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Abstract
We investigate the solvability of the Byzantine Reliable Broadcast and Byzantine Broadcast Channel
problems in distributed systems affected by Mobile Byzantine Faults. We show that both problems
are not solvable even in one of the most constrained system models for mobile Byzantine faults
defined so far. By endowing processes with an additional local failure oracle, we provide a solution
to the Byzantine Broadcast Channel problem.
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1 Introduction

Byzantine Reliable Broadcast (BRB) is a fundamental primitive in fault-tolerant distributed
systems ensuring that all correct processes eventually deliver the same message from a
defined sender regardless of its correctness. Defined by Bracha [12] as a building block for
a Byzantine-tolerant consensus protocol, BRB has been widely adopted and investigated
since then, thanks to its ability to prevent arbitrarily (i.e., Byzantine) faulty processes from
equivocating by sending different messages to different processes. It has been introduced
as a one-shot primitive that allows a pre-defined process in the system to spread a single
message and generalized as a Byzantine Broadcast Channel (BBC) primitive [14] to allow
every process to spread an arbitrary number of messages. BRB has been used to construct
several fault-tolerant distributed solutions, solving more complex problems such as register
abstractions, consensus problems, and distributed ledgers. Thus, it has been analyzed in
the literature from various perspectives, such as minimizing bandwidth consumption [2], or
latency [20, 1].

A fundamental perspective to consider is the investigation of the feasibility of BRB and
BBC when assuming no permanent failures. In this paper, we are interested in analyzing
BRB and BBC solvability considering a dynamic process failure model, i.e., a model in which
every process may potentially fail and recover, causing a potentially continuous change
in a process’s failure state throughout the system’s lifetime. Some examples of systems
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18:2 Reliable Broadcast Despite Mobile Byzantine Faults

considering dynamic process failures are crash-recovery systems [28, 5], self-stabilizing systems
[15, 16], and Mobile Byzantine tolerant systems [17, 6]. In this work, we consider the Mobile
Byzantine Failure (MBF) model, in which all processes may alternate between periods of
correct behavior and periods of arbitrary behavior (i.e., Byzantine). Indeed, the failure state
of processes is governed by an external attacker capable of compromising and controlling
a set of processes in the system, and such a set is dynamic. The MBF model captures
some of the features of the most frequent attacks targeting distributed systems and related
countermeasures, where the process’s faults are primarily due to external malicious causes
rather than internal misbehavior, and tools such as software rejuvenation techniques [21],
intrusion detection systems [23], and trusted execution environments [29] are available.

Despite several fundamental distributed problems have been analyzed in the literature
considering the MBF model (i.e., Byzantine agreement [17, 6], approximate Byzantine
agreement [32, 9], and registers emulation [8]), to the best of our knowledge the BRB problem
has never been studied so far in such settings.

Thus, our objective in this paper is the investigation of BRB and BBC in the presence of
MBFs. In particular, our contributions are:
1. we formalize the Mobile Byzantine Reliable Broadcast (MBRB) and Mobile Byzantine

Broadcast Channel (MBBC) as a natural extension of the BRB and BBC specifications
to deal with MBFs. Indeed, the standard specifications for BRB and BBC primitives
consider a static failure model, where every process is either permanently correct or faulty;

2. we prove several impossibility results, mainly showing that MBRB and MBBC cannot
be implemented without additional knowledge provided by a powerful oracle reporting
about processes’ failure state;

3. we introduce such a powerful oracle and provide a protocol for solving MBBC in a
synchronous round-based system;

4. we analyze a weaker MBBC specification that can be realized without the oracle.

Let us note that being a natural extension of BRB and BBC primitives, the MBRB
and MBBC primitives prevent faulty processes from equivocating, namely from sending
different information to different processes, and can be used as building block for other fault-
tolerant primitives. For example, MBRB/MBBC primitives can extend mobile Byzantine
fault-tolerant register abstractions to support Byzantine clients [8]. Our work not only offers
an analysis of a specific problem but also provides several insights for other distributed
system problems where the failure state of a process is dynamic and partially or entirely
unknown. We consider relatively strong assumptions in our system model, the same as those
considered in related work, in order determine fundamental solvability conditions. Relaxation
of most of these assumptions has already been partially investigated [11].

The rest of the paper is structured as follows. After reviewing related work on imple-
mentations of the BRB primitive and contributions considering mobile Byzantine failures in
Section 2, we formalize the system model in Section 3. We introduce the new specifications
for the Mobile Byzantine Reliable Broadcast and the Mobile Byzantine Broadcast Channel
problems in Section 4. Section 5 presents some impossibilities for the specifications we defined.
To overcome some of the identified impossibilities and solve the Mobile Byzantine Broadcast
Channel problem, we consider a powerful oracle, we propose a protocol in Section 6, and
we analyze a weaker Mobile Byzantine Broadcast Channel specification that is realizable
without any oracle in Section 7. Due to space constraints, some of the proofs are delegated
to the companion technical report [7].
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2 Related Work

The Byzantine Reliable Broadcast (BRB) abstraction has been introduced by Bracha [12] as
a building block for a Byzantine-tolerant consensus protocol in a distributed system where
at most f processes are permanently arbitrary (Byzantine) faulty. Thanks to its ability to
guarantee agreement among correct processes over the set of delivered messages, a BRB
primitive has been used as a building block from several fault-tolerant solutions, and has
been intensely investigated under several system and failure models, with the final aim of
extending its power and optimizing different performance metrics.
Imbs and Raynal [20] proposed a protocol that improves latency (in terms of the number
of rounds of message exchanges) compared to Bracha. Guerraoui et al. [19] relaxed the
BRB specification, allowing each property to be violated with a fixed and arbitrarily small
probability. Backes and Cachin [3] and Raynal [26] discussed extensions of the BRB prob-
lem; the former assuming both Byzantine faulty processes and fail-stop failures, the latter
distinguishing between two different kinds of Byzantine behaviors, i.e. those attempting
to prevent the liveness and those attempting to prevent the safety of the BRB. Recently,
Guerraoui et al. [18] and Li et al. [22] extended BRB to distributed systems with dynamic
membership: in any given view (i.e. set of participating processes, governed by the processes
themselves), the set of Byzantine processes remains the same; however, two consecutive
views allow for different sets of Byzantine processes. By contrast, our work considers a static
system membership (i.e., a fixed set of processes participating in the protocol) but a dynamic
failure model, where Byzantine processes may change (that is, recover, and get Byzantine
again) during the same view. To the best of our knowledge, all existing BRB protocols
that assumed arbitrary process failures, except the aforementioned works by Guerraoui et
al. [18] and Li et al. [22], considered a static failure model i.e., they assumed that the set of
Byzantine processes does not change.

Mobile Byzantine Failure (MBF) models have been introduced to capture various types
of faults, such as external attacks, virus infections, or even arbitrary behaviors caused by
software bugs, using a single model encompassing detection and rejuvenation capabilities. In
all these models, failures are abstracted by an omniscient adversary that can control up to f

mobile Byzantine agents. Every agent is located in a process and makes it Byzantine faulty
until the omniscient adversary decides to move it to another process. The main differences
between existing MBF models are in the power of the omniscient adversary (i.e., when it
can move the agents) and in the awareness that every process has about its failure state.
Most MBF models considered round-based computations and can be classified according
to Byzantine mobility constraints: under constrained mobility [13] the adversary can move
agents only when protocol messages are sent (similarly to how viruses would propagate),
while under unconstrained mobility [4, 6, 17, 24, 31, 27] agents do not move with messages
but rather during specific phases of the round. More in detail, Reischuk [27] considered
malicious agents stationary for a given period; Ostrovsky and Yung [24] introduced the
notion of mobile viruses and defined the adversary as an entity that can inject and distribute
faults; finally, Garay [17], Banu et al. [4], Sasaki et al. [31], and Bonnet et al. [6] considered
that processes execute synchronous rounds and mobile agents can move from one process to
another in a specific phase of the round, which subsequently affects each process’s ability
to adhere to the algorithm. As a result, the set of Byzantine faulty processes at any given
moment is limited in size; however, its composition may change from one round to the
next, and the impact of past compromises may linger if not properly addressed by the
protocol. The aforementioned works [17, 4, 31, 6] also differ due to the assumption about
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18:4 Reliable Broadcast Despite Mobile Byzantine Faults

the knowledge that processes have about their previous infection. In the Garay model [17],
a process can detect its infection after the agent leaves it. Conversely, Sasaki et al. [31]
investigated a model where processes cannot detect when agents leave. Finally, Bonnet et
al. [6] considered an intermediate setting where not faulty processes control the messages
they send (in particular, they send the same message to all destinations, and they do not
send spurious information). Bonomi et al. [10, 11] decoupled algorithm rounds from Mobile
Byzantine agent movement (round-free model). The problems analyzed under MBF models
are Byzantine agreement [17, 4, 31, 6], approximate Byzantine agreement [32, 30, 9], and
Byzantine-tolerant registers [10, 8, 11]. To the best of our knowledge, no efforts have been
made to investigate the BRB problem in the presence of MBFs. All existing works that
assume MBFs rely on some kind of best-effort communication subsystem (i.e., no guarantees
exist when a process is controlled by a Mobile Byzantine agent), potential equivocations and
omissions introduced by faulty processes are directly addressed by the main investigated
primitive (e.g., consensus, register). The existence of a BRB primitive can simplify the
definition of other mobile Byzantine fault-tolerant primitives, similar to the case of the static
failure model [12].

3 System Model

We consider a distributed system composed of a set of n processes Π = {p1, p2 . . . pn}, each
associated with a unique identifier.

Processes communicate through message passing. We assume that a process can commu-
nicate with any other process through a reliable, authenticated, point-to-point link abstrac-
tion [14]. This means that messages sent over such channels cannot be altered, dropped,
or duplicated, and the identity of the sender cannot be forged. A reliable authenticated
point-to-point link abstraction exposes two operations: (i) P2P.send(prcv, m) which sends
the message m to the receiver process prcv, and (ii) P2P.deliver(psnd , m) which notifies the
reception of the message m from a sender process psnd .

We measure the time according to a fictional global clock T (not accessible to processes)
spanning over the set of natural numbers N. We refer to the starting time of the system
as t0, the i-th time instant since the beginning of the execution as ti, and a period of time
between time tb and te as Tb,e := [tb, te) : tb, te ∈ T; tb < te.

Each process executes a distributed protocol P consisting of a set of local algorithms.
Each algorithm in P is represented by a finite state automaton whose transitions correspond
to computation and communication steps. A computation step denotes a computation
executed locally by a given process, while a communication step denotes the sending or
receiving of a message. Computation steps and communication steps are generally called
events. Each process maintains a set of variables. This set and the current value of those
variables denote the state of a process.

▶ Definition 1 (Local Execution History). A local execution history is an alternating sequence
s0, e0, s1, e1, . . . of states and events of a process pi, such that state sj+1 results from state
sj by executing event ej.

We assume that the local algorithms composing P are stored in a tamper-proof read-only
memory.

Processes may fail and we assume that they are affected by Mobile Byzantine Failures
(MBF). That is, we assume the existence of an omniscient adversary that controls up to
f > 0 mobile Byzantine agents and that can “move” such agents from one set of processes to
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another. When the adversary places a Byzantine agent on a process pi, the agent takes control
of pi, letting it behave arbitrarily. For example, pi may omit to send/receive messages, alter
the content of messages, alter its process state regardless of its local algorithm, and execute
arbitrary code. However, we assume that the mobile Byzantine agents cannot compromise
the code stored in the tamper-proof memory. Thus, when the Byzantine agent leaves pi, pi

resumes executing its local algorithm correctly (albeit from a possibly corrupted state). We
assume that the adversary can move each mobile agent independently of the others. Still,
any agent must remain on a process for a period of time lasting at least ∆s ∈ Q+ (rational
positive numbers), i.e., once arrived, an agent compromises a node for at least ∆s consecutive
time units, and when ∆s < 1 we have that an agent can move multiple times in the same
time unit. As an example, if ∆s = 2 we have that every mobile Byzantine agent must remain
on the same process for at least 2 consecutive time units, while ∆s = 1

2 means that the agent
may move

⌈
1

∆s

⌉
= 2 times in a time unit and compromise

⌈
1

∆s

⌉
= 2 different processes in

the same time unit.
Let us note that, in the MBF model, no single process is guaranteed to remain correct
forever and we may have processes that alternate between correct and incorrect behavior
infinitely often. This fundamental difference from the classical static Byzantine failure model
commands to redefine the notion of correct and faulty processes (i.e., the process failure
states).

▶ Definition 2 (Faulty process). A process pi is said to be faulty at time tk if it is controlled
by a mobile Byzantine agent at time tk. By extension, if at each time between tb and te,
process pi is faulty, then pi is faulty during the period Tb,e.

When a process pi is faulty, it may execute a protocol P ′ ̸= P, and its local state may be
altered arbitrarily.

We denote by B(t) the set of faulty processes at time t and by B(Tb,e) the set of faulty
processes during the whole period Tb,e (i.e., B(Tb,e) =

⋂
i B(ti) for b ≤ i < e).

▶ Definition 3 (Correct process). A process pi is correct when it is not faulty, that is, pi is
correct at time tk if it is not controlled by a Byzantine agent at time tk. Similarly, a process
pi is correct in the period Tb,e if it remains correct between times tb and te.

Let us remark that when a process pi is correct, it executes P but potentially it may start
its execution from a compromised state (due to a previous corruption performed by a mobile
Byzantine agent).
We denote by C(tk) the set of correct processes at time tk and by C(Tb,e) the set of correct
processes throughout the period Tb,e (that is, C(Tb,e) =

⋂
i C(ti) for b ≤ i < e).

Note that, due to the mobility of Byzantine agents, every process may potentially alternate
between correct and faulty states infinitely often. To this aim, we also introduce the notion
of infinitely often correct processes:

▶ Definition 4 (∆c-Infinitely often correct process). Let ∆c ∈ N+. A process pi is ∆c-infinitely
often correct if, for every time tj, there exists a following period Tb,e lasting at least ∆c

where pi is correct. Formally: ∀tj ∈ T, ∃tb, te such that tb > tj , te − tb ≥ ∆c, pi ∈ C(Tb,e).

Informally, the notion of ∆c-infinitely often correct process captures the possibility that
a process is not permanently faulty, but correct for at least ∆c units of time after mobile
Byzantine agents have left it.

OPODIS 2023
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In the following, we will consider several alternative settings for our system model:
system timing assumptions: we consider either a synchronous (SYNC) or an asyn-
chronous (ASYNC) system. When considering a synchronous system, we assume that there
is an upper bound on the time required to perform local computation on the processes
and an upper bound on the time required by a message to be delivered via a P2P link,
both of them known by all processes. In addition, we assume that the computation
evolves in sequential synchronous rounds r1, r2, . . . , rj , . . . . Every round rj is divided
into three phases: (i) send where processes transmit messages to their intended receivers,
(ii) receive where processes collect messages sent during the send phase of the current
round, and (iii) compute where processes process received messages, and prepare those
that need to be sent in the following round. Contrarily, in an asynchronous setting, we
are not assuming any upper bound, and the computation progresses as soon as an event
is generated by a process.
mobile Byzantine agent synchronization: we consider three different types of
mobility with different degrees of synchronization between mobile Byzantine agents. In
particular, we will consider movement that are either synchronized (S-MOB+), synchronous
(S-MOB), or asynchronous (A-MOB) that abstract MBF models existing in the literature. In
the A-MOB model, mobile Byzantine agents move independently and once the movement
occurs, the agent remains at the destination node for at least ∆s, with ∆s unknown to
the processes (see ITU model in [10]). In the S-MOB model, mobile Byzantine agents move
independently, and, also in this case, once the movement happens the agent remains
on the destination node for at least ∆s. Unlike the previous case, ∆s is known to the
processes (see the ITB model in [10]). The S-MOB+ model is a particular case of the S-MOB
model specific for synchronous systems where the computation evolves in synchronous
rounds. Indeed, in this case ∆s is expressed in terms of round, and mobile Byzantine
agents can move only between two consecutive rounds, i.e. after the computation phase
of a round ri and before the send phase of round ri+1

1(see Garay’s MBF model [17]). Let
us stress that in the S-MOB+ setting every process is either faulty or correct for an entire
round. Therefore, for ease of presentation, we say that a process is faulty or correct in the
round rk in the S-MOB+ systems and extend the notation of C(t) and B(t) accordingly,
that is, with C(rk) and B(rk), respectively, referring to the sets of correct and faulty
processes in the round rk. Furthermore, we measure the time with the number of rounds.
failure awareness: we assume that every process pi is either aware or unaware about a
mobile Byzantine agent moving away from pi. We abstract this knowledge by introducing
two different local oracles that reveal information to process pi. Specifically, we consider:
basic failure awareness (OBFA) and full failure awareness (OFFA). In the OBFA case, a
process pi knows when (i.e., in which time unit) a mobile agent moves away from pi; in
the OFFA case, a processes pi additionally know when the agent arrived to pi (i.e., pi

know the entire period Tb,e in which it was faulty).
More formally:

▶ Definition 5 (Basic Failure Awareness Oracle OBFA). If a mobile Byzantine agent leaves
from a process pi at time tj, then the failure awareness oracle OBFA generates a cured()
event on pi at time tj+1.

Observe that OBFA informs pi as soon as pi becomes free from mobile Byzantine agents, and
thus allows pi to take corrective actions (e.g. to avoid spreading compromised information).

1 The agents’ movements are thus synchronized with the synchronous rounds.
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However, OBFA does not provide any information about the length of the period pi was
faulty.

▶ Definition 6 (Full Failure Awareness Oracle OFFA). If a mobile Byzantine agent takes
control of a process pi at time tj and leaves pi at time tk, then the full failure awareness
oracle OFFA generates a cured() event on pi at time tk+1, and returns the time label tj

when invoking operation faulty_at().

For the sake of notation, we refer to setting where no oracle is available as ONFA. Let us
remark that both OBFA and OFFA are local oracles, i.e., they provide information to the
actual process where the events occurred; thus, a process pi is not aware of the failure state
of any other process pj .

Note that the assumptions considered in our system model are equivalent to or less
constrained than those in other works dealing with mobile Byzantine agents [17, 4, 31, 6].
The only exceptions are the OFFA oracle and the notion of ∆c-infinitely often correct process,
which have not been considered before.

In the remainder of the paper, we will characterize the specific setting considered in
terms of system timing assumptions, agent synchronization, and failure awareness by
specifying a triple ⟨α, β, γ⟩ where α ∈ {SYNC, ASYNC}, β ∈ {A-MOB, S-MOB, S-MOB+} and
γ ∈ {OBFA, OFFA, ONFA}. With slight abuse of notation, we will use ” ∗ ” in a triple when
the specific dimension is not relevant to prove our claims.

4 Mobile BRB and BBC Specification

Informally Byzantine Reliable Broadcast (BRB) [12, 14] is a communication primitive that
enables all processes of a distributed system to agree on the delivery of a single message dis-
seminated by a pre-defined process called the source, while the Byzantine Broadcast Channel
(BBC) [14] primitive extends BRB allowing all processes to disseminate an arbitrary number
of messages so that all correct processes eventually deliver the same set of messages 2.

Let us note that in the original BRB and BBC specifications the source is either al-
ways correct or always faulty in a given execution. Conversely, in our settings, it is pos-
sible that the source of a message changes its failure state multiple times (even during
a single broadcast instance) making the original specification no more suitable. Thus,
we extend the BRB and BBC, by formalizing the Mobile Byzantine Reliable Broadcast
(MBRB) and the Mobile Byzantine Broadcast Channel (MBBC) problems to capture chal-
lenges imposed by mobile Byzantine faults. We aim to specify two communication primi-
tives accessible by every process and exposing the MBRB/MBBC.Broadcast(m) and
MBRB/MBBC.Deliver(s,m) operations, where m is a message and s is a process identi-
fier. We say that a process pi “MBRB/MBBC-broadcasts a message m” when it executes
MBRB/MBBC.Broadcast(m), and pi “MBRB/MBBC-delivers a message m from ps”
when pi generates the MBRB/MBBC.Deliver(s, m) event. Similarly to other communi-
cation primitives, the MBRB/MBBC-broadcast operation is triggered to disseminate
a message, while MBRB/MBBC-deliver notifies message deliveries. We associate two
additional parameters to both primitives, ∆b ∈ N+ and ∆c ∈ N+, characterizing the length
of two periods (detailed in the specifications’ properties). We use the character “*” in our
specifications when the actual value of the reference parameter is irrelevant.

2 The formal specification of BRB and BBC primitives are provided in the Appendix A.
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18:8 Reliable Broadcast Despite Mobile Byzantine Faults

Informally, a MBRB(∆b, ∆c) communication primitive guarantees that, given a source
process ps and a message m generated by ps while it is correct (for at least ∆b time units),
m is reliably delivered by any ∆c-infinitely often correct process pj in a period where pj is
correct. Similarly to BRB, this primitive is specified by considering an instance for every
message generated by the identified source. More formally, a MBRB(∆b, ∆c) communication
primitive must guarantee the following properties:

(∆b, ∆c)-Validity: If there exists a period Ti,j lasting at least ∆b where a process ps is
correct in Ti,j and executes MBRB.Broadcast(m), then at least one ∆c-infinitely often
correct process pd eventually executes MBRB.Deliver(s,m) while correct.
No duplication: Every process pd executes MBRB.Deliver(s,∗) at most once when
correct, namely pd MBRB-delivers at most one message from ps among all times tk ∈ T
such that pd ∈ C(Tk,k+1).
∆b-Integrity: If a process pd is correct at time tk and executes MBRB.Deliver(s,m),
then either ps was correct in Ti,j = [ti, ti+∆b

), with ti ≤ tk, and executed
MBRB.Broadcast(m) at time ti, or ps was faulty at some ti ≤ tk.
Consistency: If some process is correct at time tk and executes MBRB.Deliver(s, m),
and another process is correct at time tl and executes MBRB.Deliver(s, m′), then
m = m′.
∆c-Totality: If some process is correct at time tk and executes MBRB.Deliver(s, ∗),
then every ∆c-infinitely often correct process eventually executes MBRB.Deliver(s, ∗).

The MBBC communication primitive is the natural extension of the BBC and its specifi-
cation extends the one of the MBRB. In particular, the MBBC primitive guarantees that
multiple messages generated by a source process (while it is correct for at least ∆b consecutive
time units) will be eventually delivered by any process pj that is ∆c-infinitely often correct
in a period in which pj is correct. More formally, a MBBC(∆b,∆c) communication primitive
must guarantee the following properties:

(∆b, ∆c)-Validity: If there exists a period Ti,j lasting at least ∆b where a process ps is
correct in Ti,j and executes MBRB.Broadcast(m), then at least one ∆c-infinitely often
correct process pd eventually executes MBRB.Deliver(s,m) while correct.
No duplication: Every process pd executes MBBC.Deliver(s,m), with message m and
source s, at most once when correct, namely, it MBBC-delivers a message m from ps at
most once among all times tk such that pd ∈ C(Tk,k+1).
∆b-Integrity: If a process pd is correct at time tk and executes MBRB.Deliver(s,m),
then either ps was correct in Ti,j = [ti, ti+∆b

), with ti ≤ tk, and executed
MBRB.Broadcast(m) at time ti, or ps was faulty at some ti ≤ tk.
∆c-Agreement: If some process is correct at time tk and executes MBRB.Deliver(s, m),
then every ∆c-infinitely often correct process eventually executes MBRB.Deliver(s, m).

Note that the specifications rule the MBRB/MBBC.Deliver(s, m) operations in times
when processes are correct. Operations executed when a process is faulty cannot be controlled
and thus are not relevant to the specification. Furthermore, note that when a process is
controlled by a mobile Byzantine agent, it may execute arbitrary code and alter its local
memory. Such a process has no information about what occurred when compromised (except
the fact of being previously compromised in case an oracle is available). This makes the
implementation of the presented communication primitives particularly challenging and will
lead to proving several impossibility results that are specific to mobile Byzantine faults in
the following sections.
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5 Impossibility Results

This section presents several impossibility results for the MBRB and MBBC problems. In
particular, Theorems 7 and 9 prove the impossibility of solving both MBRB and MBBC if
the system is asynchronous, or if the agents’ movements are asynchronous. Then, assuming a
synchronous system and synchronized agents, Theorems 10 and 12 state the impossibility of
solving MBRB with the strongest failure oracle we considered, OFFA, and the impossibility
of solving MBBC with the weaker failure oracle, OBFA. These latter impossibilities arise
from the fact that a correct process cannot infer other processes’ failure state from their
behavior. Thus, they cannot distinguish messages that must be delivered from those that
can be safely dropped. Table 1 provides an overview of the impossibilities proved in this
Section based on the specific considered settings.

▶ Theorem 7. There exists no protocol P implementing the Mobile Byzantine Reliable
Broadcast (resp. Mobile Byzantine Broadcast Channel) in ⟨ASYNC, S-MOB, OFFA⟩.

Let us note that Theorem 7 holds assuming the most constrained agent’s mobility model
available in an asynchronous system (i.e., S-MOB) and the most powerful failure oracle (OFFA)
considered. It follows that the MBRB and MBBC problems cannot be solved in ASYNC
assuming a less constrained environment, as stated in the following Corollary.

▶ Corollary 8. There exists no protocol P implementing the Mobile Byzantine Reliable Broad-
cast (resp. Mobile Byzantine Broadcast Channel) in ⟨ASYNC, M, O⟩, with M ∈ {A-MOB, S-MOB}
and O ∈ {OFFA, OBFA}.

▶ Theorem 9. There exists no protocol P implementing the Mobile Byzantine Reliable
Broadcast (resp. Mobile Byzantine Broadcast Channel) in ⟨SYNC, A-MOB, OFFA⟩.

▶ Theorem 10. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no protocol P implementing
a Mobile Byzantine Reliable Broadcast primitive in ⟨SYNC, S-MOB+, OFFA⟩.

Proof. For the sake of contradiction, let us assume that such a protocol P exists. Let
us consider the local execution history H′

s of a process ps that is correct for ∆b ≥ 2
rounds and executes MBRB.Broadcast(m′) in round r1. Subsequently, ps remains correct
for the successive ∆1 rounds, it gets permanently faulty from round r∆b+∆1+1 (namely
∀rj ∈ [r∆b+∆1+1, ∞), ps ∈ B(rj)), and it executes MBRB.Broadcast(m′′) in round
r∆b+∆1+1. We remark that the failure state of any process may change unexpectedly due to the
movement of a Byzantine agent. Let us consider another local execution history H′′

s of process
ps where the failure state of ps evolves in the opposite way from H′

s, that is process ps is faulty
in rounds rj ∈ [r1, r∆b+∆1 ] and executes MBRB.Broadcast(m′) in round r1; subsequently,
ps is permanently correct from round r∆b+∆1+1 (namely ∀rj ∈ [r∆b+∆1+1, ∞), ps ∈ C(rj))
and executes MBRB.Broadcast(m′′) in round r∆b+∆1+1. Notice that in both histories ps

executes the MBRB.Broadcast operation only once while correct. We provide a graphical
representation of the two histories in Figure 1a. Let us consider a process p1 ̸= ps that
is correct for the entire lifetime of the system (i.e. ∀rj , p1 ∈ C(rj)), thus p1 is also an
∆c-infinitely often correct process for any value of ∆c ∈ N. The two execution histories
H′

s and H′′
s are indistinguishable to p1 because the same operations and events occurred

on ps. Process p1 is not aware of the failure state of ps (i.e. it has no access to the failure
oracle on ps). Even defining an algorithm A that allows process ps to share the information
obtained from OFFA with process p1 through the point-to-point primitive, process p1 cannot
distinguish an execution of A where ps is correct and reveals a previous faulty state, from
another where ps is faulty, and maliciously reports the same information.
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Figure 1 Graphical representations for Theorems’ proof.

According to the Validity property of the MBRB specification, process p1 executing P
must MBRB-deliver a message from ps considering both histories because process ps MBRB-
broadcasts a message when correct. If P makes process p1 eventually MBRB-deliver message
m′, then the Validity property is violated in H′′

s , because process p1 never MBRB-delivers m′′

(according to the No-duplication property) that is broadcast when ps is correct. If P makes
process p1 eventually MBRB-deliver message m′′, then the Validity property is violated in
H′

s for the same reason. This is a contradiction and the claim follows regardless of the value
of ∆b and ∆c. ◀

Theorem 10 states the impossibility in solving MBRB assuming the most constrained
assumptions we considered. Corollary 11 extends the result to less constrained settings.

▶ Corollary 11. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no protocol P imple-
menting a Mobile Byzantine Reliable Broadcast primitive in ⟨SYNC, S-MOB+, OBFA⟩ or in
⟨SYNC, S-MOB, ∗⟩.

▶ Theorem 12. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no protocol P implementing
a Mobile Byzantine Reliable Channel primitive in ⟨SYNC, S-MOB+, OBF A⟩.

Proof. For the sake of contradiction, let us assume that such a protocol P exists. Let
us assume a permanently correct process ps (i.e. ∀rj , ps ∈ C(rj)) that executes
MBBC.Broadcast(m) in rounds r1. Let us consider the local execution history H′

1 of a
process p1 that is correct in rounds rj ∈ [r1, r∆1 ], ∆1 ∈ N, and executes MBBC.Deliver(m)
in round r∆1 ; subsequently, p1 gets faulty for ∆2 consecutive rounds, ∆2 ∈ N, it wipes its
local state (i.e. initialises all the process variables) in round r∆1+∆2 , and it gets permanently
correct from round r∆1+∆2+1 (namely ∀ri ∈ [r∆1+∆2+1, ∞), p1 ∈ C(ri)).
Let us consider another local execution history H′′

1 of process p1 that is faulty in rounds
rj ∈ [r1, r∆1+∆2 ] and it wipes its local state in round r∆1+∆2 ; subsequently, p1 gets perma-
nently correct from round r∆1+∆2+1 (namely ∀rj ∈ [r∆1+∆2+1, ∞), p1 ∈ C(rj)). We provide
a graphical representation in Figure 1b. In round r∆1+∆2+1, process p1 has the same local
state in both histories and the OBFA oracle generates the same cured() event on process p1.
Process p1 does not know what happened during the previous rounds. It is even defining an
algorithm A that allows any process pi to share and retrieve the state and events occurred
on the process through the point-to-point primitive: process pi can execute such a protocol
either as correct or as faulty, and the two executions would be indistinguishable by any other
process.
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Table 1 Summary of the solvability results.

(a) MBRB.

ASYNC SYNC

S-MOB+
OBFA OFFA

✗ ✗

(Cor. 11) (Th. 10)

S-MOB
✗

OBFA OFFA

✗ ✗

(Cor. 8) (Cor. 11) (Cor. 11)

A-MOB ✗ ✗

(Cor. 8) (Th. 9)

(b) MBBC.

ASYNC SYNC

S-MOB+
OBFA OFFA

✗(* Sec 7) ✓

(Th. 12) (Th. 16)

S-MOB
✗

OBFA OFFA

(Cor. 8) ✗ ?

A-MOB ✗ ✗

(Cor. 8) (Th. 9)

According to the Validity property of the MBBC specification, process p1 executing P
must MBBC-deliver message m from ps in both histories. In round r∆1+∆2+1 process p1
has the same local state on both histories, thus it can act in one only way, specifically it
can command or not process pi to deliver message m from ps. In the positive case, the
protocol violates the No duplication property in history H′

1, in the negative case the Validity
property is violated by the protocol in H′′

1 . This leads to a contradiction and the claim
follows regardless to the value of ∆1,∆2, and ∆c. ◀

Discussion. Contrarily to what we could expect, the MBRB and MBBC problems are im-
possible to solve in settings (e.g., ⟨SYNC, S-MOB+, ONFA/BFA⟩) where the register abstraction
and consensus problems are solvable [17, 4, 31, 6, 10, 8, 11]. The intuition behind this is
that other problems addressed under the MBF model have a semantics that do not require
to execute a particular operation (the delivery of a message in our case) at most once and
depending on a precedent failure state of the process. Indeed, both the register abstractions
and consensus set constraints on a local value stored by the processes (respectively, the shared
value and the decided value) but no primitive operation is associated with their update in
their specification. Contrarily, MBRB and MBBC introduce constraints on the deliveries of
messages that depend on the actual and previous failure states of the processes, generating
thus symmetry conditions that are impossible to break without violating one of the properties
characterizing the specification. In particular, the main challenge is to ensure that a single
broadcast instance does not generate multiple deliveries to the same process while it is correct.
Another counter-intuitive result is that considering a setting stronger than the one considered
in related works (e.g., ⟨SYNC, S-MOB+, OFFA⟩), the MBRB problem is impossible to solve
while the MBBC one is possible (see Section 6). In the static Byzantine failure model (where
every process is always either correct or faulty in a given execution), the channel specification
extends the broadcast one allowing multiple broadcast from the same source. As a matter of
fact, in the mobile Byzantine failure model such an extension is less constrained with respect
to the broadcast: in MBRB, every process can execute only one broadcast operation for
the entire lifetime of the system, whereas MBBC allows multiple broadcasts from the same
source; if a process is faulty and executes a broadcast, then it is not allowed to execute a
subsequent broadcast when correct in the future in the MBRB specification (No duplication
property), while it is in MBBC. Finally, note that other primitives, such as consensus or
register abstractions, are not useful in solving the MBRB/MBBC problems. Consider again
the execution depicted in Figure 1a, correct process may agree or may store a set of delivered
messages (according to the MBRB/MBBC specifications) but a single process (ps in the
example), in the settings we characterized, cannot infer if it has already delivered or not a
message if it was previously compromised.
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6 A Protocol for MBBC in ⟨SYNC, S-MOB+, OFFA⟩

Theorem 12 and Corollary 11 motivate the definition of a stronger local oracle than those
considered in related work dealing with mobile Byzantine faults, OF F A: both MBRB and
MBBC are impossible to solve in the (⟨SYNC, S-MOB+, ONFA/BFA⟩) settings. Theorem 10 states
the impossibility in solving MBRB even in (⟨SYNC, S-MOB+, OFFA⟩). This Section investigates
the remaining open problem-setting: the solvability of MBBC in (⟨SYNC, S-MOB+, OFFA⟩).
Specifically, we start by defining PMBBC−RB , a protocol implementing the MBBC(∆b, ∆c)
communication primitive. Then, we prove its correctness and fault-tolerance optimality.

6.1 PMBBC−RB: Protocol Description
PMBBC−RB is an extension of Bracha’s algorithm [12] aimed to solve the MBBC problem.
It inherits Bracha’s diffusion mechanism: a payload message m is exchanged inside three
protocol messages, SEND, ECHO, and READY. The former is initially sent by the source
process to all peers, and the latter are subsequently diffused by all correct processes to all
peers if certain conditions are met, namely certain quorums are reached.
The pseudo-code of PMBBC−RB is shown in Algorithm 1. This solution overcomes the
impossibility stated in Theorem 12 by leveraging on OF F A and by fixing the round index (i.e.,
the moment in time) where MBBC-deliveries must occur. Every protocol’s message contains
the information about a specific MBBC-broadcast instance, specifically the source process
label s, the message (payload) m, and the round counter rb when the broadcast instance
started. An MBBC-broadcast instance proceeds in four consecutive rounds in PMBBC−RB .
In the first round rb, the protocol’s message SEND is computed by ps and enqueued to
P2P-send to all processes in the subsequent round. Every process that P2P-receives a SEND
message in round rb+1 from ps computes the ECHO protocol’s message for ⟨s, rb, m⟩ and
enqueues it to P2P-send to all peers. In round rb+2, the processes that receive sufficiently
many ECHO messages (more than (n + f)/2) for an MBBC-broadcast instance from distinct
peers generate the related READY protocol’s message to P2P-send to all processes. Finally, in
round rb+3, the processes that receive a sufficient number of READY messages (more than 2f)
for an MBBC-broadcast instance from distinct peers MBBC-deliver the associated message
m from ps. An additional protocol’s message with respect to Bracha [12], i.e. ABORT, is
exchanged in PMBBC−RB to guarantee the Agreement property in case of a faulty source.
In PMBBC−RB , if a correct process ps executes MBBC.Broadcast(m) in round rb, then
every process that is correct in round rb+3 triggers MBBC.Deliver(s,m) in the compute
phase of that round; every process that is faulty in round rb+3 MBBC-delivers the message
m from ps at the first round rk > rb+3 it is correct.

We plug the fault-tolerant round counter defined by Bonnet at al. [6] inside the
PMBBC−RB protocol, enabling all correct processes to share the same value for the round
index (that is assumed as an integer value). Its purpose is to fix the single round where the
delivery of a certain message can take place. The round counter features are summarised in
the following remark.

▶ Remark 13 (Round counter correctness [6]). In ⟨SYNC, S-MOB+, OBFA/FFA⟩, if n > 3f

then every correct process pi in round rj stores the same value for the round index (namely
the variable rc in Algorithm 1) during compute phase.

We stress the fact that protocol’s messages in PMBBC−RB (SEND, ECHO, READY,
and ABORT) must be propagated in specific rounds with respect to the beginning of the
MBBC-broadcast, in order to progress till the delivery of the associated message m.
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A detailed description of PMBBC−RB appears in the companion technical report [7], and
we illustrate some execution examples in Appendix B, and within the proof of Lemma 14.

Algorithm 1 PMBBC−RB .

1: procedure Init
2: To_send ← ∅, Sends ← ∅, cured ← False, rc ← 1
3: Echos ← {}, Readys ← {}, Aborts ← {} ▷ map, ⟨s, r, m⟩ : set of process ids
4: RC ← {} ▷ map, process id : round value
5: procedure Broadcast(m)
6: To_send ← To_send ∪ {⟨SEND, s, rc, m⟩}
7: upon OFFA.cured do
8: cured ← True

Send Phase
9: if cured then

10: To_send ← ∅
11: for pk ∈ To_send do
12: for q ∈ Π do
13: P2P.send(q, pk)

Receive Phase
14: Sends ← ∅, Echos ← {}, Readys ← {}, Aborts ← {}, RC ← {}
15: upon P2P.deliver(q, ⟨Type, s, rb, m⟩) do
16: if s = q and Type = SEND then
17: Sends ← Sends ∪ {⟨s, rb, m⟩}
18: if Type = ECHO then
19: Echos[⟨s, rb, m⟩] ← Echos[⟨s, rb, m⟩] ∪ {q}
20: if Type = READY then
21: Readys[⟨s, rb, m⟩] ← Readys[⟨s, rb, m⟩] ∪ {q}
22: if Type = ABORT then
23: Aborts[⟨s, rb, m⟩] ← Aborts[⟨s, rb, m⟩] ∪ {q}
24: upon P2P.deliver(q, ⟨ROUND, j⟩) do
25: RC[q] ← j

Compute Phase
26: To_send ← ∅, rc ← getMajority(RC.values)
27: for ⟨s, rb, m⟩ ∈ Sends do
28: if rc = rb+1 then
29: To_send ← To_send ∪ {⟨ECHO, s, rb, m⟩}
30: for ⟨s, rb, m⟩ ∈ Echos do
31: if |Echos[⟨s, rb, m⟩]| > (n + f)/2 then
32: To_send ← To_send ∪ {⟨READY, s, rb, m⟩}
33: else if |Echos[⟨s, rb, m⟩]| > f then
34: To_send ← To_send ∪ {⟨ABORT, s, rb, m⟩}
35: for ⟨s, rb, m⟩ ∈ Aborts do
36: if |Aborts[⟨s, rb, m⟩]| > f then
37: |Readys[⟨s, rb, m⟩] ← ∅
38: for ⟨s, rb, m⟩ ∈ Readys do
39: if |Readys[⟨s, rb, m⟩]| > 2f then
40: if ((rc = rb+3) or (cured and rc > rb+3 and OFFA.faulty_at ≤ rb+3))

and (∄⟨s, rk, m⟩ ∈ Readys : (|Readys⟨s, rk, m⟩| > 2f) ∧ (rk < rb)) then
41: Deliver(s,m)
42: To_send ← To_send ∪ {⟨READY, s, rb, m⟩}
43: cured ← False, rc ← rc+1, To_send ← To_send ∪ {⟨ROUND, rc⟩}
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6.2 Correctness Proofs
We remark that in S-MOB+ mobile agents can move only between the compute and send
phase of two consecutive rounds. This implies that ∆s is assumed greater than or equal to
one round. Such mobility model has the following effects to the agents’ capabilities: at the
beginning of a round rj , mobile agents can potentially control the messages that are diffused
by 2f processes, the ones where the mobile agents are placed in rj and the others where
they were in the previous round rj−1 (they can set in round rj−1 the messages that will be
exchange by freed processes in round rj). This capability can partially be mitigated by the
local failure detector OFFA: a process can discard all messages queued to be send right after
the failure detector notifies the cured() event. It follows that, at the beginning of a round,
at most f processes may not participate in the protocol and at most f may have a Byzantine
behavior.

The following Lemmas and Theorem state the correctness of PMBBC−RB in solving the
MBBC problem and its fault-tolerance optimality with respect to the number of tolerated
mobile agents.

▶ Lemma 14. If ∆b ≥ 2 rounds and ∆c ≥ 1 round, then PMBBC−RB solves the Mobile
Byzantine Broadcast Channel problem (MBBC) in ⟨SYNC, S-MOB+, OFFA⟩ if n > 5f .

Proof. For simplicity, we give the proof assuming the minimum values for ∆b and ∆c. The
arguments extend to higher values.
(∆b = 2 rounds, ∆c = 1 round)-Validity. We prove that if we assume ∆b = 2
rounds, ∆c = 1 round, and a process ps is correct in round rb when it executes
MBBC.Broadcast(m), then every process that is ∆c-infinitely often correct eventually
triggers MBBC.Deliver(s,m), that implies the (∆b, ∆c)-Validity property. The MBBC-
delivery of a message m from a process ps may occur either because ps was correct in round
rb and executed MBBC.Broadcast(m) or since ps was faulty at some round rd < rb and
P2P-sent a SEND message with payload m. Let us assume that process ps has not P2P-sent
yet the SEND message with payload m neither as correct or faulty before round rb, that it is
correct in rounds rb and rb+1 (∆b = 2) and executes the procedure Broadcast with parameter
m in round rb. The ⟨SEND, s, rb, m⟩ message is then prepared (line 6) to be relayed to all
other processes (lines 11-13). In round rb+1, the ⟨SEND, s, rb, m⟩ message is P2P-sent by ps to
all processes and it is received by all but f (the ones controlled by mobile agents); it follows
that n − f processes executes lines 15-17 during the receive phase in round rb+1 and lines
27-29 in the compute phase, preparing the ⟨ECHO, s, rb, m⟩ message to P2P-send in round
rb+2. In round rb+2, at least n − 2f processes relay the message ⟨ECHO, s, rb, m⟩ (f process
may be faulty in round rb+2 and f process may have been faulty in round rb+1) and it is
received by n−f processes (again, the ones not controlled by mobile agents). These processes
execute lines 15, 18 and 19 in the receive phase and lines 31 and 32 in the compute phase. In
particular, the condition inside the if statement at line 31 is verified due to the assumption
n > 5f , given that n − 2f > (n + f)/2, and line 32 is executed preparing ⟨READY, s, rb, m⟩
message to P2P-send in round rb+3. Finally, in round rb+3, the same reasoning given for
round rb+2 applies and n − f processes execute lines 39-41, given n − 2f > 2f and Remark
13, and thus they trigger Deliver with parameters s and m. At every round rj > rb+3 the
⟨READY, s, rb, m⟩ message is P2P-sent by all the correct processes not faulty in round rj−1
(that are at least n − f). The if statement at line 40 guarantees that every process that was
faulty in round rb+3 delivers message m from ps at the first round rk > rb+3 it is correct.
Finally, in case (i) process ps was faulty and P2P-sent the SEND message with payload m in
round rk < rb, (ii) every ∆c-infinitely correct process MBBC-delivered m from ps, and (iii)
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process ps is correct in round rb > rk and executes MBBC.Broadcast(m), then the claim
still follows: the message m has been already MBBC-delivered (further details can be found
in the Agreement property’s proof).
No duplication. The second sub-condition of the if statement at line 40 guarantees that
the entire if statement is verified only for the minimum rj among all the tuples ⟨s, ∗, m⟩ (i.e.
the MBBC-delivery is independent from the rb parameter). The first sub-condition inside
the if statement at line 40 is verified only once among all the rounds a mobile agent does not
control the process. More in detail, if the cured variable is False, the condition is verified
only in round rb+3 for the tuple ⟨s, rb, m⟩. Otherwise, the if statement in line 40 is verified
in round rk > rb+3 when a mobile agent, arrived on the process in round rj ≤ rb+3, leaves
the process, that occurs only once on a process during the entire lifetime of the system given
Remark 13. The condition rc > rb+3 in line 40 is not required but simplifies this proof.
(∆b = 2)-Integrity. For the sake of contradiction, let us assume that a process pi is correct
in round rk and executes MBBC.Deliver(s,m), that process ps is correct in rounds rb and
rb+1 (that is, ∆b = 2), and that it does not execute MBBC.Broadcast(m) in round rb.
Process pi MBBC-delivers m from ps either in round rk = rb+3 if pi is correct, or at the
first round rk > rb+3 when pi is correct. In the former case, more than 2f processes
sent message ⟨READY, s, rb, m⟩ in round rb+3, therefore more than (n + f)/2 processes sent
message ⟨ECHO, s, rb, m⟩ in round rb+2, that implies that at least (n+f)/2−f processes were
correct in round rb+1 and received ⟨SEND, s, rb, m⟩ in round rb+1 from ps (lines 28-29). No
procedure in PMBBC−RB allows a correct process ps to P2P-send ⟨SEND, s, rb, m⟩ messages
except Broadcast(m). It follows that the latter scenario occurred and process pi was
faulty in round rb+3. As a matter of fact, correct process pi P2P-received more than 2f

⟨READY, s, rb, m⟩ messages from distinct processes in round rk. For the same reasoning as
in the former case, this implies that a correct process ps sent ⟨SEND, s, rb, m⟩ messages but
no procedure except Broadcast(m) allows it. This leads to a contradiction and the claim
follows.
(∆c = 1)-Agreement. We proved, in the Validity proof, that this property is satisfied
in the case of a correct source. Faulty processes cannot collude to make one of the if
statements at lines 31, 33, 36 and 39 verified for a message m never sent over the P2P links
of a process ps. More in detail, the attacker cannot attempt to make any correct process
MBBC-deliver a message m from ps without compromising ps. We prove that if ps is faulty
and P2P-sends ⟨SEND, s, rb, m⟩ messages in round rb, then either all ∆c-infinitely correct
processes delivers m from ps or no ∆c-infinitely correct processes delivers m from ps. For the
sake of contradiction, let us assume that all ∆c-infinitely often correct processes but some,
p1, p2, . . . , pi, MBBC-delivered a message m from ps. It follows that there is no round rj

where more than 2f correct processes concurrently P2P-send ⟨READY, s, rb, m⟩. This implies
that the correct processes that delivered m are at most 2f . According to the protocol, such
processes receive a quorum of ECHO messages and at most f ABORT messages about m, to
generate the required READY messages. More in detail, they received ECHO messages from
at least 2f + 1 correct processes. At that point, the faulty processes decided which correct
processes reached the quorum of ECHO messages. Nevertheless, each correct process that
did not reach the quorum generated an ABORT message. It follows that at most f correct
processes did not reach the quorum, whereas n − f − f processes were correct and generated
the READY message, which was disseminated by at least n − 3f of them in the subsequent
round. Given that n > 5f , at least 2f + 1 correct processes concurrently disseminate a
READY message and thus all correct processes in round rb+3 must MBBC-deliver it. This
lead to a contradiction and the claim follows. ◀
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▶ Lemma 15. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in
⟨SYNC, S-MOB+, OFFA⟩ only if n > 5f .

Proof. The claim follows by extending the results proven by Backes and Cachin [3] and by
Raynal [25]. The former states that the BRB problem can be solved in a static distributed
system where at most t processes may fail-stop, and at most f processes are Byzantine, if
and only if n > 3f + 2t. Similarly, Raynal proved that the BRB problem can be solved in a
static distributed system, where tl processes may not send messages, and ts processes may
send spurious messages (processes may exhibit both behaviors during the lifetime of the
system), if and only if n > 2tl + ts.

Both scenarios can be simulated by an attacker in our system: the mobile agents can
continuously alternate between two disjoint sets P1 and P2 of f processes, namely it can turn
faulty all processes in P1 in all rounds rj , j ∈ N, and all processes in P2 in all rounds rj+1,
sending spurious messages from process in P1 and no message from peers in P2. Therefore,
all processes in P1 send spurious messages (behaving like f Byzantine faulty processes), and
all the processes in P2 send no message (like f fail-stop faulty processes), and the claim
follows. ◀

▶ Theorem 16. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in
⟨SYNC, S-MOB+, OFFA⟩ with OFFA if and only if n > 5f .

Proof. It follows from Lemmas 14 and 15. ◀

The following Corollary extends the optimality of PMBBC−RB to the case of slower agents.
In other words, even if the mobile agents are slower we are not able to tolerate more agents
solving MBBC.

▶ Corollary 17. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in
⟨SYNC, S-MOB+, OFFA⟩ if and only if n > 5f , for each ∆s ≥ 1 round. Furthermore, the
actual value of ∆s can be unknown to the processes.

Note that MBBC and MBBR specifications do not allow processes to be terminate,
namely to eventually stop propagating messages through the P2P primitive. Intuitively,
processes need to continuously relay the messages in order to enforce ∆c-Totality/Agreement
and thus allow every temporarily faulty process to eventually deliver a broadcast message.
Furthermore, as argued in Section 5, processes are not able to infer if a specific process has
delivered a message, and thus conclude if all processes delivered a message when correct.
Additional assumptions enabling termination can be considered, such as an upper-bound on
the time a process becomes correct when faulty.

7 MBBC with multiple deliveries

The impossibilities identified in Section 5 arise for the general specification we defined. In
fact, alternative or weaker specifications could be implementable under weaker assumptions.
More in detail, we proved that no protocol can solve the MBBC in ⟨SYNC, S-MOB+, OBFA⟩.
We therefore investigate the possibility of a weaker primitive that can be realized when the
stringent conditions identified in Theorem 16 are not satisfied.

We start by considering the case where no local failure detector is available, that is, the
case of ONFA. The following Theorem show that a weaker MBBC primitive, where the No
duplication property is not satisfied, is realizable in ⟨SYNC, S-MOB+, ONFA⟩.
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▶ Theorem 18. A weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing
the No duplication property, is realizable in ⟨SYNC, S-MOB+, ONFA⟩ if ∆b = 2 rounds,
∆c = 1 round, and n > 6f .

Proof. Let us consider the PMBBC−RB protocol defined in Algorithm 1. Let us ignore the
lines that interacts with the local failure detector, namely 7, 8 and 40. Let us substitute all
the occurrences of parameter f with f̄ = 2f in Algorithm 1.

The difference with respect the setting considered in Lemma 14 is that processes are
not aware of being compromised. In particular, they may diffuse messages with P2P-links
previously generated by mobile agents. As a matter of fact, the protocol is restored right
after the mobile agent left the process.

The proof follows from the same reasoning stated in Lemma 14 except for No duplication
considering f̄ instead of f in Algorithm 1. ◀

The following theorem show that having a slightly better oracle about failures, namely
OBFA, permits to withstand more Byzantine agents, for the same weaker problem that does
not guarantees no duplication.

▶ Theorem 19. A weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing
the No duplication property, is realizable in ⟨SYNC, S-MOB+, OBFA⟩ if ∆b = 2 rounds,
∆c = 1 round, and n > 5f .

Abandoning the No duplication guarantee, the number of message delivered becomes
unbounded: the following theorem shows that it is not possible to bound the number of
duplicate messages that are delivered, even assuming an intermediate oracle, namely OBFA.

▶ Theorem 20. Given a constant k̄ ∈ N+, it is not possible to define a weaker Mobile
Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, in
⟨SYNC, S-MOB+, OBFA⟩ where a message m MBBC-Broadcast by a process ps is MBBC-
Delivered by a process pi at most k̄ time when correct.

▶ Corollary 21. Suppose a solution to a weaker Mobile Byzantine Broadcast Channel primitive,
not guaranteeing the No duplication property, in ⟨SYNC, S-MOB+, OBFA⟩. If a process pi

gets faulty and correct k times after the MBBC-Broadcast of a message m from ps, then pi

MBBC-Delivers m from ps at least k times.

▶ Theorem 22. Suppose a solution to a weaker Mobile Byzantine Broadcast Channel
primitive, not guaranteeing the No duplication property, in ⟨SYNC, S-MOB+, ONFA⟩. If a
process ps MBBC-Broadcast a message m, then every process pi must MBBC-Deliver m from
ps infinitely often.

8 Conclusion

We provided a specification for the Byzantine Reliable Broadcast and Byzantine Broadcast
Channel problems in distributed systems affected by mobile Byzantine faults. We identified
some impossibilities; in particular, we showed that both speed constraints on the mobile
agents and timing assumptions on the system evolution are required to solve the problems
under investigation, and we proved that the Byzantine Reliable Broadcast cannot be solved
even in one of the most constrained mobile Byzantine failure models presented so far. The
Byzantine Broadcast Channel problem proved to be solvable, assuming a stronger local failure
detector than the ones previously considered in the literature. Lastly, we investigated a
weaker Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property,
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in settings equivalent to the ones assumed in related works. Our results characterise the
solvability of a fundamental problem in a general dynamic process failure model, and open
the path for research on additional important tasks. In particular, to understand the gap that
exists between the theoretical model (assumed in this and in related work [4, 6, 17, 24, 31, 27])
and the practical world, investigating the feasibility of the oracles and defining solutions that
are as practical as possible. Furthermore, it may be interesting to relax the assumptions
of instantaneous fault detection and recovery (of the protocol), to investigate whether the
assumption of digitally signed messages has an impact on the solvability of the considered
problems, and to analyse the Mobile Byzantine Channel problem assuming the S-MOB agent
mobility model (which we have left open for analysis and we conjecture its solvability).
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A The Byzantine Reliable Broadcast and Channel Problems
Specification [12, 14]

The Byzantine Reliable Broadcast and the Byzantine Broadcast Channel problems aim at
specifying a communication primitive, respectively BRB and BBC, exposing two operations,
BRB/BBC-broadcast(m) and BRB/BBC-deliver(s, m), where m is a message and s

is a process identifier.
The BRB primitive enables all correct processes of a distributed system to agree on a

single message diffused by a (potentially faulty) particular process, the source. The BBC
primitive extends BRB allowing all processes to diffuse an arbitrary number of messages so
that all correct processes eventually deliver the same set of messages. We say that a process pi

“BRB/BBC-broadcasts a message m” when it invokes BRB/BBC-broadcast(m), and pi

“BRB/BBC-delivers a message m from ps” when it manage the BRB/BBC-deliver(s, m)
event.

We remark that both BRB and BBC primitives assume a static process failure model
where every process is permanently correct or faulty.

A.1 Byzantine Reliable Broadcast (BRB)
The BRB communication primitive guarantees the following properties:

Validity: If a correct process ps BRB-broadcasts a message m, then every correct process
eventually BRB-delivers m from ps.
No duplication: Every correct process BRB-delivers at most one message from ps.
Integrity: If some correct process BRB-delivers a message m from ps and process ps is
correct, then m was previously BRB-broadcast by ps.
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Consistency: If some correct process BRB-delivers a message m from ps and another
correct process BRB-delivers a message m′ from ps, then m = m′.
Totality: If some message is BRB-delivered by any correct process, every correct process
eventually BRB-delivers a message.

A.2 Byzantine Broadcast Channel (BBC)

The BBC communication primitive guarantees the following properties:
Validity: If a correct process ps BBC-broadcasts a message m, then every correct process
eventually BBB-delivers m from ps.
No duplication: No correct process BBC-delivers a message m from ps more than once.
Integrity: If some correct process BBC-delivers a message m from ps and process ps is
correct, then m was previously BBC-broadcast by ps.
Agreement: If some correct process BBC-delivers a message m from ps then every correct
process eventually delivers message m from ps.

B PMBBC−RB execution examples

We detail in this Section several execution examples for the PMBBC−RB protocol defined in
Section 6. Given what claimed in Theorem 16, we assume that the correctness conditions for
our protocol, i.e. a ⟨SYNC, S-MOB+, OFFA⟩ system and n > 5f , are satisfied in all of the
provided examples. We detail one example where the source is correct and two in which the
source is faulty.
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Figure 2 An execution of PMBBC−RB with a correct source and f = 1.
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Figure 3 An execution of PMBBC−RB with a faulty source, f = 1 and all infinitely often correct
processes delivering.
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Figure 4 An execution of PMBBC−RB with a faulty source, f = 1 and no infinitely often correct
process delivering.
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In the execution example in Figure 2, the correct source p1 starts the MBBC-Broadcast
preparing the related SEND message in round r1, that is P2P-sent to all processes in round
r2 (∆b = 2). Process p2 is faulty in round r1, then the mobile agent moves to process p6 in
round r2. All processes but f are correct in round r2, thus they receive the SEND message
from p1 and generate the related ECHO message. Such message is then P2P-sent to all peers
by at least n − 2f processes during the send phase in round r3 (at most f processes could
have been faulty in round r2, p6 in our example, and at most f processes could become faulty
in round r3, p1 in our example where the mobile agent moves in round r3). It follows that
n − f processes reach the quorum of ECHO messages generating the related READY message.
Again, at least n − 2f processes are correct in round r4, P2P-send the READY message and
deliver the associated payload from p1, m, during the compute phase of the same round. The
processes that were faulty in round r4, p2 in our example, deliver the message at the first
round rk > r4 they get correct, because all processes that are correct in a round rj > r4
diffuse the associated READY message.

The only MBBC property that mobile agents may attempt to invalidate in a execution of
PMBBC−RB is the Agreement property: the No duplication is guaranteed by the if statement
at line 40 in Algorithm 1 and both Validity and Integrity consider a correct source. Any
source must P2P-send a well-formed SEND message (i.e., with valid source id and round
label) to make a correct process proceed in the protocol to deliver a payload m. If the SEND
message is P2P-sent to all correct processes, then all ∆c-infinitely often correct processes will
eventually deliver m, as shown in the previous execution, satisfying the MBBC specification.
It follows that a Byzantine source must not P2P-send the SEND message to some processes.
This behavior has two possible outcomes in our protocol: either all correct processes MBBC-
deliver the diffused message or no correct process does it. Let us assume that the mobile
agent commands p1 to P2P-send the SEND message to ⌊(n − f)/2⌋ − f processes, in order to
control which ones will proceed in the PMBBC−RB protocol generating the READY message
in round r4.
In the execution depicted in Figure 3, process p1 is a faulty source that attempts to prevent
the Agreement property of MBBC from being satisfied. Specifically, it P2P-sends the ECHO
message only to part of the processes, process p2, p3, and p4, that reach the quorum required
to generate the READY message. In this case, processes p5 and p6 generate the ABORT
message but only f of them, namely p5, P2P-send it, thus blocking no correct process from
proceeding in the MBBC-delivery of m from p1. Nonetheless, in this case more than 2f

processes are correct and P2P-send the READY message in round r4. It follows that all
∆c-infinitely often correct processes eventually deliver the associated payload m.
Differently from the previous example, in the execution in Figure 4 process p1 sends the
ECHO message to processes p2 and p3. It follows that all other correct processes, p4, p5, and
p6, generate the ABORT message. At most f of them, process p6 in the example, can be
blocked from P2P-sending the ABORT message. It follows that more than f processes diffuse
to all correct ones the ABORT message and thus no process delivers the associated payload
m. It follows that the specification is not violated in such execution.
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