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Oxidized LDLs (oxLDLs) and oxysterols play a key role in endothelial dysfunction and

the development of atherosclerosis. The loss of vascular endothelium function

negatively impacts vasomotion, cell growth, adhesiveness and barrier functions.

While for some of these disturbances, a reasonable explanation can be provided from

a mechanistic standpoint, for many others, the molecular mediators that are involved

are unknown. Caveolae, specific plasma membrane domains, have recently emerged

as targets and mediators of oxLDL-induced endothelial dysfunction. Caveolae and

their associated protein caveolin-1 (Cav-1) are involved in oxLDLs/LDLs transcytosis,

mainly through the scavenger receptor class B type 1 (SR-B1 or SCARB1). In contrast,

oxLDLs endocytosis is mediated by the lectin-like oxidized LDL receptor 1 (LOX-1),

whose activity depends on an intact caveolae system. In addition, LOX-1 regulates

the expression of Cav-1 and vice versa. On the other hand, oxLDLs may affect

cholesterol plasma membrane content/distribution thus influencing caveolae

architecture, Cav-1 localization and the associated signalling. Overall, the evidence

indicate that caveolae have both active and passive roles in oxLDL-induced

endothelial cell dysfunction. First, as mediators of lipid uptake and transfer in the

subendothelial space and, later, as targets of changes in composition/dynamics of

plasma membrane lipids resulting from increased levels of circulating oxLDLs. Gaining

a better understanding of how oxLDLs interact with endothelial cells and modulate

caveolae-mediated signalling pathways, leading to endothelial dysfunction, is

crucial to find new targets for intervention to tackle atherosclerosis and the related

clinical entities.
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1 | INTRODUCTION

The endothelium is a thin monolayer of cells that covers the luminal

surface of the blood vessel wall, creating a barrier between blood and

the surrounding tissues and playing an active role in vascular

functioning and homeostasis. Physical and biochemical factors, that is

glycocalyx, prostacyclin andNO, produced by endothelial cells are involved

in the maintenance of vascular tone, antithrombotic activity and leukocyte

trafficking. Endothelial cells also mediate blood-tissue exchange and partici-

pate in haemostasis and neovascularization, acting as a real organ.

Endothelial dysfunction, a complex event triggered by different

agents, including cytokines and oxidized LDLs (oxLDLs) results in a

pro-inflammatory and pro-coagulant phenotype of endothelial cells.

The onset of this condition is considered as a crucial event in the

pathogenesis of cardiovascular disease. The expression of cell surface

adhesion molecules, including vascular cell adhesion molecule

1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1) and endothe-

lial leukocyte adhesion molecule (E-selectin), has been proposed as a

biomarker of endothelial cell activation. Also, the decreased

synthesis of endothelium-derived NO, which acts as a vasodilator and

antithrombotic agent, represents the earliest and one of the most

important events contributing to endothelial dysfunction (Liao, 2013).

A reduction in NO availability may occur as a consequence of an

accelerated degradation of NO under oxidative stress conditions, that

is, NO is transformed into peroxynitrite in the presence of superoxide

anions or by a decreased endothelial NO synthase (eNOS) protein

expression and/or activity (Förstermann & Münzel, 2006). Direct

binding of eNOS to the scaffolding domain of Cav-1, the most

abundant protein associated with caveolae, is a recently described

mechanism that inactivates eNOS (Chen et al., 2012). Caveolae are

important mediators of endocytosis, transcytosis, lipid homeostasis and

signal transduction in endothelial cells (Shvets, Ludwig, & Nichols, 2014).

The endothelium is indeed permeable to small molecules with a diame-

ter under 6 nm but is nearly impermeable to macromolecules. Thus the

transport of lipoproteins, including oxLDLs, across the cell monolayer

occurs via transcytosis (Zhang, Sessa, & Fernández-Hernando, 2018).

Transcytosis of LDLs into the intima can be associated with their modi-

fication (e.g. oxidation) that favour endothelial cell dysfunction (Sun

et al., 2010). On the other hand, it has been suggested that circulating

oxLDLs and oxysterols may induce perturbations of membrane

cholesterol, thus affecting the integrity and dynamics of cholesterol-rich

domains such as those pertaining to caveolae (Levitan & Shentu, 2011).

In this review, we discuss the current knowledge on the potential

interplay between the uptake and transcytosis of LDLs/oxLDLs and

the alteration of caveolae architecture in relation to endothelial cell

activation and dysfunction.

2 | LDL OXIDATION, OXYSTEROL
FORMATION, AND ENDOTHELIAL
DYSFUNCTION

Cholesterol, an important component of membranes, is the most

abundant lipid in eukaryotic cells. It is synthesized within cells in the

F IGURE 1 Endocytosis and transcytosis of circulating LDLs. The classical LDL receptor pathway mediates LDL uptake for degradation of
LDLs in lysosomes (endocytosis). Upon entering the endosomes, LDLs are directed to the lysosomes, whereas the LDLR can be transported back
to the cell surface for a new round of LDL binding and uptake. Binding of LDLs to SR-B1 and ALK1 receptors mediates LDL transcytosis.
Internalization and transport are mediated by DOCK4 recruitment to SR-B1 receptor and RAC1 activation. Specific mechanisms involved in LDL-
loaded vesicle movement and exocytosis are unknown. ALK1, activin receptor-like kinase 1; Cav-1, caveolin-1; LDLR, LDL receptor; SR-B1,
scavenger receptor class B type 1; DOCK4, guanine nucleotide exchange factor dedicator of cytokinesis 4; RAC1, Rac family small GTPase 1
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endoplasmic reticulum, although this organelle contains only 0.5–5%

of the total cell cholesterol (Iuliano, 2011; Lange, Ye, Rigney, &

Steck, 1999) and is transported by LDLs which are leading contributors

to atherosclerosis. The endothelium plays a pivotal role in regulating

the exchanges of macromolecules between blood and peripheral

tissues. Circulating LDLs are taken up by endothelial cells either by

receptor-mediated endocytosis or transcytosis. Endocytic receptors

bind and transport LDLs to the endolysosomal system where, upon

degradation, their components are used for metabolic needs (Figure 1).

The transcytotic receptors bind and transport LDLs across endothelial

cells to underlying cells and tissues (Figure 1).

LDL transcytosis is stimulated by endothelial cell dysfunction and

accumulation and retention of LDLs in the intima are an early step in

atherogenesis.

LDL-dependent lipid laden cell formation, which governs initiation

and progression of atherosclerotic lesions, is driven by LDL modifica-

tion, consistently with the LDL oxidation/modification hypothesis of

atherogenesis (Steinberg, 1997). Macrophages do not accumulate

cholesterol via LDL-receptor uptake because this receptor is down-

regulated by intracellular cholesterol content through sterol regulating

element binding protein (SREBP). Instead, cholesterol accumulation

and subsequent foam cell formation in macrophages occur via

the scavenger receptor, which is up-regulated by oxLDL

(Steimberg, 2002). In addition, oxLDLs escape interaction with proteo-

glycans, which retain LDLs in the extracellular matrix (Skålén

et al., 2002), favouring their uptake by macrophage scavenger

receptors (Öörni, Pentikäinen, Annila, & Kovanen, 1997).

An important question is where LDLs are oxidized in vivo

considering that, under physiological conditions, oxidation is unlikely

to occur in the circulating blood because LDL are protected by plasma

antioxidants (Carmena et al., 1996). OxLDL production mainly occurs

in areas of the vessel wall deprived of endothelial cell that have

trapped phagocytes and in sub-endothelial matrix.

Oxidized LDLs are formed by diverse mechanisms based on free

radicals produced by extra-cellular metal catalysts and enzymes and

by activated cells (Kojima, Ino, Ishii, Nitta, & Yoshida, 2010). However,

at present, the most important underlying physiological mechanism

in vivo remains unclear. An important mechanism leading to the oxida-

tion of LDLs occurs via myeloperoxidase (MPO) secreted by activated

phagocytes. This enzyme generates oxLDLs by producing

hypochlorous acid (HOCl) from H2O2 and chloride. Zhang et al. (2013)

speculated that MPO could use NADPH-derived H2O2 in order to

produce HOCl, thus promoting the oxidation of LDLs.

Oxidized LDLs are present not only within arterial walls, but they

are also found into the circulation, particularly in patients with cardio-

vascular diseases (Ehara et al., 2001). Recent studies suggest that

oxLDLs may be transferred between atherosclerotic lesions and the

circulation (Itabe, Obama, & Kato, 2011). In addition, LDL transfer to

the lymph (Michel, Nanjee, Olszewski, & Miller, 2015; Reichl,

Postiglione, Myant, Pflung, & Press, 1975) suggests a re-circulating

mechanism after their transit in the extracellular space, where LDL

oxidation can take place (Cooke, Nazeem, Stepanovaa, Olszewskib, &

Miller, 2004). Oxidized LDLs are particularly rich in oxysterols,

27-atom carbon compounds formed after enzymatic or non-

enzymatic cholesterol oxidation in vivo (Iuliano, 2011). However,

oxysterols can also be obtained through the diet. Methods of

processing, preparation and storage expose the food to air, light or

heat leading to the formation of oxysterols (Lordan, Mackrill, &

O'Brien, 2009). Oxysterols are carried by lipoproteins, both as free

and esterified forms. The incorporation of oxysterols into LDL

particles makes LDLs more susceptible to oxidation (Staprans, Pan,

Rapp, & Feingold, 2003; Vine, Mamo, Beilin, Mori, & Croft, 1998).

Oxysterols are involved in many physiological processes such as

cholesterol metabolism, hormone and vitamin D synthesis, as well as

transmembrane signalling as components of cholesterol enriched

membrane microdomains, that is, lipid rafts and caveolae. On the

other hand, the accumulation of oxysterols in tissues and organs has

been associated with the progression of several diseases, including

atherosclerosis, neurodegenerative diseases and cancer (Poli, Biasi, &

Leonarduzzi, 2013; Voisin et al., 2017). A growing body of evidence

suggests that oxysterols and oxLDLs play a key role in endothelial

dysfunction by impairing the formation/production of NO, increasing

the formation of reactive oxygen species (ROS), promoting the release

of pro-inflammatory cytokines (Lubrano & Balzan, 2014; Maiolino

et al., 2013) and inducing endothelial cell death (Luchetti et al., 2015;

Luchetti et al., 2019). Oxidized LDLs and oxysterols were shown to

markedly increase ROS intracellular levels by activating NADPH

oxidase (NOX) isoenzymes. Vascular ROS are mainly produced by

NOXs present in endothelial cells and smooth muscle cells as well as

in infiltrating phagocytes. In endothelial cells induction of NOX by

oxLDL has been reported by different authors (Heinloth, Heermeier,

Raff, Wanner, & Galle, 2000; Rueckschloss, Galle, Holtz, Zerkowski, &

Morawietz, 2001). Moreover, several in vitro studies demonstrated

that oxysterols are able to induce the derangement of the mitochon-

drial membrane potential, thus amplifying ROS production, ultimately

leading to mitochondrial dependent-apoptosis (Gargiulo, Gamba,

Testa, Leonarduzzi, & Poli, 2016; Vurusaner et al., 2014).

3 | THE ROLE OF CAVEOLAE AND LDL
RECEPTORS IN LDL TRANSCYTOSIS

The diameter of LDL particles is about 20–30 nm, that is much larger

than that of gap-junctions (3–6 nm) between adjacent cells in con-

tinuous endothelium (Iuliano, Micheletta, & Violi, 2001). Hence, the

only way for LDLs to cross the endothelium is through a process

called caveolae-mediated transcytosis. This pathway operates via fluid

phase or receptor-mediated ligand uptake (Fung, Fairn, & Lee, 2018).

The classical LDL receptor (LDLR) pathway, which mediates the

uptake of LDLs for internalization and subsequent degradation in the

lysosomes, does not operate in transcytosis and, actually, does not

explain the accumulation of LDLs in the subendothelium of systemic

circulation (Dehouck et al., 1997). In addition, the LDLR-mediated

pathway is down-regulated at high concentrations of LDLs, while

LDLR-independent pathways are enhanced in conditions of hypercho-

lesterolemia (Vasile, Simionescu, & Simionescu, 1983). Thus,
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transcytosis in endothelial cells is LDLR-independent and, importantly,

requires the presence of caveolae (Figure 1).

Caveolae are specialized plasma membrane subdomains

consisting of 50–100 nm invaginations of the apical plasma membrane

that detach as vesicles to shuttle their cargo to the basolateral

membrane where they fuse and release their contents (Figure 1).

Caveolae are present in most cell types but are particularly

abundant in endothelial cells, adipocytes, fibroblasts and smooth

muscle cells (Chidlow & Sessa, 2010). Like lipid rafts, caveolae are rich in

cholesterol, glycosphingolipids and lipid-anchored proteins. Unlike lipid

rafts, caveolae are coated with the protein caveolin, a cholesterol binding

protein (Sharma, Yu, & Bernatchez, 2010). To date, three caveolin

isoforms (Cav-1, -2 and -3), which are expressed at different densities

depending on the cell type, have been identified. Cav-1 and Cav-2 are

the most expressed in endothelial cells, where caveolae cover up to 40%

of the luminal surface of the vascular endothelium. In addition, equipped

with a complete set of effector proteins, from extracellular receptors to

intracellular transducers, caveolae are involved in signal transduction.

Caveolae serve to compartmentalize, modulate and integrate signalling

events at the cell surface. Lipid modification (myristoylation and

palmitoylation) of proteins appears to help regulating the movement of

molecules into and out of caveolae (Galbiati, Razani, & Lisanti, 2001).

Specifically, Cav-1 appears to act as a scaffolding protein able to recruit

and modulate the activity of caveolae-localized signalling molecules

(Patel, Murray, & Insel, 2008). However, despite the wealth of literature

supporting the occurrence of this mechanism, structural and bioinfor-

matic analyses do not support such direct physical interactions (Collins,

Davis, Hancock, & Parton, 2012), implying that other mechanisms may

be involved. Caveolae microdomains are particularly enriched in GPCRs

and G proteins. G proteins are likely to directly bind Cav-1 in their GDP-

bound inactive state. The binding effectively suppresses GTPase activity

by inhibiting GDP/GTP exchange (Nunez-Wehinger et al., 2014). Small

GTP-binding proteins of the Ras superfamily also reside in caveolae

(Song et al., 1996). Other signalling molecules, which are recruited in their

inactive state are certain nonreceptor tyrosine kinases (e.g. c-Src, Fyn

and Lyn) (Li, Couet, & Lisanti, 1996) and eNOS, which are held by

caveolin in the off state (Busija, Patel, & Insel, 2017). Cav-1 has been

shown to regulate downstream effectors of different receptor tyrosine

kinases (RTKs). It has been reported, for example, that Cav-1 inhibits vas-

cular endothelial growth factor (VEGF) receptor 2 (VEGFR-2) signalling

through the formation of a molecular complex that rapidly dissociates

upon stimulation by VEGF, enabling Cav-1 to serve as a substrate for Src

kinases (Labrecque et al., 2003). Multiple downstream effectors of RTK

such as p42/44 MAPK localize to caveolae and are negatively regulated

by Cav-1. In addition, several mediators of Ca2 + signalling have been

found to be associated with caveolae and Cav-1 deficiency in endothelial

cells has been shown to impair plasma membrane Ca2 + entry

(Fujimoto, 1993). All these pathways have important implications for

diverse processes in endothelial cells including the response to shear/

mechanical stress, cellular proliferation/migration, regulation of vascular

permeability/tone and angiogenesis.

Recent studies have reported that Cav-1 deletion suppresses

atherosclerosis by attenuating LDL transcytosis. In particular, LDL

accumulation in atherosclerosis-prone areas was significantly reduced

in Cav-1 deficient mice (Ramírez et al., 2019). In the endothelial cell

luminal plasma membrane, the number of caveolae and the protein

level of Cav-1 could be locally affected by haemodynamic and

mechanical stress, thus favouring LDL infiltration in atherosclerosis-

prone regions (Boyd et al., 2003; Frank & Lisanti, 2006).

Both SR-B1 and activin receptor-like kinase 1 (ALK1) receptors,

which are localized within caveolae, are reportedly involved in LDL load-

ing and subsequent trafficking across endothelial cells. The

signalling cascade downstream these receptors which is involved in LDL

trafficking and exocytosis remains to be elucidated. Armstrong

et al. (2015) provided evidence that SR-B1 plays a role in LDL trans-

cytosis by showing that the infiltration of LDL in the subendothelial

space is inhibited in SR-B1 deficient mice. More recently, Huang

et al. (2019) reported that SR-B1 directly binds LDL and recruits the gua-

nine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)

through its cytoplasmic domain. DOCK4 functions as a guanine nucleo-

tide exchange factor (GEF) and participates in regulating the actin cyto-

skeleton (Gadea & Blangy, 2014). DOCK4 serves as GEF for the RHO

GTPase Rac1 that, in turn, is required to sustain SR-B1-mediated LDL

internalization and transport (Huang et al., 2019) (Figure 1). Mechanisms

involved in LDL-loaded caveolae movement and exocytosis at the bas-

olateral site are poorly understood. Caveolae-mediated endocytosis usu-

ally implies activation of Src-family tyrosine kinases which control

interactions of actin with Cav-1, thereby regulating caveolae detachment

and trafficking (Sverdlov, Shajahan, & Minshall, 2007). Conversely, fusion

of the vesicles with the basal membrane of endothelial cells may require

soluble N-ethylmaleimide sensitive factor attachment protein receptor

(SNARE) proteins (Jahn & Scheller, 2006). Interestingly, a higher SR-B1

expression level has been reported before lesion formation in

atherosclerosis-prone regions of mouse aorta and in human

atherosclerotic arteries compared to normal arteries. This observation

supports the notion that atherosclerosis is favoured by increased LDL

transcytosis in altered areas of the endothelial barrier rather than by

paracellular leaks. A second receptor involved in LDL transcytosis has

been identified in ALK1 that functions as a low affinity receptor for LDLs

in endothelial cells (Kraehling et al., 2016) (Figure 1). ALK1 is an endothe-

lial cell-restricted TGF β-type receptor that mediates LDL transcytosis

independently of its kinase activity. ALK1 is localized in endothelial

caveolae, where it functionally interacts with Cav-1 and co-localization

of the two proteins is drastically reduced under conditions of plasma

membrane cholesterol depletion (Santibanez et al., 2008).

Gerbod-Giannone et al. (2019) recently demonstrated that LDL

endocytosis is reduced in Cav-1 or in CD36-deficient endothelial cell,

suggesting that CD36 may be involved in the transcytosis of native

LDLs across the endothelium as well. However, Huang et al. (2019)

point to the role of the CD36 receptor in LDL uptake but not in

transcytosis, while identifying ALK1 and SR-B1 as the only receptors

involved in transcytosis.

While there is a considerable body of evidence supporting the

role of Cav-1, conflicting results are reported in the literature

concerning the type of receptors involved in LDL transcytosis. Since

LDL uptake and transcytosis are important contributors to
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atherosclerotic lesion development and receptors represent important

pharmacological targets, these discrepancies underscore the need to

further investigate in this area.

4 | THE INTERPLAY BETWEEN oxLDLs
AND CAVEOLAE/CAVEOLIN AND ITS
IMPACT ON ENDOTHELIAL DYSFUNCTION

Uptake and transcytosis of circulating oxLDLs, together with oxidation

of LDLs in the subendothelium, play an important role in the develop-

ment of atherosclerosis. Transcytosis of oxLDLs via caveolae was

suggested by Sun et al. (2010), who showed that two caveolae specific

inhibitors, filipin and nocodazole, decrease the uptake of oxLDLs by

human umbilical vein endothelial cells and inhibit their efflux. LOX-1 is

the major receptor for binding, internalization and degradation of

oxLDLs in endothelial cells. LOX-1 is naturally present in caveolae-

enriched lipid rafts (Matarazzo et al., 2012; Pirillo, Norata, &

Catapano, 2013) and its expression is up-regulated by oxLDLs (Li &

Mehta, 2000; Sawamura et al., 1997) (Figure 2). Interestingly, Cav-1

expression is also up-regulated by oxLDLs, while Cav-1 silencing results

in decreased LOX-1 expression upon oxLDL administration, suggesting

that caveolin participates in LOX-1 regulation. It is known that the bind-

ing of oxLDLs to LOX-1 stimulates the development of atherosclerosis

through different mechanisms involving:- (i) the activation of MAPK

proteins, which causes increased expression of adhesion molecules and

chemo-attractants; (ii) the stimulation of NADPH oxidase activity, lead-

ing to ROS production, oxidative stress and consequent reduction of

NO levels and (iii) the activation of the NF-κB signalling pathway,

resulting in cytokine and adhesion molecule production as well as

increased expression of LOX-1 itself, thus creating a vicious cycle of

proinflammatory signalling (Kattoor, Goel, & Mehta, 2019) (Figure 2).

More recently, the role of LOX-1 in oxLDL uptake has been

questioned by LOX-1 knockdown experiments in human aortic endo-

thelial cells. Whereas LOX-1 knockdown did not influence oxLDL

internalization, the silencing of LDL and CD36 receptors attenuated

oxLDL uptake (Huang et al., 2019). By contrast, a decrease in oxLDL

transfer was observed when the expression of SR-B1 was down-regu-

lated, thus suggesting that transcytosis of oxLDLs in endothelial cells

occurs via the SR-B1 receptor (Huang et al., 2019) (Figure 2).

F IGURE 2 Overview of the main interactions occurring between oxLDLs and caveolae and their impact on intracellular signalling in
endothelial cells (ECs). ① oxLDLs can be taken up by the EC through LOX-1 receptors to be degraded within lysosomes; oxLDLs up-regulate
both LOX-1 and Cav-1 expression, the latter being involved in LOX-1 up-regulation; oxLDLs by binding LOX-1 activate intracellular pro-

inflammatory signalling cascades leading to LOX-1 expression and NO overproduction; Cav-1, by binding eNOS reduces NO levels; ② oxLDLs
induce HMGB1 extracellular release which in turn activates TLR4-mediated pro-inflammatory signalling; HMGB1 increases Cav-1 and TLR4
expression, the latter being involved in Cav-1 induction;③ ox-LDLs bind SR-B1 receptors and mediate oxLDL transcytosis; ④ oxLDLs affect
membrane cholesterol content by exchanging oxysterols with cholesterol and by inducing cholesterol depletion/redistribution, thus affecting
caveolae signalling, including the eNOS/NO pathway. eNOS, endothelial NO synthase; HMGB1, high-mobility group box 1; LOX-1, lectin-like
oxidized LDL receptor 1; oxLDLs, oxidized LDLs; SR-B1, scavenger receptor class B type 1; TLR4, toll-like receptor 4; Cav-1, caveolin-1; SR-B1,
scavenger receptor class B type 1
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Caveolae are rich in free cholesterol and changes in the content

of this lipid can affect the morphology and signalling mediated by

caveolae. In this regard, Smart, Ying, Conrad, and Anderson (1994)

were the first to show that cholesterol oxidation results in the translo-

cation of caveolin from plasma membrane to Golgi with a modest

reduction in the number of caveolae. Subsequently, oxLDLs were

shown to deplete caveolar cholesterol and induce the transfer of

Cav-1 and eNOS to intracellular compartments, thus enabling NO

production (Blair, Shaul, Yuhanna, Conrad, & Smart, 1999) (Figure 2).

The mechanism through which oxLDLs may deplete cholesterol is

unknown. It has been hypothesized that oxLDLs may act as a

cholesterol acceptor to remove cholesterol from cellular membranes

rather than loading cells with cholesterol. A higher efflux of

cholesterol induced by oxLDLs has also been proposed, in a

mechanism that involves the binding of oxLDLs to CD36 receptors.

Finally, a redistribution of cholesterol between membrane-rich and

cholesterol-poor domains has been proposed (Shentu et al., 2010).

Even though the effects of oxLDLs on membrane cholesterol remain

elusive and controversial, the effects of oxLDLs on endothelial cell

function impairment are very similar to those observed after

experimental-induced cholesterol depletion, suggesting a common

mechanism of action (Levitan & Shentu, 2011).

In human umbilical vein endothelial cells, Zhu et al. (2005) demon-

strated that oxLDLs can inhibit the transcription of ATP-binding

cassette transporter-1 (ABCA1), which mediates the active efflux of

cholesterol and/or phospholipids. The regulation of ABCA1 by oxLDLs

occurs at the transcriptional level through the inhibition of endoge-

nous liver X receptor (LXR) ligand production. The role of caveolin in

cholesterol homeostasis is less clear. Overexpression of Cav-1 has

been shown to up-regulate ABCA1 expression and enhance choles-

terol efflux to extracellular effectors (Lin, Ma, Hsu, Lo, & Yang, 2007).

Conversely, Cav-1 knockdown has been associated with reduced free

cholesterol and increased esterified cholesterol, against minimal

effects on cellular cholesterol efflux (Frank et al., 2006). Whether

oxLDLs might affect cholesterol homeostasis by directly interfering

with Cav-1 levels is not known. Cav-1 seems to be regulated by

cellular cholesterol levels (Bist, Fielding, & Fielding, 1997) and caveolin

mRNA levels have been found to be up-regulated by free cholesterol

but down-regulated by oxysterols in fibroblast monolayers (Fielding,

Bist, & Fielding, 1997).

Finally, an exchange in free cholesterol between plasma LDL

particles and the luminal surface of endothelial cells is thought to

occur (Stender, 1982). In this context, oxLDLs have been shown to

induce an increase in endothelial stiffness by direct incorporation of

oxysterols into the endothelial plasma membrane (Figure 2) (Shentu

et al., 2012). It has been hypothesized that this event could result in

the disruption of the structure of lipid-ordered domains, including

caveolae. Moreover, there is evidence that oxysterols interact with

Cav-1 (Sleer, Brown, & Stanley, 2001). Possibly by interacting with

caveolin, 7-ketocholesterol has been shown to increase the activity of

src kinases (Myers & Stanley, 1999). Whether this effect influences

endothelial cell dysfunction and/or LDL transcytosis has not been

elucidated. Thus, although the molecular mechanisms through which

oxLDLs lead to endothelial dysfunction need to be fully elucidated, a

growing body of evidence points to the important role of direct/

indirect disruption of cholesterol homeostasis, which in turn may

affect caveolae function and modulate signalling pathways involved

in atherosclerosis.

5 | oxLDLs INFLUENCE CAVEOLAE/Cav-1
SIGNALLING

In endothelial cells, caveolae sense and transduce haemodynamic

changes into biochemical signals to regulate vascular function.

Caveolae compartmentalize signalling proteins in the plasma

membrane through direct/indirect interactions with Cav-1 allowing to

the fine-tuning the magnitude of signalling cascades.

Within caveolae, Cav-1 functions as a scaffold for several

proteins such as eNOS (Shaul, 2003; Williams & Lisanti, 2004) and

NADPH oxidase (Chen et al., 2014; Patel & Insel, 2009) two enzymes

that have a pivotal role in endothelial dysfunction.

eNOS are a family of enzymes that produce NO using L-arginine

as substrate. Three NOS isoforms have been identified:- neuronal

NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2) and eNOS (NOS3),

all of which differ slightly in terms of their function and structure.

eNOS is constitutively expressed in endothelial cells and the produced

NO regulates vascular tone and inhibits platelet aggregation and

neutrophil-endothelium interaction (Brunner et al., 2003). eNOS

exerts a slow basal activity of NO generation, which in endothelial

cells is enhanced by agonists such as ACh, bradykinin and histamine.

These agonists increase intracellular calcium, whereas shear stress

and hormones increase eNOS activity independently of changes in

intracellular calcium (Chen et al., 2018).

eNOS is abundantly represented in endothelial cells and is located

in the plasma membrane in close association with Cav-1, Golgi appa-

ratus, cytosol, cytoskeleton and even in the nucleus. However, eNOS

is mainly active in the plasma membrane (Fulton et al., 2002).

Co-localization and co-immunoprecipitation experiments have shown

that the binding of eNOS to Cav-1 inhibits enzyme activity, resulting

in reduced NO production (Bucci et al., 2000).

In this context, oxLDLs cause selective depletion of cholesterol

within the caveolae resulting in eNOS intracellular redistribution and

an attenuated capacity to activate eNOS enzyme (Shaul, 2003)

(Figure 2). In addition, oxLDLs promote the expression of several pro-

inflammatory mediators, including iNOS, presumably via the MAPKs/

NF-κB pathway. This leads to an imbalance between eNOS and iNOS

activity with the production of high amounts of NO, which acts as a

free radical with bactericidal and inflammatory function (Figure 2)

(Gliozzi et al., 2019). The production of high NO concentrations by

iNOS causes the generation of high levels of peroxynitrite which has

been correlated with apoptosis in endothelial cells (Salvemini, Kim, &

Mollace, 2013). Gliozzi et al. suggested that this inflammatory condi-

tion promotes the nuclear translocation of NF-κB switching the sig-

nalling from the pro-survival to the pro-apoptotic (Gliozzi et al., 2019;

Mollace et al., 2015). In agreement with these findings, we reported
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that endothelial cell exposed to high concentrations of secosterol B, a

product of cholesterol oxidation, undergo apoptosis via a pathway

that involves early phosphorylation of the alpha subunit of eukaryotic

translation initiation factor 2 (eIF2α) and NF-κB activation (Luchetti

et al., 2019). Potje, Grando, Chignalia, Antoniali, and Bendhack (2019)

recently reported that cholesterol depletion reduced the number of

caveolae and promotes eNOS uncoupling which results in free radical

production at the expense of NO generation. NO is a competitive

inhibitor of oxygen in the cytochrome oxidase present in

mitochondrial complex IV leading to O2 formation. The authors

demonstrated that neither siRNA-mediated eNOS knockdown nor

pharmacological inhibition of eNOS are able to block the effect of

Cav-1 knockdown on increased ROS production suggesting a direct

effect of Cav-1 on mitochondrial oxidative metabolism (Shiroto

et al., 2014). In addition, Cav-1 deficiency impairs mitochondria

function by promoting an increased influx and accumulation of free

cholesterol in mitochondrial membranes. This phenomenon affects

the efficiency of the respiratory chain and the intrinsic antioxidant

defence leading to accumulation of ROS resulting in cell death (Bosch

et al., 2011).

Interestingly, in cells exposed to LPS, Cav-1 is phosphorylated

at Tyr (14) promoting Cav-1 and Toll-like receptor 4 (TLR4) interac-

tion and, thereby, TLR4 activation of MyD88, leading to NF-κB acti-

vation and the generation of proinflammatory cytokines (Jiao

et al., 2013). Notably, the effects observed in LPS-treated cells are

mimicked by high-mobility group box 1 (HMGB1), a protein known

to accumulate in atherosclerotic lesions and to mediate vascular

inflammation. TLR4 activation by HMGB1 in human aortic endothe-

lial cells has been demonstrated by Yang, Han, Kim, Lee, and

Park (2016), as shown by the expression of its downstream partner

MyD88. Treatment with recombinant HMGB1 was found to

increase ERK phosphorylation and nuclear translocation of NF-κB.

Thus, HMGB1-induced activation of TLRs initiates pro-inflammatory

signalling pathways and mediates the release of cytokines and

chemokines, thus contributing to vascular inflammation and endo-

thelial dysfunction (Jiao et al., 2013). While there is evidence that

oxLDLs can promote cytoplasmic relocation and extracellular release

of HMGB1 by endothelial cells (Yu et al., 2012; Zhou, Zhu, Hu, &

Shu, 2016) (Figure 2), the role of caveolin in HMGB1-induced TLR4

activation is not clear. HMGB1 increases endothelial cell Cav-1 and

TLR4 protein expression, suggesting that TLR4 and Cav-1 may act

together. These proteins colocalize in human umbilical vein endothe-

lial cells and knockdown of TLR4 abrogates Cav-1 induction (Jiang

et al., 2014). More recently, Lin et al. (2018) provided evidence that

oxLDLs promote phosphorylation of Cav-1 in human umbilical vein

endothelial cells and increase oxLDL uptake. Intracellular accumula-

tion of oxLDLs induces NF-κB activation and HMGB1 translocation

from the nucleus to the cytoplasm resulting in cell apoptosis. NF-κB

activation also facilitates Cav-1 phosphorylation and HMGB1

expression. Considering that HMGB1 enhances oxLDL uptake

through induction of LOX-1 (Lee et al., 2012), it is plausible that a

tight crosstalk between HMGB1, TLR4, NF-κB, LOX-1 and caveolin

may occur in response to oxLDLs.

Only a few studies on the impact of oxLDL/caveolae interaction

on caveolae/Cav-1-mediated signalling are reported in the literature.

Therefore, more research focusing on caveolae/Cav-1 and oxLDL

signal transduction is urgent in order to better understand the mecha-

nism of atheroma formation and find new targets of intervention.

6 | CAVEOLAE AND Cav-1 AS DRUGGABLE
TARGETS IN oxLDLs-INDUCED
ENDOTHELIAL DYSFUNCTION

The evidence that caveolae and Cav-1 are involved both in oxLDL

endocytosis and oxLDL/LDL transcytosis makes them important tar-

gets for therapeutic interventions in atherosclerosis. The proof of

concept comes in Cav-1 knockout studies and it is further supported

by studies on the molecular mechanisms of drugs already in clinical

use. Statins (3-hydroxy-3-methylglutaryl CoA reductase inhibitors) are

the first-line choice for lowering total and LDL cholesterol levels in

the atherosclerotic patients. Statins disrupt cholesterol-rich

membrane microdomains leading to LOX-1 receptor disorganization

at the plasma membrane and impairing oxLDL binding and internaliza-

tion. Moreover, statins reduce transcytosis, probably by decreasing

the number of caveolae in the cell membrane. By decreasing plasma

membrane caveolin levels, they also stimulate endothelial NO produc-

tion (Feron, 2005). However, statins exert effects which are inde-

pendent of their plasma cholesterol lowering properties. In

particular, statins inhibit the synthesis of farnesylpyrophosphate and

geranylgeranylpyrophosphate, which cause isoprenylation and thus

membrane attachment of small GTPases, including those which are

involved in Cav-1 signal transduction and transcytosis (Sessa, 2001).

Among direct caveolin-modulating strategies, a particularly

effective intervention involves the use of cell permeable peptides

encompassing the Cav-1 scaffold domain. In vitro and in vivo studies

have demonstrated that these peptides allow caveolin to uncouple

from the signalling machinery in the inner plasma membrane

(Navarro, Borroto-Escuela, Fuxe, & Franco, 2014; Sellers, Trane, &

Bernatchez, 2012). On the other hand, loss of Cav-1 has been shown

to cause ERK1/2 hyperactivation resulting in ventricular hypertrophy

(Zhao et al., 2002). In addition, Cav-1 is implicated in cancer, both as a

promoter and a suppressor of this disease. Thus, due to the multiple

implications of caveolae and caveolins in several cellular processes

and cell types, caveolin targeted therapeutics require further develop-

ment to ensure specificity before clinical applicability can be attained.

To this end, it will be important to develop highly specific targets

within Cav-1 signalling.

7 | CONCLUSIONS

It is widely accepted that oxLDLs play a pivotal role in endothelial

dysfunction and atheroma formation; the mechanisms involved are

less clear. Recent research suggests that oxLDLs may affect caveolae

architecture and function in a complex interplay which leads to
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endothelial dysfunction. Caveolae are widely expressed on endothelial

cells where they act as gatekeepers for LDL infiltration into the intima.

Subendothelial accumulation and subsequent oxidation of LDL repre-

sent key events in atherogenesis. LDL transcytosis in endothelial cells

occurs via caveolae and SR-B1 and ALK1 are the main receptors that

are involved. On the other hand, oxLDLs are also present in circulation

from where they can be taken up at the endothelial cell interface by

LOX-1 receptors, inducing the activation of many signalling pathways

and leading to the establishment of a pro-inflammatory and pro-

coagulant state in endothelial cells. Although SR-B1 has recently been

shown to be involved in oxLDL transcytosis, excluding a role for

LOX-1, crosstalk between caveolae and LOX-1 seems to exist. Firstly,

LOX-1 activity depends on an intact caveolae system. Secondly, its

activity regulates the expression of the caveolar protein Cav-1 and

vice versa. On the other hand, caveolae are important for signal trans-

duction as they can concentrate and/or segregate not only receptors

but also signalling intermediates. Their function is strictly correlated

to their rich cholesterol composition, which allows a certain degree of

plasticity. Oxidized LDLs and oxysterols have been reported to affect

the content and/or the distribution of cholesterol in caveolae. This

event is thought to result in aberrations in signalling cascades, which

are important in the development of atherosclerosis, but such aberra-

tions have yet to be established. The ability of oxLDLs to act as

cholesterol “loaders” as well as “depletors”/plasma membrane

“disruptors” highlights the dichotomy concerning our understanding

of how oxLDLs impair endothelial function. To reconcile these appar-

ently opposing perspectives, it could be speculated that in the early

phases of the atherogenic process, low levels of circulating oxLDLs

could promote cholesterol loading. By contrast, in advanced phases,

high levels of circulating oxLDLs, released from atherosclerotic

plaques, may affect caveolae lipid composition and/or functions. Thus,

even though a large body of evidence points to an interplay between

caveolae and oxLDLs, as one of the mechanisms underlying oxLDL-

induced endothelial cell dysfunction, some aspects of this interaction

remain contradictory and the information fragmentary.

Future research is expected to shed light on the connections

between these players, focusing on the crosstalk between LDL

receptor- and caveolae-mediated signalling and how this may be

affected by changes in membrane cholesterol. This is a relevant area

of research because of the therapeutically implications of targeting

these pathways.

7.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOLOGY

http://www.guidetopharmacology.org and are permanently archived in

the Concise Guide to PHARMACOLOGY 2019/20 (Alexander

et al., 2019a; Alexander et al., 2019b; Alexander et al., 2019c).
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