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Abstract

The (modern) arbitrary derivative (ADER) approach is a popular technique for the numerical solution of differ-
ential problems based on iteratively solving an implicit discretization of their weak formulation. In this work,
focusing on an ODE context, we investigate several strategies to improve this approach. Our initial emphasis is on
the order of accuracy of the method in connection with the polynomial discretization of the weak formulation. We
demonstrate that precise choices lead to higher-order convergences in comparison to the existing literature. Then,
we put ADER methods into a Deferred Correction (DeC) formalism. This allows to determine the optimal number
of iterations, which is equal to the formal order of accuracy of the method, and to introduce efficient p-adaptive
modifications. These are defined by matching the order of accuracy achieved and the degree of the polynomial
reconstruction at each iteration. We provide analytical and numerical results, including the stability analysis of
the new modified methods, the investigation of the computational efficiency, an application to adaptivity and an
application to hyperbolic PDEs with a Spectral Difference (SD) space discretization.

Keywords: ADER, time-stepping, arbitrarily high order methods, adaptivity, efficient iterative method, deferred
correction

1. Introduction

Differential problems play a crucial role in the world of modeling of natural and technological processes. In
fact, countless systems in many applications are described through ODEs and PDEs. Due to the variety of existing
phenomena to be modeled, no unified theory exists and very different system-dependent differential problems are
reported in literature. Despite such heterogeneity, the vast majority of the mentioned mathematical models share a
common feature: the impossibility to find analytical solutions, apart from very basic exceptions. At the moment,
the only possible way to quantitatively cope with such models is to rely on numerical methods. Nevertheless,
numerical approaches come with their own set of challenges. One of the biggest issues in such context is given by
the computational cost associated to very accurate approximations of the sought analytical solutions, which require
very refined discretizations, with consequent need for huge computational resources, in terms of computational
time and memory consumption.

A classical expedient to reduce the computational cost, making hence the simulations more accessible, consists
in the adoption of high order methods. In fact, such methods are well-known to require, at least on smooth
problems, less computational resources for a fixed discretization error. This justifies the large interest, lately shown
by the scientific community, in the construction of (arbitrary) high order frameworks for the numerical solution of
differential problems, both for ODEs, with Runge-Kutta (RK) methods [14, 38, 66], predictor-corrector methods
[35] and multistep methods [38], and PDEs, with finite difference methods [45, 36], finite volume methods [46,
28, 65, 36], finite element methods [27, 40, 17, 37], SD methods [43, 63, 64], Residual Distribution methods
[3, 1, 2, 4] and ADER methods [6, 31, 9].

Compared to the other frameworks, ADER is relatively new. In fact, originally introduced by Titarev and Toro
[61, 60] in 2001 for hyperbolic problems, as a time integrator for finite volume formulations, based on the Cauchy–
Kovalevskaya theorem, it became popular in its modern formulation presented in 2008 [20]. The method consists
in constructing nonlinear systems of algebraic equations, associated to high order discretizations of the weak
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formulation of the analytical problem under investigation, which are solved through an iterative procedure. Despite
its recent definition, the approach has been proven to be robust and reliable through numerous applications to many
different fields such as ODEs contexts [39], Eulerian-Lagrangian formulations on unstructured moving meshes
[8, 11, 10, 7, 32], structure-preserving [34, 48], magnetohydrodynamics [63, 6, 33, 25, 68], solid mechanics
[12, 24], compressible fluid-dynamics [21, 9, 59, 64, 19, 58, 41], aeroacustics [23, 55, 56], adaptivity [48, 68],
with parallel implementations used in the context of large scale simulations for real test cases [22, 54]. The
mentioned literature does not pretend to be complete, however, it does indeed provide a clear proof of the level of
maturity, of flexibility and of robustness of the ADER approach.

The goal of this paper is to introduce several strategies to drastically reduce the computational cost of ADER
methods because, even if they have shown good performances in the context of large scale simulations, still
they leave the door open for great improvements under many points of view, in particular at the level of the
computational efficiency. More in detail, in an ODE context, we discuss the following main contributions:

• We start by investigating the role of the polynomial reconstruction of the numerical solution adopted in the
context of the discretization of the weak formulation of the differential problem, leading to the definition of
the ADER nonlinear system, later solved iteratively. In particular, we prove that careful choices on bases
and quadrature points lead to schemes with order of accuracy higher than expected according to classical
literature. This is done by reinterpreting the ADER nonlinear system as an implicit high order RK, which
is analyzed in depth. The computational advantage achieved in this context is far from being negligible. In
fact, usually in the context of ADER methods, order P is achieved by selecting polynomial discretizations
of degree P − 1 in time [39, 63, 64, 67, 29, 53, 22]. We show that the same accuracy can be obtained
with a polynomial degree which is approximately P

2 , with related saving of computational resources both in
terms of memory and time. A further result, in this context, concerns the link between ADER methods and
Lobatto IIIC RK methods [66].

• We characterize the ADER methods obtained for general polynomial bases. As ADER methods do not
require particular constraints with respect to the basis functions adopted for the discretization of the weak
formulation of the differential problem, one could wonder whether the adoption of particular bases (e.g.,
modal bases) could lead to better schemes. We show that there is a strong link between ADER methods
obtained with arbitrary bases and ADER methods with nodal bases, which are proven to be equivalent under
the assumption that the adopted quadratures coincide.

• By using the fact that ADER methods can be put in a DeC framework [1, 47, 48], we exploit the DeC
formulation of ADER methods, to construct efficient modifications of such schemes, following the idea
introduced in [47] and generalized in [48]. The new modified schemes are based on increasing the degree
of the polynomial reconstruction of the numerical solution along the iterative procedure in such a way that
the achieved accuracy matches the discretization accuracy of the ADER iterations. Further, we show how
to recast the new schemes as explicit RK methods, by defining the related Butcher tableaux, and we study
their linear stability, proving that the efficient modifications do not affect stability.

• Lastly, we introduce a natural way to perform p-adaptivity. This aspect is particularly interesting, in fact,
if on the one hand we have remarked how the adoption of high order methods results in a considerable
computational advantage for a fixed discretization error, on the other hand one must notice that the error
is not known a priori. In principle, users are not strictly interested in the order of the method adopted, but
rather on the final error being smaller than a given tolerance. Therefore, in practical applications, high order
methods should be used in combination with adaptive strategies able to estimate the error and to select the
discretization and/or the order accordingly. Unfortunately, such adaptive strategies are in general not easy
to design but the particular structure of the proposed modified ADER methods offers a natural way to do it.

A rich variety of numerical tests is provided to show the computational advantages of the proposed modifica-
tions, with large registered speed-ups.

The structure of this work is the following: we introduce the ADER methods for ODEs in Section 2. In
Section 3, we study the accuracy of such methods with respect to the discretization of the weak formulation,
showing that the adoption of Gauss–Lobatto (GLB) and Gauss–Legendre (GLG) bases leads to accuracy higher
than expected in Section 3.1 and characterizing the ADER methods obtained with general polynomial bases in
Section 3.2. In Section 4, we introduce the DeC framework and show how the ADER methods can be reinterpreted
as DeC methods, hence fixing the optimal number of iterations. We present thus efficient modifications of ADER
methods in Section 5 and their application to p-adaptivity. Then, in Section 6, we show how the modified methods
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can be written in RK form, defining their Butcher tableaux, and we study their linear stability. In Section 7,
we describe an application of the ADER methods to hyperbolic PDEs with an SD space discretization via the
method of lines. The methods are validated in Section 8 and, finally, Section 9 is left for conclusions and further
developments.

Moreover, Appendix A is dedicated to the proofs of several “minor” results presented along the paper. To
maintain the flow of information smooth, we have placed these proofs in an appendix, so that readers can focus
on the main concepts and conclusions, referring to the proofs at their convenience. In Appendix B, the proof of an
equivalence theorem between particular ADER methods and Lobatto IIIC schemes is reported, while, an overview
of all symbols used in the paper can be found in Appendix D.

2. ADER

In this section, we will present the original ADER method [20] in its simplified version for systems of ODEs,
firstly described in [39]. Let us consider the following system d

dt u(t) = G(t,u(t)), t ∈ [0,T ],
u(0) = z,

(1)

where u : R+
0 → RQ is the sought solution, z ∈ RQ the initial condition and G : R+

0 × R
Q → RQ a function that is

continuous and Lipschitz-continuous with respect to u uniformly with respect to t with a Lipschitz constant CLip.
As usual in the context of one-step methods, we focus on a generic time interval [tn, tn+1], with tn+1 = tn + ∆t,
and we look for a recipe for un+1 ≈ u(tn+1) from un ≈ u(tn). In particular, as commonly done in the context of
consistency analyses, we assume un = u(tn).

2.1. Method

We consider the weak formulation of (1) over [tn, tn+1], obtained by multiplying the equation by a smooth test
function ψ(t) and applying integration by parts on the time derivative term

ψ(tn+1)u(tn+1) − ψ(tn)un −

∫ tn+1

tn

(
d
dt
ψ(t)

)
u(t)dt −

∫ tn+1

tn
ψ(t)G(t,u(t))dt = 0, (2)

where we remark that un = u(tn) is known. We introduce now M + 1 subtimenodes tm for m = 0, 1, . . . ,M in the
interval [tn, tn+1] such that

tn ≤ t0 < t1 < · · · < tM ≤ tn+1 (3)

and we denote by um an approximation of the exact solution u(t) in tm. We pass to a discrete setting by projecting
(2) onto a finite dimensional functional space. In particular, we replace u(t) and G(t,u(t)) by their Lagrange
interpolating polynomials of degree M associated to the M + 1 subtimenodes

uh(t) :=
M∑

m=0

umψm(t), Gh(t) :=
M∑

m=0

G(tm,um)ψm(t), (4)

leading to the ADER implicit weak form (ADER-IWF)

M∑
m=0

[
ψ`(tn+1)ψm(tn+1) −

∫ tn+1

tn

(
d
dt
ψ`(t)

)
ψm(t)dt

]
um − ψ`(tn)un

−

M∑
m=0

(∫ tn+1

tn
ψ`(t)ψm(t)dt

)
G(tm,um) = 0, ∀` = 0, . . . ,M,

(5)

which is a nonlinear system in the unknowns um.
As we are going to see in the next subsection, such system can be put in a compact matrix formulation and,

under time step restrictions, it can be solved through an explicit iterative strategy. Its solution consists of the
coefficients of the continuous representation (4) of the numerical solution uh, through which we get un+1 :=
uh(tn+1). The order of accuracy of un+1 with respect to the exact solution u(tn+1), denoted by N, depends on the
choice of the subtimenodes and on the quadrature rule used for integrals. Summarizing, the ADER method consists
in solving iteratively the ADER-IWF (5) with respect to the coefficients um, which are later used to compute un+1.
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Remark 2.1 (On the order of accuracy). Several choices of subtimenodes and quadrature rules are possible. A
generic distribution of M + 1 subtimenodes tm in the interval [tn, tn+1], e.g., equispaced, guarantees, in general, an
order of accuracy of the resulting ADER method equal to N = M + 1. However, particular choices yield higher
accuracy, for example if we choose, both for the basis function definitions and for the quadrature rule, to use
M + 1 GLB subtimenodes we obtain order of accuracy equal to N = 2M, while with M + 1 GLG nodes we get
an accuracy of N = 2M + 1. The proofs of the accuracy are based on theoretical results in the context of the RK
methods and are presented in Section 3, in Theorems 3.8 and 3.9.

Remark 2.2 (On the computation of un+1). The ADER-IWF (5), together with the reconstruction (4) of uh in tn+1,
could be interpreted as an implicit high order RK, referred as ADER-IWF-RK, as we are going to show in Theorem
3.1. In particular, in the context of the computation of un+1 after the solution of the nonlinear system, the final
interpolation could be equivalently replaced by the following integration

un+1 = un +

∫ tn+1

tn
Gh(t)dt = un +

M∑
m=0

(∫ tn+1

tn
ψm(t)dt

)
G(tm,um). (6)

In the ADER formulation for hyperbolic PDEs introduced in [20], the final integration allows communications
between neighboring cells after an iterative procedure used to solve local weak formulations in space-time control
volumes.

Remark 2.3 (On the difference between ADER and ADER-IWF-RK and non-suitability for stiff problems). The
ADER method is based on an explicit iterative procedure for the solution of the nonlinear system (5) and it has,
hence, an explicit character, not suited for stiff problems. On the other hand, the ADER-IWF-RK is an implicit
method. Therefore, an ADER method and its associated ADER-IWF-RK method do not share the same properties
in terms of stability.

Let us notice that implicit versions of ADER, based on an implicit treatment of G in the context of the iterative
procedure and, hence, suitable for stiff problems, exist in literature [39] but they will not be investigated in this
work. The application of the efficient modifications proposed in this work to implicit ADER methods is currently
under investigation.

2.2. Matrix formulation and explicit iterative solution

The ADER-IWF (5) can be recast in the following matrix formulation

Bu − r − ∆tΛG(u) = 0, (7)

where B and Λ are matrices, while, u, r and G(u) are vectors, defined by

B`,m : = ψ`(tn+1)ψm(tn+1) −
∫ tn+1

tn

(
d
dt
ψ`(t)

)
ψm(t)dt = ψ̂`(1)ψ̂m(1) −

∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
ψ̂m(ξ)dξ,

Λ`,m : =
1
∆t

∫ tn+1

tn
ψ`(t)ψm(t)dt =

∫ 1

0
ψ̂`(ξ)ψ̂m(ξ)dξ

u : =


u0

...
uM

 , r :=


ψ0(tn)un

...
ψM(tn)un

 , G(u) :=


G(t0,u0)

...
G(tM ,uM)


(8)

with ψ̂m(ξ) := ψm(tn + ∆tξ) being the Lagrange basis functions remapped onto the interval [0, 1]. For simplicity,
the matrices B and Λ were defined for a scalar problem, they need to be block expanded for a vectorial problem.
Furthermore, inverting the matrix B, from (7) we get

u − un − ∆tB−1ΛG(u) = 0, with un :=


un
...

un

 , (9)

thanks to the following proposition, whose proof can be found in Appendix A.1.

Proposition 2.4. If B and r are defined as in (8) and un as in (9), then B−1r = un.
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For ∆t small enough, system (9) has a unique solution, which can be obtained as the limit of the following
explicit iterative procedure

u(p) := un + ∆tB−1ΛG(u(p−1)), p ≥ 1, (10)

which converges independently of the chosen initial guess u(0), due to the following proposition, whose proof can
be found in Appendix A.2.

Proposition 2.5 (Convergence of the iterative procedure). For ∆t small enough, a unique solution to (9) exists
and it coincides with the limit of the iterative procedure (10). In particular, the convergence is ensured for ∆t <

1
‖B−1Λ‖∞CLip

.

The time step restriction resulting from Proposition 2.5 amounts to a classical time step restriction for explicit
methods. In fact, the step size ∆t is constrained by the inverse of the Lipschitz constant CLip of G up to a constant,∥∥∥B−1Λ

∥∥∥
∞

, independent of ∆t. Let us notice that such estimate for the upper bound of ∆t might not be optimal and
could be improved, for example, by choosing other norms in the context of the proof.

Let us notice that, since the expected discretization accuracy of un+1 := uh(tn+1) is N, there is no need to
solve the nonlinear system (9) up to a tolerance that is stricter than the discretization error corresponding to such
accuracy. In general, obtaining an N-th order accurate approximation of the solution of (9) is sufficient and this
is possible by performing exactly N iterations of (10), as we are going to see in Section 4, by putting the ADER
method in a DeC formalism and showing that each iteration increases the order of accuracy by one.

Before continuing, we state here a result concerning the invertibility of the matrix B.

Theorem 2.6 (Invertibility of B). The ADER matrix B, defined for any generic basis
{
φ̂m(ξ)

}
m=0,...,M

of the space
of the polynomials of degree M over [0, 1] as

B`,m := φ̂`(1)φ̂m(1) −
∫ 1

0

(
d
dξ
φ̂`(ξ)

)
φ̂m(ξ)dξ, (11)

is invertible.

The construction of ADER methods is strongly based on the assumption that the matrix B is nonsingular,
however, the problem of the existence of its inverse has been, up to authors’ knowledge, never investigated in
literature. In fact, the proof of Theorem 2.6 is less immediate than the proofs of the invertibility of classical mass
and stiffness matrices of standard finite element formulations and can be found in Appendix A.3.

3. Accuracy of ADER-IWF

This section is divided into two subsections. In the first one, we will discuss the order of accuracy of ADER
methods for equispaced, GLB and GLG subtimenodes. In the second one, we will present an original result
concerning ADER methods with arbitrary bases.

Both subsections address important aspects in the context of the computational efficiency of ADER methods.
In fact, in several works [39, 63, 64, 67, 29, 53, 22], (M + 1)-th order of accuracy has been obtained via M +

1 GLG subtimenodes leading to a polynomial reconstruction in time of degree M; however, as we are going
to show, nearly half of the subtimenodes (with consequent shorter computational times and smaller memory
consumption) can guarantee the same accuracy order. In particular, in Theorem 3.8 and Theorem 3.9, we show
that M +1 subtimenodes correspond to an accuracy order equal to 2M and 2M +1, respectively for GLB and GLG
subtimenodes if the associated quadrature formulas are adopted to compute the integrals.

Moreover, we show in Theorem 3.10 that any general set of polynomial basis functions (not necessarily La-
grangian) lead to the same schemes defined above, under mild assumptions.

The quadrature formulas used to compute the integrals in the ADER terms will play a crucial role in this
section. Whenever not specified, we assume an exact integration.

3.1. Accuracy of ADER with nodal bases
In this subsection, we will show that the order of accuracy of the ADER methods with M + 1 subtimenodes is

N = M + 1 for equispaced subtimenodes with exact quadrature and, respectively, N = 2M and N = 2M + 1 for
GLB and GLG subtimenodes, when adopting the associated quadrature formulas. We remark that the accuracy
of an ADER method is referred to the approximation un+1, obtained via the reconstruction (4), after the solution
of the ADER-IWF (5). In the following, we will show how it is possible to associate an implicit high order RK
scheme with S = M + 1 stages to a general ADER method.
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Let us recall the structure of a RK scheme [13] with S stagesys = un + ∆t
∑S−1

r=0 as,rG(tn + cr∆t, yr), for s = 0, . . . , S − 1,
un+1 = un + ∆t

∑S−1
r=0 brG(tn + cr∆t, yr),

(12)

where as,r, br and cr for s, r = 0, . . . , S − 1 are some coefficients that characterize the method, usually stored in
matrix A and vectors b and c respectively. The associated Butcher tableaux defines the method as well

c A
b .

In the following, we will denote by ξm := tm−tn
∆t the ADER subtimenodes rescaled into [0, 1], and by wm :=∫ 1

0 ψ̂mdξ the quadrature weights of the induced quadrature formula. Further, we collect the ξm values in the vector

β :=
(
ξ0, . . . , ξM

)T
. We can now present the first result of this subsection concerning the link between ADER-

IWF and implicit RK methods.

Theorem 3.1 (The ADER-IWF (5) is an implicit RK). Solving the ADER-IWF (5) and then using reconstruction
(4) to get un+1 with M ≥ 1 is equivalent to the implicit RK method characterized by A := B−1Λ, c := β and b
defined by bm := wm.

The proof can be found in Appendix A.4. Given an ADER method, we will refer to the associated RK method
as ADER-IWF-RK. It is possible to show that such RK methods fulfill classical properties of high order RK
schemes, for example the following proposition holds.

Proposition 3.2. A general ADER-IWF-RK method with M ≥ 1 satisfies condition

S−1∑
j=0

ai, j = ci, i = 0, . . . , S − 1. (13)

The proof can be found in Appendix A.5. Further, thanks to basic interpolation properties, it is easy to show
that an ADER-IWF-RK method with M + 1 subtimenodes is at least of order N = M + 1, as summarized in the
next proposition.

Proposition 3.3. ADER-IWF-RK with M + 1 subtimenodes is at least of order M + 1.

The proof can be found in Appendix A.6. Therefore, a general distribution of subtimenodes, e.g., equispaced,
yields accuracy M + 1. Nonetheless, we will show that particular choices of subtimenodes lead to higher con-
vergence rates. The order of accuracy of the ADER-IWF-RK schemes can be verified with the help of some
conditions on the coefficients A, b and c. Let us, hence, define, for p, η, ζ ∈ N, the following conditions [66]

B(p) :
S−1∑
i=0

bicz−1
i =

1
z
, z = 1, . . . , p; (14a)

C(η) :
S−1∑
j=0

ai, jcz−1
j =

cz
i

z
, i = 0, . . . , S − 1, z = 1, . . . , η; (14b)

D(ζ) :
S−1∑
i=0

bicz−1
i ai, j =

b j

z
(1 − cz

j), j = 0, . . . , S − 1, z = 1, . . . , ζ, (14c)

which allow to easily verify the order of accuracy of implicit RK schemes through the following theorem.

Theorem 3.4 (Butcher 1964 [13]). If the coefficients ai, j, bi, ci of a RK scheme satisfy B(p), C(η) and D(ζ) with
p ≤ η + ζ + 1 and p ≤ 2η + 2, then the method is of order p.

We recall that the condition B(p) is necessary to reach order p, while C(η) and D(ζ) are only sufficient
conditions [38]. Typically, explicit methods do not fulfill them.

We are now going to prove two preliminary results concerning the ADER-IWF-RK schemes, which will be
later used to show their accuracy for GLB and GLG subtimenodes.
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Lemma 3.5. The ADER-IWF-RK methods, with integral terms evaluated through a quadrature formula Q {·} with
degree of exactness at least 2S − 3, satisfy C(S − 1).

Proof. Condition C(S − 1) can be verified by explicit computations in matricial form. Indeed, since A = B−1Λ,
then C(S − 1) can be rewritten as

A cz−1 =
1
z

cz ⇐⇒ Λ cz−1 =
1
z

B cz, z = 1, . . . , S − 1, (15a)

where cα denotes the vector c with each entry to the power of α.
Let us compute the general `-th component of both sides of the last equality. The right-hand side is

1
z

(
B cz

)
`

=
1
z

M∑
m=0

[
ψ̂`(1)ψ̂m(1) −

∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
ψ̂m(ξ)dξ

]
(ξm)z

=
1
z

ψ̂`(1)
[ M∑

m=0

ψ̂m(1) (ξm)z
]
−

∫ 1

0

(
d
dξ
ψ̂`(ξ)

) [ M∑
m=0

ψ̂m(ξ) (ξm)z
]
dξ

 .
(15b)

Since z is at most S − 1 and the Lagrange basis functions ψ̂m associated to M + 1 = S points allow to exactly
interpolate polynomials up to degree M = S − 1, we have that the terms in square brackets are nothing but the
exact interpolation of the function ξz. Therefore, due to the exactness of the quadrature formula for polynomials
of degree 2S − 3, we can integrate by parts and obtain

1
z

(
B cz

)
`

=
1
z

{
ψ̂`(1) · 1z −

∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
ξzdξ

}
=

1
z

{
ψ̂`(1) · 1z − ψ̂`(1) · 1z + ψ̂`(0) · 0z + z

∫ 1

0
ψ̂`(ξ)ξz−1dξ

}
=

∫ 1

0
ψ̂`(ξ)ξz−1dξ.

(15c)

The left-hand side is slightly more delicate to handle, as the adopted quadrature formula does not allow to compute
exactly the terms of the matrix Λ. We have

(
Λ cz−1

)
`

=

M∑
m=0

Q
{
ψ̂`(ξ)ψ̂m(ξ)

}
(ξm)z−1

= Q

ψ̂`(ξ)
 M∑

m=0

ψ̂m(ξ) (ξm)z−1


 (15d)

= Q
{
ψ̂`(ξ)ξz−1

}
=

∫ 1

0
ψ̂`(ξ)ξz−1dξ =

1
z

(
B cz

)
`
, (15e)

where in (15d) we have used the linearity of the quadrature operator and in (15e) the fact that the subtimenodes
exactly interpolate polynomials up to degree M = S − 1 and (15c).

Note that the condition C(S − 1) is sharp. In fact, since the interpolation is not anymore exact for z = S , then
C(S ) is not satisfied.

The condition of the previous lemma is therefore satisfied by ADER-IWF-RK methods with GLB and GLG
subtimenodes if the same subtimenodes are adopted as quadrature points, since they induce quadrature formulas
respectively characterized by degree of exactness equal to 2S −3 and 2S −1. We refer to such schemes, character-
ized by having the subtimenodes as quadrature points, as ADER-IWF-RK-GLB and ADER-IWF-RK-GLG. They
satisfy another important property stated in the next lemma.

Lemma 3.6. The ADER-IWF-RK-GLB and ADER-IWF-RK-GLG methods satisfyD(S − 1).

Proof. Let us observe that, for both ADER-IWF-RK-GLB and ADER-IWF-RK-GLG methods, the subtimenodes
and the quadrature points coincide. Hence, in these particular cases, we have a diagonal matrix Λ. In fact, its
general entry is

Λ`,m := Q
{
ψ̂`(ξ)ψ̂m(ξ)

}
= w`δ`,m, (16a)

where w` =
∫ 1

0 ψ̂`dξ = b` is the quadrature weight associated to ξ`. This fact will be useful in the following.
We write explicitly conditionD(S − 1) in matricial form, for all z = 1, . . . , S − 1

AT bcz−1 =
1
z

b(1 − cz)⇐⇒
[
bcz−1

]T
A =

1
z

[
b(1 − cz)

]T
⇐⇒

[
bcz−1

]T
=

1
z

[
b(1 − cz)

]T
Λ−1B, (16b)
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where the general i-th entries of the vectors bcz−1 and b(1 − cz) are respectively bicz−1
i and bi(1 − cz

i ).

Recalling that Λi, j = wiδi j = biδi j, the following expression holds
[
b(1 − cz)

]T
Λ−1 = (1 − cz)T , with general

i-th entry equal to 1 − cz
i . Hence, it is left to prove that bcz−1 = 1

z BT 1 − cz.
Expanding the `-th component of the right-hand side, we get

1
z

(
BT 1 − cz

)
`

=
1
z

M∑
m=0

[
ψ̂m(1)ψ̂`(1) −

∫ 1

0

(
d
dξ
ψ̂m(ξ)

)
ψ̂`(ξ)dξ

] [
1 − (ξm)z]

=
1
z


 M∑

m=0

ψ̂m(1)
[
1 − (ξm)z] ψ̂`(1) −

∫ 1

0

 M∑
m=0

d
dξ
ψ̂m(ξ)

[
1 − (ξm)z] ψ̂`(ξ)dξ

 .
(16c)

Since (1 − ξz) is a polynomial of degree at most S − 1, its Lagrange interpolation is exact, hence

1
z

(
BT 1 − cz

)
`

=
1
z

{
(1 − 1z) · ψ̂`(1) −

∫ 1

0

[
d
dξ

(1 − ξz)
]
ψ̂`(ξ)dξ

}
=

∫ 1

0
ψ̂`(ξ)ξz−1dξ = w` ·

(
ξ`

)z−1
=

(
bcz−1

)
`
.

(16d)

In the last step, we have exploited the exactness of the quadrature rule in the GLB or GLG subtimenodes for the
considered integral. Hence, conditionD(S − 1) holds. Note that also in this case the condition is sharp: the exact
interpolation of polynomials of degree S − 1, guaranteed for z ≤ S − 1, was necessary and therefore D(S ) is not
satisfied.

Remark 3.7 (ADER-IWF-RK-GLG is not a collocation method). From the proof of Lemma 3.5, we can observe
that ADER-IWF-RK-GLG methods do not satisfy C(S ), despite having all the ci coefficients distinct, hence, the
methods are not collocation methods and they do not coincide with Gauss methods [38].

To finally obtain the accuracy of ADER-IWF-RK-GLB and ADER-IWF-RK-GLG, we use Theorem 3.4.

Theorem 3.8. ADER-IWF-RK-GLB is of order 2S − 2.

Proof. The condition B(2S − 2) holds, because the vectors c and b are the quadrature points and weights of the
GLB quadrature formula characterized by degree of exactness 2S − 3. Lemmas 3.5 and 3.6 prove that ADER-
IWF-RK-GLB satisfies C(S −1) andD(S −1), so Theorem 3.4 is satisfied for order p = 2S −2 and η = ζ = S −1.
Moreover, since the quadrature is of order exactly 2S −2, B(2S −1) does not hold and, hence, the method is not of
order 2S −1. This observation is based on the theory of order conditions of RK methods involving trees presented
in [38]. If B(p) is not satisfied, not all the order conditions of [38, Theorem 2.13] hold for all trees of order ≤ p
and the method cannot be of order p.

In particular, the ADER-IWF-RK-GLB methods coincide with Lobatto IIIC RK methods [66] and we prove it
in Appendix B.

Theorem 3.9. ADER-IWF-RK-GLG is of order 2S − 1.

Proof. ADER-IWF-RK-GLG satisfies B(2S ), because the vectors c and b are the quadrature points and weights
of the GLG quadrature formula characterized by degree of exactness 2S − 1. Hence, also B(2S − 1) holds. For
Lemmas 3.5 and 3.6, it also satisfies C(S − 1) and D(S − 1). Hence, Theorem 3.4 guarantees that the method is
of order 2S − 1, since it is satisfied with p = 2S − 1 and η = ζ = S − 1. Also here, it is possible to prove that
ADER-IWF-RK-GLG is not of order 2S , but sharply of order 2S − 1. Indeed, a method of order 2S must verify
C(S ), see [14, Theorem 342C]. So, by contradiction, it must be that ADER-IWF-RK-GLG is not of order 2S .

3.2. Beyond (and within) nodal bases

In this subsection, we prove an interesting result concerning the equivalence between ADER schemes with
arbitrary bases and ADER schemes with Lagrangian basis functions defined in the quadrature points of the former
schemes. Let us start by introducing the ADER formulation for an arbitrary basis {φm}m=0,...,M of the space of

8



polynomials with degree M over [tn, tn+1]. Again, moving from the weak formulation of the ODEs system (1) and
projecting it onto a finite dimensional functional space, we get the nonlinear system

M∑
m=0

[
φ`(tn+1)φm(tn+1) −

∫ tn+1

tn

(
d
dt
φ`(t)

)
φm(t)dt

]
um − φ`(tn)un

−

∫ tn+1

tn
φ`(t)Gh(t)dt = 0, ` = 0, . . . ,M,

(17)

where Gh(t) := G(t,uh(t)) with the reconstruction uh(t) :=
∑M

m=0 umφm(t). The unknown coefficients um are general
representation coefficients of the numerical solution in the polynomial space spanned by the basis functions, not
anymore nodal values. In literature, one can find different choices of basis functions alternative to nodal ones, for
example modal Taylor basis functions [12, 7, 32, 48].

In order to get a fully discrete version, we need to specify the quadrature formula that we are going to use in
the integral terms: {(ξq,wq)}q=0,...,M with ξq ∈ [0, 1] nodes and wq =

∫ 1
0 ψ̂q(ξ)dξ weights of the quadrature, where

ψ̂q are the Lagrangian basis functions associated to the quadrature points ξq. Then, (17) reads

M∑
m=0

[
φ̂`(1)φ̂m(1) −

M∑
q=0

(
d
dξ
φ̂`(ξq)

)
φ̂m(ξq)wq

]
um − φ̂`(0)un

− ∆t
M∑

q=0

φ̂`(ξq)G
ξq,

M∑
m=0

umφ̂m(ξq)

 wq = 0, ` = 0, . . . ,M,

(18)

which is the ADER-IWF of the method defined by the basis {φm}m=0,...,M and the quadrature {(ξq,wq)}q=0,...,M . The
system can be solved iteratively as in (10) to obtain un+1 := uh(tn+1). Again, we denote with (̂·) the quantities
rescaled onto [0, 1].

Theorem 3.10 (Link between ADER schemes with arbitrary and nodal bases). Consider a basis {φm}m=0,...,M of the
space of the polynomials of degree M over [tn, tn+1] and let us denote by {(ξq,wq)}q=0,...,M the (M + 1)-points GLB
or GLG quadrature rule, which we will denote by GL*, and by {ψm}m=0,...,M the respective Lagrange polynomials.
Then, the ADER-IWF (18) defined by {φm}m=0,...,M and by the quadrature {(ξq,wq)}q=0,...,M is equivalent to the
ADER-IWF (5) defined by {ψm}m=0,...,M with integrals computed through the same quadrature.

Proof. Let us observe that, being {φ̂m}m=0,...,M a basis of the space of the polynomials of degree M over [0, 1], there
exists a unique vector of coefficients γ = (γ0, . . . , γM)T such that

M∑
m=0

γmφ̂
m ≡ 1. (19a)

We aim at rewriting (18) into a matrix formulation, as in (9), and at comparing the resulting systems. We first
introduce vq = uh(tn + ∆tξq) =

∑M
m=0 umφ̂m(ξq), the reconstructed solution value in the GL* quadrature point ξq, so

that uh(t) =
∑M

m=0 umφm(t) =
∑M

q=0 vqψq(t). We also define the change of basis matrixH such that v = Hu, where
the general element of such matrix is defined asH`,m = φ̂m(ξ`).

Hence, system (18) can be equivalently recast as

Bu − r − ∆tΛG(v) = 0, (19b)

where

B`,m := φ̂`(1)φ̂m(1) −
M∑

q=0

(
d
dξ
φ̂`(ξq)

)
φ̂m(ξq)wq, Λ`,m := φ̂`(ξm)wm,

u :=


u0

...
uM

 , r :=


φ0(tn)un

...
φM(tn)un

 , G(v) :=


G(t0, v0)

...
G(tM , vM)

 , v = Hu.

(19c)

Again, for compactness, the structures are referred to a scalar problem and the matrices should be block
expanded for a vectorial one. We can rewrite Λ as Λ = HT W with W being a diagonal matrix having as entries
the GL* quadrature weights wm.
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Then, inverting B and multiplying byH , we have that system (19b) is equivalent to

v −HB−1r − ∆tHB−1HT WG(v) = 0. (19d)

Now, we can compare such system with the ADER system (9) obtained for GL* subtimenodes and quadrature.
In particular, the two formulations coincide if and only ifHB−1r = un

HB−1HT W = B−1
GL∗ΛGL∗,

(19e)

where BGL∗ and ΛGL∗ are the ADER structures given in (8) with GL* subtimenodes, also assumed as quadrature
points for the computation of the integrals.

Let us start by the first equivalence of (19e). Let us simplify the notation of r writing it as r = φ̂(0)un, where

un is meant to be multiplied to each component of φ̂(0). With this, we just need to prove that

HB−1φ̂(0) = 1. (19f)

Recalling that
∑M

m=0 γmφ̂
m(ξ) ≡ 1, we can instead prove that

φ̂(0) = Bγ, (19g)

as we would have
(
HB−1φ̂(0)

)
`

=
(
Hγ

)
`

=
∑M

m=0 φ̂
m(ξ`)γm = 1. Equality (19g) can be proven expanding the right

hand side: (
Bγ

)
`

=

M∑
m=0

[
φ̂`(1)φ̂m(1) −

∫ 1

0

(
d
dξ
φ̂`(ξ)

)
φ̂m(ξ)dξ

]
γm

= φ̂`(1)

 M∑
m=0

φ̂m(1)γm

 − ∫ 1

0

(
d
dξ
φ̂`(ξ)

)  M∑
m=0

φ̂m(ξ)γm

 dξ

= φ̂`(1) · 1 −
∫ 1

0

(
d
dξ
φ̂`(ξ)

)
· 1dξ = φ̂`(1) − φ̂`(1) + φ̂`(0) = φ̂`(0),

(19h)

thanks again to (19a) and the exactness of the quadrature formula for polynomials of degree M − 1.
For the second equality of (19e), let us first notice that, due to the assumption on the quadrature, we have ΛGL∗ =

W. Thus, we suffice to prove
HB−1HT = B−1

GL∗. (19i)

Taking the inverse of the previous equality and inverting theH matrices, we get

HB−1HT = B−1
GL∗ ⇐⇒ (HT )−1B(H)−1 = BGL∗ ⇐⇒ B = HT BGL∗H .

Let us compute the general entry of the matrix at the right-hand side

(
HT BGL∗H

)
`,m

=

M∑
i=0

(
HT

)
`,i

M∑
j=0

(BGL∗)i, jH j,m

=

M∑
i=0

φ̂`(ξi)
M∑
j=0

[
ψ̂i(1)ψ̂ j(1) −

∫ 1

0

(
d
dξ
ψ̂i(ξ)

)
ψ̂ j(ξ)dξ

]
φ̂m(ξ j)

=

M∑
i=0

φ̂`(ξi)ψ̂i(1)
M∑
j=0

ψ̂ j(1)φ̂m(ξ j) −
∫ 1

0

d
dξ

 M∑
i=0

φ̂`(ξi)ψ̂i(ξ)

 M∑
j=0

ψ̂ j(ξ)φ̂m(ξ j)dξ.

(19j)

Now, observing that
∑M

i=0 φ̂
`(ξi)ψ̂i and

∑M
j=0 φ̂

m(ξ j)ψ̂ j are the exact interpolations of φ̂` and φ̂m respectively, we
finally have (

HT BGL∗H
)
`,m

= φ̂`(1)φ̂m(1) −
∫ 1

0

(
d
dξ
φ̂`(ξ)

)
φ̂m(ξ)dξ = B`,m. (19k)

Clearly, since the nodal values define a unique polynomial, also the final interpolation step will be the same for
the two ADER methods involved in this theorem.
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The previous result is interesting under several points of view. Thanks to Theorem 3.10, we can give a precise
characterization of the ADER methods for arbitrary bases. If, for some reason, a user wants to adopt another
basis other than the GL* polynomials for the definition of the ADER method, for example a Taylor basis, then
the properties of the resulting scheme do not change, provided that the function G is directly evaluated in the GL*
quadrature points. Therefore, also the accuracy of the resulting scheme is known and it is characterized by the one
of the ADER-IWF-RK-GL* methods in the previous section.

Notice that Theorem 3.10 applies also in the context of nodal bases: if one chooses M + 1 equispaced subti-
menodes for the definition of the ADER method but G is evaluated in the GL* quadrature points, instead of the
basis nodal values, then the resulting accuracy will not be M + 1, but rather 2M and 2M + 1 for GLB and GLG,
respectively.

4. ADER as a Deferred Correction method

This section aims to determine the optimal number of iterations for an ADER method using the DeC formal-
ism, an abstract framework used to approximate arbitrarily well the solution of implicit (nonlinear) discretizations
of analytical problems, through an easy iterative procedure. Originally presented in 1949 [30], the DeC was ap-
plied in different flavors to ODEs [50, 44, 42, 49, 52, 47, 39] and PDEs [51, 57, 1, 16, 48, 4, 5, 2] contexts. Abgrall
[1] proposed a formalization using two operatorsL1

∆
,L2

∆
: X → Y , depending on a same parameter ∆, correspond-

ing to two different discretizations of the same problem: L2
∆

is a difficult-to-solve high order nonlinear implicit
discretization of the problem and L1

∆
is an easy-to-solve low order (explicit) one. Aiming at u

∆
∈ X, solution of

L2
∆

(u
∆

) = 0Y , we iteratively approximate it arbitrarily well through an easy-to-solve (explicit) iteration process as
prescribed in the next theorem.

Theorem 4.1 (DeC; Abgrall [1]). For a fixed u(0) ∈ X, let us define the sequence of vectors u(p) as the solution of

L1
∆(u(p)) := L1

∆(u(p−1)) − L2
∆(u(p−1)), p ≥ 1. (20)

If the following conditions on the operators L1
∆

and L2
∆

hold

1. ∃! u
∆
∈ X solution of L2

∆
such that L2

∆
(u

∆
) = 0Y (Existence of a unique solution to L2

∆
);

2. ∃α1 ≥ 0 independent of ∆ such that∥∥∥L1
∆(v) − L1

∆(w)
∥∥∥

Y ≥ α1
∥∥∥v − w

∥∥∥
X , ∀v,w ∈ X(Coercivity-like property of L1

∆); (21)

3. ∃α2 ≥ 0 independent of ∆ such that∥∥∥∥[L1
∆(v)−L2

∆(v)
]
−
[
L1

∆(w)−L2
∆(w)

]∥∥∥∥
Y
≤α2∆

∥∥∥v − w
∥∥∥

X , ∀v,w ∈ X;

(Lipschitz-continuity-like property of L1
∆ − L

2
∆)

(22)

then, we can prove the following error estimate∥∥∥u(p) − u
∆

∥∥∥
X ≤

(
∆
α2

α1

)p ∥∥∥u(0) − u
∆

∥∥∥
X , ∀p ∈ N. (23)

The proof can be found in [1, 47, 48] and it uses induction on the iterations. Estimate (23) tells that u
∆

can
be approximated with arbitrarily high precision as p → +∞. However, u

∆
is itself an approximation of the exact

solution uex of the original analytical problem to which the operators are associated. If its order of accuracy is R, it
suffices to find an R-th order accurate approximation of u

∆
to get the same formal order of accuracy. By triangular

inequality, if u(0) is O(∆)-accurate, the order of accuracy of u(p) with respect to uex is min (p,R), hence, the optimal
choice for the final number of iterations P is P = R. Extra iterations may (slightly) improve the accuracy but they
do not increase the order of accuracy and are essentially a waste of computational resources.

4.1. Link ADER-DeC
We will show here how the ADER method presented in Section 2 can be put in a DeC formalism with ∆ = ∆t.

We start by defining the N-th order accurate operator L2
∆

: R(M+1)×Q → R(M+1)×Q as

L2
∆(u) := u − un − ∆tB−1ΛG(u). (24)
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Let us notice that the problem of finding u
∆

such that L2
∆

(u
∆

) = 0 is indeed equivalent to solving the nonlinear
system (9). We introduce the low order operatorL1

∆
: R(M+1)×Q → R(M+1)×Q as a first order explicit approximation

of (9)

L1
∆(u) := u − un − ∆tB−1ΛG(un). (25)

Remark 4.2 (On the accuracy of the operators). We remark that the mentioned order of accuracy of the operators
L1

∆
and L2

∆
is referred, in this context, to the accuracy of the approximation un+1 = uh(tn+1) that the related

solution coefficients u induce via (4).

We can easily prove that the operators that we have defined satisfy the assumptions of Theorem 4.1.

Theorem 4.3 (Properties of L1
∆

and L2
∆

; Han Veiga, Öffner, Torlo [39]). The operators L1
∆

and L2
∆

, given by (25)
and (24), satisfy the hypotheses of Theorem 4.1.

The proof can be found in [39, Propositions 4.3 and 4.4]. Finally, the resulting DeC iteration (20), in this
particular case, after an easy direct computation, reads

u(p) = un + ∆tB−1ΛG(u(p−1)), (26)

which coincides with the iteration defined in (10). However, the DeC formalism allows us to select the optimal
number of iterations, which is equal to N, i.e., the order ofL2

∆
= 0, provided that u(0) is O(∆t)-accurate. Therefore,

we can set u(0) := un and P = N to get the formal order of accuracy.

5. Novel modified ADER methods

In this section, we describe some efficient versions of ADER methods based on a modification of the original
approach, following the strategy proposed in [47], in a DeC context for ODEs, and then generalized and applied
to an ADER-DG framework in [48]. Actually, the basic idea was firstly introduced by Minion in [50] as ladder
DeC methods for ODEs, counting several follow-ups [57? ? ? ? ]. However, the approach was very specific for
DeC time-integration methods for ODEs. The more general formulation presented in [48] allows for applications
to many other contexts, e.g., to ADER schemes. In particular, the modification consists in redesigning the whole
iterative process in such a way that the discretization accuracy increases accordingly to the order of accuracy of the
numerical solution at each specific iteration. In practice, we will look for a solution in a different approximation
space at each iteration p, i.e., the time reconstruction is such that u(p)

h (t) ∈ Pp up to a maximum reconstruction
degree, where Pp is the space of polynomials of degree p over [tn, tn+1]. This is beneficial under many points of
view, among which:

• we save computations in the early iterations, as we work with smaller vectors and matrices;

• p-adaptivity can be naturally embedded in the new methods, as there is no formal upper bound on the order
of accuracy.

In order to change iteration structures along the iterative process, some embeddings between different spaces
E(p−1) : Pp−1 ↪→ Pp, e.g., interpolations or L2-projections, are needed to pass from u(p−1) to some u∗(p−1), which
is a suitable input for the p-th iteration to compute u(p). For the specific context of DeC methods, the following
theorem holds.

Theorem 5.1 (Micalizzi, Torlo, Boscheri [48]). Let us consider a problem with exact solution uex ∈ Z and
the normed vector spaces (X(p), ‖·‖X(p) ) and (Y (p), ‖·‖Y (p) ) for p ∈ N, p ≥ 1. Further, let us assume that some
operators L1,(p)

∆
,L

2,(p)
∆

: X(p) → Y (p) are defined for p ≥ 1, dependent on the same parameter ∆ and satisfying
the assumptions in Theorem 4.1 for α(p)

1 , α
(p)
2 > 0 and u(p)

∆
∈ X(p). Let us also assume that ∀p ∈ N there exists an

embedding operator E(p) : X(p) → X(p+1) and a projection Π(p) : Z → X(p). We define u∗(p) := E(p)(u(p)) ∈ X(p+1)

and u(p)
ex := Π(p)(uex) ∈ X(p). Let us consider the modified DeC method whose general p-th iteration is given byu∗(p−1) := E(p−1)(u(p−1)),

L
1,(p)
∆

(u(p)) := L1,(p)
∆

(u∗(p−1)) − L2,(p)
∆

(u∗(p−1)),
(27)

for some u(0) ∈ X(0). Moreover, assume that
∥∥∥∥u(p)

∆
− u(p)

ex

∥∥∥∥
X(p)

= O(∆p+1), for p ≥ 1, that there exists C > 0

independent of ∆ such that
∥∥∥u∗(p) − u(p+1)

ex

∥∥∥
X(p+1) ≤ C

∥∥∥u(p) − u(p)
ex

∥∥∥
X(p) , for p ≥ 0 and that

∥∥∥u(0) − u(0)
ex

∥∥∥
X(0) = O(∆).

Then, the following error estimate holds∥∥∥u(p) − u(p)
ex

∥∥∥
X(p) = O(∆p+1), ∀p ∈ N. (28)

12



The proof can be found in [48]. A fundamental difference between the framework of Theorem 4.1 and the one
of Theorem 5.1 is the fact that the former deals with converge towards the solution of a fixed operator L2

∆
, see

(23), while in the latter the error estimate (28) is referred, at each iteration, to a new and more accurate projection
of the exact solution uex.

In the previous section, we have proved how the ADER methods can be put in a DeC framework. Now,
we will see how the presented modification can be applied in this specific case. In particular, we propose three
modifications, which differ in the way the embeddings between the different iterations are achieved, even though
we will later prove that two of them are actually equivalent in the considered framework.

We assume equispaced subtimenodes at the beginning and we generalize for other types of subtimenodes later
on.

We introduce here, for each p, the space X(p) := R(M(p)+1)×Q of the representation coefficients of vectorial
polynomial functions in (PM(p) )Q, where the used basis functions ψm,(p) for m = 0, . . . ,M(p) are the Lagrange
polynomials of degree M(p) associated to M(p) + 1 equispaced subtimenodes in the interval [tn, tn+1], collected in
the vector t(p) :=

(
t0,(p), . . . , tM(p),(p)

)T
, with M(p) = p for all p , 0 and M(0) = 1. It is also useful to introduce here

some structures associated to such basis functions and in particular the matrices B(p) and Λ(p), defined as in (8) but
considering the functions

{
ψm,(p)

}
m=0,...,M(p)

in place of {ψm}m=0,...,M .

In the following, we will explain in detail the procedure to pass from u(p−1) ∈ X(p−1) to u(p) ∈ X(p) with the
three approaches.

5.1. ADERu

In this case, the embeddings consist in interpolations of the reconstructed numerical solution u(t) in [tn, tn+1]
between one iteration and the next one.

We start by u(0) := (un,un)T ∈ X(0) = R2×Q associated to two subtimenodes, yielding O(∆t)-accuracy, and we
perform the standard update (26) with structures associated to two subtimenodes

u(1) = u(1)
n + ∆t

(
B(1)

)−1
Λ(1)G(u(0)) with u(1)

n :=
(
un
un

)
∈ R2×Q. (29)

We get u(1) ∈ X(1) = R2×Q, corresponding to two subtimenodes and first order accurate, which allows to get an
O(∆t2)-accurate linear reconstruction of the numerical solution in [tn, tn+1]. Then, we perform the embedding and,
by a simple interpolation of the linear reconstruction, via a suitable interpolation matrix H(1), we get

u∗(1) := H(1)u(1) ∈ X(2) = R3×Q, (30)

corresponding to three equispaced subtimenodes, still O(∆t2)-accurate. For the next iteration, u∗(1) will be the
starting point to compute u(2) with structures associated to three subtimenodes. Iteratively, at the generic iteration
p > 1, we pass from u(p−1) ∈ X(p−1) = Rp×Q to u(p) ∈ X(p) = R(p+1)×Q through an interpolation and a standard
ADER iterationu∗(p−1) := H(p−1)u(p−1) ∈ X(p) = R(p+1)×Q,

u(p) = u(p)
n + ∆t

(
B(p)

)−1
Λ(p)G(u∗(p−1)) = u(p)

n + ∆t
(
B(p)

)−1
Λ(p)G(H(p−1)u(p−1)),

(31)

with u(p) ∈ X(p) = R(p+1)×Q being p-th order accurate and associated to p + 1 equispaced subtimenodes. The
interpolation matrices H(p−1) are defined by H(p−1)

`,m := ψm,(p−1)(t`,(p)) and the vector u(p)
n has p + 1 components

equal to un. Clearly, H(p−1) must be block-expanded in the context of a vectorial problem.

Remark 5.2 (On the optimal number of iterations). In such context, it is worth observing that p + 1 subtimenodes
could guarantee (p + 1)-th order of accuracy. Therefore, if the final number of subtimenodes is fixed to be M +

1, we perform M iterations, getting u(M) ∈ X(M) = R(M+1)×Q, plus one final iteration without interpolation,
obtaining u(M+1) ∈ X(M+1) = X(M), to reach the maximal accuracy associated to such subtimenodes. This holds for
equispaced subtimenodes, while in Section 5.4 we will generalize this idea to other subtimenodes types.

5.2. ADERdu

Contrarily to the previous case, here the embedding is performed on the evolution operator G(t,u(t)), rather
than on u(t). The name of the method is given to remark that the embedding is performed on the time derivative
of the variable u.
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The iteration process is very similar to before and, starting again by two subtimenodes and a first iteration
without interpolation, at the general iteration p > 1 we haveG∗(p−1) := H(p−1)G(u(p−1)) ∈ R(p+1)×Q,

u(p) = u(p)
n + ∆t

(
B(p)

)−1
Λ(p)G∗(p−1) = u(p)

n + ∆t
(
B(p)

)−1
Λ(p)H(p−1)G(u(p−1)),

(32)

where u(p) is again p-th order accurate.
Also in this case, Remark 5.2 holds and, if the final number of subtimenodes is fixed to be M + 1, then

P = M + 1 iterations are recommended without interpolation at the last iteration. In particular, the final iteration
without interpolation saturates the (M + 1)-th order of accuracy associated to M + 1 equispaced subtimenodes.

5.3. ADER-L2

Also for this efficient ADER, the embedding is not performed on u(t), but on G(t,u(t)). The difference with
ADERdu is that in ADER-L2 the embedding consists in a Galerkin projection of the evolution operator from the
polynomial space corresponding to X(p−1) to the polynomial space associated to X(p).

For the general iteration p > 1, we directly modify the discretization of the ADER-IWF (5) by looking for the
new solution u(p)

h (t) into the polynomial space of X(p), with test functions belonging as well to this space, while
G(t,u(t)) is still represented in the space X(p−1), leading to

M(p)∑
m=0

[
ψ`,(p)(tn+1)ψm,(p)(tn+1) −

∫ tn+1

tn

(
d
dt
ψ`,(p)(t)

)
ψm,(p)(t)dt

]
um,(p) − ψ`,(p)(tn)un

−

M(p−1)∑
m=0

(∫ tn+1

tn
ψ`,(p)(t)ψm,(p−1)(t)dt

)
G(tm,(p−1),um,(p−1)) = 0, ` = 0, . . . ,M(p).

(33)

System (33) can be written in matricial form as

B(p)u(p) − r(p) − ∆tΛ(p,p−1)G(u(p−1)) = 0, (34)

where the matrix Λ(p,p−1) and the vector r(p) are defined by

Λ
(p,p−1)
`,m : =

1
∆t

∫ tn+1

tn
ψ`,(p)(t)ψm,(p−1)(t)dt =

∫ 1

0
ψ̂`,(p)(ξ)ψ̂m,(p−1)(ξ)dξ, r(p)

`
:= ψ`,(p)(tn)un. (35)

Inverting B(p) and making use of Proposition 2.4, we get

u(p) := u(p)
n + ∆t

(
B(p)

)−1
Λ(p,p−1)G(u(p−1)). (36)

In this formulation, the embedding is naturally realized by the mismatch between the spaces of G(t,u(t)) and of
the test functions, without any need for additional structures.

Again, following Remark 5.2, we underline that a final extra iteration of the standard method without embed-
ding is used for a fixed final number of subtimenodes to get the optimal accuracy.

We show the equivalence of ADERdu and ADER-L2 in the next theorem. However, despite being equivalent
in the context of ADER methods for ODEs, the two modifications have a deeply different nature and, hence, their
generalization to the context of ADER methods for hyperbolic PDEs leads to different families of schemes. This
is why both the approaches have been described.

Proposition 5.3 (Equivalence between ADERdu and ADER-L2). The methods ADERdu (32) and ADER-L2 (36)
are equivalent.

Proof. In both cases the first iteration is the one of the standard method with two subtimenodes, therefore, let us
focus on the generic iteration p > 1. The updates of the two methods, respectively given in (32) and (36), are
clearly equivalent if Λ(p)H(p−1) = Λ(p,p−1). Exploiting the definition of Λ(p)H(p−1), we get

(
Λ(p)H(p−1)

)
`,m

=

M(p)∑
k=1

∫ 1

0
ψ̂`,(p)(ξ)ψ̂k,(p)(ξ)dξ ψ̂m,(p−1)(ξk,(p))

=

∫ 1

0
ψ̂`,(p)(ξ)

M(p)∑
k=1

ψ̂k,(p)(ξ)ψ̂m,(p−1)(ξk,(p))

 dξ =

∫ 1

0
ψ̂`,(p)(ξ)ψ̂m,(p−1)(ξ)dξ,

(37)
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which is the definition of Λ
(p,p−1)
`,m . In the previous computations, we have used the fact that the term in parenthesis

is the exact interpolation of ψm,(p−1)(t) ∈ Pp−1 into the polynomial space Pp defined by the Lagrange basis functions
ψk,(p) (modulo a remapping into [0, 1]). Clearly, a final iteration of the standard method in the spirit of Remark
5.2, to achieve the optimal accuracy, does not spoil the equivalence.

5.4. ADERu, ADERdu and ADER-L2 for other choices of subtimenodes
As already said, the order N of a standard ADER method for ODEs depends on the distribution of the adopted

subtimenodes. The modified methods for a general distribution, e.g., GLB or GLG, with a fixed number of
subtimenodes equal to M + 1, are hence constructed as follows. We start with two subtimenodes and we proceed
like described in the equispaced case: we perform the first iteration of the standard method and we continue with
iterations of the modified method ((31), (32) or (36)) increasing the number of subtimenodes until the iteration
p = M corresponding to M + 1 subtimenodes and order M. At this point, we continue with N − M iterations of
the standard method to saturate the accuracy of the adopted distribution.

On the other hand, in order to reach a specific order P of accuracy in the most efficient way, we select M as
the minimal integer such that M + 1 subtimenodes guarantee the order of the ADER method to be N ≥ P. This
can be done for example for GLB nodes with M =

⌈
P
2

⌉
and M = max

(⌈
P−1

2

⌉
, 1

)
for GLG. Then, we perform M

iterations to reach M + 1 subtimenodes and, further, we perform P − M final iterations of the standard method to
reach the desired accuracy.

We conclude this little section with some useful considerations. First, it is mandatory to start with at least two
subtimenodes because a single node (in principle admissible for GLG) would not be enough to guarantee, after
the first iteration, a first order reconstruction of the numerical solution, hence, spoiling the accuracy. Secondly,
the embeddings must be performed starting already from the first iterations and it is not possible to postpone them
after the saturation of the accuracy associated to an intermediate set of subtimenodes used along the iteration
process. The reason is given by the fact that the p-th embedding is only p-th order accurate, i.e., the interpolation
with p + 1 subtimenodes is associated to a local truncation error O(∆tp+1), and using it at later iterations would
spoil the accuracy.

5.5. New adaptive ADER methods
The novel ADER methods can be easily further modified to design p-adaptive schemes.
From Theorem 5.1, we have that the iteration process yields a numerical solution u(p), which gains one order

of accuracy at each iteration, with no saturation due to a fixed operator L2
∆

. Under smoothness assumptions on the
exact solution, we can therefore perform the iteration process, increasing the number of subtimenodes and hence
the order of accuracy, until convergence up to a user defined tolerance ε. If we define the approximation of un+1

obtained at the p-th iteration as u(p)
n+1 :=

∑M(p)

m=0 um,(p)ψm,(p)(tn+1), we can set as stopping criterion∥∥∥∥u(p)
n+1 − u(p−1)

n+1

∥∥∥∥∥∥∥∥u(p)
n+1

∥∥∥∥ ≤ ε. (38)

A remarkable aspect is that p-adaptivity is naturally embedded in the described formulation and that no effort,
other than a simple check at each iteration, is required to implement such feature. This is an interesting aspect of
the novel methods and of the general approach introduced in [47, 48], which is particularly desirable in the context
of real-world applications. Indeed, the final users want the error to be smaller than a predefined tolerance and to
reduce the need for computational resources as much as possible. Per se, the adoption of high order methods
does not guarantee the optimal balance. In fact, depending on the level of mesh refinement and on the prescribed
tolerance, low order methods may actually be sufficient and cheaper than high order methods. The proposed
approach is able to automatically detect the required order of accuracy. Furthermore, some of the authors are
involved in other projects whose goal is to investigate such strategy in the context of non-smooth problems.

Let us finally remark that different criteria, other than convergence, can be chosen to halt the iterative process.
For example, in [48], in a PDE context, the ADER iterations are stopped if the obtained numerical solution does
not fulfill some physical constraints.

6. ADER as Runge–Kutta methods

In this section, we will show how the described ADER methods can be rewritten as explicit RK methods, i.e.,
in the form (12) with a strictly lower-triangular matrix A of the coefficients as,r. We will define their Butcher
tableaux and we will study their linear stability.
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We introduce here the iteration-dependent vectors of the subtimenodes in the reference inteval [0, 1] as β(p) :=(
ξ0,(p), . . . , ξM(p),(p)

)T
for the new modified methods, with ξm,(p) := tm,(p)−tn

∆t .
In all cases, for the sake of efficiency, the first iteration is replaced by a simple Euler step: this reduces the

number of stages associated to the first iteration and does not spoil the accuracy. In fact, the first iteration is
supposed to provide a first order accurate approximation.

We construct the tableaux for a general distribution of subtimenodes. For a fixed accuracy order P, we consider
P iterations, assuming a final number of subtimenodes, which is chosen to be the minimal (and so the optimal)
allowing to reach such accuracy, according to the theoretical analysis presented in Section 3, i.e., M = P − 1 for
equispaced subtimenodes, M =

⌈
P
2

⌉
for GLB subtimenodes and M = max

(⌈
P−1

2

⌉
, 1

)
for GLG subtimenodes.

The Butcher tableaux associated to the described ADER methods are reported in Tables 1, 5 and 6, while,
the number of RK stages is reported in Tables 2, 3 and 4. The RK matrices A of the ADER methods under
investigation have a block-diagonal structure, with each block being associated to an ADER iteration. Some of
the computed rows of the RK A matrices have only zero elements, leading to “ghost” stages that do not contribute
to the method. These rows have not been considered in the computation of the number of RK stages in Tables 2,
3 and 4.

In tables 2, 3 and 4, we report the theoretical speed-ups of ADERu and ADERdu (equivalent to ADER-L2)
with respect to the original ADER method without interpolations, simply denoted as “ADER”. Further, for GLB
and GLG subtimenodes, we also report the theoretical speed-ups of ADER, ADERu and ADERdu with respect
to the non-optimal ADER method using a number of subtimenodes equal to the desired order of accuracy, as in
[39, 63, 64, 67, 29, 53, 22], referring to such method as “classical ADER” (cADER). Such method makes use of
an unnecessarily large number of subtimenodes at each iteration, indeed, as proven in Section 3, GLB and GLG
subtimenodes can achieve the same order with nearly half of the subtimenodes.

The theoretical speed-ups are computed as the ratios between the number of RK stages of the reference meth-
ods over the ones of the novel methods. Therefore, a theoretical speed-up larger than one implies that the investi-
gated scheme is, in theory, faster than the reference one. In Section 8, the theoretical speed-ups will be compared
with the numerical speed-ups, defined as the ratios between the wall-clock computational times of the numerical
simulations. Even if other factors might come into play, e.g., memory ordering or floating point operations of ma-
trix multiplications between ADER structures, the two quantities should be highly correlated. This is also due to
the fact that, for all the methods, all the matrices can be efficiently precomputed at the beginning of the simulation,
as they do not depend on the specific time iteration.

6.1. ADER

We start by recalling the definition of the general ADER iteration (26)

u(p) := un + ∆tB−1ΛG(u(p−1)). (39)

Collecting all the iterations and identifying each state um,(p), associated to the subtimenode tm, of u(p) as a RK
stage ys, we get the RK formulation (12) characterized by the Butcher tableau reported in Table 1. The vector b̃ is
defined as b̃

T
:=

(
ψ̂(1)

)T
B−1Λ, with ψ̂(ξ) := (ψ̂0(ξ), . . . , ψ̂M(ξ))T , and keeps into account the final ADER iteration

and the interpolation. In fact, recalling that
∑M

m=0 ψ̂
m ≡ 1, we have

un+1 =
(
ψ̂(1)

)T
u(P) =

(
ψ̂(1)

)T [
un + ∆tB−1ΛG(u(P−1))

]
= un + ∆t

(
ψ̂(1)

)T
B−1ΛG(u(P−1)). (40)

The number of stages is equal to S = 1 + (P − 1)(M + 1) and is reported, for equispaced, GLB and GLG
subtimenodes, in Tables 2, 3 and 4, neglecting the “ghost” stages. For cADER the same relation holds, but the
number of subtimenodes is always M + 1 with M = P − 1 independently of the chosen subtimenodes.

We remark that, for equispaced subtimenodes, ADER and cADER coincide. Instead, for GLB and GLG,
the adoption of the optimal number of subtimenodes for a given order, i.e., the choice of ADER over cADER,
determines a substantial decrease in the number of stages, even without extra interpolation processes.

6.2. ADERu

Again, we recall the update at the generic iteration p > 1 characterized by interpolation of u(t)u∗(p−1) := H(p−1)u(p−1),

u(p) = u(p)
n + ∆t

(
B(p)

)−1
Λ(p)G(u∗(p−1)).

(41)
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c un u(1) u(2) u(3) · · · u(P−2) u(P−1) A
0 0 un

β β 0 u(1)

β 0 B−1Λ 0 u(2)

β 0 0 B−1Λ 0 u(3)

...
...

. . .
. . .

...
...

...
. . .

. . .
...

β 0 0 · · · · · · 0 B−1Λ 0 u(P−1)

b 0 0 · · · · · · · · · 0 b̃
T

un+1

Table 1: Butcher tableau of the original ADER method, c at the left, b at the bottom, A in the middle. References to the stages
are reported on top and on the right side

Param RK Stages cADER/ADER-speed-up
P M cADER/ADER ADERu ADERdu ADERu ADERdu
2 1 2 2 2 1.000 1.000
3 2 6 6 4 1.000 1.500
4 3 12 11 7 1.091 1.714
5 4 20 17 11 1.176 1.818
6 5 30 24 16 1.250 1.875
7 6 42 32 22 1.312 1.909
8 7 56 41 29 1.366 1.931
9 8 73 51 37 1.431 1.973
10 9 90 62 46 1.452 1.957
11 10 111 74 56 1.500 1.982
12 11 133 87 67 1.529 1.985
13 12 156 101 79 1.545 1.975
14 13 183 116 92 1.578 1.989

Table 2: Number of stages S for various ADER with equispaced subtimenodes and theoretical speed-ups with respect to
ADER/cADER method computed as the ratio of the number of RK stages of ADER method over the number of RK stages of
the method of interest

Param RK Stages cADER-speed-up ADER-speed-up
P M cADER ADER ADERu ADERdu ADER ADERu ADERdu ADERu ADERdu
2 1 2 2 2 2 1.000 1.000 1.000 1.000 1.000
3 2 6 6 6 4 1.000 1.000 1.500 1.000 1.500
4 2 12 9 9 7 1.333 1.333 1.714 1.000 1.286
5 3 20 16 15 11 1.250 1.333 1.818 1.067 1.455
6 3 30 20 19 15 1.500 1.579 2.000 1.053 1.333
7 4 43 30 27 21 1.433 1.593 2.048 1.111 1.429
8 4 56 35 32 26 1.600 1.750 2.154 1.094 1.346
9 5 73 48 42 34 1.521 1.738 2.147 1.143 1.412
10 5 91 54 48 40 1.685 1.896 2.275 1.125 1.350
11 6 110 71 60 50 1.549 1.833 2.200 1.183 1.420
12 6 133 78 67 57 1.705 1.985 2.333 1.164 1.368
13 7 156 96 81 69 1.625 1.926 2.261 1.185 1.391
14 7 183 104 89 77 1.760 2.056 2.377 1.169 1.351

Table 3: Number of stages S for various ADER with GLB subtimenodes and theoretical speed-ups with respect to cADER and
to ADER computed as the ratio of the number of RK stages of the method of cADER or ADER, respectively, over the number
of RK stages of the method of interest
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Param RK Stages cADER-speed-up ADER-speed-up
P M cADER ADER ADERu ADERdu ADER ADERu ADERdu ADERu ADERdu
2 1 3 3 3 3 1.000 1.000 1.000 1.000 1.000
3 1 7 5 5 5 1.400 1.400 1.400 1.000 1.000
4 2 13 10 10 9 1.300 1.300 1.444 1.000 1.111
5 2 21 13 13 12 1.615 1.615 1.750 1.000 1.083
6 3 31 21 20 18 1.476 1.550 1.722 1.050 1.167
7 3 43 25 24 22 1.720 1.792 1.955 1.042 1.136
8 4 57 36 33 30 1.583 1.727 1.900 1.091 1.200
9 4 73 41 38 35 1.780 1.921 2.086 1.079 1.171
10 5 91 55 49 45 1.655 1.857 2.022 1.122 1.222
11 5 111 61 55 51 1.820 2.018 2.176 1.109 1.196
12 6 133 78 68 63 1.705 1.956 2.111 1.147 1.238
13 6 157 85 75 70 1.847 2.093 2.243 1.133 1.214
14 7 183 105 90 84 1.743 2.033 2.179 1.167 1.250

Table 4: Number of stages S for various ADER with GLG subtimenodes and theoretical speed-ups with respect to cADER and
to ADER computed as the ratio of the number of RK stages of cADER or ADER, respectively, over the number of RK stages
of the method of interest

It is possible to formulate the previous update in terms of the interpolated states by multiplying the second equation
by H(p)

u∗(p) = H(p)u(p) = u(p+1)
n + ∆tH(p)

(
B(p)

)−1
Λ(p)G(u∗(p−1)), (42)

where we have exploited the fact that the sum of the elements in each row of the interpolation matrix H(p) is equal
to 1. The Butcher tableau can be therefore constructed as in Table 5. The matrices W (p) are defined as

W (p) :=

H(p)
(
B(p)

)−1
Λ(p) ∈ R(p+2)×(p+1), if p = 2, . . . ,M − 1,(

B(M)
)−1

Λ(M) ∈ R(M+1)×(M+1), if p = M.
(43)

Notice that we do not have interpolation in the final iterations. We perform the interpolations in the early
iterations in order to reach the needed number of subtimenodes that allows to get the desired order of accuracy P,
then, from u(M) on, we keep iterating using the structures of the standard ADER method with M +1 subtimenodes.
Vector b̃

(M)
is, in fact, defined as b̃ considering the final number of subtimenodes. The number of stages is equal

to S = 1 + (P− 1)(M + 1)− (M−1)(M−2)
2 , i.e., (M−1)(M−2)

2 less with respect to ADER, and is reported, for equispaced,
GLB and GLG subtimenodes, in Tables 2, 3 and 4. We report also the theoretical speed-up factor with respect to
ADER and cADER.

6.3. ADERdu and ADER-L2

Since ADERdu and ADER-L2 coincide in an ODE context, they are characterized by the same RK form. In
order to obtain it and to construct the associated Butcher tableau, we recall the general update (32)

u(p) = u(p)
n + ∆t

(
B(p)

)−1
Λ(p)H(p−1)G(u(p−1)), (44)

leading to the Butcher tableau reported in Table 6. The matrices Z(p) are defined as

Z(p) :=


(
B(p)

)−1
Λ(p)H(p−1) ∈ R(p+1)×p, if p = 2, . . . ,M,(

B(M)
)−1

Λ(M) ∈ R(M+1)×(M+1), if p = M + 1.
(45)

Same considerations as the ones made in the context of the ADERu methods apply here: the final iterations
are performed without interpolations to reach the desired accuracy. The number of stages is equal to S = 1 + (P−
1)(M + 1)− M(M−1)

2 , i.e., M(M−1)
2 less with respect to ADER. Again, it can be found for equispaced, GLB and GLG

subtimenodes, in Tables 2, 3 and 4, together with the theoretical speed-up with respect to ADER and cADER.
Before studying the linear stability of the methods, as an example and for the sake of completeness, we report,

in Figure 1, the sparsity pattern of the A matrices of the cADER, ADER, ADERu and ADERdu (equivalent to
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c un u∗(1) u∗(2) u∗(3) · · · u∗(M−2) u∗(M−1) u(M) u(M+1) · · · u(P−2) u(P−1) A
0 0 un

β(2) β(2) 0 u∗(1)

β(3) 0 W (2) 0 u∗(2)

β(4) 0 0 W (3) 0 u∗(3)

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

β(M) 0 0 · · · · · · 0 W (M−1) 0 u∗(M−1)

β(M) 0 0 · · · · · · · · · 0 W (M) 0 u(M)

β(M) 0 0 · · · · · · · · · · · · 0 W (M) 0 u(M+1)

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

β(M) 0 0 · · · · · · · · · · · · · · · · · · 0 W (M) 0 u(P−1)

b 0 0 · · · · · · · · · · · · · · · · · · · · · · · · 0 (̃b
(M)

)T un+1

Table 5: Butcher tableau of the ADERu method, c at the left, b at the bottom, A in the middle. References to the stages are
reported on top and on the right side

c un u(1) u(2) u(3) · · · u(M−2) u(M−1) u(M) u(M+1) · · · u(P−2) u(P−1) A
0 0 un

β(1) β(1) 0 u(1)

β(2) 0 Z(2) 0 u(2)

β(3) 0 0 Z(3) 0 u(3)

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

β(M−1) 0 0 · · · · · · 0 Z(M−1) 0 u(M−1)

β(M) 0 0 · · · · · · · · · 0 Z(M) 0 u(M)

β(M) 0 0 · · · · · · · · · · · · 0 Z(M+1) 0 u(M+1)

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

β(M) 0 0 · · · · · · · · · · · · · · · · · · 0 Z(M+1) 0 u(P−1)

b 0 0 · · · · · · · · · · · · · · · · · · · · · · · · 0 (̃b
(M)

)T un+1

Table 6: Butcher tableau of the ADERdu and ADER-L2 method, c at the left, b at the bottom, A in the middle. References to
the stages are reported on top and on the right side
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Figure 1: Sparsity pattern of the A matrix with GLB subtimenodes and order 7. From left to right: cADER, ADER, ADERu
and ADERdu (equivalent to ADER-L2). The references to the stages indices are reported on the left and on top. In cADER the
blocks have size 7, in ADER they have size 5, in ADERu and ADERdu they have increasing sizes from 2 to 5

ADER-L2) methods for order 7 and GLB subtimenodes. The block-structure of all matrices is essentially identical,
with each block corresponding to one iteration, however, the sizes of the blocks differ a lot. All the blocks in the
cADER matrix are larger than the ones in the ADER matrix, as the latter method makes use of the optimal number
of subtimenodes. Moreover, for both cADER and ADER, the size of the blocks is always the same, instead, for
ADERu and ADERdu, the size of the blocks increases along the iterations, as a result of the interpolations. We
remark that the non-zero entries in the first column of the ADERdu matrix are determined by the ghost stages,
corresponding, in practice, to the first stage un.

6.4. Linear stability

The linear stability of a RK method is studied by analyzing the asymptotic behavior of the numerical solution
of the method applied to Dahlquist’s equation d

dt u(t) = λu(t), where λ ∈ C with Re(λ) < 0. The linearity of the
problem and of the method makes possible to express un+1 as un+1 = R(λ∆t)un, where R(·) is the so-called stability
function of the method. In the context of the novel methods, the following result holds.

Theorem 6.1. The stability function of any ADER, ADERu and ADERdu (and so ADER-L2) method of order P is

R(z) =

P∑
r=0

zr

r!
, (46)

independently of the distribution of the subtimenodes.

The proof of the previous result is identical to the proof of Theorem 6.2 presented in [47] in the context of
the study of the linear stability of the bDeC, bDeCu and bDeCdu methods and it is based on the particular block-
structure of the RK matrix A of the investigated methods. The reader is referred to [47] for further details. An
interesting consequence of Theorem 6.1 is given by the following corollary.

Corollary 6.2. The bDeC, bDeCu, bDeCdu, ADER, ADERu and ADERdu (and so ADER-L2) methods of order P
share the same stability function, independently of the distribution of the subtimenodes.

The methods mentioned in the previous result are therefore equivalent on linear problems and characterized
by the same stability region.

The explicit characterization of the stability function can be used to find the largest ∆t for which the methods
are stable. From classical RK analysis [38], one should determine the stability region from the stability function
and choose ∆t in such a way that all ∆tλi(u) lie inside the stability region, with λi(u) being the generic eigenvalue
of the Jacobian matrix ∂G

∂u (u). We recall that the set of complex numbers S := {z ∈ C : |R(z)| < 1} constitutes the
stability region of the scheme. For the simple scalar problem d

dt u = −u, the bounds for ∆t, reported in Table 7,
guarantee the stability of the methods. Indeed, for systems with real eigenvalues, the same bounds rescaled by a
factor 1

ρ(u) , with ρ(u) being the spectral radius of ∂G
∂u (u), guarantee (linear) stability. For more general systems with

complex eigenvalues, the choice of ∆t is more difficult and one has to take into account the whole stability region
and the distribution of the eigenvalues in the complex plane. We remark that, since the methods are equivalent on
linear problems, they are subjected to the same linear stability bounds.
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Order ∆t
1 2
2 2
3 2.51

Order ∆t
4 2.79
5 3.22
6 3.55

Order ∆t
7 3.95
8 4.31
9 4.70

Order ∆t
10 5.07
11 5.45
12 5.85

Table 7: Stability bounds on ∆t for the scalar problem d
dt u = −u for different orders for bDeC, bDeCu and bDeCdu. Up to

a simple rescaling by 1
ρ(u) , with ρ(u) being the spectral radius of the Jacobian matrix ∂G

∂u (u), the bounds can be assumed for
well–posed ODEs with real eigenvalues

7. Application to PDEs with Spectral Difference schemes

In this section, we show how to apply ADER methods in a PDE context with the SD space discretization. Let
us consider the monodimensional hyperbolic PDE

∂

∂t
u(x, t) +

∂

∂x
F(u(x, t)) = 0, (x, t) ∈ [xL, xR] × R+

0 , (47)

where u : [xL, xR] × R+
0 → RQ is the unknown solution and F : RQ → RQ is the flux. We introduce a tessellation

Th of [xL, xR] with non-overlapping segments K and we adopt a classical nodal DG discretization of the numerical
solution. Thus, globally the solution is approximated as a discontinuous piecewise polynomial function in (VM)Q

where VM :=
{
g ∈ L2(Ω) s.t. g|K ∈ PM(K)

}
, leading to accuracy M + 1 for sufficiently smooth solutions. Locally,

in each element K, we represent the solution by interpolating it in M + 1 solution points xs
i

uh(x, t) :=
M+1∑
i=1

us
i (t)ϕs

i (x), ∀x ∈ K, (48)

where the functions ϕs
i are the Lagrange polynomials of degree M associated to the solution points xs

i and us
i

the time-dependent values in the same points. For the sake of compactness, the label K on the local coefficients
and basis functions is omitted. In each element, out of the approximation (48), we can reconstruct the flux by
interpolating it in M + 2 flux points, x f

i . In particular, we set F f
i (t) := F(uh(x f

i , t)) and we define

Fh(x, t) :=
M+2∑
i=1

F f
i (t)ϕ f

i (x), ∀x ∈ K. (49)

In order to guarantee a coupling between the elements K and to avoid the instabilities of central schemes, we
include the extrema of each segment K among the flux points x f

i and we use a numerical flux Fnum, rather than
a direct evaluation, to define the flux value F f

i (t) in such extrema, keeping into account the trace of uh from the
neighboring segments. Hence, the approximated flux is given by

Fh(x, t) := Fnum(x f
1 , t)ϕ

f
1 (x) +

M+1∑
i=2

F f
i (t)ϕ f

i (x) + Fnum(x f
M+2, t)ϕ

f
M+2(x), ∀x ∈ K, (50)

where x f
1 and x f

M+2 are the extrema of the cell K.
The semidiscretization of the SD method is finally obtained by imposing that the discretizations of the solution

and of the flux satisfy the PDE (47) in each solution point

∂

∂t
us

i (t) +
∂

∂x
Fh(xs

i , t) = 0, ∀xs
i ∈ K, ∀K ∈ Th, (51)

which is a system of ODEs, in the unknowns us
i , that must be solved in time. System (51) is in the form (1) and

can be therefore solved with the described explicit ADER methods. We use a Courant–Friedrichs–Lewy condition
adapted to the SD scheme, taken from the linear stability analysis presented in [62], and compute the time step as

∆t =
C

M + 1
∆x

vmax
, (52)

for some C ∈ (0, 1], with vmax being the maximum wave speed of the system in absolute value, i.e., the spectral
radius of the Jacobian of F.
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Figure 2: SD element for second and third order in 1-dimension

Remark 7.1 (On the spatial coupling in SD methods). If we identify the solution points as degrees of freedom of
classical finite element formulations, we have that the spatial coupling, in the context of SD methods, does not
differ much from the one of a standard DG formulation, with the exception that no mass matrix is present in SD
methods. Indeed, the local interpolation of the flux determines the coupling of the degrees of freedom within each
cell, while, the coupling between neighboring cells is guaranteed, as already remarked, by the inclusion of the
extrema of each segment among the flux points and the adoption of a numerical flux to define the flux values there.

We presented the SD method in a 1-dimensional setting but the extension to the multidimensional case is
straightforward on Cartesian grids, applying the same arguments dimension by dimension, as proposed, inter alia,
in [63, 64].

The stability of SD methods has been shown to be independent of the choice of the solution and flux points
under mild assumptions (i.e., solution points are located between flux points) in [18]. Further, it has been proven
that there exist flux point placements for which the method is stable, both for 1-dimensional intervals and Cartesian
meshes. In [43], the stability of SD schemes is established when the interior flux collocation points are the zeros
of the Legendre polynomials. For further information on the SD-ADER scheme, the reader is referred to [63, 64].

Remark 7.2 (CFL condition and convergence of the ADER iterative procedure). It is possible to notice a rela-
tion between the CFL condition (52) and the ADER convergence condition from Proposition 2.5. Indeed, after
linearization and after applying the Fourier transform, as done in [62], we observe that the PDE can be rewritten
as a system of ODEs like in (1). In particular, the Lipschitz-continuity constant of the resulting G is proportional
to vmax

∆x , but it also depends on another coefficient, i.e., M + 1 [62]. This is actually less restrictive with respect to
classical finite element schemes, where the constant is proportional to 2M + 1. For practical purposes, we include
also a safety factor C ∈ R+, keeping the ∆t a little lower than the theoretical bound, as vmax is known only at time
tn but not on the whole interval [tn, tn+1].

The treatment of shocks and oscillations is done through an a-posteriori limiter described in Appendix C.

8. Numerical results

In this section, we will numerically investigate the properties of the proposed improvements of ADER methods
on several benchmarks both for ODEs and PDEs. Since the interpretation of ADER as DeC is not new [39], we do
not investigate the numerical speed-up coming from the adoption of the optimal number of iterations rather than
solving iteratively the ADER-IWF up to machine precision. Instead, we always assume a number of iterations
equal to the desired order of accuracy and we focus on the impact of the modifications proposed in Sections 3 and
5, which are the main novelties of this work. In particular, we study the numerical speed-up of the methods with
reduced number of GLB and GLG subtimenodes for a fixed order, according to the results presented in Section 3,
simply indicated as ADER, with respect to cADER, characterized by a number of subtimenodes always equal to
the desired order. Moreover, we investigate the numerical speed-ups of the novel ADERu and ADERdu methods,
and their adaptive versions, with respect to both ADER and cADER. We recall that cADER methods make use of
a number of subtimenodes equal to desired order of accuracy. As proven in Section 3, such number is non-optimal
for GLB and GLG subtimenodes.

The integral terms of the ADER structures are computed exactly for equispaced and GLG subtimenodes using
the GLG quadrature formula, while for GLB subtimenodes we adopt the associated quadrature leading to an
underintegrated diagonal matrix Λ. This choices, for GLB and GLG subtimenodes, determine the high order
implicit RK methods associated to the ADER methods to be respectively the ADER-IWF-RK-GLB and ADER-
IWF-RK-GLG methods presented in Section 3. All the ADER matrices defined in the previous sections are
precomputed at the beginning of the simulation, as they remain identical in every time step. This also holds for
ADERu and ADERdu, for which the structures change along the iterative procedure but do not depend on the
specific time step.

Finally, since ADER, ADERu and ADERdu are equivalent for order 2 and since the focus of this work is on
(arbitrary) high order, we will investigate the methods from order 3 on.
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Figure 3: Linear system: Error decay for various methods and orders. The “ref” line is the reference for every order of accuracy

8.1. ODE tests
In this section, we focus on two ODE benchmarks: a simple linear system, which allows to verify the equiva-

lence result presented in Theorem 6.1, and a more involved problem, the C5 test presented in [26], which allows
to assess the performance of the methods in the context of real applications.

8.1.1. Linear system
The linear system under investigation readsu′ = −5u + v

v′ = 5u − v
,

(
u0
v0

)
=

(
0.9
0.1

)
, (53)

and the exact solution is given by u(t) = u0 + (1− e−6t)(−5u0 + v0) and v(t) = 1− u(t). The problem is indeed very
simple and, in fact, it has been chosen for the main purpose of verifying the analytical result summarized in Theo-
rem 6.1, i.e., the equivalence on linear systems of ADER, ADERu and ADERdu of a given order independently of
the adopted subtimenodes. In particular, due to the independence of the choice of subtimenodes, the same result
applies to the cADER, from which we expect the same behavior as for the other schemes for any order. The final
time is set to be T = 1.

The results of the convergence analysis are displayed in Figure 3. The expected order of accuracy is ob-
tained for all the methods and also the expected equivalence on linear problems is numerically confirmed. The
error against the computational time is reported in Figure 4. The adoption of the optimal number of subtimen-
odes is associated to a clear computational advantage, with the errors of ADER being always much smaller than
cADER ones for a given computational time. Moreover, the novel ADERu and ADERdu methods are definitely
faster than ADER in the context of equispaced subtimenodes. The computational performance of ADERu is
slightly worse than ADER for GLB and GLG subtimenodes, while, ADERdu guarantees a computational advan-
tage with respect to ADER for GLB subtimenodes and has the same computational performance as ADER for
GLB subtimenodes.

The adaptive versions of ADERu and ADERdu, respectively in black and gray, have been tested with the
convergence criterion (38) and a tolerance ε = 10−8. The methods are able to automatically choose the order of
accuracy to fulfill the desired error condition, as it can be observed by the error lines that lie uniformly below
the tolerance level in Figure 3. For the prescribed tolerance, their performances are similar to the ones of very
high order schemes, as can be seen in Figure 4, with error lines approaching the Pareto front for big time steps.
In Figure 5, we observe how the average number of iterations required to achieve the expected accuracy changes
with respect to ∆t. As expected, larger time steps are associated to a higher number of iterations to reach the
convergence tolerance. The small standard deviation in the number of iterations means that, on average, fixed
tolerance ε and time step ∆t correspond to a fixed order.

8.1.2. C5 problem
The next test we study is the C5 nonstiff problem proposed in [26]. It consists of a five body problem in three

dimensions and it represents the description of the five outer planets (including Pluto) around the solar system.
Each body has three coordinates y1 j, y2 j, y3 j and each coordinate satisfies

y′′i j = k2

−(m0 + m j)yi j

r3
j

+
∑
k, j

mk

yik − yi j

d3
ik

−
yik

r3
k

 , r2
j =

3∑
i=1

y2
i j, dk j =

3∑
i=1

(yik − yi j)2. (54)
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Figure 4: Linear system: Error with respect to computational time.
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Figure 6: C5: Error decay for various methods and orders. The “ref” line is the reference for every order of accuracy
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Figure 7: C5: Error with respect to computational time.

All mass coefficients, gravitational constant, final time and initial conditions can be found in [26]. This second
order systems can be rewritten in terms of coordinates and velocities into a 30 equations system.

We are interested in this problem as the number of equations guarantees that the leading computational cost
of the methods is directly proportional to the number of right-hand side evaluations. We use, as a reference, the
solution obtained with ADER GLG of order 9 with 256 timesteps. All the errors are computed with respect to this
reference solution.

In Figure 6, we observe that all schemes converge with the expected order of accuracy, even if, differently
from the previous linear test, they do not have the same errors. For equispaced and GLB subtimenodes, we have
that the smaller errors are almost always achieved by ADER and cADER methods, while for GLG nodes different
orders have different behaviors. For example, for order 5 and 6 ADERdu is the method with lowest errors. As for
the previous test, the adaptive methods with a tolerance of 10−8 lead, more or less, to errors of the magnitude of
the tolerance, independently of the mesh discretization for all subtimenodes.

In terms of computational time, see Figure 7, we can observe that, most of the time, the ADERdu is the
fastest scheme for comparable errors. For adaptive schemes, we observe again that the errors obtained with a fixed
tolerance does not vary changing the time discretization, but the best computational times are obtained with coarse
meshes. In Figure 8, we plot the numerical speed-up of ADER, ADERu and ADERdu methods against cADER.
We recall that the numerical speed-up is defined as the computational time of the reference method, in this case of
cADER, divided by the computational time of the method of interest, in our case ADER, ADERu and ADERdu. In
this test problem, the simulation cost is mainly dictated by the number of right hand side evaluations, and this can
be seen in Figure 8 as the numerical speed-up values do not vary much for different ∆t. The theoretical speed-up
values can be found in Tables 2, 3 and 4 under the cADER-speed-up column. Comparing those values, we notice
that the numerical speed-ups are very close to the theoretical ones within a 10% error maximum.

Finally, for the adaptive methods we observe in Figure 9 that the chosen order for a given simulation is quite
stable along the simulations, as we see almost no variance in all plots, and it scales very well changing the time
discretization scale.

In Tables 8, 9 and 10, we can observe the numerical speed-ups compared with the theoretical ones for equis-
paced, GLB and GLG subtimenodes respectively. We recall that the theoretical speed-up is the ratio between the
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Figure 8: C5 test: Numerical speed-up with respect to cADER method computed as the computational time of the
cADER method over the computational time of method in consideration.
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Figure 9: C5 test: Average number of iterations (± half standard deviation) of adaptive ADERu (left) and ADERdu (right) for
different time steps.

Speed-up ADERu vs ADER ADERdu vs ADER

P M Th. LS C5 Th. LS C5
3 2 1 0.956 0.993 1.5 1.069 1.366
4 3 1.091 0.975 1.076 1.714 1.132 1.561
5 4 1.176 1.013 1.154 1.818 1.185 1.664
6 5 1.25 1.049 1.225 1.875 1.247 1.731
7 6 1.312 1.088 1.288 1.909 1.279 1.779
8 7 1.366 1.124 1.333 1.931 1.321 1.806
9 8 1.431 1.163 1.371 1.973 1.359 1.813

Table 8: Comparison between the theoretical speed-ups and the numerical ones obtained for linear system (LS) test and the
C5 problem. Equispaced subtimenodes

Speed-up ADER vs cADER ADERu vs cADER ADERdu vs cADER ADERu vs ADER ADERdu vs ADER
P M Th. LS C5 Th. LS C5 Th. LS C5 Th. LS C5 Th. LS C5
3 2 1 0.997 0.997 1 0.951 0.989 1.5 1.066 1.357 1 0.954 0.992 1.5 1.070 1.361
4 2 1.333 1.141 1.283 1.333 1.052 1.270 1.714 1.133 1.559 1 0.922 0.990 1.286 0.994 1.216
5 3 1.25 1.130 1.218 1.333 1.076 1.280 1.818 1.192 1.659 1.067 0.952 1.050 1.455 1.055 1.362
6 3 1.5 1.250 1.391 1.579 1.177 1.496 2 1.281 1.831 1.053 0.942 1.075 1.333 1.024 1.317
7 4 1.433 1.220 1.352 1.593 1.187 1.484 2.048 1.300 1.837 1.111 0.973 1.098 1.429 1.066 1.359
8 4 1.6 1.328 1.533 1.75 1.277 1.660 2.154 1.398 1.988 1.094 0.962 1.083 1.346 1.053 1.297
9 5 1.521 1.294 1.447 1.738 1.290 1.625 2.147 1.426 1.964 1.143 0.998 1.123 1.412 1.102 1.357

Table 9: Comparison between the theoretical speed-ups and the numerical ones obtained for linear system (LS) test and the
C5 problem. GLB subtimenodes
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Speed-up ADER vs cADER ADERu vs cADER ADERdu vs cADER ADERu vs ADER ADERdu vs ADER
P M Th. LS C5 Th. LS C5 Th. LS C5 Th. LS C5 Th. LS C5
3 1 1.4 1.146 1.319 1.4 1.056 1.309 1.4 1.104 1.311 1 0.922 0.992 1 0.963 0.994
4 2 1.3 1.146 1.255 1.3 1.053 1.248 1.444 1.131 1.371 1 0.919 0.995 1.111 0.987 1.092
5 2 1.615 1.280 1.523 1.615 1.164 1.516 1.75 1.222 1.625 1 0.910 0.996 1.083 0.955 1.067
6 3 1.476 1.238 1.420 1.55 1.158 1.473 1.722 1.240 1.620 1.05 0.936 1.038 1.167 1.002 1.141
7 3 1.72 1.372 1.629 1.792 1.275 1.679 1.955 1.333 1.818 1.042 0.929 1.031 1.136 0.971 1.116
8 4 1.583 1.330 1.517 1.727 1.266 1.635 1.9 1.350 1.777 1.091 0.952 1.078 1.2 1.016 1.172
9 4 1.78 1.432 1.691 1.921 1.360 1.805 2.086 1.433 1.936 1.079 0.949 1.068 1.171 1.000 1.145

Table 10: Comparison between the theoretical speed-ups and the numerical ones obtained for linear system (LS) test and the
C5 problem. GLG subtimenodes
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Figure 10: Linear advection: Error decay for various methods and orders. The “ref” line is the reference for every order of
accuracy

number of RK stages of the reference method over the number of RK stages of the method of interest. On the
other hand, the numerical speed-up is computed as the ratio between the computational times of such methods.
The two measures are quite comparable as, in particular for complicated problems, the cost of the evaluation of G
is the most expensive operation of the method, modulo parallelization and vectorization. For the ODE tests, our
Python implementation, based on numpy, performs very similarly to the expected theoretical predictions. Looking
at the tables, we observe that in the context of problem C5, for which the complexity of the function G is higher
than for the linear system, the numerical speed-ups coincide with the theoretical ones within an error which is
at most 10%. On the other hand, for the linear system, lower numerical speed-ups are obtained, as the ODE is
so simple that the cost of basic operations is not negligible with respect to the cost of the computation of G. As
already remarked, the linear system is not a suitable problem for verifying the computational advantages of the
new methods and its only purpose is verifying some analytical results, yet computational advantages are registered
also in this case.

8.2. PDE tests
In this section, we will apply the novel ADER methods to hyperbolic PDEs through SD spatial semidiscretiza-

tion as described in Section 7. In particular, the accuracy of the ADER methods will always be chosen equal to
the spatial accuracy. The timings reported in this section are CPU process times.

8.2.1. Linear advection
We consider the linear advection equation

∂tu + ∂x(au) = 0, (55)

where u(x, t) is a scalar wave, advected by a nonzero constant a ∈ R. We consider the spatial domain x ∈ [0, 1],
a = 1, initial condition u0(x) = sin(2πx) with periodic boundary conditions. The analytical solution is given by
u(x, t) = u0(x − at). The CFL is chosen according to (52), with C = 0.8, and the final time is set to be T = 1.

In Figure 10, we show the convergence plots and observe that the theoretical convergence rate is attained.
In Figure 11, the error as a function of the computational time of the different ADER methods is shown. We
can observe that the proposed modifications succeed in reducing the computational costs as ∆x decreases, being
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Figure 11: Linear advection: Error with respect to computational time
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Figure 12: Linear advection: Numerical speed-up factor with respect to cADER method computed as the computational time
of the cADER method over the computational time of method in consideration

ADERdu and ADERu the best performing schemes, followed by ADER with optimal number of subtimenodes
and, finally, by cADER. Lastly, in Figure 12, we show the numerical speed-ups attained when using the refor-
mulated ADER, ADERu and ADERdu with respect to cADER. In particular, we empirically observe numerical
speed-ups that vary a lot depending on the spatial discretization and that they increase as the spatial grid is refined
and the polynomial order increases. The authors are not completely sure about the reason of this behavior, but
they suspect that the implementation through Python packages and functions as einsum of numpy could be the
source of this outcome. The phenomenon is currently under investigation.

However, despite the less homogeneous behavior of the numerical speed-ups with respect to the ODE tests,
the results obtained for small values of ∆x (in principle more reliable) are in good agreement with the theoretical
predictions. In general, we remark again that the ADERdu is the fastest method for not too coarse meshes.

8.2.2. Euler equations
We now consider the 1D Euler equations

∂t

 ρρv
E

 + ∂x

 ρv
ρv2 + p
(E + p)v

 = 0, (56)

where ρ is the mass density, v the velocity, E = e + 1
2ρv2 the total energy, equal to the sum of the internal energy

density e and the kinetic energy density. The system is closed with the equation of state of an ideal gas p = (γ−1)e,
with γ the constant adiabatic index, set at γ = 1.4.

We consider first a nonlinear sound wave test case, as in [64], that consists of a nonlinear acoustic perturbation
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Figure 13: 1D Euler equations with sound wave initial condition (57): Error decay for various methods and orders. The “ref”
line is the reference for every order of accuracy

over a uniform equilibrium state

ρ0(x) = 1 + A sin(kx)/cs,0,

v0(x) = A sin(kx),
p0(x) = 1 + γp0A sin(kx)/cs,0,

(57)

in the spatial computational domain [0, 1], with cs,0 =
√
γ, k = 20π and A = 10−6.

The corresponding time-dependent solution for the velocity field has the following analytical solution, valid
up to second-order (in a perturbative sense),

v(x, t) = A sin(kx − ωt) + A2 γ + 1
4

ωt
cs,0

cos [2(kx − ωt)],

for ω = kγ.
We compute the error of the numerical solution with respect to this analytical solution at the final time T =

1/(cs,0k), corresponding to the time needed by the sound wave to perform one complete orbit over the periodic
domain. The CFL is chosen according to (52), with C = 0.4.

First, we verify in Figure 13 the convergence rates for increasing degree of the polynomial basis. We observe
essentially no difference between the different versions of ADER. As the errors are identical for all types of
schemes, we report directly the numerical speed-up as a measure of the computational advantage. In Figure 15,
ADERdu outperforms all other methods reaching numerical speed-up factors of the order of the theoretical ones in
Section 6. Also in this case, there is more variance in these results with respect to the ODEs ones and the authors
believe this may be due to the implementation of the ADER-SD method using Python packages and functions
as einsum of numpy, where, for instance, the role of the memory layout plays a big role in the computational
costs. Nevertheless, just like in the previous test, for small values of ∆x the numerical speed-ups get closer to the
analytical ones.

The next test is the well known Sod shock tube problem [? ], characterized by the following initial condition

ρ0(x) =

{
1, x < 0.5,
0.1, x ≥ 0.5, v0(x) = 1, p0(x) =

{
1, x < 0.5,
0.125, x ≥ 0.5, (58)

in the spatial computational domain [0, 1] and zero gradient boundary conditions. We let the numerical solution
evolve until the final time T = 0.2. In order to tackle the discontinuities occurring in the solution, we adopt an a
posteriori limiting strategy similar to the one presented in [64] and described in detail in Appendix C.

In this case, we do not perform convergence analysis as the convergence order would be at most 1, due to the
mentioned discontinuities. However, we can notice, from Figure 16, that the quality of the solution improves as the
(formal) order of the discretization increases and that there is no noticeable difference between the quality of the
solution for the different versions of the ADER scheme. In Figure 17, we report the numerical speed-ups obtained
for this particular test. As expected, we observe that ADERu, ADERdu and ADER outperform cADER. Further,
ADERu and ADERdu outperform ADER. Again, as in the previous PDE tests, we observe a dependency on the
grid size ∆x, with larger gains when the mesh is more refined. Let us notice that the computational complexity
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Figure 14: 1D Euler equations with sound wave initial condition (57): Error with respect to computational time
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Figure 15: 1D Euler equations with sound wave initial condition (57): Numerical speed-up factor with respect to
cADER method computed as the computational time of the cADER over the computational time of the method in consid-
eration

30



0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
Density

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

Velocity

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
Pressure

ADER
ADERu
ADERdu
cADER

P = 3
P = 5
P = 9

P = 3
P = 5
P = 9

Figure 16: 1D Euler equations with Sod shock tube initial condition (58): Numerical solutions computed for different orders
P for a fixed resolution characterized by 16 elements
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Figure 17: 1D Euler equations with Sod shock tube initial condition (58): Numerical speed-up factor with respect to
cADER method computed as the computational time of the cADER method over the computational time of the method in
consideration

of the limiter is directly related to the number of subtimenodes and this implies further advantages in ADER,
ADERu and ADERdu with respect to cADER.

9. Conclusions and further developments

Summarizing, in this work we have showed different techniques to save computational times when adopt-
ing ADER methods. In the first part of the paper, we have shown how the weak formulations can be optimally
discretized using a minimal reconstruction degree to maximize the order of accuracy. Then, we have designed
efficient methods, based on increasing the polynomial degree of the reconstructed numerical solution at each iter-
ation, saving computational time especially in early stages. This allowed us to easily set up p-adaptive versions of
the new schemes, where the iterations can be stopped on-the-fly when certain criteria are met, e.g., the matching of
an error tolerance. The whole presentation is accompanied by theoretical and numerical analysis that validate the
proposed methods, showing strong improvements in the computational times without degradation of the accuracy
nor stability of the methods.

We believe these strategies can have a strong impact in the community that uses these algorithms, as they allow
to speed-up the simulations, save computational resources and they give new hints for adaptive methods. From
this work, new research directions arise, both in the ODE and hyperbolic PDE framework, namely, for hp-adaptive
methods, implicit and structure preserving schemes.
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Appendix A. Proofs

In this section, we report the proofs of several “minor” propositions and theorems that have been presented
throughout the paper.

Appendix A.1. Proof of Proposition 2.4
Proof. We can equivalently prove that

r = Bun. (A.1a)

By a direct computation of the `-th component of both sides of the previous equation, thanks to the fact that the
Lagrange functions are such that

∑M
m=0 ψ

m ≡ 1, we have

M∑
m=0

B`,mun =

M∑
m=0

[
ψ`(tn+1)ψm(tn+1) −

∫ tn+1

tn

(
d
dt
ψ`(t)

)
ψm(t)dt

]
un

= ψ`(tn+1)un −

∫ tn+1

tn

(
d
dt
ψ`(t)

)
dtun

= [ψ`(tn+1) − ψ`(tn+1) + ψ`(tn)]un = ψ`(tn)un = r`,

(A.1b)

which implies (A.1a).

Appendix A.2. Proof of Proposition 2.5: Convergence of the iterative procedure
Proof. The proof relies on the definition of the map J : R(M+1)×Q → R(M+1)×Q, defined by

J(u) := un + ∆tB−1ΛG(u), ∀u ∈ R(M+1)×Q. (A.2a)

We will now show that it is a contraction. We take two general vectors v,w ∈ R(M+1)×Q and, from the definition of
G and the Lipschitz-continuity of G with respect to u uniformly with respect to t, basic computations give∥∥∥J(v) − J(w)

∥∥∥
∞

=
∥∥∥∥∆tB−1Λ

[
G(v) − G(w)

]∥∥∥∥
∞
≤ ∆t

∥∥∥B−1Λ
∥∥∥
∞

CLip

∥∥∥v − w
∥∥∥
∞
. (A.2b)

The entries of B and Λ, as well as CLip, are constants independent of ∆t, therefore, for ∆t < 1
C̃Lip

with C̃Lip :=∥∥∥B−1Λ
∥∥∥
∞

CLip we have that J is a contraction over R(M+1)×Q with respect to the infinity norm. Thus, thanks to the
Banach fixed-point theorem, we have that for ∆t < 1

C̃Lip
the mapJ has a unique fixed point, which can be obtained

as the limit of the iteration u(p) := J(u(p−1)), independently of the choice of u(0). This fixed-point iteration is
equivalent to the iterative procedure (10). Observing that a fixed point of J is also a solution of the nonlinear
system (9) and vice versa, we get the desired result.

Appendix A.3. Proof of Theorem 2.6: Invertibility of B
Proof. As shown in Theorem 3.10 and more precisely in Equation (19k), the matrix B exactly integrated, for any
generic basis

{
φ̂(ξ)

}
m=0,...,M

, is equivalent to the matrix BGL∗ of the ADER method with GL∗ subtimenodes up to

the multiplication by the change of basis matrixH and its transpose, i.e., B = HT BGL∗H .
Since the matrixH is invertible, we can prove the invertibility of B for a particular basis and obtain the desired

result for all the other bases. Let us consider the modal basis functions φ̂m(ξ) := ξm for m = 0, . . . ,M. A direct
computation shows that, in such a case, the matrix B is defined as

B`,m = φ̂`(1)φ̂m(1) −
∫ 1

0

(
d
dξ
φ̂`(ξ)

)
φ̂m(ξ) dξ =

1, if ` = 0,
m
`+m , if ` = 1, . . . ,M.

(A.3)
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The first row of the matrix B is given by B0,m = 1 for all m = 0, . . . ,M, while, the first column by B`,0 = 0 for
` = 1, . . . ,M. Hence, the determinant of the matrix is equal to the determinant of the submatrix B1:,1: and we can
focus on it. In particular, we will show that it is nonsingular and, therefore, that its determinant is nonzero.

From basic linear algebra, a matrix is nonsingular if and only if its columns are linearly independent. Fur-
thermore, the columns of a matrix are linearly independent if and only if multiplied by nonzero factors they are
still linearly independent. Hence, let us consider the matrix B̃ with generic entry given by B̃`,m := 1

m B`,m = 1
`+m

for `,m = 1, . . . ,M. Such matrix is the so-called “Hilbert” matrix, which is invertible [? ], and so also B1:,1: is
invertible. Hence, B has nonzero determinant and is invertible.

Appendix A.4. Proof of Theorem 3.1: The ADER-IWF is an implicit RK

Proof. We have already observed that the nonlinear systems (9) and (5) are equivalent and, identifying um with
RK stage values ys, it is clear that (9) is the nonlinear system of a RK method, expressed by the first equation in
(12), characterized by A = B−1Λ and c = β. We are left to check that the reconstruction formula (4) can be written
as the RK final update, expressed by the second equation in (12), with coefficients bm = wm. Manipulating the
nonlinear system (5) we get

M∑
m=0

[
ψ`(tn+1)ψm(tn+1) −

∫ tn+1

tn

(
d
dt
ψ`(t)

)
ψm(t)dt

]
um = ψ`(tn)un

+

M∑
m=0

(∫ tn+1

tn
ψ`(t)ψm(t)dt

)
G(tm,um), ` = 0, . . . ,M,

(A.4a)

and, summing over ` and recalling the fact that
∑M
`=0 ψ

` ≡ 1, we obtain

uh(tn+1) =

M∑
m=0

ψm(tn+1)um = un +

M∑
m=0

(∫ tn+1

tn
ψm(t)dt

)
G(tm,um) = un + ∆t

M∑
m=0

wmG(tm,um). (A.4b)

Appendix A.5. Proof of Proposition 3.2

Proof. Proving (13) is equivalent to prove that A1 = c, where 1 is a vector with all entries equal to 1. Knowing
that A = B−1Λ and c = β, we can prove (13) by showing that Λ1 = Bβ.

By a direct computation of the `-th component of both the sides, since
∑M

m=0 ψ̂
m ≡ 1, we have

(Λ1)` =

M∑
m=0

∫ 1

0
ψ̂`(ξ)ψ̂m(ξ)dξ =

∫ 1

0
ψ̂`(ξ)dξ, (A.5a)

(
Bβ

)
`

=

M∑
m=0

[
ψ̂`(1)ψ̂m(1) −

∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
ψ̂m(ξ)dξ

]
ξm

= ψ̂`(1)

 M∑
m=0

ξmψ̂m(1)

 − ∫ 1

0

(
d
dξ
ψ̂`(ξ)

)  M∑
m=0

ξmψ̂m(ξ)

 dξ. (A.5b)

Let us focus on
(
Bβ

)
`
. Since

∑M
m=0 ξ

mψ̂m is nothing but the interpolation of the linear function ξ, which is exact
when interpolated in at least 2 ≤ M + 1 nodes, we can write

(
Bβ

)
`

= ψ̂`(1) · 1 −
∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
ξdξ, (A.5c)

and integrating by parts we obtain

(
Bβ

)
`

= ψ̂`(1) · 1 −
[
ψ̂`(1) · 1 − ψ̂`(0) · 0

]
+

∫ 1

0
ψ̂`(ξ)dξ =

∫ 1

0
ψ̂`(ξ)dξ, (A.5d)

and, thus, the desired result.
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Appendix A.6. Proof of Proposition 3.3

Proof. By direct computation, we will estimate the order of magnitude of the local truncation error. The properties
of interpolation with M + 1 subtimenodes guarantee that

u(t) =

M∑
m=0

u(tm)ψm(t) + O(∆tM+1), G(t,u(t)) =

M∑
m=0

G(tm,u(tm))ψm(t) + O(∆tM+1). (A.6a)

Thus, if we insert the exact solution of the ODEs system (1) in the ADER-IWF (5), we get

M∑
m=0

[
ψ`(tn+1)ψm(tn+1) −

∫ tn+1

tn

(
d
dt
ψ`(t)

)
ψm(t)dt

]
u(tm) − ψ`(tn)un

−

M∑
m=0

(∫ tn+1

tn
ψ`(t)ψm(t)dt

)
G(tm,u(tm))

= ψ`(tn+1)u(tn+1) −
∫ tn+1

tn

(
d
dt
ψ`(t)

)
u(t)dt − ψ`(tn)un

−

∫ tn+1

tn
ψ`(t)G(t,u(t))dt + O(∆tM+1)

=

∫ tn+1

tn
ψ`(t)

[
d
dt

u(t) − G(t,u(t))
]
dt + O(∆tM+1), ` = 0, . . . ,M.

(A.6b)

Hence, the coefficients um are O(∆tM+1) accurate with respect to the exact values u(tm). In the proof of Theorem
3.1, we showed that the final interpolation step to get un+1 is equivalent to the integration

un+1 = un +

M∑
m=0

(∫ tn+1

tn
ψm(t)dt

)
G(tm,um) = un +

∫ tn+1

tn

 M∑
m=0

G(tm,um)ψm(t)

 dt. (A.6c)

So, recalling that we are assuming un = u(tn), we have

un+1 = un +

∫ tn+1

tn

[
G(t,u(t)) + O(∆tM+1)

]
dt = u(tn) +

∫ tn+1

tn
G(t,u(t))dt + O(∆tM+2)

= u(tn+1) + O(∆tM+2),
(A.6d)

which concludes the proof.

Appendix B. Equivalence of ADER-IWF-RK-GLB and Lobatto IIIC

In this section, we show the equivalence between ADER-IWF-RK-GLB and Lobatto IIIC schemes. First of
all, let us recall how Lobatto IIIC are defined.

Theorem Appendix B.1 (Chipman 1971 [15]). The Lobatto IIIC scheme with S stages is uniquely defined by
S GLB quadrature points and associated weights, respectively as RK coefficients c and b, and coefficients ai, j

determined imposing the conditions

ai,0 = b0, for i = 0, . . . , S − 1 (B.1)

and C(S − 1), with definition given in (14b).

Then, we can show that also ADER-IWF-RK-GLB satisfies the same conditions.

Lemma Appendix B.2. ADER-IWF-RK-GLB satisfies condition (B.1).

Proof. Let us recall the RK structures of the ADER-IWF-RK methods, given in Theorem 3.1

A := B−1Λ, c := β, bm :=
1
∆t

∫ tn+1

tn
ψm(t)dt =

∫ 1

0
ψ̂m(ξ)dξ = wm. (B.2a)
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Assuming GLB subtimenodes and quadrature points (exact for polynomials of degree 2M − 1), we have that
the matrix B is computed exactly, while Λ is under-integrated (as its terms involve integrals of polynomials of
degree 2M), leading to a diagonal ΛB`,m := ψ̂`(1)ψ̂m(1) −

∫ 1
0

(
d
dξ ψ̂

`(ξ)
)
ψ̂m(ξ)dξ,

Λ`,m := w`δ`,m =
∑M

k=0 wkψ̂
`(ξk)ψ̂m(ξk) ≈

∫ 1
0 ψ̂`(ξ)ψ̂m(ξ)dξ.

(B.2b)

To prove that ai,0 = b0 for all i = 0, . . . , S − 1, we have to prove that

(B−1Λ)i,0
!
= w0 ⇐⇒ (B−1Λ):,0

!
= w01 ⇐⇒ B−1Λ:,0

!
= w01 ⇐⇒ Λ:,0

!
= w0B1,

where the symbol colon “:” is used to select all the elements of a given row or column.
This amounts to show that

∑M
m=0 B`,mw0 = δ`,0w0, which can be easily proven exploiting the definition of B

and the fact that
∑M

m=0 ψ̂
m ≡ 1:

M∑
m=0

B`,mw0 = ψ̂`(1) · w0 −

∫ 1

0

(
d
dξ
ψ̂`(ξ)

)
dξw0 = [ψ̂`(1) − ψ̂`(1) + ψ̂`(0)]w0 = ψ̂`(0)w0. (B.2c)

Since only the first GLB basis function, for ` = 0, is 1 in ξ = 0, while the other ones have value 0 there, (B.1)
holds.

Theorem Appendix B.3. ADER-IWF-RK-GLB methods are Lobatto IIIC methods.

Proof. ADER-IWF-RK-GLB methods are such that: c and b coincide with the GLB quadrature points and
weights, C(S − 1) holds for for Lemma 3.5, while Lemma Appendix B.2 guarantees condition (B.1). Hence,
ADER-IWF-RK-GLB methods satisfy the properties of Theorem Appendix B.1, which uniquely characterize the
Lobatto IIIC methods. Thus, the two methods coincide.

Appendix C. A posteriori limiting strategy

In this appendix, we describe the shock capturing strategy adopted to perform the last numerical test for
PDEs characterized by shocks. The high-order space discretization is achieved via the SD scheme, presented in
Section 7. We adopt an a posteriori limiting strategy similar to the one described in [64] and references therein.

The general methodology of the a posteriori limiting consists in correcting the high-order fluxes, that are
responsible for oscillatory behavior, after the computations of one time step have been completed. This is in
contrast with a priori limiting, which modifies the high-order flux during the time step computation. In order to
identify which fluxes must be corrected, we consider two physical criteria

1. positiveness of density and pressure;

2. discrete maximum principle for the density.

As shown in [64], the SD method is equivalent to a Finite Volume explicit Euler method using high-order
fluxes f̂

HO,m
i and a nonuniform (space-time) subcell grid, such that the update (51) for the final iteration after

ADER discretization can be equivalently written as

ū−1
i = un,i, (C.1)

ũm
i = ūm−1

i − (tm − tm−1)
f̂

HO,m−1
i+1/2 − f̂

HO,m−1
i−1/2

∆xi
, for m = 0, . . . ,M, (C.2)

un+1,i = un,i − ∆t
M∑

m=0

wm∂xF(P)
h (xs

i , t
m) = (C.3)

= ūM
i − (tn+1 − tM)

f̂
HO,M
i+1/2 − f̂

HO,M
i−1/2

∆xi
(C.4)

= un,i −

M∑
m=0

(tm − tm−1)
f̂

HO,m−1
i+1/2 − f̂

HO,m−1
i−1/2

∆xi
, (C.5)

35



with the convention of t−1 = tn.
Hence, the limiting strategy is equivalent to replacing the high-order fluxes f̂

m
i+1/2 in the subcells that trigger

the aforementioned criteria with a low-order flux fLO,m
i+1/2. In this work, we use a simple first order Finite Volume

scheme on the (space-time) subcell grid, referred as parachute scheme.
The space-time update of the SD-ADER method with limiting is shown in Algorithm 1. For further details,

the interested reader is referred to [64]. Finally, we point out that the cost of the a posteriori limiter is proportional
to the number of subtimenodes.

Input: Numerical solution un at tn, ∆t
Output: Numerical solution un+1 at tn+1
Initialize solution in the subtimenodes um,(0) = un for m = 0, ...,M
Compute the high order update of the ADER-SD scheme up to the final iteration um,(P) for all

m = 0, . . . ,M
Convert the high-order fluxes into the subcell version f̂

HO,m
i+1/2 = f̂

HO,m
i+1/2 (um,(P)) for m = 0, ...,M, ∀i,

for m = 0, ...,M do
Compute low-order fluxes using solution ūm with parachute scheme
Compute high-order candidate solution (shown i-th subcell) as in (C.2)
Perform physical criteria check
if ũm+1

i is troubled then
Replace f̂

HO,m
i±1/2 with fluxes of parachute scheme fluxes f̂

LO,m
i±1/2 in (C.2)

Replace surrounding fluxes f̂
HO,m
i±3/2 using parachute scheme fluxes f̂

LO,m
i±3/2 in (C.2)

end
end
Compute un+1,i using (C.4) with HO or LO fluxes according to the previous criteria.

Algorithm 1: Timestep evolution of SD-ADER with the a posteriori limiting

Appendix D. Table of notation adopted in the paper

In Table D.11, we summarize the notation adopted for the main structures in the context of the ADER methods
throughout the whole paper.
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