we get

∫

Σ\Brγ (x)

ϕ2
γ,xdvg = O(γ2)

∫ δγ

rγ

r

(

1− 2

γp
ln(1 +

r2

r2γ
) +

1

γ2p
ln2(1 +

r2

r2γ
)

)

dr

= O(γ2)

∫ eγ
p

2

r2γ

(

1− 2

γp
ln(s) +

1

γ2p
ln2(s)

)

ds

= O(γ2r2γ)

[

s− 2

γp
(−s+ s ln s) +

1

γ2p
(2s− 2s ln s+ s ln2 s)

]eγ
p

2

= O(γ4−4p)

= o(γ2−p).

(1.24)

Splitting Σ as a disjoint (up to sets of measure zero) union Ω̃1 ∪ · · · ∪ Ω̃k, so that

ϕγ,xi(x) = max
1≤j≤k

ϕγ,xj(x) for x ∈ Ω̃j ,

we have

ϕ2
γ,σ(x) ≤ ln

2
p

(
k∑

i=1

eϕ
p
γ,xi

(x)

)

≤
k∑

j=1

χΩ̃j
(x) ln

2
p

(

e
ϕp

γ,xj
(x)
)

≤
k∑

j=1

(

ln k + ϕpγ,xj
(x)
) 2

p

≤ O(1) +O(1)

k∑

j=1

ϕ2
γ,xj

(x),

where in the last inequality we used the convexity of the map t 7→ t
2
p .

As a consequence, since h is bounded,

∫

Σ

hϕ2
γ,σ dvg = O(1) +O(1)

k∑

j=1

∫

Σ

ϕ2
γ,xj

(x) dvg
(1.24)
= o(γ2−p),

as desired. �

Lemma 1.12. We have, uniformly for σ ∈ Σk

ln

∫

Σ

(

eϕ
p
γ,σ − 1

)

dvg ≥
2− p

p
γp(1 + o(1)), as γ → ∞.

Proof. Given σ =
∑k
i=1 tiδxi ∈ Σk, fix i such that ti ≥ 1

k . Then, according to
Lemma 1.8 we have τi = o(1) as γ → ∞, hence

ϕpγ,σ ≥ (ϕγ,xi − τi)
p
+ ≥ 2

p
γp
(

1− ln 2

γp
− oγ(1)

)p

+

≥ 2

p
γp(1 + o(1)) on Brγ (xi)
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for γ sufficiently large. Then, also using (1.14), it follows

ln

∫

Σ

(

eϕ
p
γ,σ − 1

)

dvg ≥ ln

∫

Brγ (xi)

(

eϕ
p
γ,σ − 1

)

dvg

≥ ln
(

(1 + o(1))πr2γe
2
pγ

p(1+o(1))
)

=

(
2

p
− 1 + o(1)

)

γp

=
2− p

p
γp(1 + o(1)),

as claimed. �

Lemma 1.13. Given β ∈ (4πk, 4π(k+ 1)), with k ≥ 1, then as γ → +∞ we have:

i. Jp,β(ϕγ,σ) → −∞ uniformly for σ ∈ Σk,

ii. dist

( (

eϕ
p
γ,σ−1

)

dvg
∫

Σ

(

eϕ
p
γ,σ−1

)

dvg
, σ

)

→ 0 uniformly for σ ∈ Σk, see (1.12).

Proof. i. By definition of ϕγ,σ and Lemmas 1.10, 1.11 and 1.12 we have

Jp,β(ϕγ,σ) =
2− p

2

(
p‖ϕγ,σ‖2h

2β

) p
2−p

− ln

∫

Σ

(

eϕ
p
γ,σ − 1

)

dvg

≤ 2− p

2

(

p( 2p )
2
p 4πkγ2−p(1 + o(1))

2β

) p
2−p

− 2− p

p
γp(1 + o(1))

=
2− p

2

[(
4πk

β

) p
2−p 2

p
γp(1 + o(1))

]

− 2− p

p
γp(1 + o(1))

=
2− p

p
γp

[(
4πk

β

) p
2−p

− 1

]

(1 + o(1)) → −∞,

uniformly for σ ∈ Σk.
ii. Let us first collect some simple calculations.

Let σ =
∑k

i=1 tiδxi ∈ Σk: then, since δγ → 0 when γ → +∞,
∫

Bδγ (xi)

(

e(ϕγ,xi
−τi)

p
+ − 1

)

dvg = (1 + o(1))

∫

BR2

δγ
(0)

(

e(ϕγ−τi)
p
+ − 1

)

dx

(1.17)
= (1 + o(1)) ti

∫

R2

(

eϕ
p
γ − 1

)

dx, (1.25)

as a consequence

∫

∪k
j=1Bδγ (xj)

(eϕ
p
γ,σ − 1) dvg

(1.21)
=

∫

∪k
j=1Bδγ (xj)

(
k∑

i=1

(

e(ϕγ,xi
−τi)

p
+ − 1

)
)

dvg

=

k∑

i=1

∫

Bδγ (xi)

(

e(ϕγ,xi
−τi)

p
+ − 1

)

dvg

(1.25)
= (1 + o(1))

∫

R2

(

eϕ
p
γ − 1

)

dx, (1.26)
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where in the second identity we used that ϕγ,xi ≡ 0 on Σ \ Bδγ (xi). Given ε > 0,
we need to show that

dist (fγ,σdvg , σ) < 2ε for γ sufficiently large,

uniformly for σ ∈ Σk, where

fγ,σ =

(

eϕ
p
γ,σ − 1

)

∫

Σ

(
eϕ

p
γ,σ − 1

)
dvg

.

Let δ > 0 and rε > 0 be the positive constants of the statement of Lemma 1.5.
It is immediate to see that fγ,σ satisfies (1.13), being ϕγ,σ ≡ 0 in Σ \ ∪ki=1Bδγ (xi),
then by Lemma 1.5 (which holds with r = δγ , if γ is sufficiently large)

dist (fγ,σ, σγ) < ε where σγ :=

k∑

i=1

∫

Bδγ (xi)
(eϕ

p
γ,σ − 1)dvg

∫

∪k
j=1Bδγ (xj)

(eϕ
p
γ,σ − 1)dvg

δxi . (1.27)

In virtue of (1.25) and (1.26) σγ =
∑k

i=1 ti(1 + o(1))δxi , and so

dist(σγ , σ) < ε for γ sufficiently large. (1.28)

The thesis follows from (1.27) and (1.28). �

Let us set for L > 0

J−L
p,β := {u ∈ H1(Σ) : Jp,β(u) ≤ −L}.

Proposition 1.1. Let β ∈ (4πk + δ, 4π(k + 1) − δ), with k ≥ 1 and δ ∈ (0, 12 ).
Then, there exist L > 0 and γ > 0 sufficiently large depending on p, k and δ, and
a continuous function

Ψ : J−L
p,β −→ Σk

such that i) Φ(σ) := ϕγ,σ ∈ J−2L
p,β for every σ ∈ Σk and ii) the map Ψ◦Φ : Σk → Σk,

is homotopically equivalent to the identity on Σk.

Proof. By [2, Proposition 2.2] there exist ε > 0 and a continuous retraction

Ψ̂ : {σ ∈ M(Σ) : dist(σ,Σk) < ε} → Σk.

By Lemma 1.6 there exists L = L(ε, p, β) such that for every u ∈ J−L
p,β

dist

( (
e|u|

p − 1
)
dvg

∫

Σ

(
e|u|p − 1

)
dvg

,Σk

)

< ε.

Since the map u 7→ (e|u|p−1)dvg
∫

Σ(e|u|p−1)dvg
is continuous from J−L

p,β ⊂ H1(Σ) into M(Σ), for

such L the map Ψ : J−L
p,β → Σk defined as

Ψ(u) := Ψ̂

( (
e|u|

p − 1
)
dvg

∫

Σ

(
e|u|p − 1

)
dvg

)

is well posed and continuous with respect to the H1(Σ) topology.
In turn, by Lemma 1.13 there exist γ > 0 such that

ϕγ,σ ∈ J−2L
p,β , dist





(

eϕ
p
γ,σ − 1

)

dvg
∫

Σ

(
eϕ

p
γ,σ − 1

)
dvg

, σ



 < ε, for any σ ∈ Σk. (1.29)
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Hence Ψ ◦ Φ(σ) = Ψ(ϕγ,σ) is well defined and we only need to show that Ψ ◦ Φ ≃
IdΣk

. Consider the homotopy H : [0, 1]× Σk → M(Σ) given by

H(s, σ) = sσ + (1− s)

(

eϕ
p
γ,σ−1

)

dvg
∫

Σ

(
eϕ

p
γ,σ − 1

)
dvg

.

From (1.29) we infer that

dist(H(s, σ),Σk) ≤ dist(H(s, σ), σ) < ε for s ∈ [0, 1], σ ∈ Σk,

so Ψ̂ is well defined on the image of H and we can then define the homotopy
H : [0, 1]× Σk → Σk

H(s, σ) = Ψ̂ ◦H(s, σ).

Clearly H(0, ·) = Ψ ◦ Φ and H(1, ·) = IdΣk
. �

We are now ready to construct a minmax scheme in the spirit of [18]. Given p,
k and δ > 0, fix L > 0, γ > 0 and Φ : Σk → H1(Σ) as in Proposition 1.1.

Consider the topological cone Ck over Σk defined as

Ck = (Σk × [0, 1])/ ∼
where (σ1, r1) ∼ (σ2, r2) if and only if r1 = r2 = 1. We shall also identify Σk × {0}
with Σk. Set

Ak := {Φ̄ ∈ C0(Ck, H1(Σ)) s.t. Φ̄|Σk
= Φ},

and call

αβ := inf
Φ̄∈Ak

max
ξ∈Ck

Jp,β(Φ̄(ξ)) (1.30)

the minmax value.

Lemma 1.14. With the above choice of L and γ, depending on p, k and δ, we have

αβ ≥ −L, sup
Φ̄∈Ak

sup
ξ∈Σk

Jp,β(Φ̄(ξ)) ≤ −2L. (1.31)

Proof. The second inequality follows immediately from Proposition 1.1. Assume
by contradiction that αβ < −L: then we can find Φ̄ ∈ Ak such that

Φ̄(Ck) ⊂ J−L
p,β .

By Proposition 1.1, the map

Ψ ◦ Φ̄ : Ck → Σk

is well-defined and continuous. Moreover, on the one hand

Ψ ◦ Φ̄|Σk
= Ψ ◦ Φ ≃ IdΣk

, (1.32)

and on the other hand Ψ ◦ Φ̄ gives a homotopy between Ψ ◦ Φ̄(·, 0) = Ψ ◦ Φ̄|Σk
and

the constant map Ψ ◦ Φ̄(·, 1). This and (1.32) imply that Σk is homotopic to a
point, which contradicts Lemma 1.7. �

We will now use a well-known monotonocity trick by Struwe to construct bounded
Palais-Smale sequences for Jp,β at level αβ , as defined in (1.30):

Proposition 1.2. For almost every β > 4π the functional Jp,β admits a bounded
Palais-Smale sequence at level αβ, i.e. a sequence (uε) bounded in H1(Σ) such that

Jp,β(uε) → αβ , J ′
p,β(uε) → 0 as k → ∞. (1.33)
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Proof. Since for all u ∈ H1 β 7→ Jp,β(u) is monotone decreasing, the function
β 7→ αβ is non-increasing, hence it is differentiable almost everywhere. Set

Dp := {β ∈ (4π,∞) \ 4πN : αβ is differentiable}.
Take β ∈ Dp, fix δ ∈ (0, 12 ) and k ∈ N

⋆ such that β ∈ (4πk + δ, 4π(k + 1)− δ), and
choose a sequence βε ↑ β with βε ∈ (4πk + δ, 4π(k + 1)− δ). For every ε > 0 let a
function Φ̄ε ∈ Ak be given such that

max
ξ∈Ck

Jp,βε(Φ̄ε(ξ)) ≤ αβε + (β − βε), (1.34)

and let also ξε ∈ Ck be given such that

Jp,β(Φ̄ε(ξε)) ≥ αβ . (1.35)

Notice that the set of (Φ̄ε, ξε)’s satisfying (1.34)-(1.35) is non-empty thanks to
(1.30) (used with β and βε).

Set vε := Φ̄ε(ξε). Then, posing Cp :=
2−p
2

(
p
2

) p
2−p , we have that

Jp,βε(vε)− Jp,β(vε) = Cp‖vε‖
2p

2−p

h

(

1

β
p

2−p
ε

− 1

β
p

2−p

)

,

hence, setting q = p
2−p , α

′
β =

dαβ

dβ , and writing

βq − βqε = −qβq−1(βε − β) + o(βε − β),

we bound

‖vε‖2qh =
(βεβ)

q

Cp

Jp,βε(vε)− Jp,β(vε)

βq − βqε

≤ (βεβ)
q

Cp

αβε − αβ + β − βε
βq − βqε

=
β2q + o(1)

Cp
·
−α′

β + 1 + o(1)

qβq−1

≤ C̄p,β .

(1.36)

In particular ‖vε‖
2p

p−2

h = O(1) as ε→ 0 for any sequence vε = Φε(ξε), where Φε and
ξε satisfy (1.34) and (1.35).

We now proceed similarly to [16]. For every δ > 0 (not the same as in Lemma
1.14) consider the set

Nδ,M :=
{
u ∈ H1(Σ) : ‖u‖h ≤M, |Jp,β(u)− αβ | < δ

}

for M ≥ C̄
p−2
2p

p,β + 1, where C̄p,β is as in (1.36). Notice that Nδ,M is non-empty by
the previous discussion.

Assume that the claim of the proposition is false, so that there exists δ > 0 small
such that

‖J ′
p,β(u)‖H−1,h := sup

‖v‖h≤1

〈
J ′
p,β(u), v

〉
≥ 2δ for u ∈ Nδ,M .

Since Jp,β is of class C1 (on the open set of H1(Σ) where it is finite), we can
construct a locally Lipschitz pseudo-gradient vector field (see e.g. [47, Lemma 3.2])

X : H1(Σ) → H1(Σ)
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such that

sup
u∈Nδ,M

‖X(u)‖h ≤ 1, sup
u∈Nδ,M

〈
J ′
p,β(u), X(u)

〉
≤ −δ.

We have
〈
J ′
p,β(u), v

〉
= Cp,β‖u‖

4p−4
2−p

H1 〈u, v〉h −
∫

Σ pu
p−1
+ eu

p
+vdvg

∫

Σ

(

eu
p
+ − 1

)

dvg
, (1.37)

where 〈u, v〉h :=
∫

Σ
(∇u∇v + huv)dvg and Cp,β = p

(
p
2β

) p
2−p

, hence, for any se-

quence βε ↑ β

‖J ′
p,β(u)− J ′

p,βε
(u)‖H−1,h ≤ (Cp,β − Cp,βε) ‖u‖

3p−2
2−p

h = o(1) as ε→ 0,

uniformly for u ∈ Nδ,M . Then for ε small we have

sup
u∈Nδ,M

〈
J ′
p,βε

(u), X(u)
〉
≤ 0.

We now choose a Lipschitz cut-off function η : H1(Σ) → [0, 1] such that

η(u) = 0 if u ∈ H1(Σ) \Nδ,M
and

η(u) = 1 if u ∈ N δ
2 ,M−1,

and consider the flow φt : H1(Σ) → H1(Σ) generated by the vector field ηX .

Assuming with no loss of generality that −2L < αβ − δ, since Φ(Σk) ⊂ J−2L
p,β , it

follows that

φt ◦ Φ̄|Σk
= Φ̄|Σk

= Φ,

hence

φt ◦ Φ̄ ∈ Ak for every Φ̄ ∈ Ak, t ≥ 0.

Moreover
dJp,βε(φt(u))

dt

∣
∣
∣
∣
t=0

≤ 0, for u ∈ H1(Σ), (1.38)

hence if Φ̄ε satisfies (1.34), so does φt ◦ Φ̄ε for t ≥ 0. Moreover, for ε small, given
any Φ̄ε ∈ Ak satisfying (1.34)

αβ ≤ max
ξ∈Ck

Jp,β(φt(Φ̄ε(ξ))) = max
ξ∈Ck:Φ̄ε(ξ)∈N δ

2
,M−1

Jp,β(φt(Φ̄ε(ξ))), (1.39)

since every ξε ∈ Ck attaining the maximum of Jp,β(φt(Φ̄ε(·))) satisfies (1.35), so
(1.39) follows from (1.36) and our choice of M . Therefore, since

dJp,β(φt(u))

dt

∣
∣
∣
∣
t=0

≤ −δ, for u ∈ N δ
2 ,M−1,

we infer
d

dt
sup
ξ∈Ck

Jp,β(φt(Φ̄ε(ξ))) ≤ −δ for t ≥ 0,

which contradicts (1.39). �

Proposition 1.3. Given p ∈ (1, 2) and β > 0, let (uε) ⊂ H1(Σ) be a bounded
Palais-Smale sequence for Jp,β. Then up to a subsequence we have uε → u0 strongly
in H1(Σ), where u0 > 0 is a positive critical point of Jp,β.
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Proof. Up to a subsequence we have uε → u0 in Lq(Σ) for every q < ∞, almost
everywhere and weakly in H1(Σ). Moreover, by Young’s inequality and the Moser-
Trudinger inequality we infer

‖eup
ε+‖Lq ≤ C(p, q, ‖uε‖h) for every q <∞, (1.40)

hence from Vitali’s theorem
∫

Σ

eu
p
ε+dvg →

∫

Σ

eu
p
0+dvg as ε→ 0. (1.41)

From (1.37) we deduce that
〈
J ′
p,β(uε), uε − u0

〉
= o(1) as ε→ 0.

Using uε − u0 as test function in J ′
p,β(uε) → 0, we obtain

o(1) =
〈
J ′
p,β(uε)− J ′

p,β(u0), uε − u0
〉

= Cp,β

〈

‖uε‖
4p−4
2−p

h uε − ‖u0‖
4p−4
2−p

h u0, uε − u0

〉

h

−
∫

Σ pu
p−1
ε+ eu

p
ε+(uε − u0)dvg

∫

Σ
eu

p
ε+dvg

+

∫

Σ pu
p−1
0+ eu

p
0+(uε − u0)dvg

∫

Σ
eu

p
0+dvg

.

Taking (1.40), (1.41) and the Sobolev embedding into account we notice that the
last two terms sum up to o(1), so that

o(1) =

〈

‖uε‖
4p−4
2−p

h uε − ‖u0‖
4p−4
2−p

h u0, uε − u0

〉

h

= ‖uε‖
4p−4
2−p

h ‖uε − u0‖2h +
(

‖uε‖
4p−4
2−p

h − ‖u0‖
4p−4
2−p

h

)

〈u0, uε − u0〉h

= ‖uε‖
4p−4
2−p

h ‖uε − u0‖2h + o(1),

hence uε → u0 strongly in H1(Σ).
In order to prove that u0 is a critical point of Jp,β, for v ∈ H1(Σ) we write

J ′
p,β(u0)(v) = J ′

p,β(u0)(v) − J ′
p,β(uε)(v) + o(1)

= Cp,β

〈

‖uε‖
4p−4
2−p

h uε − ‖u0‖
4p−4
2−p

h u0, v

〉

h

−
∫

Σ
pup−1

ε+ eu
p
ε+vdvg

∫

Σ
eu

p
ε+dvg

+

∫

Σ
pup−1

0+ eu
p
0+vdvg

∫

Σ
eu

p
0+dvg

+ o(1)

= Cp,β‖u0‖
4p−4
2−p

h 〈uε − u0, v〉h

+

(

‖uε‖
4p−4
2−p

h − ‖u0‖
4p−4
2−p

h

)

〈uε, v〉h + o(1)

= o(1),

hence J ′
p,β(u0) = 0.

Were u0 ≡ 0, with (1.41) we would infer that Jp,β(uε) → ∞, which is impossible
since (uε) is a Palais-Smale sequence. Then Lemma 1.1 implies that u0 > 0. �

Remark 1.1. The analogue of proposition 1.3 does not hold in the case p = 2 as
proven by Costa-Tintarev (Theorem 5.1 in [9]).
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Proof of Theorem 1.1 (completed). For every β ∈ (0, 4π) the functional Jp,β has a
minimizer, hence a critical point, which can be obtained via direct methods, using
(1.2), (1.40) and (1.41). The existence of critical points for a.e. β > 4π follows at
once from Propositions 1.2 and 1.3. �

2. A first analysis in the radially symmetric case

Let (pγ)γ be any family of numbers in [1, 2], and let (µγ)γ be a given family of
positive real numbers. Let λγ > 0 be given by

λγp
2
γγ

2(pγ−1)µ2
γe
γpγ

= 8 , (2.1)

and let tγ , t̄γ be defined in R
2 by

tγ(x) = ln

(

1 +
|x|2
µ2
γ

)

; t̄γ = tγ + 1 , (2.2)

for all γ > 0 large. In the sequel, for any radially symmetric function f around
0 ∈ R

2, since no confusion is then possible, we often make an abuse of notation and
write f(r) instead of f(x) for |x| = r. Let η ∈ (0, 1) be fixed. Let also (r̄γ)γ be any
family of positive real numbers such that

lim
γ→+∞

µγ
r̄γ

= 0 , (2.3)

tγ(r̄γ) ≤ η
pγγ

pγ

2
, (2.4)

γ2pγ r̄2γ = O(1) (2.5)

for all γ ≫ 1 large. Given a positive constant h0 > 0, we study in this section the
behavior as γ → +∞ of a family (Bγ)γ of functions solving







∆Bγ + h0Bγ = λγpγB
pγ−1
γ eB

pγ
γ ,

Bγ(0) = γ > 0 ,

Bγ is radially symmetric and positive in Br̄γ (0) ,

(2.6)

where ∆ = −∂xx − ∂yy denotes the Euclidean Laplace operator in R
2. For γ fixed,

(2.6) reduces to an ODE with respect to the radial variable r = |x|: then we may
assume that Bγ , defined in [0, sγ), is the maximal positive solution of (2.6) and
it may be checked that it does not blow-up before it vanishes, namely sγ < +∞
implies limr→s−γ

Bγ(r) = 0. Actually, the proof of Proposition 2.1 below shows that

our assumptions (2.4)-(2.5) ensure that Bγ is well defined and positive in Br̄γ (0)
for all γ ≫ 1. Let wγ be given by

Bγ = γ

(

1− 2tγ
pγγpγ

+
wγ
γpγ

)

. (2.7)

Then we have the following result:

Proposition 2.1. We have Bγ ≤ γ,

wγ = O(γ−pγ tγ) , w′
γ = O(γ−pγ t′γ) ,

and

λγpγB
pγ−1
γ eB

pγ
γ =

8e−2tγ

µ2
γγ

pγ−1pγ

(

1 +O

(
eη̃tγ

γpγ

))

,
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uniformly in [0, r̄γ ] and for all γ ≫ 1 large, where η̃ is any fixed constant in (η, 1)
and wγ is as in (2.7).

Once Proposition 2.1 is proven, we obtain first

Bγ(r) = γ − 2

pγγpγ−1

(

ln
1

µ2
γ

+ ln(µ2
γ + r2)

)

+O
(
γ1−pγ

)

using (2.4) to handle the remainder term, so that we get from (2.1)

Bγ(r) = −
(

2

pγ
− 1

)

γ +
2

pγγpγ−1
ln

1

λγγ2(pγ−1)(µ2
γ + r2)

+O
(
γ1−pγ

)
(2.8)

uniformly in r ∈ [0, r̄γ ] and for all γ ≫ 1 large. While the principal part of the
expression in (2.8) becomes negative for r > 0 large enough, writing it in its initial
form (2.7), condition (2.4) and the pointwise estimate of wγ in Proposition 2.1
clearly ensure its positivity in the considered range r ∈ [0, r̄γ ], as claimed in (2.6).

Proof of Proposition 2.1. Let rγ be given by

rγ = sup

{

r ∈ [0, r̄γ ] s.t. |wγ | ≤
tγ

γ
pγ
2

in [0, r]

}

(2.9)

for all γ. We aim to show that

rγ = r̄γ (2.10)

for all γ ≫ 1. We start by expanding the RHS in the first equation of (2.6) uniformly
in [0, rγ ] as γ → +∞, using in a crucial way the control on wγ that we have by
(2.9). Fix η1 < η2 < η3 such that ηk ∈ (η, 1) for all k. When not specified, the
expansions of this proof are uniform in [0, rγ ] as γ → +∞. First, since |wγ | = o(tγ),
we get from (2.7) that Bγ/γ ≥ (1 − η1) in [0, rγ ] for all γ ≫ 1 large. First, for all
p ∈ [1, 2] and all x ≤ 1, we notice that

0 ≤ (1− x)p − (1− px) ≤ p2

4
x2 .

Then, we have

0 ≤ B
pγ
γ

γpγ
−
(

1− 2tγ − pγwγ
γpγ

)

≤ t2γ
γ2pγ

(1 + o(1)) ,

so we get from (2.4) that

exp
(
Bpγγ

)
= eγ

pγ

e−2tγepγwγ

(

1 +O

(

t2γ
γpγ

eη1tγ

))

.

Here and several times in the sequel, we use the elementary inequality

∣
∣
∣
∣
∣
∣

ex −
n−1∑

j=0

xj

j!

∣
∣
∣
∣
∣
∣

≤ |x|n
n!

e|x|
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for all x ∈ R and all integers n ≥ 1. Using also (2.1) and (2.9) again, we get that

λγpγB
pγ−1
γ eB

pγ
γ

=
8 e−2tγ

µ2
γγ

pγ−1pγ

(

1 +O

(
tγ
γpγ

))

×
(

1 + pγwγ +O

(

t2γ
γpγ

exp

(
pγtγ

γpγ/2

)))(

1 +O

(

t2γ
γpγ

eη1tγ

))

,

=
8 e−2tγ

µ2
γγ

pγ−1pγ

(

1 + pγwγ +O

(

t̄3γ
γpγ

eη2tγ

))

.

(2.11)

In view of (2.9), to conclude the proof of (2.10), it is sufficient to obtain

|wγ | = O

(
tγ
γpγ

)

, (2.12)

which we prove next. By (2.9), we have that Bγ ≤ γ in [0, rγ ] for all γ ≫ 1. Set
w̃γ = wγ(·/µγ). Then, since T0 := ln(1 + | · |2) solves

∆T0 = −4e−2T0 in R
2 , (2.13)

we get from (2.6) and (2.11) that

∆w̃γ = 8e−2T0w̃γ +O
(
µ2
γγ

pγ
)
+O

(
e(−2+η3)T0

γpγ

)

, (2.14)

uniformly in [0, rγ/µγ ] as γ → +∞, applying ∆ to (2.7). By integrating (2.14) in
Br(0) and also by parts, writing merely |w̃γ | ≤ r‖w̃′

γ‖∞, we get that

−2πr w̃′
γ(r) = O

(
r2µ2

γγ
pγ
)
+O

(
r2

γpγ (1 + r2)

)

+O

(

‖w̃′
γ‖∞r3

1 + r3

)

,

where ‖w̃′
γ‖∞ stands for ‖w̃′

γ‖L∞([0,rγ/µγ ]) and where w̃′
γ = d

dr w̃γ , so that we get

|w̃′
γ(r)| = O

(

rµ2
γ

r2γγ
pγ

)

+O

(
r

1 + r2

(

‖w̃′
γ‖∞ +

1

γpγ

))

, (2.15)

uniformly in r ∈ [0, rγ/µγ ] as γ → +∞, using (2.5) and rγ ≤ r̄γ . If ‖w̃′
γ‖∞ =

O(γ−pγ ) for all γ, (2.12) follows from (2.3), (2.15) and from the fundamental the-
orem of calculus, using again w̃γ(0) = 0. Then, assume by contradiction that the
complementary case occurs, namely that

lim
γ→+∞

γpγ‖w̃′
γ‖∞ = +∞ , (2.16)

maybe after passing to a subsequence. Let ργ ∈ [0, rγ/µγ ] be such that |w̃′
γ(ργ)| =

‖w̃′
γ‖∞. By (2.3), (2.15) and (2.16), up to a subsequence, ργ → l and rγ/µγ → L as

γ → +∞, for some l ∈ (0,+∞), L ∈ (0,+∞], l ≤ L. Setting now w̌γ := w̃γ/‖w̃′
γ‖∞,

we then get from (radial) elliptic theory and from (2.14) with (2.3) and (2.5) that,
up to a subsequence, w̌γ → w̌∞ in C1

loc([0, L)) as γ → +∞ , where w̌∞ solves






∆w̌∞ = 8e−2T0w̌∞ in BL(0) ,

w̌∞(0) = 0 ,

w̌∞ is radially symmetric ,

|w̌′
∞(l)| = 1 ;

(2.17)
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but by ODE theory, the only function satisfying the first three conditions in (2.17)
is the null function, which gives the expected contradiction. Observe that we get
also a contradiction in the most delicate case where l = L. Indeed, since we
then have L ∈ (0,+∞), writing (2.14) in radial coordinates gives in this case that
(‖w̌γ‖C2([0,rγ/µγ ]))γ is bounded, so that w̌′

∞ ∈ C1([0, l]) is well defined at l, so that
the fourth line in (2.17) makes sense and holds true. As explained above, this
concludes the proof of (2.10). Proposition 2.1 clearly follows. �

3. Nonradial blow-up analysis: the case of a single bubble

Let (pε)ε be a sequence of numbers in [1, 2], let (µε)ε and (r̄ε)ε be sequences of
positive real numbers. Let (uε)ε be a sequence of functions such that uε is smooth
in the closure of Br̄ε(0), where Br̄ε(0) is the ball of center 0 and radius r̄ε in the
standard Euclidean space R

2. We assume that

∇uε(0) = 0 (3.1)

for all ε and that
γε := uε(0) → +∞ (3.2)

as ε→ 0. As for (2.1), let (λε)ε be given by

λεp
2
εγ

2(pε−1)
ε µ2

εe
γpε
ε = 8 (3.3)

and let tε, t̄ε be given by

tε = ln

(

1 +
| · |2
µ2
ε

)

; t̄ε = tε + 1

for all ε. Let η ∈ (0, 1) be fixed; assume also that
µε
r̄ε

= o(1) , (3.4)

tε(r̄ε) ≤ η
pεγ

pε
ε

2
, (3.5)

∫

Br̄ε (0)

u4εdx ≤ C̄ , (3.6)

for all ε≪ 1 small and for some given C̄ > 1, and that

lim
ε→0

pε
2
γpε−1
ε (γε − uε(µε·)) = ln

(
1 + | · |2

)
in C1

loc(R
2) , (3.7)

up to a subsequence. As we will see in the subsequent blow-up analysis and in
Lemma 4.1, the last two assumptions are indeed natural ones.

Let (vε)ε be a sequence of smooth functions solving






∆vε + h(0) vε = λεpεv
pε−1
ε ev

pε
ε in Br̄ε(0) ,

vε(0) = γε

vε is radially symmetric around 0 ∈ R
2 ,

(3.8)

for all ε, where h is a given smooth positive function on a neighborhood of 0 ∈ R
2.

Let (ϕε)ε be a sequence of smooth functions such that

lim
ε→0

ϕε(r̄ε·) = ϕ0 in C2
(

B1(0)
)

and ϕε(0) = 0 (3.9)

for all ε small. We assume that uε solves

∆uε = e2ϕε

(

−huε + λεpεu
pε−1
ε eu

pε
ε

)

, uε > 0 in Br̄ε(0) , (3.10)
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for all ε. At last, we assume that the following key gradient estimate holds true:
there exists CG > 0 such that

|x||∇uε(x)|uε(x)pε−1 ≤ CG for all x ∈ Br̄ε(0) (3.11)

for all ε. Letting wε be given by

uε = vε + wε , (3.12)

the following proposition holds true:

Proposition 3.1. We have that

|wε(x)| ≤
C0|x|
γpε−1
ε r̄ε

for all x ∈ Br̄ε(0) , (3.13)

and that

‖∇wε‖L∞(Br̄ε (0))
≤ C0

γpε−1
ε r̄ε

(3.14)

for all ε ≪ 1 small, where C0 is any fixed constant greater than (CG/(1− η)) + 4,
for CG as in (3.11) and η as in (3.5). Up to a subsequence, there exists a function
ψ0, harmonic in B1(0), such that we have

lim
ε→0

γpε−1
ε wε(r̄ε·) = ψ0 in C1

loc(B1(0)\{0}) , (3.15)

∇ψ0(0) = 0 . (3.16)

In order to make sure that the estimates of Section 2 can be used to control
the vε’s, it will be checked in the proof below that our assumptions of this section
actually imply

γ2pεε r̄2ε = O(1) , (3.17)

for all ε (see (2.5)). Besides, if we strengthen assumption (3.6) and we assume
∫

Br̄ε (0)

eu
1/3
ε dx = O(1) , (3.18)

for all ε, again guaranteed by Lemma 4.1, we will also show that (3.17) may be
improven to

ln γε = o

(

ln
1

r̄ε

)

(3.19)

as ε→ 0.

Proof of Proposition 3.1. We first prove (3.13). By (3.8), we have that v′ε(0) = 0;
by (3.2) and (3.8), we have that uε(0) = vε(0) and we then find

wε(0) = 0 and ∇wε(0) = 0 (3.20)

for all ε, using (3.1) and (3.12). Then, in order to get (3.13), it is sufficient to prove
(3.14). Let rε be given by

rε = sup

{

r ∈ [0, r̄ε] s.t.

{

γpε−1
ε r‖∇wε‖L∞(Br(0)) ≤ C0 ,

γ4εr
2 ≤ 2C̄

π(1−η)4

}

(3.21)

for all ε, with C0 > (CG/(1− η)) + 4 fixed as in Proposition 3.1 and C̄ as in (3.6).
Then proving (3.14) reduces to show that

rε = r̄ε (3.22)
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for all ε ≪ 1. By (3.4) and (3.7), there exist numbers r̃ε such that µε = o(r̃ε),
r̃ε ≤ r̄ε and such that uε = γε(1 + o(1)) uniformly in Br̃ε(0): then, we get from
(3.6) that

∫

Br̃ε (0)

u4εdx = πγ4ε r̃
2
ε(1 + o(1)) ≤ C̄

and that γ2pεε r̃2ε ≤ 2C̄/π for all ε≪ 1. Then, we may use Proposition 2.1 in Br̃ε(0),
with assumption (2.5), to get that

lim
ε→0

pε
2
γpε−1
ε (γε − vε(µε·)) = ln(1 + | · |2) in C1

loc(R
2) ,

which implies with (3.7) that γpε−1
ε µε‖∇wε‖L∞(BRµε (0))

= o(1) as ε → 0, for all
given R ≫ 1. Summarizing, both conditions in (3.21) give that µε = o(rε) as ε→ 0
and we may now apply Proposition 2.1 in Brε(0): we have that

sup
s∈[0,rε]

pε
2
γpε−1
ε s|v′ε(s)| ≤ 2 + o(1) (3.23)

for all ε ≪ 1. Using wε(0) = 0, we get from the first condition in (3.21) that
|wε| ≤ C0γ

1−pε
ε so that uε = vε+O

(
γ1−pεε

)
in Brε(0) for all ε≪ 1. Independently,

we get from Proposition 2.1 and from (3.5) that

vε ≥ γε(1− η + o(1)) in [0, rε] , (3.24)

for all ε ≪ 1. Then, writing |∇wε| ≤ |∇uε| + |∇vε|, using first (3.11) and (3.23),
and then (3.24) together with pε ∈ [1, 2], we get that

‖∇wε‖L∞(∂Brε (0))
≤ 1 + o(1)

γpε−1
ε rε

(
CG

(1− η)pε−1
+ 4

)

<
C0

γpε−1
ε rε

(3.25)

for all ε ≪ 1, using our assumption on C0. Independently, Proposition 2.1 gives
that vε(r)

′ = O
(
r−1γ1−pεε

)
, so we first get that

uε = vε(rε) +O

(

γ1−pεε ln
2rε
| · |

)

, (3.26)

then, with (3.24), that also

uε(r)
4 = vε(rε)

4

[

1 +O

((

γ−pεε ln
2rε
r

)

+

(

γ−pεε ln
2rε
r

)4
)]

uniformly in r ∈ (0, rε], and at last, with (3.6), that

πvε(rε)
4r2ε(1 + o(1)) =

∫

Brε (0)

u4εdx ≤ C̄ :

summarizing, the second inequality in (3.21) is strict at r = rε for all ε≪ 1, using
(3.24) again. However by (3.25), the first inequality in (3.21) is strict as well at
r = rε, which concludes the proof of (3.22) by continuity and then, as discussed
above, those of (3.13) and (3.14). Since pε ≤ 2, we get at the same time from (3.21)
that (3.17) holds true, so that we may apply Proposition 2.1 from now on to estimate
the vε’s in Br̄ε(0). We turn now to the proofs of (3.15) and (3.16). First, using
(3.24) and that vε ≤ γε by Proposition 2.1, since |wε| = O

(
γ1−pεε

)
by (3.13), we
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may first write upεε = vpεε +pεv
pε−1
ε wε(1+o(1)) and upε−1

ε = vpε−1
ε (1 +O (|wε|/γε)),

then

upε−1
ε eu

pε
ε

= vpε−1
ε ev

pε
ε

(

1 + pεv
pε−1
ε wε

[

1 +O

( |wε|
γε

+ vpε−1
ε |wε|

)]

+O

( |wε|
γε

))

= vpε−1
ε ev

pε
ε
(
1 + pεv

pε−1
ε wε

[
1 +O

(
γpε−1
ε |wε|

)
+O

(
γ−pεε

)])
,

and, observing also e2ϕε = 1 + O(| · |) by (3.9), |wε| = O
(
γ1−pεε | · |/r̄ε

)
by (3.13),

and using (3.8) and (3.10), we may write at last

∆wε = − e2ϕεwε +O (| · |vε)

+ λεpεv
pε−1
ε ev

pε
ε

(

pεv
pε−1
ε wε

[

1 +O

( | · |
r̄ε

+
1

γpεε

)]

+O(| · |)
)

(3.27)

uniformly in Br̄ε(0) and for all ε≪ 1. Setting now w̃ε = γpε−1
ε

r̄ε
µε
wε(µε·) and given

any R ≫ 1, we get from Proposition 2.1 and (3.27) that

∆w̃ε = O
(
µ2
εw̃ε

)
+O

(
µ2
εγ
pε
ε r̄ε

)
+

[
8e−2T0

pεγ
pε−1
ε

(
1 +O(γ−pεε )

)
]

×
(

pεγ
pε−1
ε w̃ε

[

1 +O

(
µε
r̄ε

+ γ−pεε

)]

+ O
(
γpε−1
ε r̄ε

)
)

uniformly in BRµε(0), for all ε. Then, by (3.4), (3.14), (3.17), the first assertion in
(3.20) and elliptic theory, we get that, up to a subsequence,

lim
ε→0

w̃ε = w0 in C1
loc(R

2) , (3.28)

where w0 satisfies
{

∆w0 = 8 exp(−2T0)w0 in R
2 ,

|w0| ≤ C0| · | in R
2 .

(3.29)

By the second assertion in (3.20) and (3.28), we have ∇w0(0) = 0. According to the
classification result stated by Chen-Lin [5, Lemma 2.3] and also in the generality
on the growth assumption that we need here by Laurain [32, Lemma C.1], this last
property and (3.29) imply

w0 ≡ 0 . (3.30)

In order to conclude the proofs of (3.15) and (3.16), we establish now the following
key estimate:

lim
ε→0

γpε−1
ε r̄ε‖∇(wε − (ψε − ψε(0)))‖∞,ε = 0 , (3.31)

where ‖ · ‖∞,ε denotes ‖ · ‖L∞(Br̄ε (0))
and where ψε is given by

{

∆ψε = 0 in Br̄ε(0) ,

ψε = wε on ∂Br̄ε(0) ,
(3.32)

for all ε. Let G(ε) be the Green’s function of ∆ in Br̄ε(0) with zero Dirichlet
boundary conditions (for an explicit formula for G(ε), see for instance Han-Lin [27,
Proposition 1.22]). Then (see also for instance [22, Appendix B]), there exists C > 0
such that

|∇G(ε)
y (x)| ≤ C

|x− y| ,
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for all x, y ∈ Br̄ε(0), x 6= y and all ε. Let (yε)ε be any sequence such that yε ∈
Br̄ε(0) for all ε. By the Green’s representation formula, we may write

∇(wε − ψε)(yε) =

∫

Br̄ε (0)

∇G(ε)
yε (x)(∆wε)(x)dx

for all ε. Then, using also (3.9), (3.27), Proposition 2.1 and the first assertion in
(3.20), we get that

|∇(wε − ψε)(yε)|

= O

(
∫

Br̄ε (0)

(‖∇wε‖∞,ε + γε)|x|dx
|yε − x|

)

+O

(
∫

Br̄ε (0)

|x|e(−2+η̃)tε(x)
(
‖∇wε‖∞,ε + γ1−pεε

)
dx

µ2
ε|yε − x|

)

,

(3.33)

for all ε, where η̃ is some given constant in (η, 1). By the change of variable x = r̄εy,
we first deduce ∫

Br̄ε (0)

|x|dx
|yε − x| = O

(
r̄2ε
)
.

If we have |yε| = O(µε), we get that
∫

Br̄ε (0)

|x|e(−2+η̃)tε(x)dx

µ2
ε|yε − x| = O(1)

for all ε, by the change of variable x = µεy; otherwise, up to a subsequence, we
have µε = o(|yε|) and

∫

Br̄ε (0)

|x|e(−2+η̃)tε(x)dx

µ2
ε|yε − x| =

∫

Br̄ε/|yε|(0)

1

µ̃2
ε

1
(

1 + |y|2

µ̃2
ε

)2−η̃

|y|dy
|ỹε − y| = O (µ̃ε)

for all ε ≪ 1, by the change of variable x = |yε|y, where ỹε = yε/|yε| has norm 1
and µ̃ε = µε/|yε|. Plugging these estimates in (3.33), we get in any case

|∇(wε − (ψε − ψε(0)))(yε)|

= O
(
(‖∇wε‖∞,ε + γε)r̄

2
ε

)
+O

(

1

1 + |yε|
µε

(
‖∇wε‖∞,ε + γ1−pεε

)

)

,

=
1

γpε−1
ε r̄ε

(

O

(

1

1 + |yε|
µε

)

+ o(1)

)
(3.34)

for all ε. The last line in (3.34) uses (3.14) and (3.17). We claim now that (ψε)ε
from (3.32) satisfies

‖∇ψε‖∞,ε = O

(
1

γpε−1
ε r̄ε

)

. (3.35)

Writing ∇ψε = ∇wε +∇(ψε − wε), using (3.34) which gives

‖∇(ψε − wε)‖∞,ε = O

(
1

γpε−1
ε r̄ε

)

,

we indeed get (3.35) from (3.14). Thus, we find from (3.35) and elliptic theory that

lim
ε→0

γpε−1
ε (ψε(rε·)− ψε(0)) = ψ0 in C1

loc(B1(0)) , (3.36)
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up to a subsequence, where ψ0 is harmonic in B1(0), and we obtain at last

lim
ε→0

γpε−1
ε

r̄ε
µε

(ψε(µε·)− ψε(0)) = 〈∇ψ0(0), ·〉 in C1
loc(R

2) , (3.37)

by (3.4), where 〈·, ·〉 denotes the standard scalar product in R
2.

Assume now by contradiction that (3.31) does not hold true, in other words that,
up to a subsequence,

1

γpε−1
ε r̄ε

= O (‖∇(wε − ψε)‖∞,ε) (3.38)

for all ε. First, we claim that (3.16) holds true, for ψ0 as in (3.36)-(3.37). Indeed,
let R ≫ 1 be given and let (yε)ε be such that yε ∈ ∂BRµε(0) for all ε≪ 1. We get
from (3.28), (3.30) and (3.37) that

lim
ε→0

γpε−1
ε r̄ε∇(wε − ψε)(yε) = ∇ψ0(0) .

This estimate, combined with (3.34), proves (3.16) since R ≫ 1 may be chosen

arbitrarily large. Secondly, we may pick (yε)ε, such that yε ∈ Br̄ε(0) and

‖∇(wε − ψε)‖∞,ε = |∇(wε − (ψε − ψε(0)))(yε)| (3.39)

for all ε, and we get from (3.34) and (3.38) that |yε| = O (µε) for all ε. However,
(3.30) and (3.37) with (3.16) contradict (3.38) with (3.39), which concludes the
proof of (3.31). Then (3.15) and (3.16) follow from both assertions in (3.20), from
(3.31) and from (3.36), which concludes the proof of Proposition 3.1. To end this
section, we assume (3.18) and prove (3.19). We have (3.22) and (3.26). Then, using
(3.24),

(1 + t)1/3 = 1 +O(|t|1/3) for all t > −1 ,

pε ≥ 1 and vε(r̄ε) ≤ γε, we get first

u1/3ε = vε(r̄ε)
1/3

(

1 +O

(

γ−pεε ln
2r̄ε
| · |

))1/3

= vε(r̄ε)
1/3 +O

((

ln
2r̄ε
| · |

)1/3
)

uniformly in Br̄ε(0)\{0}, so that we eventually get
∫

Br̄ε (0)

eu
1/3
ε dx = evε(r̄ε)

1/3

∫

Br̄ε (0)

exp

(

O

((

ln
2r̄ε
| · |

)1/3
))

dx & e(
(1−η)γε

2 )
1/3

r̄2ε ,

for all ε≪ 1, which concludes the proof of (3.19) by (3.18). �

4. Nonradial blow-up analysis: the case of several bubbles

The following theorem is the main result of this section. It is a quantization
result determining in a precise way the possible blow-up energy levels. Notice that
assumption (4.3) will follow from variational reasons.

Theorem 4.1. Let h be a smooth positive function on Σ. Let (λε)ε be any sequence
of positive real numbers and (pε)ε be any sequence of numbers in [1, 2]. Let (uε)ε
be a sequence of smooth functions solving

∆guε + huε = λεpεu
pε−1
ε eu

pε
ε , uε > 0 in Σ , (4.1)

for all ε. Let (βε)ε be given by

βε =
λεp

2
ε

2

(∫

Σ

(

eu
pε
ε − 1

)

dvg

) 2−pε
pε
(∫

Σ

upεε e
upε
ε dvg

) 2(pε−1)
pε

(4.2)
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for all ε. If we assume the energy bound

lim
ε→0

βε = β ∈ [0,+∞) , (4.3)

but the pointwise blow-up of the uε’s, namely

lim
ε→0

max
Σ

uε = +∞ , (4.4)

then, there exists an integer k ≥ 1 such that

β = 4πk . (4.5)

A quantization result on a surface and in the specific case pε = 2 was partially
obtained by Yang [52], following basically the scheme of proof developed in [20] to
get an analoguous result on a bounded domain. However, even in this specific case,
Theorem 4.1 is stronger (see also Remark 4.1). Indeed the analysis in [52] does not
exclude that a nonzero H1-weak limit u0 of the uε’s contributes and breaks (4.5),
that would become

β = 4πk + ‖u0‖2H1 . (4.6)

On a bounded domain and still in this specific case pε = 2, starting from the so-
called weak pointwise estimates and using the first quantization in [20], a more
precise blow-up analysis was carried out and in particular the precise quantization
(4.5) was obtained recently in [22]. Here on a surface and for general pε’s in [1, 2],
our proof starts also from the weak pointwise estimates, but gives at once the
precise quantization, without using any intermediate one, by pushing techniques in
the spirit of [22]. As mentioned in introduction, perturbing the standard critical
nonlinearity in the RHS of (0.16), as we do here, requires to be very careful, if one
wants to keep the precise quantization (4.5), which is crucial for the overall strategy
of the present paper to work. Indeed, it was recently proven in [40] that (4.5) may
actually break down for some perturbations of the nonlinearity in (0.16) which are
surprisingly weaker in some sense than the ones that we consider here.

As a byproduct of Theorem 4.1, we easily get the following corollary, allowing
to get critical points of F in (0.2) constrained to Eβ in (0.3), as the limit of critical
points of Jp,β as p→ 2, for any fixed β 6∈ 4πN⋆.

Corollary 4.1. Let h be a smooth positive function on Σ and let β ∈ (0,+∞)\4πN⋆
be given. Let (pε)ε be any sequence of numbers in [1, 2) such that pε → 2 as ε→ 0.
Let (uε)ε be a sequence of smooth functions such that (4.1) holds true for λε > 0
given by (4.2) and for βε := β for all ε. Then, up to a subsequence, we have that
uε → u in C2, where u > 0 is smooth and solves (0.14) for p = 2 and (0.16).

For any λ > 0, p ∈ [1, 2] and u satisfying (0.12), observe first that we necessarily
have

2λ ≤ max
Σ

h , (4.7)

by integrating (0.12) in Σ, by using qtq−1et
q ≥ 2t, for all t > 0 and all q ∈ [1, 2],

and the assumption in (0.12) that u is positive on Σ.

Proof of Corollary 4.1. Let β, (pε)ε, (uε)ε and (λε)ε be given as in Corollary 4.1.
Since β 6∈ 4πN⋆, we get from Theorem 4.1 that (4.4) cannot hold true. Then, by
(4.7) and by standard elliptic theory as developed in [26], up to a subsequence,
λε → λ and uε → u in C2 as ε → 0, for some C2-function u ≥ 0 and some λ ≥ 0
satisfying the equation in (0.16) and (0.14) for p = 2. If u ≡ 0, we clearly get
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a contradiction with (0.14), since β > 0. Then, u 6≡ 0 and u > 0 in Σ by the
maximum principle, which concludes the proof of Corollary 4.1. �

We now turn to the proof of Theorem 4.1 itself. From now on, we let (λε)ε be
a sequence of positive real numbers, we let (pε)ε be a sequence of numbers in [1, 2]
and we let (uε)ε be a sequence of smooth functions solving (4.1). Let (βε)ε be given
by (4.2). We also assume (4.3). Then, since

2− pε
pε

+
2(pε − 1)

pε
= 1 , (4.8)

Hölder’s inequality gives that

λε

∫

Σ

u2(pε−1)
ε

(

eu
pε
ε − 1

)

dvg = O(1) . (4.9)

By (4.7), pε ∈ [1, 2] and the fact that Σ has finite volume

λε

∫

Σ

u2(pε−1)
ε dvg = λε

∫

{uε≤2}

u2(pε−1)
ε dvg + λε

∫

{uε>2}

u2(pε−1)
ε dvg

≤ O(1) + λεe
−2

∫

Σ

eu
pε
ε u2(pε−1)

ε dvg, (4.10)

then as a consequence

λε

∫

Σ

upεe
upε
ε dvg = O(1) (4.11)

for all p ∈ [0, 2(pε − 1)] and all ε. We get (4.11), for p = 2(pε − 1), combining (4.9)
and (4.10), and then also for p ∈ [0, 2(pε − 1)), using that Σ has finite volume and
(4.7).

As a first step, observe that we may directly get the following rough, subcritical
but global bounds on the uε’s.

Lemma 4.1. There exists C > 0 such that
∫

Σ

eu
1/3
ε dvg ≤ C

for all ε. In particular, for all given p < +∞, (uε)ε is bounded in Lp.

Lemma 4.1 strongly relies on (4.3) and is actually the very first step to get
Proposition 4.1 below, already obtained in [52] for pε = 2. This lemma is relevant
to handle the term huε in the LHS of (4.1), appearing in the present surface setting.

Proof of Lemma 4.1. Integrating (4.1) in Σ, we get from the consequence (4.11) of
(4.3) that (uε)ε is bounded in L1. Set now ǔε = max{uε, 1}. Multiplying (4.1) by

ǔ
−1/3
ε and integrating by parts in Σ (see for instance [28, Proposition 2.5]), we get

3

∫

Σ

|∇(ǔ1/3ε )|2dvg = +

∫

Σ

ǔ−1/3
ε huεdvg − λεpε

∫

Σ

ǔ−1/3
ε upε−1

ε eu
pε
ε dvg .

Since ǔε ≥ 1 and (uε)ε is bounded in L1, it is clear that
∫

Σ ǔ
−1/3
ε uεdvg = O(1).

Concerning the last integral, writing Σ = {x s.t. uε > 1}∪ {x s.t. uε ≤ 1}, we find
that the integral on the latter set is of order O(1) since Σ has finite volume and by
(4.7), while the integral on the complement is of order O(1) by (4.11) for p = pε−1,

using ǔε ≥ 1. Similarly, since (uε)ε is bounded in L1, (ǔ
1/3
ε )ε is bounded in L2.

Then, by the Moser-Trudinger inequality, (exp(ǔ
1/3
ε ))ε is bounded in L1. Obviously,

the same property also holds for (exp(u
1/3
ε ))ε, which concludes the proof. �



34 F. DE MARCHIS, A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

From now on, we also assume that the uε’s blow-up, namely we assume that
(4.4) holds. In order to prove Theorem 4.1, we need to introduce some notation
and a first set of pointwise estimates on the uε’s gathered in Proposition 4.1 below.
As aforementioned, these estimates have already been proven by Yang [52] in the
case where pε equals 2 for all ε. Yet, if this last specific condition is not satisfied,
note that, even in the case pε → 2−, we are not here in the suitable framework to
use the results from [52], since the nonlinearity appearing in the RHS of (4.1) is not
of uniform Moser-Trudinger critical growth (see [20, Definition 1]). However, as it
was already observed in the literature (see for instance [12]), the technique of the
pointwise exhaustion of concentration points introduced in [20] is rather robust and
may be successfully adapted to a much broader class of problems. Once Lemma
4.1 is obtained, the proof of Proposition 4.1 for general pε’s is very similar to the
corresponding proof for pε = 2 in [52].

Concerning the notation, for all i ∈ {1, ..., N} and ε≪ 1, we may choose isother-
mal coordinates (Bκ1(xi,ε), φi,ε, Ui,ε) around xi,ε, such that φi,ε is a diffeomorphism
from Bκ1(xi,ε) ⊂ Σ to Ui,ε ⊂ R

2, where κ1 > 0 is some appropriate given positive
constant and Bκ1(xi,ε) is the ball of radius κ1 and center xi,ε for the metric g,
such that φi,ε(xi,ε) = 0, such that B2κ(0) ⊂ Ui,ε, for some κ > 0, and such that
(φi,ε)⋆g = e2ϕi,εξ, where R

2 is endowed with its standard metric ξ (see for instance
[19, 49]). We may also assume that (ϕi,ε)ε satisfies

∀ε , ϕi,ε(0) = 0 and lim
ε→0

ϕi,ε = ϕi in C2
loc(B2κ(0)) . (4.12)

At last, we set

ui,ε = uε ◦ φ−1
i,ε and hi,ε = h ◦ φ−1

i,ε

in B2κ(0). We denote also by dg(·, ·) the Riemannian distance on (Σ, g).

Proposition 4.1. Up to a subsequence, there exist an integer N ≥ 1 and sequences
(xi,ε)ε of points in Σ such that ∇uε(xi,ε) = 0, such that, setting γi,ε := uε(xi,ε),

µi,ε :=

(

8

λεp2εγ
2(pε−1)
i,ε eγ

pε
i,ε

) 1
2

→ 0 , (4.13)

such that

∀j ∈ {1, ..., N}\{i} , dg(xj,ε, xi,ε)
µi,ε

→ +∞ , (4.14)

and such that
pε
2
γpε−1
i,ε (γi,ε − ui,ε(µi,ε·)) → T0 := ln

(
1 + | · |2

)
in C1

loc(R
2) , (4.15)

as ε→ 0, for all i ∈ {1, ..., N}. Moreover, there exist C1, C2 > 0 such that we have

min
i∈{1,...,N}

upε−1
ε dg(xi,ε, ·)2|∆guε| ≤ C1 in Σ (4.16)

and

min
i∈{1,...,N}

upε−1
ε dg(xi,ε, ·)|∇uε|g ≤ C2 in Σ (4.17)

for all ε. We also have that limε→0 xi,ε = xi for all i, and that there exists u0 ∈
C2(Σ\S) such that

lim
ε→0

uε = u0 in C2
loc(Σ\S) , (4.18)

where S := {x1, ..., xN}.
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Observe first that γi,ε → +∞ as ε→ 0 by (4.7) and (4.13). As an other remark,
by (4.14) and (4.15), we have that

4πN = N

∫

R2

4e−2T0dx ≤ lim inf
ε→0

λεp
2
ε

2

∫

Σ

u2(pε−1)
ε eu

pε
ε dvg ,

so that (4.3) and its consequence (4.11) for p = 2(pε − 1) are not only used to get
(4.15) from the classification in [7], but also to get that the extraction procedure
of the blow-up points (xi,ε)ε has to stop after a finite number N of steps, which
eventually gives (4.16) (see [20, Section 3]).

Remark 4.1. At this stage, we have only extracted the "highest bubbles" in (4.15)
and it is not yet clear at all whether N in Proposition 4.1 is a good candidate to
be k in (4.5) (see also the discussion in [22, Section 2])). Indeed, for p = 2, it is
now known (see [41]) that a tower of k-bubbles may exist for nonlinearities which
are lower order perturbations of the one in (0.16) and we may then have only one
"highest bubble" (i.e. N = 1) with any k ∈ N

⋆ in (4.5).

We get from (4.1) that

∆ui,ε = e2ϕi,ε

(

−hi,εui,ε + λεpεu
pε−1
i,ε eu

pε
i,ε

)

, ui,ε > 0 in B2κ(0) , (4.19)

for all i and ε, where ∆ = ∆ξ throughout the paper. For all i ∈ {1, ..., N}, we set

ri,ε =

{

κ if N = 1 ,

min
(
1
3 minj∈{1,...,N}\{i} dg(xi,ε, xj,ε), κ

)
otherwise ,

(4.20)

for all ε, so that we get from (4.13) and (4.14) that

lim
ε→0

µi,ε
ri,ε

= 0 . (4.21)

We set ti,ε := ln
(

1 + |·|2

µ2
i,ε

)

in R
2. We set also

vi,ε = Bγi,ε , (4.22)

where Bγ is as in (2.6) for (pγ)γ and (µγ)γ satisfying pγi,ε = pε and µγi,ε = µi,ε,
for all ε and all i ∈ {1, ..., N}. Up to renumbering, we may also assume that

r1,ε ≤ r2,ε ≤ ... ≤ rN,ε (4.23)

for all ε.

In order to link the present situation to the results of Sections 2 and 3, we need
some preliminary observations. Let l ∈ {1, ..., N} be given. Given a parameter

η ∈ (0, 1) that is going to take several values in the proof below, we let r
(η)
l,ε be

given by

tl,ε

(

r
(η)
l,ε

)

= η
pεγ

pε
l,ε

2
, (4.24)

and, for rl,ε as in (4.20), we set

r̄
(η)
l,ε = min

(

rl,ε, r
(η)
l,ε

)

(4.25)

for all ε. By collecting the above preliminary information, we can check that Propo-

sition 3.1 applies with r̄ε = r̄
(η)
l,ε , ϕε = ϕl,ε, uε = ul,ε, γε = γl,ε and vε = vl,ε. In

particular, the definition (4.20) of rl,ε is used to get (3.11) from (4.17), while Lemma
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4.1 is used to get (3.6) and (3.18). As a remark, the metrics (φl,ε)⋆g and ξ are equiv-
alent in Bκ(0) by (4.12): we use this fact here and currently in the sequel. We get

in particular (see (3.19)) that r̄
(η)
l,ε = o(1) and even that

ln γl,ε = o

(

ln
1

r̄
(η)
l,ε

)

, (4.26)

so that Proposition 3.1 also applies (see the remark involving (3.17)), and so that
we get

γl,ε ≥ vl,ε = γl,ε



1−
2tl,ε

(

1 +O
(

γ−pεl,ε

))

pεγ
pε
l,ε



 ≥ (1− η)γl,ε +O
(

γ1−pεl,ε

)

, (4.27)

uniformly in
[

0, r̄
(η)
l,ε

]

and for all ε ≪ 1, using Proposition 2.1 and (4.24). We also

get from Section 3 (see (3.13)) that

|ul,ε − vl,ε| = O

(

| · |
γpε−1
l,ε r̄

(η)
l,ε

)

(4.28)

and (see (3.14))

|∇(ul,ε − vl,ε)| = O

(

1

γpε−1
l,ε r̄

(η)
l,ε

)

(4.29)

uniformly in B
r̄
(η)
l,ε

(0) and for all ε≪ 1. We get now the following result:

Step 4.1. For all i ∈ {1, ..., N}, we have that

lim inf
ε→0

2ti,ε(ri,ε)

pεγ
pε
i,ε

≥ 1 , (4.30)

and that there exists C ≫ 1 such that

0 < ūi,ε(r) ≤ −
(

2

pε
− 1

)

γi,ε +
2

pεγ
pε−1
i,ε

ln
C

λεγ
2(pε−1)
i,ε r2

+O
(

r3/2
)

(4.31)

uniformly in r ∈ (0, κ] and for all ε ≪ 1, where ūi,ε is continuous in [0, 2κ) and
given by

ūi,ε(r) =
1

2πr

∫

∂Br(0)

ui,ε dσξ , (4.32)

for all r ∈ (0, 2κ), where dσξ is the volume element for the metric induced in ∂Br(0)
by the standard metric ξ in R

2.

Proof of Step 4.1. We divide the proof of Step 4.1 into two parts.

Proof of (4.31). Here we show (4.31), assuming that (4.30) is already obtained for
some i. Let η1 < η2 be two given numbers in (0, 1). Then by (4.24), (4.25) and
(4.30), we get

r̄
(η1)
i,ε = r

(η1)
i,ε and r̄

(η2)
i,ε = r

(η2)
i,ε

for all ε≪ 1. Then (4.31) holds true uniformly in
(

0, r
(η2)
i,ε

]

using (2.8) and (4.28)

for l = i and parameters η1 or η2. We get also from (4.27) and (4.28) that

ūi,ε

(

r
(η1)
i,ε

)

= vi,ε

(

r
(η1)
i,ε

)

+O
(

γ1−pεi,ε

)

≤ γi,ε +O
(

γ1−pεi,ε

)

, (4.33)
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and from (4.29) that

‖∇(ui,ε − vi,ε)‖
L∞

(

∂B
r
(η1)
i,ε

(0)

) = O

(

1

γpε−1
i,ε r

(η2)
i,ε

)

(4.34)

for all ε≪ 1. For f a C2 function around 0 ∈ R
2 and r ≥ 0, we let f̄(r) (see (4.32))

be the average of f on ∂Br(0); integrating by parts, we get

− 2πrf̄ ′(r) =

∫

Br(0)

(∆f)(x)dx (4.35)

with the usual radial (abuse of) notation. We write with (4.12) and (4.19) that

∫

Br(0)

(∆ui,ε)dx ≥
∫

B
r
(η1)
i,ε

(0)

(∆ui,ε)dx +O





∫

Br(0)\B
r
(η1)
i,ε

(0)

ui,εdx



 ,

that
∫

Br(0)
ui,εdx = O

(
r3/2

)
by Hölder’s inequality with Lemma 4.1 for p = 4, and

then, with (4.35), that

ū′i,ε(r) ≤ − 1

2πr

(

−2πr
(η1)
i,ε ū′i,ε

(

r
(η1)
i,ε

))

+O
(

r1/2
)

(4.36)

uniformly in r ∈
[

r
(η1)
i,ε , κ

]

and for all ε ≪ 1. We get from the definition (4.24) of

r
(ηj)
l,ε for l = i and j ∈ {1, 2} that

ln
r
(η1)
i,ε

r
(η2)
i,ε

= −
pεγ

pε
i,ε

4
(η2 − η1) + o(1) (4.37)

as ε→ 0. We now write

ū′i,ε = v′i,ε +
(
ū′i,ε − v′i,ε

)
= −

2t′i,ε

pεγ
pε−1
i,ε

[

1 +O
(
γ−pεi,ε

)
+O

(

r
(η1)
i,ε

r
(η2)
i,ε

)]

,

at r
(η1)
i,ε for all ε ≪ 1, using Proposition 2.1 and (4.34). This implies with (4.37)

that

− 2πr
(η1)
i,ε ū′i,ε

(

r
(η1)
i,ε

)

=
8π

pεγ
pε−1
i,ε

+O
(

γ1−2pε
i,ε

)

, (4.38)

using also that

r
(η1)
i,ε t′i,ε

(

r
(η1)
i,ε

)

= 2 +O

(

µ2
i,ε/

(

r
(η1)
i,ε

)2
)

= 2 +O
(
γ−pεi,ε

)

for all ε ≪ 1, by the definition (4.24) of r
(η1)
i,ε . Then, integrating (4.36) in [r

(η1)
i,ε , s]

and using the fundamental theorem of calculus and (4.38), we get that

ūi,ε(s)− ūi,ε

(

r
(η1)
i,ε

)

≤ − 4

pεγ
pε−1
i,ε

ln
s

r
(η1)
i,ε

(
1 +O

(
γ−pεi,ε

))
+O

(

s3/2
)

(4.39)

uniformly in s ∈ [r
(η1)
i,ε , κ], for all ε ≪ 1, and conclude the proof of (4.31) by

evaluating ūi,ε

(

r
(η1)
i,ε

)

with (2.8) and (4.33). To get the existence of C > 0 in
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(4.31) from the remainder in (4.39), we use that (4.39) and ūi,ε(κ) > 0 imply

0 ≤ ln
s

r
(η1)
i,ε

= O
(

γpε−1
i,ε ūi,ε

(

r
(η1)
i,ε

))

+O
(

γpε−1
i,ε

)

= O(γpεi,ε)

uniformly in s ∈ [r
(η1)
i,ε , κ] and for all ε≪ 1, thanks to (4.33). �

Proof of (4.30). We now turn to the proof of (4.30). We prove it by induction on
i ∈ {1, ..., N}. In particular, we assume that (4.30) holds true at steps 1, ..., i− 1 if
i ≥ 2. By contradiction, assume in addition that (4.30) does not hold true at step
i. Thus, by (4.24)-(4.25), up to a subsequence, we may choose and fix η ∈ (0, 1)
sufficiently close to 1 such that

r̄
(η)
i,ε = ri,ε (4.40)

for all ε ≪ 1. Set Ji = {j ∈ {1, ..., N} s.t. dg(xi,ε, xj,ε) = O (ri,ε)}. Obviously, we
get from (4.20) that

rl,ε = O (ri,ε) (4.41)

for all ε≪ 1 and all l ∈ Ji. We also find from (4.26) for l = i and from (4.40) that
ri,ε → 0, so we get from (4.12) that

gl,ε :=
[
(φl,ε)⋆ g

]
(ri,ε·) → ξ in C2

loc(R
2) , (4.42)

as ε→ 0 for all l ∈ Ji. Up to a subsequence, we may assume that

lim
ε→0

φi,ε(xl,ε)

ri,ε
= x̌l ∈ R

2

for all l ∈ Ji, and we have that Si := {x̌l, l ∈ Ji} contains at least two distinct
points, by (4.20), since ri,ε → 0 as ε → 0. We may now choose and fix τ ∈ (0, 1)
small enough such that

3τ < min
{(x,y)∈S2

i ,x 6=y}
|x− y|

and such that Si ⊂ B1/(3τ)(0). We can check that there exists C > 0 such that any
point in

Ωi,ε := Bri,ε/τ (0)\ ∪j∈Ji Bτri,ε(φi,ε(xj,ε))

may be joined to ∂Bτri,ε(0) by a C1 path in Ωi,ε of ξ-length at most Cri,ε, for all
ε≪ 1. Therefore, by (4.40) with (4.27) and (4.28) for l = i, we may estimate first
ui,ε on ∂Bτri,ε(0) and then get from (4.17) and (4.42) that

ui,ε = ūi,ε(τri,ε) +O
(

γ1−pεi,ε

)

≥ (1 − η)γi,ε +O(1) (4.43)

uniformly in Ωi,ε and for all ε ≪ 1, with η ∈ (0, 1) still as initially fixed in (4.40).
Independently, we get from (2.8), (4.28) for l = i and (4.40) that

ūi,ε(τri,ε) = −
(

2

pε
− 1

)

γi,ε +
2

pεγ
pε−1
i,ε

(

ln
1

λεγ
2(pε−1)
i,ε r2i,ε

+O(1)

)

(4.44)

for all ε≪ 1.

• We prove now that, for all j ∈ Ji

j < i =⇒ lim
ε→0

γi,ε
γj,ε

= 0 , (4.45)
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up to a subsequence. Then, let j ∈ Ji such that j < i. By (4.23), we have that
rj,ε ≤ ri,ε and, by our induction assumption, we know from (4.30) at step j and
from (4.24)-(4.25) that, given any η2 ∈ (0, 1),

r̄
(η2)
j,ε = r

(η2)
j,ε (4.46)

for all ε ≪ 1. Then, by (4.27), by (4.28) for l = j with parameter η = η2, and by

the definition (4.24) of r
(η2)
j,ε we have that

ūj,ε

(

r̄
(η2)
j,ε

)

≤ (1 − η2)γj,ε(1 + o(1))

as ε→ 0. For all l ∈ Ji, let wl,ε be given by
{

∆wl,ε = −e2ϕl,εhl,εul,ε in Bri,ε/(2τ)(0) ,

wl,ε = 0 on ∂Bri,ε/(2τ)(0) .
(4.47)

By observing that ∆(ul,ε − wl,ε) ≥ 0 in Bri,ε/(2τ)(0) by (4.19), the maximum
principle yields that ul,ε − wl,ε attains its infimum on Bri,ε/(2τ)(0) at some point
in ∂Bri,ε/(2τ)(0). Moreover, for all given p ∈ (1,+∞), we get from Lemma 4.1 and
(4.12) that

‖∆(wl,ε(ri,ε·))‖Lp(B1/(2τ)(0)) = O

(

r
2(p−1)

p

i,ε

)

,

so, by elliptic theory, (4.24)-(4.26) and (4.40), we get

wl,ε(ri,ε·) = O

(

r
2(p−1)

p

i,ε

)

= o
(

γ1−pεi,ε

)

(4.48)

uniformly in B1/(2τ)(0) as ε→ 0. Summarizing this argument for l = j, we get

(1− η)γi,ε ≤ (1 − η2)γj,ε(1 + o(1)) (4.49)

as ε → 0, using also (4.42)-(4.43). Indeed, by (4.42), observe that we may choose
τ > 0 sufficiently small from the beginning to have

∂Bri,ε/(2τ)(0) ⊂ φ−1
l,ε ◦ φi,ε (Ωi,ε) , (4.50)

so that we may estimate ul,ε on ∂Bri,ε/(2τ)(0) with (4.43), for all l ∈ Ji and all
ε≪ 1. Since η2 < 1 may be chosen arbitrarily close to 1, (4.49) gives (4.45).

• We prove now that, for all j ∈ Ji,

γj,ε = O (γi,ε) . (4.51)

By contradiction, if (4.51) does not hold true, we choose j ∈ Ji such that

lim
ε→0

γi,ε
γj,ε

= 0 , (4.52)

up to a subsequence. In particular, we have j 6= i. If j > i, we may write that

tj,ε(rj,ε) = ln
r2j,ε
µ2
j,ε

+ o(1) ,

= ln
r2j,ε
r2i,ε

+ ti,ε(ri,ε) + ln
µ2
i,ε

µ2
j,ε

+ o(1) ,

= O(1) + η
pε
2
γpεi,ε + γpεj,ε − γpεi,ε +O (ln γi,ε + ln γj,ε) ,

= γpεj,ε(1 + o(1))

(4.53)
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as ε→ 0. The first two equalities use (4.21); the third one uses first our assumption
j > i with (4.23) and (4.41), then the definition (4.24) for η as in (4.40), and at
last (4.13); the last equality uses (4.52). Thus, given any η2 ∈ (0, 1), we get in
complement of (4.45) and the paragraph below that (4.46) holds true also if j > i.
As a first consequence, for all given 0 < η′2 < η2 < 1, we get that

lim
ε→0

r
(η′2)
j,ε

ri,ε
= 0 , (4.54)

using (4.41). We get from (2.8) and (4.28), for l = j and parameter η′2, that

ūj,ε

(

r
(η′2)
j,ε

)

= −
(

2

pε
− 1

)

γj,ε +
2

pεγ
pε−1
j,ε

(

ln
1

λεγ
2(pε−1)
j,ε

(

r
(η′2)
j,ε

)2 +O(1)

)

(4.55)

for all ε≪ 1.

In order to have the desired contradiction with (4.52), fixing η2 ∈ (0, 1), we prove
now the following estimate

ūj,ε

(

r
(η2)
j,ε

)

≥ ūi,ε(τri,ε) +
2

pεγ
pε−1
j,ε

ln
r2i,ε

(

r
(η2)
j,ε

)2 +O
(

γ1−pεi,ε

)

(4.56)

for all ε≪ 1. Let ψε be given by
{

∆ψε = 0 in Bri,ε/(2τ)(0) ,

ψε = uj,ε on ∂Bri,ε/(2τ)(0) ,

for all ε. We get first

ψε = ūi,ε(τri,ε) +O
(

γ1−pεi,ε

)

(4.57)

for all ε≪ 1, by (4.43), (4.50) and the maximum principle for the harmonic function

ψε. Let (zε)ε be any sequence of points such that |zε| = r
(η2)
j,ε for all ε. Let Gε be

the Green’s function of ∆ in Bri,ε/(2τ)(0) with zero Dirichlet boundary conditions.
We know that Gε(x, y) > 0 by the maximum principle for all x, y ∈ Bri,ε/(2τ)(0),
x 6= y and for all ε. Let η1 ∈ (0, η2) be fixed. By Green’s representation formula
and (4.19), using the positivity of ∆uj,ε + e2ϕj,εhj,εuj,ε and that of Gε(zε, ·), we
have that

(uj,ε − ψε − wj,ε)(zε) ≥ λεpε

∫

B
r
(η1)
j,ε

(0)

Gε(zε, y)e
2ϕj,εuj,ε(y)

pε−1eu
pε
j,ε(y)dy (4.58)

for all ε≪ 1, with wj,ε given by (4.47). There exists C > 0 (see [22, Appendix B])
such that

∣
∣
∣
∣
Gε(z, y)−

1

2π
ln

ri,ε
|z − y|

∣
∣
∣
∣
≤ C

for all y ∈ Bri,ε/(2τ)(0), for all z ∈ B5ri,ε/(12τ)(0), y 6= z and for all ε≪ 1. Observe

also that (4.37) holds true for l = j. Then, since |zε| = r
(η2)
j,ε , we first get that

Gε(zε, ·) =
1

2π
ln
ri,ε
|zε|

+O(1) +O

( | · |
|zε|

)

=
1

2π
ln

ri,ε

r
(η2)
j,ε

+O(1) (4.59)
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uniformly in B
r
(η1)
j,ε

(0) and for all ε ≪ 1. Now, by (4.27) and (4.28) for l = j with

parameter η = η2, computing as in Proposition 2.1 or in the argument involving
(3.27), we get that, for some given η̃ ∈ (0, 1),

λεpεe
2ϕj,εupε−1

j,ε eu
pε
j,ε =

8e−2tj,ε

µ2
j,εγ

pε−1
j,ε pε

(

1 +O

(

eη̃tj,ε

[

| · |
r
(η2)
j,ε

+ | · |+ 1

γpεj,ε

]))

(4.60)

in B
r
(η1)

j,ε

(0) and for all ε ≪ 1. Resuming arguments in (4.53) and using (4.54), we

have that

0 < ln
ri,ε

r
(η2)
j,ε

≤ ln
ri,ε
µi,ε

+ ln
µi,ε
µj,ε

= γpεj,ε(1 + o(1)) (4.61)

as ε → 0, since (4.52) is assumed to be true. By (4.59), (4.60) and (4.61), we get
that

λεpε

∫

B
r
(η1)
j,ε

(0)

Gε(zε, y)uj,ε(y)
pε−1eu

pε
j,ε(y)dy

=

(

1

2π
ln

ri,ε

r
(η2)
j,ε

+O(1)

)

8π

γpε−1
j,ε pε

(

1 +O

(
[

µj,ε/r
(η1)
j,ε

]2
)

+O

(

r
(η1)
j,ε

r
(η2)
j,ε

+
1

γpεj,ε

))

=
2

pεγ
pε−1
j,ε

ln
r2i,ε

(

r
(η2)
j,ε

)2 +O
(

γ1−pεj,ε

)

for all ε ≪ 1, using the definition of r
(η1)
j,ε , (4.37) and (4.46) with (4.26) for l = j.

By plugging this last estimate with (4.48), (4.52) and (4.57) in (4.58), since (zε)ε
is arbitrary, this concludes the proof of (4.56).

We now plug (4.44) and (4.55) in (4.56) and we get

(
2

pε
− 1

)

γj,ε(1 + o(1)) +
2 + o(1)

pεγ
pε−1
i,ε

(

ln
1

r2i,ε
+ ln

1

λε

)

≤ O
(

γ1−pεi,ε ln γi,ε

)

still using (4.52). However this estimate gives a contradiction for ε ≪ 1, by (4.7)
and (4.26) for l = i and (4.40): (4.51) is proven.

• Then, using (4.23) and (4.45), (4.51) implies that for all l ∈ Ji

ri,ε ≤ rl,ε (4.62)

for all ε≪ 1. We now claim that there exists η3 ∈ (η, 1) such that

r̄
(η3)
j,ε = rj,ε (4.63)

for all j ∈ Ji and all ε ≪ 1. Coming back otherwise to (4.24)-(4.25), up to a
subsequence, we may assume by contradiction that there exists j ∈ Ji such that

2tj,ε(rj,ε)

pεγ
pε
j,ε

≥ 1 + o(1)

as ε→ 0. As a remark, we must have j 6= i by (4.40). Then, for all given η2 ∈ (0, 1),
(4.46) holds true and the argument between (4.46) and (4.51) gives (4.52), which
does not occur by (4.51) and proves (4.63). For j ∈ Ji, since

φi,ε ◦ φ−1
j,ε

(
∂Brj,ε/2(0)

)
⊂ Ωi,ε
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by (4.20), (4.42), (4.62) and the definition of τ , we get from the equality in (4.43)

ūj,ε(rj,ε/2) = ūi,ε(τri,ε) +O
(

γpε−1
i,ε

)

,

so that we eventually have

γi,ε = O (γj,ε) , (4.64)

using the inequality in (4.43) and since ūj,ε(r̄
(η3)
j,ε /2) ≤ 2γj,ε by (4.27), (4.28) and

(4.63), for all ε≪ 1.

• We are now in position to conclude the proof of (4.30). Setting

ũε := γpε−1
i,ε (ui,ε(ri,ε·)− ūi,ε(ri,ε)) ,

with an argument similar to the proof of (4.43) one deduces from (4.17) and (4.42)
that (ũε)ε is uniformly locally bounded in R

2\Si for all ε ≪ 1, where Si is given
below (4.42). Then, using (4.27) and (4.28) for l = i with (4.40), we get from (4.12)
and (4.19) that

∆ũε = O
(
γpεi,εr

2
i,ε

)
+O

(

r2i,ελε

(

γpε−1
i,ε vpε−1

i,ε ev
pε
i,ε

)

(ri,ε·)
)

= o(1)

uniformly locally in R
2\Si for all ε ≪ 1. To get the last estimate, we use (4.26)

for l = i to control the first term, while we estimate the second one first by

O((µi,ε/ri,ε)
2(1−η̃)) (see Proposition 2.1) and then we conclude with (4.21). Hence,

there exists a harmonic function ũ0 such that ũε → ũ0 in C1
loc(R

2\Si) as ε → 0.
Now observe that (4.17) also gives the existence of C > 0 such that

|∇ũ0| ≤ C
∑

x∈Si

1

|x− ·| in R
2\Si ,

using the local convergence of the ũε’s in R
2\Si and the lower estimate in (4.27)

for l = i. Then, by harmonic function’s theory, there exist real numbers αx and Λ
such that

ũ0 = Λ+
∑

x∈Si

αx ln
1

|x− ·| in R
2\Si . (4.65)

However, by (4.41) and (4.62), by (4.51) and (4.64), Proposition 3.1 gives that the
αx are positive and in particular (3.16) gives that

∇
(

ũ0 − αx ln
1

|x− ·|

)

(x) = 0

for all x ∈ Si. Picking now y an extreme point of the convex hull of Si, we get
from (4.65) that this last property fails for x = y, since Si possesses at least two
points. This gives the expected contradiction to (4.40) and concludes the proof of
(4.30). �

Step 4.1 is proven. �

Up to a subsequence, we assume from now on that

lim
ε→0

pε = p0 , (4.66)

for some p0 ∈ [1, 2]. As a first consequence of Step 4.1, we improve (4.7) and
conclude the proof of (4.5) and thus that of Theorem 4.1 in the subcritical case.
A key ingredient to get the sharp quantization (4.5) (and not (4.6) for u0 6≡ 0, for
instance) is given by (4.31) in Step 4.1: roughly speaking, the only way for the RHS



CRITICAL POINTS OF THE MOSER-TRUDINGER FUNCTIONAL 43

of (4.31) to be positive at some r not too small is that λε is quite small (see (4.68)
and (4.107) below).

Step 4.2. In any case, we have that

lim
ε→0

λε = 0 . (4.67)

Moreover, assuming that p0 ∈ [1, 2), (4.5) holds true for k = N and N given by
Proposition 4.1.

Proof of Step 4.2. By evaluating (4.31) at r = κγ
2(1−pε)/3
i,ε , we get that

(

1− pε
2

)

γpεi,ε +
2

3
(pε − 1) ln γi,ε ≤ ln

1

λε
+O(1) (4.68)

for all ε ≪ 1 and all i ∈ {1, ..., N}, which clearly proves (4.67). Now assume that
p0 < 2 in (4.66). Up to renumbering, fix i such that γi,ε is the largest of the γj,ε’s

for all ε ≪ 1 and all j. Given any η ∈ (0, 1) to be chosen later, setting r
(η)
l,ε as in

(4.24), we know from (4.30) that r̄
(η)
l,ε = r

(η)
l,ε for all ε ≪ 1 and all l. Then, we get

from (4.27) and (4.28) (see also Proposition 2.1) that
∫

B
r
(η)
l,ε

(0)

λεp
2
ε

2
upεl,εe

upε
l,ε e2ϕl,εdx = (4π + o(1)) γ2−pεl,ε , that

∫

B
r
(η)
l,ε

(0)

λεp
2
ε

2
eu

pε
l,ε e2ϕl,εdx =

4π + o(1)

γ
2(pε−1)
l,ε

(4.69)

and that

ul,ε = (1− η)γl,ε +O
(

γ1−pεl,ε

)

,

= −
(

2

pε
− 1

)

γl,ε +
2

pεγ
pε−1
l,ε

ln
1

λε(r
(η)
l,ε )

2
+O(1)

(4.70)

uniformly in ∂B
r
(η)
l,ε

(0) for all ε≪ 1 and for all l. The second equality uses also (2.8)

with γ = γl,ε and pγ = pε. Up to a subsequence, by comparing the two RHS of

(4.70), by using p0 < 2, r
(η)
l,ε ≤ κ and that η (moving only here) may be arbitrarily

close to 1, we may complement (4.68) here and get that

(

1− p0
2

)

γpεl,ε(1 + o(1)) = ln
1

λε
(4.71)

for all l as ε→ 0, so that we have in particular

γl,ε = (1 + o(1))γi,ε (4.72)

for all l. Given any η̌ ∈ (0, η), we claim that the first equality in (4.70) implies that

uε ≤ (1− η̌) γi,ε in Ωε := Σ\ ∪Nl=1 φ
−1
l,ε

(

B
r
(η)
l,ε

(0)
)

(4.73)

for all ε ≪ 1. Otherwise, as when proving Proposition 4.1, if xε ∈ Ωε satis-
fies uε(xε) = maxΩε uε, then xε is a good candidate to be another concentra-
tion point for uε: we get that µl,ε = o (dg(xl,ε, xε)) for all l by (4.15) and that
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minl∈{1,...,N} u
pε−1
ε (xε)dg(xl,ε, xε)

2|(∆guε)(xε)| → +∞ as ε → 0, which contra-
dicts (4.16) and establishes (4.73). Independently, (4.71) gives

λε

∫

Ωε

(1 + upεε ) eu
pε
ε dvg = O

(

exp
((

(1− η̌)p0 −
(

1− p0
2

))

γpεi,ε + o(γpεi,ε)
))

for all ε ≪ 1. Choosing 0 < η̌ < η < 1 sufficiently close to 1 from the beginning
(depending on the smallness of 2 − p0 > 0 here), we may plug this estimate and
(4.69) in (4.2) to conclude the proof of (4.5), using also (4.8) and (4.72). �

In contrast to the case p0 = 2 handled below (see also [20]), it is interesting to
note that, due to the global nature of both integrals in (4.2), we need also (4.72)
to get the quantization (4.5), at least for k > 1 and 1 < p0 < 2 in (4.66). At that
stage, we are left with the proof of (4.5) in the more delicate borderline case p0 = 2.
We assume from now on that p0 = 2 in (4.66).

Conclusion of the proof of Theorem 4.1. We still use the notation and observations
of (4.24)-(4.25) and below. On the other hand, by (4.30) in Step 4.1, for all given
η ∈ (0, 1), we have that

r
(η)
l,ε = o(rl,ε) =⇒ r̄

(η)
l,ε = r

(η)
l,ε (4.74)

for all ε≪ 1 and all l ∈ {1, ..., N}. Then, as a consequence of Propositions 2.1 and
3.1, we get that (4.26)-(4.29) hold true. In particular, for all given η′ < η in (0, 1),
we get from (4.29) that

|∇(ul,ε − vl,ε)| = o

(

1

γpε−1
l,ε r

(η′)
l,ε

)

(4.75)

uniformly in B
r
(η′)
l,ε

(0) for all ε ≪ 1 and all l. Then, for all given η′ ∈ (0, 1), since

we also have

0 ≤ vl,ε − vl,ε

(

r
(η′)
l,ε

)

≤ 2 + o(1)

γpε−1
l,ε

ln
r
(η′)
l,ε

| · | ,

using the estimate in w′
γ in Proposition 2.1, we eventually get that

∣
∣
∣ul,ε − ul,ε

(

r
(η′)
l,ε

)∣
∣
∣ ≤ 2 + o(1)

γpε−1
l,ε

ln
2r

(η′)
l,ε

| · | (4.76)

uniformly in B
r
(η′)
l,ε

(0)\{0} for all ε ≪ 1 and all l. During the whole proof below,

we choose and fix η0 ∈ (0, 1) and set

νj,ε =

sup







r ∈
(

r
(η0)
j,ε , κ

]

s.t.







|uj,ε − ūj,ε(r)|
< 5
(

πC2ūj,ε(r)
1−pε

+2
∑

l∈Ij,ε(r)
γ1−pεl,ε ln 6r

|·−φj,ε(xl,ε)|

)

in Br(0)\ ∪l∈Ij,ε(r) Br(η0)

l,ε

(φj,ε(xl,ε))







(4.77)

for all j ∈ {1, ..., N} and all ε ≪ 1, where C2 > 0 is as in (4.17) and where Ij,ε(r)
is given by

Ij,ε(r) =
{

l ∈ {1, ..., N} s.t. φj,ε(xl,ε) ∈ B 3r
2
(0)
}

.
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As a first remark, it follows from the very definition (4.77) of νj,ε and from (4.76)
that, for all given η2 ∈ [η0, 1), we have

νl,ε ≥ r
(η2)
l,ε (4.78)

for all ε≪ 1 and all l ∈ {1, ..., N}. Our main goal now is to show that

ūj,ε(νj,ε) = O(1) (4.79)

for all ε ≪ 1 and all j ∈ {1, ..., N}. For all j, we may assume up to a subsequence
that either (4.79) or

lim
ε→0

ūj,ε(νj,ε) = +∞ (4.80)

hold true. Assume from now on by contradiction that (4.79) does not hold true for
all j so that we may choose and fix i ∈ {1, ..., N} such that

νi,ε = min {νj,ε s.t. (4.80) holds true} . (4.81)

Clearly, we then have

lim
ε→0

ūi,ε(νi,ε) = +∞ . (4.82)

By (4.18), we also have that

lim
ε→0

νi,ε = 0 , (4.83)

so that, using (4.12), the following property currently used in the sequel holds true:

g̃l,ε :=
(
(φl,ε)⋆ g

)
(νi,ε·) → ξ in C2

loc(R
2) (4.84)

as ε→ 0, for all l ∈ I, where

I := {l ∈ {1, ..., N} s.t. dg(xi,ε, xl,ε) = O (νi,ε) for all ε≪ 1} .
Up to a further subsequence, we may also assume that

lim
ε→0

φi,ε(xl,ε)

νi,ε
= x̃l ∈ R

2

for all l ∈ I. Set also S = {x̃l | l ∈ I} so that clearly 0 ∈ S. Fix τ ∈ (0, 1) and
R ≥ 1 to be chosen properly later on such that

3τ <

{

1 if S = {0} ,
min{(x,y)∈S2|x 6=y} |x− y| otherwise ,

and such that S ⊂ B3R(0). Set Dε = BRνi,ε(0)\ ∪l∈I Bτνi,ε/3(φi,ε(xl,ε)) for all
ε≪ 1. Let now w̃ε be given by

{

∆w̃ε = −e2ϕi,εhi,εui,ε in BRνi,ε(0) ,

w̃ε = 0 on ∂BRνi,ε(0) ,
(4.85)

for all ε. Observe first by (4.19) that ∆(ui,ε− w̃ε) ≥ 0 in BRνi,ε(0) so that ui,ε − w̃ε
is radially nonincreasing in [0, Rνi,ε]. Moreover, the maximum principle gives that
ui,ε − w̃ε attains its infimum in BRνi,ε(0) at some point on ∂BRνi,ε(0). Indepen-
dently, for all given p > 2, by elliptic theory, we get from Lemma 4.1 and (4.12)
that

‖w̃ε(νi,ε·)‖L∞(BR(0)) = O
(
‖∆(w̃ε(νi,ε·)) ‖Lp(BR(0))

)
= O

(

ν
2(p−1)

p

i,ε

)

(4.86)
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for all ε ≪ 1. Summarizing, by (4.83) and since τ < 1, this argument for R = 1
(only there) gives that ūi,ε(τνi,ε) ≥ ūi,ε(νi,ε) + o(1), so that (4.82) leads to

Γε := ūi,ε(τνi,ε) → +∞ (4.87)

as ε→ 0. Then, as a consequence of (4.17) (and (4.84) again), we get that

ui,ε = Γε +O
(
Γ1−pε
ε

)
(4.88)

uniformly in Dε and for all ε ≪ 1, using once more the mean value property on
∂Bτνi,ε(0) and the definition of τ . Then, by the maximum principle-based argument
below (4.85), with (4.83) and (4.86), we get that

inf
BRνi,ε

(0)
ui,ε ≥ min

∂BRνi,ε
(0)
ui,ε + o(1) = Γε + o(1) (4.89)

as ε→ 0.

We prove now that

Γε = o(γj,ε) (4.90)

as ε→ 0, for all j ∈ I, up to a subsequence. Consider first the case j = i in (4.90).
For all given η2 ∈ [η0, 1), we have that

ūj,ε

(

r
(η2)
j,ε

)

= (1 − η2)γj,ε(1 + o(1)) ≥ Γε(1 + o(1)) (4.91)

for all ε≪ 1. The first equality comes from the definition (4.24) of r
(η2)
i,ε , from (4.74),

from the equality in (4.27) and from (4.28) for l = i, while the inequality comes
from (4.78), (4.89) and the above largeness assumption S ⊂ B3R(0) on R ≫ 1.
Observe that (4.78) implies that (4.92) below holds true for t = i. Since η2 may be
arbitrarily close to 1, (4.91) concludes the proof of (4.90) for j = i. If now I 6= {i},
we may pick j ∈ I\{i} and we get from the very definition of I with (4.20) and
(4.84) again that rj,ε = O (νi,ε) for all ε. Then, also in the last present case j 6= i,
using now (4.74) for l = j, we get

lim
ε→0

r
(η0)
t,ε

νi,ε
= 0 , (4.92)

for all t ∈ I, and then similarly (4.91), to conclude the proof of (4.90).

At that stage, we may improve the estimate in (4.86). As a consequence of
(4.87), (4.88) and Lemma 4.1, writing merely that ‖ui,ε‖Lp(Dε) = O(1), we get that

ν2i,εΓ
p
ε = O(1) for all ε, so that (4.86) gives

|w̃ε| = O
(
Γ1−p
ε

)
= o(Γ1−pε

ε ) (4.93)

uniformly in Dε, for all ε≪ 1, since p is fixed greater than 2 just above (4.86). Let
ζε be given by

{

∆ζε = 0 in BRνi,ε(0) ,

ζε = ui,ε on ∂BRνi,ε(0)

for all ε. By keeping track of the constant C2 of (4.17) and choosing R ≫ 1 large
enough (depending only on S) from the beginning, using a mean value theorem on
∂BRνi,ε(0), (4.84) and (4.87), we may get a slightly more precise version of (4.88)
on ∂BRνi,ε(0), namely we have that

sup
BRνi,ε

(0)

|ζε − ūi,ε(Rνi,ε)| ≤ sup
∂BRνi,ε

(0)

|ui,ε − ūi,ε(Rνi,ε)| ≤
2πC2

Γpε−1
ε

(4.94)
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for all ε≪ 1, using also the maximum principle. Observe in particular that ui,ε =

(1 + o(1))Γε uniformly in Dε. Let G̃ε be the Green’s function of ∆ in BRνi,ε(0)
with zero Dirichlet boundary condition. Let (zε)ε be any sequence of points such
that

zε ∈ BRνi,ε(0))\ ∪l∈I Br(η0)

l,ε

(φi,ε(xl,ε)) (4.95)

for all ε. We have that

0 < G̃ε(zε, ·) ≤
1

2π
ln

2Rνi,ε
|zε − ·|

in BRνi,ε(0)\{zε} for all ε≪ 1. Thus, the Green’s reprentation formula gives that

0 ≤ (ui,ε − w̃ε − ζε) (zε)

≤ λεpε
2π

∫

BRνi,ε
(0)

ln
2Rνi,ε
|zε − y|

(

e2ϕi,εupε−1
i,ε eu

pε
i,ε

)

(y) dy
(4.96)

for all ε, using (4.19). Using Step 4.1 as above to employ Proposition 2.1 and (4.29),
we have that for all l ∈ {1, ..., N}

|∇ul,ε| = O

(

1

r
(η0)
l,ε γpε−1

l,ε

)

uniformly in B
3r

(η0)

l,ε

(0) \B
r
(η0)
l,ε
3

(0)

so that, for all j ∈ I, we get as a byproduct of (4.77) and (4.81) with τ < 1 that

|ūj,ε(τνi,ε)− uj,ε| = O
(
ūj,ε(τνi,ε)

1−pε
)
+O




∑

l∈Ij,ε(τνi,ε)

1

γpε−1
l,ε

ln
4τνi,ε

| · −φj,ε(xl,ε)|





uniformly in Bτνi,ε(0)\ ∪l∈Ij,ε(τνi,ε) B2r
(η0)

l,ε /5
(φj,ε(xl,ε)), and then we eventually

obtain with (4.88) and our definition of τ that

|Γε − ui,ε| = O
(
Γ1−pε
ε

)
+O




∑

l∈Ij,ε(τνi,ε)

1

γpε−1
l,ε

ln
4τνi,ε

| · −φi,ε(xl,ε)|



 (4.97)

uniformly in Dj,ε := Bτνi,ε/2(φi,ε(xj,ε))\ ∪l∈Ij,ε(τνi,ε) Br(η0)

l,ε /2
(φi,ε(xl,ε)) for all ε,

still using (4.84). Independently, using that |zε − φi,ε(xl,ε)| ≥ r
(η0)
l,ε , we have

ln
2Rνi,ε
|zε − ·| = ln

2Rνi,ε
|zε − φi,ε(xl,ε)|

+O

(

r
(η0)
l,ε

r
(η0)
l,ε + |zε − φi,ε(xl,ε)|

)

(4.98)

uniformly in B
r
(η0)

l,ε /2
(φi,ε(xl,ε)) and for all ε ≪ 1. By (4.75) for some given η′ ∈

(η0, 1) and since ul,ε(0) = vl,ε(0), we get ul,ε− vl,ε = o(γ1−pεl,ε ), so we eventually get

for all given η̃ ∈ (η0, 1) that

λεpεu
pε−1
l,ε eu

pε
l,ε =

8e−2tl,ε(1 + o(eη̃tl,ε))

µ2
l,εγ

pε−1
l,ε pε

(4.99)
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uniformly in B
r
(η0)

l,ε

(0) and for all ε≪ 1, still applying Proposition 2.1. Then, using

also (4.12) and (4.84), we get from (4.98) and (4.99) that

λεpε
2π

∫

B
r
(η0)
l,ε

/2
(φi,ε(xl,ε))

ln
2Rνi,ε
|zε − y|

(

e2ϕi,εupε−1
i,ε eu

pε
i,ε

)

(y) dy

=
(4 + o(1))

pεγ
pε−1
l,ε

ln
νi,ε

|zε − φi,ε(xl,ε)|
+O

(

1

γpε−1
l,ε

)

,

(4.100)

as ε→ 0 and for all l ∈ I. Using the basic inequalities

|(1 + t)p − 1| ≤ C (|t|+ |t|p)

for all t > −1, and
(

N∑

t=1

at

)p

≤ C

N∑

t=1

apt

for all at ≥ 0 and all p ∈ [1, 2], we get first from (4.97) that

upεi,ε = Γpεε +O(1) +O




∑

l∈Ij,ε(τνi,ε)

(

1

γpε−1
l,ε

ln
4τνi,ε

| · −φi,ε(xl,ε)|

)pε




+O




∑

l∈Ij,ε(τνi,ε)

(
Γε
γl,ε

)pε−1

ln
4τνi,ε

| · −φi,ε(xl,ε)|





(4.101)

uniformly in Dj,ε and for all ε. Independently, we get from (4.7), (4.13), (4.24) and
(4.74) that

ln
1

(

r
(η0)
l,ε

)2 = −tl,ε(r(η0)l,ε ) + o(1) + ln
1

µ2
l,ε

,

≤
(

−p0η0
2

+ 1 + o(1)
)

γpεl,ε ,

(4.102)

as ε → 0 and for all l. Recall that we are now assuming that p0 = 2 in (4.66).
Then, we may get from (4.83), (4.92) and (4.102) that

(

1

γpε−1
l,ε

ln
4τνi,ε

| · −φi,ε(xl,ε)|2

)pε

=

(

1

γpεl,ε
ln

4τνi,ε
| · −φi,ε(xl,ε)|2

)pε−1

ln
4τνi,ε

| · −φi,ε(xl,ε)|2
,

≤ C(1 − η0 + o(1)) ln
4τνi,ε

| · −φi,ε(xl,ε)|2

(4.103)

uniformly in Dj,ε as ε → 0 and for all l ∈ I. Choose now j1, ..., j|S| in I such that
{x̃j1 , ..., x̃j|S|

} = S. We compute and then get from (4.101)-(4.103) and from (4.90)
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that

λεpε
2π

∫

Djt,ε

ln
2Rνi,ε
|zε − y|

(

e2ϕi,εupε−1
i,ε eu

pε
i,ε

)

(y) dy

= O

(

λεΓ
pε−1
ε exp (Γpεε )×

∑

l∈Ijt,ε(τνi,ε)

∫

B τνi,ε
2

(φi,ε(xjt,ε))
ln

2Rνi,ε
|zε − y|

(
4τνi,ε

|y − φi,ε(xl,ε)|2
)1−

η0
2

dy

)

,

= O
(
λεΓ

pε−1
ε exp (Γpεε ) ν2i,ε

)
,

(4.104)

for all t ∈ {1, ..., |S|} and all ε ≪ 1, using that η0 > 0 to get the last estimate. At
last, it readily follows from (4.88) that

λεpε
2π

∫

D0,ε

ln
2Rνi,ε
|zε − y|

(

e2ϕi,εupε−1
i,ε eu

pε
i,ε

)

(y) dy

= O
(
λεΓ

pε−1
ε exp (Γpεε ) ν2i,ε

)
(4.105)

for all ε≪ 1, where

D0,ε = BRνi,ε(0)\ ∪|S|
t=1 Bτνi,ε/2 (φi,ε(xjt,ε)) .

Summarizing, by plugging (4.93), (4.94), (4.100), (4.104) and (4.105) in (4.96), we
get that

|ui,ε(zε)− ūi,ε(Rνi,ε)|

≤ 2πC2Γ
1−pε
ε +

∑

l∈I

2 + o(1)

pεγ
pε−1
l,ε

(

2 ln
4τνi,ε

|zε − φi,ε(xl,ε)|
+O(1)

)

+O
(
λεΓ

pε−1
ε exp (Γpεε ) ν2i,ε

)

(4.106)

for all ε, given (zε)ε as in (4.95). By the estimate ν2i,εΓ
p
ε = O(1) just above (4.93)

for p > 4/3, we get that ν
3/2
i,ε = o(Γ1−pε

ε ). Then, evaluating (4.31) at τνi,ε and by

(4.87), we get that

Γε ≤
2

pεγ
pε−1
i,ε

(

ln
1

λεγ
2(pε−1)
i,ε ν2i,ε

+O(1)

)

+ o
(
Γ1−pε
ε

)
, (4.107)

then with (4.90) that

exp (Γpεε ) ≤ exp

(

2Γpε−1
ε

pεγ
pε−1
i,ε

ln
1

λεγ
2(pε−1
i,ε )ν2i,ε

+ o(1)

)

,

that

λεγ
2(pε−1)
i,ε ν2i,ε ≤ exp

(

−pε
2
Γε(1 + o(1))γpε−1

i,ε

)

and eventually that

λεΓ
pε−1
ε ν2i,ε exp (Γ

pε
ε ) = o(Γ1−pε

ε ) (4.108)

for all ε≪ 1. By (4.76) and (4.106) with (4.108), we get that

|ui,ε − ūi,ε(Rνi,ε)| ≤ (2πC2 + o(1))Γ1−pε
ε +O

(
∑

l∈I

1

γl,ε
ln

3Rνi,ε
| · −φi,ε(xl,ε)|

)
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uniformly inBRνi,ε(0)\{φi,ε(xj1,ε), ..., φi,ε(xj|S|,ε)}. In particular, using (4.90) again,
we get

|ūi,ε(νi,ε)− ūi,ε(Rνi,ε)| ≤ (2πC2 + o(1))Γ1−pε
ε (4.109)

as ε→ 0. Then, p0 = 2, (4.90), (4.106), (4.108) and (4.109) give that

|ui,ε − ūi,ε(νi,ε)|

≤ 9

2
πC2Γ

1−pε
ε +

∑

l∈Ii,ε(νi,ε)

2 + o(1)

γpε−1
l,ε

ln
4τνi,ε

|zε − φi,ε(xl,ε)|
(4.110)

uniformly in Bνi,ε(0)\ ∪l∈Ii,ε(νi,ε) Br(η0)

l,ε

(φi,ε(xl,ε)) and for all ε. But by (4.78) for

l = i, our assumption (4.80) and by (4.18), the inequality in (4.77) for j = i and
r = νi,ε should be an equality somewhere on ∂Bνi,ε(0) of this set for all ε ≪ 1,
which gives a contradiction to (4.110) and concludes the proof of (4.79).

Then, picking now a sequence (Γ̃ε)ε such that limε→0 Γ̃ε = +∞ and Γ̃ε = o(γj,ε),
and setting

ν̃j,ε = inf
{

r > 0 s.t. ūj,ε ≥ Γ̃ε in [0, r]
}

,

we get from (4.79) that

ν̃j,ε ≤ νj,ε (4.111)

for all j ∈ {1, ..., N} and all ε≪ 1. By (4.15), ν̃j,ε = o(1). As in (4.88), we get from

(4.17) and (4.18) that we can fix 0 < R < 1 such that uε = Γ̃ε(1 + o(1)) uniformly
in ∂φ−1

j,ε (BRν̃j,ε(0)) for all ε ≪ 1 and all j. Arguing now as below (4.73), we get

from (4.16) that

sup
Σ\∪jφ

−1
j,ε(BRν̃j,ε

(0))
uε ≤ 2Γ̃ε (4.112)

for all ε≪ 1. Then choose and fix (Γ̃ε)ε growing slowly to +∞ and more precisely
such that

λεΓ̃
pε
ε exp

(

(2Γ̃ε)
pε
)

= o
(

γ2−pεj,ε

)

and

(2 − pε) ln
(

1 + λεγ
2(pε−1)
j,ε exp((2Γ̃ε)

pε)
)

= o(1)
(4.113)

for all j as ε → 0. The first condition is clearly possible by (4.67). The second

one is also possible since λεγ
2(pε−1)
j,ε = O(1) by (4.68) and since now p0 = 2 in

(4.66). We may now compute and use either (4.112) in Σ\∪j φ−1
j,ε (BRν̃j,ε(0)), or the

controls given by the inequality in (4.77) for r = ν̃j,ε thanks to (4.111), allowing to
estimate the nonlinearity as in (4.101)-(4.104). This leads to the following integral
estimates:

λεp
2
ε

2

∫

Σ\∪jφ
−1
j,ε

(
B

r
(η0)
j,ε

(0)
) u

pε
ε e

upε
ε dx = o

(

γ2−pεj,ε

)

,

λεp
2
ε

2

∫

Σ\∪jφ
−1
j,ε

(
B

r
(η0)
j,ε

(0)
)

(

eu
pε
ε − 1

)

dx = O
(

λε exp
(

(2Γ̃ε)
pε
))

,

(4.114)
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while, computing as in (4.100), we get that

λεp
2
ε

2

∫

φ−1
j,ε

(
B

r
(η0)
j,ε

(0)
) u

pε
ε e

upε
ε dx = (4π + o(1)) γ2−pεj,ε ,

λεp
2
ε

2

∫

φ−1
j,ε

(
B

r
(η0)
j,ε

(0)
)

(

eu
pε
ε − 1

)

dx =
4π + o(1)

γ
2(pε−1)
j,ε

(4.115)

as ε → 0. Thus, by plugging (4.114)-(4.115) in (4.2) and by using our conditions

(4.113) on (Γ̃ε)ε, we get that

βε =





N∑

j=1

4π + o(1)

γ
2(pε−1)
j,ε





2−pε
pε


(4π + o(1))

N∑

j=1

γ2−pεj,ε





2(pε−1)
pε

,

= 4π(1 + o(1))

(

1 +
∑

j 6=j0

(
γj,ε
γj0,ε

)2−pε

︸ ︷︷ ︸

(⋆)

) 2(pε−1)
pε

,

using that


1 +
∑

j 6=j0

(
γj0,ε
γj,ε

)2(pε−1)




2−pε
pε

= 1 + o(1)

since pε → 2, where we choose j0 ∈ {1, ..., N} such that γj0,ε = minj∈{1,...,N} γj,ε
for all ε, up to a subsequence. Then, in order to conclude the proof of (4.5) for
k = N , it is then sufficient to get that the term (⋆) converges to N , namely that

∀j ∈ {1, ..., N} , lim
ε→0

(2− pε) ln
γj,ε
γj0,ε

= 0 .

To get this, we use (4.67), (4.68) and argue as below (4.70) for η = 1/2 to write

(2− pε) γ
pε
j,ε ≤ (1 + o(1)) ln

1

λ2ε
≤ 1 + o(1)

2
γpεj,ε

for all j, so that 1 ≤ (γj,ε/γj0,ε)
pε = O (1/(2− pε)) ≤ +∞. Theorem 4.1 is proven.

�

5. Compactness at the critical levels β ∈ 4πN⋆ for p ∈ (1, 2]

Our main goal in this section is to prove the following result:

Theorem 5.1. Let (λε)ε be any sequence of positive real numbers. Let p ∈ (1, 2] be
given and set pε = p for all ε. Let (uε)ε be a sequence of smooth functions solving
(4.1). Let (βε)ε be given by (4.2). Assume that (4.4) holds true, so that (4.3) holds
true for some β ∈ 4πN⋆ (see Theorem 4.1). Then we have that

βε > β (5.1)

for all ε≪ 1.



52 F. DE MARCHIS, A. MALCHIODI, L. MARTINAZZI, AND P.-D. THIZY

More precisely, if (γ1,ε)ε , ... , (γk,ε)ε are the sequences of positive real numbers
diverging to +∞ given by Proposition 4.1, we show in the proof below that

βε ≥ 4π

(

k +
4(p− 1)(1 + o(1))

p2

k∑

i=1

γ−2p
i,ε

)

(5.2)

as ε→ 0. As a remark, according to the proof of Theorem 4.1, N in Proposition 4.1
equals k in (4.5). Interestingly enough, the cancellation of terms of order γ−pi,ε still

occurs here on a surface for all p ∈ (1, 2] and for arbitrary energies, as pointed out
in [38] concerning the unit disk for p = 2 and in the minimal energy case β = 4π.

5.1. Further estimates in the radially symmetric case. Let p ∈ (1, 2] be
given, let (µγ)γ be a family of positive real numbers, and let (λγ)γ be such that
(2.1) holds true, where pγ = p for all γ, let tγ , t̄γ be given by (2.2) and let (Bγ)γ be
given by (2.6). Let also (r̄γ)γ be a family of positive real numbers such that (2.3)
holds true, and such that

tγ(r̄γ) ≤
√
γ , (5.3)

γ4pr̄2γ = O(1) (5.4)

for all γ ≫ 1. In this section we aim to get more precise estimates on the Bγ ’s than
in Section 2, but at smaller scales around 0, in order to be technically as simple as
possible: namely, (5.3)-(5.4) imply (2.4)-(2.5). We also restrict here to the specific
case where p is fixed. As already mentioned in the introduction, some issues may
arise when studying compactness at the critical levels β ∈ 4πN⋆ in the case p = 1.
Following [38, 39] and still abusing the radial notation r = |x|, we let w0 be given
by

w0(r) = −T0(r) +
2r2

1 + r2
− 1

2
T0(r)

2 +
1− r2

1 + r2

∫ 1+r2

1

ln t

1− t
dt

for T0 as in (2.13), so that, by ODE theory, w0 is the unique solution of







∆w0 = 4e−2T0
(
2w0 + T 2

0 − T0
)

in R
2 ,

w0(0) = 0 ,

w0 is radially symmetric around 0 ∈ R
2 .

(5.5)

We further set

F = 2(p− 1)w0 + (p− 2)T 2
0 − 8(p− 1)T0w0 −

8p− 10

3
T 3
0

+ 4 (p− 1)w2
0 + 4(p− 1)T 2

0w0 + (p− 1)T 4
0 ,

(5.6)

and let w1 be the unique solution of







∆w1 = 4e−2T0

(

2w1 +
4(p−1)
p3 F

)

in R
2 ,

w1(0) = 0 ,

w1 is radially symmetric around 0 ∈ R
2 .

(5.7)
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Resuming the strategy and the explicit computations in [39, Section 3], even if we
do not have w1 in closed form, we know that

∫

R2

∆w1dx =
16(p− 1)

p3

[

(p− 1)

(
π3

3
+

33π

2

)

+
3π

2
(p− 2)− 7(4p− 5)π

2

]

.

(5.8)

We also have that

w0(r) = −T0(r) +O(1) ,

w1(r) = −T0(r)
4π

∫

R2

∆w1dx+O(1)
(5.9)

as r → +∞. Note that the convention on the sign of the Laplace operator here is
not the same as that in [39]. In complement of the computations already done in
[39], we compute also

∫

R2

|x|2 − 1

(1 + |x|2)3 T0(x)
2dx =

3π

2

to get (5.8). Let w0,γ , w1,γ be given by w0,γ = w0(·/µγ) and w1,γ = w1(·/µγ), and
let wγ be given by

Bγ = γ − 2tγ
pγp−1

+
4(p− 1)w0,γ

p2γ2p−1
+
w1,γ + wγ
γ3p−1

. (5.10)

Proposition 2.1 already gives Bγ ≤ γ and some estimates on wγ given by (5.10) in
[0, r̄γ ] for all γ ≫ 1. Much more precisely here, we get that wγ is actually a small
remainder term in the following sense:

Proposition 5.1. We have

wγ = O(γ−ptγ) , w′
γ = O(γ−pt′γ) ,

and

λγpB
p−1
γ eB

p
γ = − 2

pγp−1
∆tγ

(

1 +O

(
etγ/2

γ3p

))

+
4(p− 1)

p2γ2p−1
∆w0,γ +

∆w1,γ

γ3p−1
,

uniformly in [0, r̄γ ] and for all γ ≫ 1 large, where wγ is as in (5.10).

The proof of Proposition 5.1 follows the strategy of the proof of Proposition 2.1,
but the stronger assumption (5.3) basically reduces now the computations to Taylor
expansions.

Proof of Proposition 5.1. Let rγ be given by

rγ = sup {r ∈ [0, r̄γ ] s.t. |wγ | ≤ tγ}
for all γ. Taking advantage of the control on wγ in [0, rγ ] given by this definition,
we may perform the following computations uniformly in [0, rγ ] as γ → +∞. We
first get

Bpγ = γp − 2tγ +
2(p− 1)

pγp
(
2w0,γ + t2γ

)
+
p(w1,γ + wγ)

γ2p

− 8(p− 1)2tγw0,γ

p2γ2p
− 8(p− 1)(p− 2)t3γ

6p2γ2p
+O

(

t̄4γ
γ3p

)

.
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and

Bp−1
γ = γp−1

(

1− 2(p− 1)tγ
pγp

+
4(p− 1)2w0,γ

p2γ2p
+

2(p− 1)(p− 2)t2γ
p2γ2p

+O

(

t̄3γ
γ3p

))

.

We use for this (5.3) and (5.9) and the expansions of (1+ε)q as ε→ 0. Then, using
(2.1), we similarly compute and get

λγpe
Bp

γ

=
8e−2tγ

pγ2(p−1)µ2
γ

[

1 +
2(p− 1)

pγp
(
2w0,γ + t2γ

)
+

1

p2γ2p

(

p3(w1,γ + wγ)− 8(p− 1)2tγw0,γ −
4

3
(p− 1)(p− 2)t3γ

+ 8(p− 1)2t2γw0,γ + 2(p− 1)2t4γ + 8(p− 1)2w2
0,γ

)

+O

(
1

γ3p
e
Ct̄γ×

(

t̄3γ

γ3p

)

)]

,

so that we eventually have

λγpB
p−1
γ eB

p
γ

=
8e−2tγ

pγp−1µ2
γ

[

1 +
2(p− 1)

pγp
(
2w0,γ + t2γ − tγ

)
+O

(
etγ/2

γ3p

)]

+

4e−2tγ

γ3p−1µ2
γ

[

2(w1,γ + wγ) +
4(p− 1)

p3
F

( ·
µγ

)]

,

(5.11)

for F as in (5.6), using again (5.3) to write t̄3γ/γ
3p = o(1). Then, setting w̃γ =

wγ(·/µγ), using now not only (2.13), but also (5.5) and (5.7), we get from (2.6)
that

∆w̃γ = 8e−2T0w̃γ +O
(
µ2
γγ

3p
)
+O

(
e−3T0/2

γp

)

, (5.12)

uniformly in [0, rγ/µγ ] as γ → +∞, applying ∆ to (5.10). The second-last term
in (2.14) is obtained when controlling Bγ in the LHS of (2.6), since our definition
of rγ implies Bγ ≤ γ in [0, rγ ] for all γ ≫ 1. Then, (2.15) may be obtained from
(2.14) by using also (5.4). At that stage, we may conclude the proof of Proposition
5.1 by following closely the lines below (2.15) and showing mainly that (2.10) holds
true for all γ ≫ 1. �

As a direct corollary of Proposition 5.1, we get the following estimates:

Corollary 5.1. Assume that (5.3) is an equality, namely that

tγ(r̄γ) =
√
γ (5.13)
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for all γ ≫ 1, then we have that

λγp
2

2

∫

Br̄γ (0)

Bpγe
Bp

γdx

= 4πγ2−p
[

1 +
2(p− 2)

pγp
+ o

(
1

γ2p

)

+
p− 1

p2γ2p

(

− 8− 2π2

3
+ 2(p− 1)

(
π2

3
+

33

2

)

+ 3(p− 2)− 7 (4p− 5)

)]

,

λγp
2

2

∫

Br̄γ (0)

eB
p
γdx

=
4π

γ2(p−1)

[

1 +
4(p− 1)

pγp
+ o

(
1

γ2p

)

+
1

γ2p

(
2(p− 1)

p2

(

(p− 1)

(
π2

3
+

33

2

)

+
3

2
(p− 2)− 7(4p− 5)

2

)

+
4(p− 1)

p
+

(p− 1)2

p2

(

8 +
2π2

3

))]

,

and then that
(

λγp
2

2

∫

Br̄γ (0)

eB
p
γdx

) 2−p
p
(

λγp
2

2

∫

Br̄γ (0)

Bpγe
Bp

γdx

) 2(p−1)
p

= 4π

(

1 +
4(p− 1)

p2γ2p
+ o

(
1

γ2p

))
(5.14)

as γ → +∞.

Since the computations to get Corollary 5.1 from Proposition 5.1 basically resume
those in [39], we leave them to the reader. In particular, proving the first two
estimates in Corollary 5.1 uses (5.8) and the following computations

∫

R2

∆w0dx = −
∫

R2

∆T0dx = −
∫

R2

T0∆T0dx = −1

2

∫

R2

T 2
0∆T0dx = 4π ,

∫

R2

(w0(∆T0) + T0∆w0) dx = 8π +
2π3

3
.

Once the first two estimates of Corollary 5.1 are obtained, proving (5.14) is quite
elementary: in particular, we observe in (5.14) the aforementioned cancellation of
the term γ−p. Besides, the term γ−2p vanishes as well for p = 1. That is the
technical reason why the approach of this section does not work for p = 1 and why
we assume p > 1 in Theorem 5.1 (see also the paragraph above Remark 0.1).

5.2. Conclusion of the proof of Theorem 5.1. Let (λε)ε be any sequence of
positive real numbers. Let p ∈ (1, 2] be given and set pε = p for all ε. Let (uε)ε be
a sequence of smooth functions solving (4.1). Let (βε)ε be given by (4.2). Assume
that (4.4) holds true, so that (4.3) holds true for some β ∈ 4πN⋆ by Theorem 4.1.
We may also apply Proposition 4.1, getting in particular sequences (µi,ε)ε, (xi,ε)ε,
(γi,ε)ε and (ϕi,ε)ε, and we resume the notation ri,ε, ti,ε and vi,ε in (4.20)-(4.22);
let also r̄i,ε be given by

ti,ε(r̄i,ε) =
√
γi,ε (5.15)
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for all i ∈ {1, ..., k} and all ε. By (4.30) in Step 4.1, we know that r̄
(1/2)
l,ε given by

(4.25) equals r
(1/2)
l,ε in (4.24) for all l ∈ {1, ..., k} and all ε ≪ 1. Moreover, since

ri,ε = O(1) according to (4.20), we get that

r
(1/2)
i,ε = o(ri,ε) = o(1) (5.16)

for all ε≪ 1 and all i. By (4.24) and (5.15), we deduce that

ln
r̄2i,ε

(

r
(1/2)
i,ε

)2 = ti,ε(r̄i,ε)− ti,ε

(

r
(1/2)
i,ε

)

+ o(1) ≤ −3γi,ε

for all i and all ε≪ 1. Then, we find from (5.16) that

r̄i,ε = O
(
e−γi,ε

)
(5.17)

for all ε ≪ 1 and all i. Proposition 2.1 may be applied as below (4.25). We get
that

|ui,ε − vi,ε| = O

(

r̄i,ε

r
(1/2)
i,ε γp−1

i,ε

)

= O
(
e−γi,ε

)

uniformly in Br̄i,ε(0) for all ε≪ 1 and all i, using also (4.28). Then, using similarly
Proposition 2.1 to get that vi,ε = γi,ε(1 + o(1)), we obtain that

upi,ε = vpi,ε

(

1 +O

(
e−γi,ε

γi,ε

))

, (5.18)

so that we have

eu
p
i,ε = ev

p
i,ε

(

1 + o

(

1

γ2pi,ε

))

(5.19)

uniformly in Br̄i,ε(0), for all ε≪ 1 and all i. An easy consequence of (4.12), (4.20)

and (5.16) is that the domains φ−1
i,ε (Br̄i,ε(0)) are two by two disjoint for all ε≪ 1.

Then we may write that

λεp
2

2

∫

Σ

upεe
up
εdvg ≥

k∑

i=1

λεp
2

2

∫

Br̄i,ε
(0)

upi,εe
up
i,εe2ϕi,εdx

︸ ︷︷ ︸

:=ai,ε

,

λεp
2

2

∫

Σ

(

eu
p
ε − 1

)

dvg ≥
k∑

i=1

λεp
2

2

∫

Br̄i,ε
(0)

(

eu
p
i,ε − 1

)

e2ϕi,εdx

︸ ︷︷ ︸

:=bi,ε

.

(5.20)

Using (4.12), (5.17), (5.18) and (5.19), we write e2ϕi,ε = 1 +O (r̄i,ε) and get

∫

Br̄i,ε
(0)

upi,εe
up
i,εe2ϕi,εdx =

(
∫

Br̄i,ε
(0)

vpi,εe
vpi,εdx

)
(

1 + o
(

γ−2p
i,ε

))

, (5.21)

for all ε≪ 1 and all i. Similar arguments give that

∫

Br̄i,ε
(0)

(

eu
p
i,ε − 1

)

e2ϕi,εdx =

(
∫

Br̄i,ε
(0)

ev
p
i,εdx

)
(

1 + o
(

γ−2p
i,ε

))

, (5.22)
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for all ε≪ 1 and all i. By plugging (5.21)-(5.22) in (5.20) and coming back to the
definition (4.2), we obtain

βε ≥
(

k∑

i=1

bi,ε

) 2−p
p
(

k∑

i=1

ai,ε

) 2(p−1)
p

≥
k∑

i=1

b
2−p
p

i,ε a
2(p−1)

p

i,ε ,

by Hölder’s inequality for vectors in R
k. In order to compute the RHS, since we

have (5.17), so that (see (5.4)) we may apply also Proposition 5.1 to vi,ε in Br̄i,ε(0)
and thus use (5.14). This proves (5.2) and concludes the proof of Theorem 5.1.

Remark 5.1. The minimization of Iβ in (0.10) for β = 4π attracted some attention
(see for instance [15, 43]): in this case we basically have p = 1. Then, turn now
to the case p ∈ (1, 2] of this section. First if p = 2, we may get by following the
strategy in [39] that the convergence of (βε)ε to 4π from above in (5.2) for k = 1
gives back the existence of a maximizer for (MT ) if β = 4π (see also [3, 45, 24]).
Now, if p ∈ (1, 2), we already pointed out in the introduction that

−∞ < Θp,ε := inf
u∈H1

Jp,4π(1−ε)(u)

for all ε ∈ [0, 1), where Jp,β is as in (0.13). Moreover, the existence of a minimizer
uε for Jp,4π(1−ε) follows from a standard minimization argument for all given ε ∈
(0, 1). Here again, the convergence of (βε)ε to 4π from above in (5.2) for k = 1
gives the attainment of Θp,0, since the present uε’s then have to converge strongly
in C2 as ε→ 0.

We conclude this remark by a curiosity. If G > 0 is the Green’s function of

∆g + h in Σ, we may write G(x, y) = 1
4π

(

ln 1
|x−y|2 +H(x, y)

)

for all x 6= y. We

know that H ∈ C0(Σ×Σ) and we set M = maxx∈ΣH(x, x). As a byproduct of the
analysis in the present paper, it can be also checked that

ln
1

λε
=
(

1− p

2

)

γpε + ln
p2γ

2(p−1)
ε

8
+Hx(x) + (p− 1) + o(1) ,

as ε→ 0, if the uε’s blow-up at some x ∈ Σ for k = 1 in (4.5) and solve (4.1), with
λε given by (4.2), for βε = 4π(1− ε), pε = p and γε = maxΣ uε for all ε. We may
also get that

Θp,0 = inf
u∈H1

Jp,4π(u) < −
(

lnπ +M + (p− 1) +
(2− p)(p− 1)

p

)

. (5.23)

The large inequality in (5.23) is a byproduct of a by now rather standard test func-
tion computations (see for instance [50, Step 3.1]). The strict inequality is more
subtle and can be seen as a consequence of the convergence of the βε’s from above,
picking the refined test functions provided by the blow-up analysis, in the
spirit of [50, Section 4]. At last, observe that the exponential of the opposite of
the RHS of (5.23) converges to π exp (1 +M) as p → 2, which turns out to be
consistent with the original works [3, 24].

Conclusion of the proofs of Theorems 0.2 and 0.1

Let β > 0 be given. Assume first that p is given in (1, 2). By Theorem 1.1,
there exist a sequence (βε)ε increasing to β− as ε → 0, and uε such that (4.1)
is satisfied for pε = p and λε given by (4.2) for all ε. Now, we claim that the
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uε’s are uniformly bounded: this is a direct consequence of (4.5) in Theorem 4.1
if β 6∈ 4πN⋆ and follows from Theorem 5.1 if β ∈ 4πN⋆, since the present sequence
(βε)ε is assumed to increase. By elliptic theory in (4.1) and (4.7), we easily then
get that, up to a subsequence, the λε’s converge to some λ and the uε’s converge
in C2 to some u solving the equation in (0.12) and (0.14). Observe in particular
that since β > 0, (0.14) gives that u ≥ 0 is not identically zero, so that u > 0 in
Σ by Lemma 1.1. Then Cp,β ∋ u is not empty in Theorem 0.1. The compactness
of Cp,β also clearly follows from Theorems 4.1 and 5.1. For p = 1, and β 6∈ 4πN∗,
we take a sequences (pε), pε ↓ 1 and uε ∈ Cpε,β. As before, by Theorem 4.1, up
to a subsequence (uε) converges to a positive function u ∈ C1,β, and Theorem 0.1
is proven. Assume now that p = 2. By Theorem 1.1 again, there exist a sequence
(βε)ε increasing to β−, a sequence (pε)ε increasing to 2− as ε → 0, and uε such
that (4.1) is satisfied for λε given by (4.2) for all ε. First, if we have in addition
β 6∈ 4πN⋆, we get similarly from Theorem 4.1 that, up to a subsequence, the λε’s
converge to some λ and the uε’s converge in C2 to some u solving the equation in
(0.16) and (0.14). Then, we use again that β is positive to get from (0.14) that u
is actually positive in Σ and then that u ∈ C2,β . Thus, if we have now β ∈ 4πN⋆,
setting βε = β − ε and pε = 2, there exists uε such that (4.1) is satisfied for λε
given by (4.2) for all 0 < ε ≪ 1. By Theorem 5.1, we similarly get that the uε’s
converge in C2 to some u ∈ C2,β solving (0.14)-(0.16), up to a subsequence. The
compactness of C2,β follows from Theorems 4.1 and 5.1 again, which concludes the
proof of Theorem 0.2 in any case.
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