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Abstract: Acute abdominopelvic pain in pregnant and postpartum patients presents clinical and
therapeutic challenges, often requiring quick and accurate imaging diagnosis. Ultrasound remains
the primary imaging investigation. Magnetic resonance imaging (MRI) has been shown to be a
powerful diagnostic tool in the setting of acute abdominal pain during pregnancy and puerperium.
MRI overcomes some drawbacks of US, avoiding the ionizing radiation exposure of a computed
tomography (CT) scan. Although CT is not usually appropriate in pregnant patients, it is crucial in the
emergency evaluation of postpartum complications. The aim of this article is to provide radiologists
with a thorough familiarity with the common and uncommon pregnancy and puerperium abdominal
emergencies by illustrating their imaging appearances. The present first section will review and
discuss the imaging findings for acute abdominopelvic pain of obstetric (non-fetal) etiology.

Keywords: acute abdominopelvic pain; pregnancy; postpartum; ultrasound; computed tomography;
magnetic resonance imaging; obstetric complications

1. Introduction

Acute abdominopelvic pain, during and just after pregnancy, presents a diagnostic
challenge, given the wide range of possible etiologies. For pregnant and postpartum
women, the diagnostic approach is often more difficult, owing to several confounding
factors. During pregnancy, non-specific leukocytosis, displacement of the abdominal and
pelvic organs by the gravid uterus, and difficulty of physical examination can make clinical
assessment challenging, especially in the third trimester [1,2]. On the other hand, the post-
partum period, which may take as long as 8 weeks from birth, is also burdened by a broad
spectrum of complications, significantly dependent on the delivery method: postpartum
hemorrhage is the leading cause of maternal mortality world-wide [3]. Diagnostic imaging
is often required to elucidate a complex clinical scenario in pregnancy and puerperium,
playing a crucial role in the assessment of complications and expediting diagnosis. Ultra-
sound is the first imaging modality of choice both during and following pregnancy and
delivery, particularly for obstetric and gynecological diseases, because of its availability,
portability, and lack of ionizing radiation. However US may be limited by the small field of
view, interfering structures, and body habitus, especially in the third trimester [4]. When
US is indeterminate, magnetic resonance imaging (MRI) offers reproducible diagnostic
imaging results that are non-operator-dependent without exposure to ionizing radiation.
MRI has become a key element in the management of acute abdominal pain in pregnant and
postpartum women, overcoming some of the limitations of US [5]. Diagnostic modalities
employing ionizing radiation, such as computed tomography (CT), can also accurately
detect many causes of abdominopelvic pain during pregnancy. A risk–benefit analysis
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is recommended before performing CT on a pregnant patient. However, when deemed
necessary, the use of CT should not be delayed because of the concern for exposure of the
fetus to ionizing radiation [6,7]. CT is more useful and plays an important role in patients
with postpartum acute abdominal pain, especially after a non-diagnostic US [8]; unfortu-
nately, the challenge of puerperium imaging interpretation lies in the wide variability of
postpartum uterine and pelvic features. This article provides a review of common and
uncommon gastrointestinal, hepatobiliary, urinary, gynecological, and obstetric causes of
abdominopelvic pain, occurring during and postpartum, with the related imaging find-
ings. The present instalment will discuss the main imaging features of pregnancy- and
puerperium-related obstetric (non-fetal) complications.

2. Imaging Techniques and Safety Issues

US is widely employed as first imaging method both during pregnancy and puer-
perium because of its quickness, accessibility, portability, low cost, and lack of ionizing
radiation. Both transabdominal and endovaginal US are commonly used to assess the
uterus, the annexes, and other abdominopelvic structures. US often identifies the correct
etiology of acute abdominal pain, particularly for obstetric and gynecological diseases,
allowing dynamic real-time imaging. Nevertheless, US is operator-dependent and the eval-
uation of the bowel, ureter, pancreas, and mesenteric vasculature may be limited because
of obesity, small field of view, or overlapping of other structures. Moreover, sensitivity of
US decreases significantly in the third trimester of gestation due to uterus enlargement [9].
There are no documented adverse fetal effects of diagnostic US. The Food and Drug Ad-
ministration proposed an upper limit of 720 mW/cm2 for spatial-peak temporal average
intensity [10].

When US is indeterminate, cross-sectional imaging, such as MRI and CT, offers im-
proved visualization of mother and fetus. Given the radiation exposure of the fetus with
CT, MRI is the preferred modality of cross-sectional imaging in the assessment of acute
abdominal pain in pregnancy [11]. The main advantage of MRI lies in the ability to depict
soft-tissue deep structures in a non-operator-dependent manner, showing good overall
topographic display and multiplanar imaging capabilities [12]. MRI provides additional in-
formation when further characterization is required, particularly in the setting of placental
diseases such as placenta percreta and placental abruption [13]. Furthermore, MRI can play
a crucial role in the diagnosis of intrauterine bleeding in pregnancy and puerperium due to
its high spatial resolution and excellent sensitivity and specificity in distinguishing blood
from other fluid collections. Limited availability, especially out of hours, long imaging
times, and high cost are well-known challenges with MRI. Moreover, the patient is required
to remain still for an extended period of time, which may be impractical in the acute setting.

There is no scientific evidence of MRI-induced teratogenesis or acoustic injuries to the
human fetus and there are no specific contraindications to use MRI during any trimester
of pregnancy [14,15]. MRI has been used for almost 30 years to evaluate complications
in pregnancy without any demonstrated deleterious effects; however, the absolute safety
of MRI in the first trimester is difficult to establish due to active organogenesis in this
period [16].

The radiofrequencies employed in MRI deposit energy in the form of heat. Although
the temperature increase associated with MRI is lower than the expected teratogenic
level, the specific absorption rate (SAR) and tissue heating should be considered when
determining which pulse sequences to use to scan pregnant women [17].

No published study in the literature compares the role of 3 T to 1.5 T in pregnancy;
however, 1.5 T magnet are sufficient for clinical diagnosis and have been proven to be
safe [18]. It should also be emphasized that doubling the field strength from 1.5 T to 3 T
results in quadrupling of the SAR if other parameters are left unchanged [17].

Gadolinium-based contrast agents cross the placental–fetal barrier, enter the fetal circu-
lation, and are excreted by the fetal kidneys into the amniotic fluid, where the gadolinium
undergoes a time-dependent dissociation from its chelate; risks from potential exposure
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of the fetus to free gadolinium range from nephrogenic systemic fibrosis to stillbirth or
death [14]. Gadolinium-based contrast agents (GBCAs) are classified as pregnancy Cate-
gory C drugs by the FDA: their use in animal studies have shown some adverse effects on
the fetus, but studies on humans are lacking. GBCAs should therefore be administered in
pregnancy only when their use is crucial to establishing a diagnosis and the benefits to the
patient or fetus outweigh the potential poorly understood risks [19].

According to ESUR guidelines, when there is a very strong indication for enhanced
MRI, the lowest possible dose of one of the most stable agent should be administered
(gadobenate dimeglumine, gadofosveset trisodium, gadoxetate disodium, gadobutrol,
gadoterate meglumine, or gadoteridol) [20,21].

CT is employed more sparingly in pregnancy due to ionizing radiation, when diag-
nostic information required cannot be obtained with US or MRI. A thorough risk–benefit
analysis is crucial before performing CT on a pregnant patient. However, the majority of
diagnostic CT examinations, even performed in multiple phases, do not expose the fetus
to a radiation dose that is high enough to lead to developmental/neurologic deficits or
pregnancy loss [6]. This dose is lower than the recommended tissue damage threshold dose
of 50 mGy (5 rad), to prevent deterministic radiation effects (i.e., effects that have a radiation
limit above which they should not occur), such as fetal teratogenesis [6,22]. By contrast,
there is no known threshold for stochastic effects that can occur at any radiation dose, such
as radiation-induced cancer [23]. Therefore, CT can be justified in pregnancy, in selected
cases, when the study is overwhelmingly in the best health interest of the mother and
the patient is informed about the minimal and unknown risks to the fetus [24]; however,
radiation exposure must be applied at levels as low as reasonably achievable (ALARA
principle), with potential benefit outweighing the well-managed levels of risks.

Several measures such as limiting scan volume (FOV), narrowing the beam collimation,
increasing pitch, and reducing milliamperage are encouraged to minimize the radiation
dose without losing imaging quality. Modern scanners with dose reduction optimization
can deliver much lower doses [6].

CT is the investigation of choice in the setting of life-threatening illnesses, such as
hypovolemic blunt, penetrating trauma, or severe sepsis, when a variety of sites of injury
or infection need to be evaluated and a prompt diagnosis is required [5]. Single CT use
for speeding up diagnosis and triage of the pregnant patient has been shown to lead to
favorable maternal and fetal outcomes [22].

In regards to the use of iodinated contrast media, the FDA classifies them as pregnancy
category B drugs as they are considered safe in pregnant patients (with the exception
of diatrizoate meglumine and diatrizoate meglumine sodium, listed as category C). No
teratogenic effects have been reported with these contrast agents [25]. However, according
to ESUR guidelines, iodinated contrast media should be administered only if absolutely
necessary and after informed consent has been obtained; the special recommendation is to
ensure that those infants exposed to iodinated contrast agents during gestation are screened
for hypothyroidism during the first week [26].

Although of limited use in pregnancy, CT plays an important role in making the diag-
nosis or assessing the severity of peri- and postpartum complications when US findings are
dubious [8]. CT is being increasingly used in the acute setting of hemorrhage, uterine rup-
ture or dehiscence, endometritis, retained products of conception, and HELLP syndrome.

Data on the administration of iodinated or gadolinium-based contrast agents during
postpartum lactation are limited; however, several studies have demonstrated that contrast
media are excreted into breast milk at low levels and poorly adsorbed by the infant’s
gut [27]. Moreover, the American College of Radiology states that the use of contrast media
is safe in breastfeeding [28].
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3. Obstetric Causes
3.1. Ectopic Pregnancy

Ectopic pregnancy (EP) is defined as the implantation of a developing blastocyst
that occurs outside the endometrial lining of the uterine cavity. The incidence is 2% of
all reported pregnancies. Despite advances in diagnosis and treatment, ruptured EP is
the leading cause of maternal death during the first trimester, still accounting for 6% of
pregnancy-related mortality [29].

The main risk factors include previous EP, history of tubal scarring related to prior
pelvic inflammatory disease, previous tubal surgery, intrauterine device, and infertility
treatments (such as tubal factor infertility and embryo transfer) [30]. The most common
location of EP is tubal (95% of cases), with a more frequent involvement of the ampullary
portion (70%) than the fimbria (11%) or the isthmus (12%). Other uncommon extrauterine
implant sites include the ovary (1–3%), interstitium (2–4%), cervix (<1%), and peritoneal
cavity (1.4%) [31]. Pregnancy in a rudimentary uterine horn (also called cornual) or in a
previous caesarean scar are not technically EP because implantation occurs in the uterine
cavity [32,33].

Clinical features are non-specific: more than half of patients experience vaginal bleed-
ing, acute abdominal pain, and delay of an expected menses. Symptoms typically occur
around 6 to 8 weeks of gestation [29]. The first diagnostic evaluation includes quantitative
measurement of serum β human chorionic gonadotropin (beta hCG) and transvaginal US
to confirm pregnancy. Serial β hCG level measurements are helpful to distinguish normal
from abnormal gestations: a β hCG titer that rises by less than 50% in 48 h is strongly
suggestive for non-viable pregnancy (GE or early pregnancy loss) [34]. When β hCG values
are above a discriminatory level of 1500–2000 mU/mL, intrauterine gestational sac (GS)
should be detectable on transvaginal US, with a sensitivity of 69% to 99% and a specificity
of 84–99.9% [35]. The appropriate discriminatory level has been expanded recently to
avoid the potential for misdiagnosis and possible interruption of an intrauterine pregnancy:
therefore, ACOG put the discriminatory level at 3500 mUI/mL [29,36].

Transvaginal ultrasound shows high accuracy for the diagnosis of EP, with a sensitivity
of 73–93% depending on the gestational age and the operator skills and a specificity of
84–99.9% [32,35]. US may definitively diagnose an EP, when a gestational sac (GS) with yolk
sack, embryo, or both are detected in an extrauterine location (100% specificity); however,
this criterion is rare, lacking in sensitivity (26%) [37,38]. The most common sonographic
feature suggestive for EP is a mass separated from the ovary (60% of cases) associated
with free fluid in the pouch of Douglas [32]. The mass may appear as a sac-like ring, solid
or complex. On Color Doppler, a surrounding hypervascular ring (ring of fire) may be
seen; however, this finding is more likely to be observed around the corpus luteum than an
EP. The presence of intrabdominal fluid with floating echoes or a layering appearance is
consistent with hemoperitoneum: this finding, which may be the only one, has a positive
predictive value of 93% for EP, even if the differential diagnosis with the rupture of a
hemorrhagic cyst must be considered [12,37]. In addition to the aforementioned operator
dependence, technical issues such as interference of bowel gas and patient body habitus
can limit the examination.

MRI represents a powerful problem-solving tool, especially when transvaginal US
fails to detect an implantation site or differentiate EP from incomplete abortion or other
acute conditions. MRI shows multiplanar capabilities, excellent soft-tissue contrast, wider
scanning range, and higher sensitivity when identifying fresh blood (bloody ascites from
free pelvic fluid) compared to US [39,40].

The key MRI feature of EP is an adnexal mass corresponding to the gestational sac,
which appears as well-demarcated and thick-walled cystic structure separate from the
ovary. The thick wall typically shows a “three rings appearance”; the outer and inner
ring are thin and hypointense, whereas the middle ring is thick, displaying heterogeneous
signal intensity on T1- and T2-weighted images (WI), due to intramural hemorrhages [41].
Nischio et al. observed this feature in 84–96% of cases [42]. The GS-like structure may
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contain non-specific fluid without solid components, resulting in hypointensity on T1WIs
and hyperintensity on T2WIs, or blood, exhibiting different signal intensities based on the
time of bleeding (Figure 1).
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Figure 1. Axial T2-weighted fat-sat image (a) shows extrauterine gestational-sac-like thick-walled
structure (arrow), exhibiting blood content and the typical “three ring” appearance. The inner and
outer rings are thin and hypointense, whereas the middle ring is thick, displaying heterogeneous
signal intensity due to small areas of hemorrhage. Coronal T2-weighted image (b) shows that
gestational-sac-like structure (arrow) is separated from the right ovary. Pelvic effusion displays
heterogeneous signal intensity with fluid–fluid levels for recurrent bleeding. Laparoscopic surgery
was performed, confirming rupture of right ectopic tubal pregnancy.

Sometimes the GS contains papillary solid components, indicating remnant of feto-
placental tissues, isointense on T2WI [38,41]. If no solid contents are depicted but only
blood or fluid–fluid level on MRI, the embryocardia beats could be undetectable on US,
indicating death of the embryo due to ectopic implantation. The cystic mass may ex-
hibit heterogeneous peripheral enhancement, corresponding to the sonographic “ring of
fire” sign.

Other findings include isolated hemoperitoneum, hemosalpinx and tubal wall en-
hancement. Hemoperitoneum, appears as fluid high signal intensity on T1WI with fat
suppression and as area of heterogeneous signal intensity on T2WI. Hemosalpinx occurs
after implantation of the fertilized ovum into the epithelium of the fallopian tube: a dilated
tube, filled with high-signal-intensity fluid, is commonly observed on T1WI. Each of these
indirect signs in patients with positive pregnancy test results and empty uterine cavity are
highly suggestive of EP, even if extrauterine GS is not clearly detectable [43].

When non-contrast images are equivocal, contrast-enhanced MRI (CE-MRI) may be
useful to identify the precise implantation site or to better delineate GS [38,44]. Instead,
Nischio et al. observed that diagnostic accuracy was not improved significantly using
non-CE and CE sequences, especially in the detection of implantation sites and recognition
of GS-like structures [42]. Furthermore according to American College of Radiology ap-
propriateness criteria for first trimester vaginal bleeding, pelvis MRI with contrast should
be considered “usually non appropriate” because, if a viable pregnancy has not been
conclusively ruled out, administration of gadolinium should be avoided [45].

MRI allows for the depiction of rare non-tubal forms and to distinguish between
eccentric implantation in the endometrium and an interstitial ectopic pregnancy, which
is hard to diagnose on US [46]. Interstitial pregnancy is a subtype of EP, resulting from
implantation of the blastocyst into the intramural or interstitial portion of the fallopian
tube: this condition accounts a mortality rate of 2.5%, which is seven times greater than the
overall mortality rate in EP [47]. On MRI, this type of pregnancy appear as GS located in the
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cornual aspect of the uterine wall, and separated from uterine cavity by an intact junction
zone. Owing to the proximity of this type of pregnancy to the uterine artery, rupture can
lead to a life-threatening massive hemorrhage [38,47].

MRI enables also the differential diagnosis between ruptured and unruptured cases
of EP before treatment. The risk of rupture increases with the enlargement of an EP. Diag-
nostic features of a ruptured EP include a poorly defined GS-like structure, wrapped in a
hematoma in the lateral section of the uterus, associated with a great amount of hemoperi-
toneum. Imaging findings of tubal rupture are disruption of tubal wall enhancement
and the presence of acute hematoma (low T2 signal intensity outside the implantation
site) [38,41].

Corpus luteum cyst represents a potential mimic of EP. Corpus luteum originates
from the ovary, whereas EP is extremely rare in the ovary. On T2WI, EP exhibits the
characteristic “three ring” appearance with a thick wall, heterogeneously enhanced after
administration of contrast medium, with or without papillary projections: the corpus
luteum cyst, instead, typically displays thin and regular walls, with hyperintensity on
T1WIs and relatively hypointense T2WIs, showing a homogeneous enhancement pattern
lacking solid components [40].

Given the longer scan time compared to US, MRI should be reserved to clinically and
hemodynamically stable patients, who require immediate surgical management.

In recent years advances have been made in the treatment of EP. Conservative thera-
pies including injections of methotrexate or laparoscopic surgery (salpingostomy or salp-
ingectomy) are widely used. However the diagnosis of EP must be established and the
morphology of the GS and of the affected tube must be assessed before treatment. For a
ruptured EP, emergency laparotomy is needed [29].

3.2. Placental Abruption

Placental abruption (PA) is defined as the premature separation of a normally im-
planted placenta from the underlying myometrium. PA occurs in 0.6–1% of pregnancies,
with the highest reported incidence from the 24th to 26th weeks of gestation. Severe cases
of PA can lead to maternal disseminated intravascular coagulation or uncontrolled blood
loss, fetal demise, preterm labor, and neonatal death [48–50].

Risk factors for PA include hypertensive disorders, advanced maternal age, multiparity,
prior PA, thrombophilia, smoking, cocaine use, premature rupture of the membranes, and
abdominal trauma.

Clinical presentation and severity vary widely from totally asymptomatic cases to
those where there are major fetal and maternal complications, depending on the location
and the degree of PA. The main clinical features of PA are antepartum vaginal bleeding
(13–25% of cases), abdominal pain, uterine tenderness, and signs of fetal distress [50–52].

Imaging appearance of PA can be classified according to the predominant location of
the hematoma, which form as a sequela of abruption.

Retroplacental hematomas, which account for 43% of hematomas, are located between
the basal plate and the myometrium and lift the placental parenchyma toward the amniotic
cavity: the source of bleeding is usually from small arterioles. Retroplacental hematoma
with a size greater than 50 mL or striping at least 50% of placenta from endometrium, is
associated with poor fetal prognosis. Marginal subchorionic hematoma is the most frequent
(57% of cases), collecting between the basal plate and the chorion [52–54].

A collection of blood located anterior to the placenta between the chorionic membrane
and the villous chorion and circumscribed from the umbilical cord is defined as preplacental
or subamniotic hematoma (Figure 2).
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Figure 2. A 29-year-old patient at 35 weeks of gestation with acute pelvic pain and vaginal bleed-
ing. Axial T2 (a) and DWI (b) sequences show a hematoma (arrow), contained within amnion
and chorion and limited by reflection of amnion on placental insertion, suggestive of subamniotic
placental abruption.

Bleeding in the intervillous space of the placenta is consistent with intraplacental
hematoma: this uncommon condition carries a higher risk of maternal and fetal adverse
events than retroplacental abruption [51–53].

PA can be also distinguished on the basis of the presence or absence of vaginal bleeding,
being revealed versus concealed. Revealed abruption occurs when blood tracks between
the membranes and the decidua, escaping through the cervix into the vagina, whereas
concealed abruption consists of a blood collection behind the placenta with no external
bleeding [48].

US is still the first modality of choice for placental assessment, because of its safety and
availability. However the overall diagnostic performance of US in the detection of PA is
poor, with reported sensitivity of less than 25% and a negative predictive value from 14 to
53% [55–57]. The US appearance of PA correlates with the size and location of the bleeding,
as well as the time elapsed between abruption and the examination. Among 25–50% of
hematomas, mostly retroplacental, remain undetected, both because acute and subacute
bleeding can be isoechoic to placental tissue and because of their small size. Additionally,
blood resulting from PA may drain through the cervix rather than collecting around the
placenta at the time the US is performed [49,50]. Despite the aforementioned limitations,
ultrasound findings, when recognizable, are highly specific for PA (92–96%), including the
detection of retroplacental/preplacental collections, evidence of marginal subchorionic or
intra-amniotic hematomas, or visualization of a blood clot. Moreover, a thickened placenta
(greater than 5 cm) with rounded edges and heterogenous echotexture could be observed.
The placenta “jiggles” when pressure is suddenly applied with the probe, the so called
“jello effect”. It must be pointed out that as lesions depicted by US are relatively large,
ultrasound-diagnosed PAs are associated with worse fetal outcome. Given that US is not
sensitive for detection of PA, this complication must be suspected, regardless of a negative
sonographic result [4,49–53].

Masselli et al. showed that MRI could be a useful tool for identifying PA, with high
soft-tissue contrast, wide field of view, and excellent interobserver agreement [49]. The
authors observed that the diffusion and T1-weighted images have higher sensitivity and
diagnostic accuracy (sensitivity, 100% and 94%, respectively; diagnostic accuracy, 100% and
97%, respectively) than the T2-weighted half-Fourier RARE (sensitivity, 94%; diagnostic
accuracy, 87%) and true FISP sequences (sensitivity, 79%; diagnostic accuracy 90%) in
detecting hematomas. Moreover, according to changes in signal intensity of hemoglobin in
placental tissue on T1 and T2WI, MRI is able to estimate the age of bleeding (Figure 3) [49].
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Figure 3. A 23-year-old patient at 12 weeks of gestation admitted to the emergency room for vaginal
bleeding and acute pelvic pain. MRI detects large subchorionic placental abruption. Axial T2
Turbo-Spin-Echo (a), sagittal T1 fat-sat (b) sequences show heterogeneous signal of the hematoma,
suggestive of the coexistence of acute and subacute hemorrhage.

Hyperacute hemorrhage is typically hyperintense on T2-weighted and DW images,
being intermediate on T1-weighted images. Acute hemorrhage shows a drop of signal
intensity on T2WI, resulting in a hyperintense T1WI. Subacute hemorrhage is hyperintense
on T1WI due to the paramagnetic effect of methemoglobin. Chronic bleeding is hypointense
on T1WI and T2WI. The finding of a hyperacute or acute placental hematoma should
warn of the risk of progression to a higher degree of abruption, whereas subacute or late
bleeding is usually stable [13,49,51]. Therefore, an accurate and timely diagnosis of PA
and the prediction of its worsening are crucial when considering conservative treatment.
A potentially unstable patient requires continuous monitoring and emergency preparedness.
Since the diagnosis of PA is based on clinical features and not on imaging findings, MRI
is not routinely performed; however, this method is extremely accurate for placental
assessment, identifying the cause of second- and third-trimester uterine bleeding. MRI
should therefore be considered after negative US, especially if the diagnosis of abruption
could change management [13,54].

PA is often associated with fetal acidosis and hypoxia, leading to placental insufficiency
and ischemia: in this regard, various studies have already shown that a reduced ADC
value is a marker of placental dysfunction, which consists of a decrease in the placental
surface area available for oxygen exchange and nutrient supply to the fetus [55,56]. A recent
retrospective case-control study investigated whether PA, without fetal distress, could be
assessed by ADC values. The authors demonstrated that ADC values on the lesions above
the PA site were significantly reduced compared to those in the control group. Moreover,
in the abruption group, ADC values at the abruption site were also significantly lower than
in the non-abruption site within the same placenta [57].

In the management of trauma, CT is usually performed for placental and maternal
injury assessment, with a reported sensitivity of 100%; however, specificity ranges from
56% to 86% depending on the operator’s skills and knowledge of the normal appearance of
the placenta [7,58]. Jha et al. supported these data, also highlighting a low inter-observer
agreement even among experienced radiologists; therefore, rigorous training of radiologists
in detecting PA on CT is required [58].

On contrast-enhanced CT, PA is characterized by a partial or full-thickness area of
low attenuation that typically forms acute angles with the myometrium. A major finding
of abruption is placental non-enhancement, associated with higher risk of fetal demise:
Saphier et al. proposed a CT grading system for the presence or absence of a PA, based
upon the percentage of placental enhancement in pregnant patients, who underwent CT
after trauma [59]. On non-contrast CT, the hematoma may be undetectable, having the
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same attenuation as the placenta. Hyperdense amniotic fluid from placental bleeding into
the amniotic cavity may occasionally be seen. A risk–benefit analysis should be carried
out before irradiating a pregnant woman. However in life-threatening conditions, CT scan
should be performed, as in a non-pregnant patient [60].

3.3. Placental Accreta Spectrum Disorders

Placenta accreta spectrum (PAS) disorders are complex obstetric complications char-
acterized by abnormal adhesion of the placenta, occurring when a defect of the decidua
basalis allows the invasion of trophoblastic tissue into the myometrium [61]. PAS disorders
are classified into three entities, according to the depth of invasion: placenta accreta (the villi
simply adhere to the myometrium), placenta increta (the villi penetrate the myometrium),
and placenta percreta (the villi invade the full thickness of the myometrium, uterine serosa,
and often the surrounding organs) [13,61]. The incidence of PAS disorders has been in-
creased to 3 per 1000 deliveries in the last decade, presumably due to rising use of caesarean
section and other uterine surgery, which are the main risk factors [62]. Prenatal unsus-
pected PAS disorders are often associated with massive obstetric hemorrhage at the time
of placental separation from the uterine wall, remaining the leading cause of peripartum
hysterectomy in Western countries: placenta percreta (PP) may cause uterine rupture and
is the most life-threatening invasion type of PAS [13,61,63]. Therefore, accurate antenatal
diagnosis and identification of type of PAS disorders are crucial to plan the appropriate
management with a multidisciplinary team, preventing maternal morbidity and mortality.

Pelvic US, by transabdominal and transvaginal approaches, is the recommended first-
line imaging method to diagnose PAS [64,65]. Sonographic features include loss of the clear
zone, defined as loss or irregularity of the hypoechoic plane in the myometrium under the
placental bed, supposed to represent an abnormal extension of the placental villi through the
decidua basalis into the myometrium; numerous, large, irregular sonolucent intraplacental
spaces, giving the placenta a “moth-eaten” appearance and containing turbulent flow
(placental lacunae), which is the most sensitive US finding in detecting all types of PAS
(sensitivity 100%); myometrial thinning <1 mm; interruption of the hyperechoic uterine
serosa–bladder interface; placental bulge; and a focal exophytic mass of placental tissue
extending beyond the uterine serosa [4,63,66].

A prospective cohort study by Comstock et al. reported that the sensitivity and
specificity of grey-scale imaging alone are greater than 90% with high predictive negative
value when performed by a skilled operator [67].

Although interobserver agreement is good to excellent among experienced operators
regarding the diagnostic accuracy of the individual findings, such as placental lacunae [68],
others features are artifacts (myometrial thickness) that result from myometrial scars due
to a previous caesarean delivery, or are rarely reported (placental bulge and focal exophytic
mass) [66].

Power and Color Doppler can be helpful in establishing a differential diagnosis be-
tween placenta accreta and percreta, depicting areas of increased vascularity, with dilated
blood vessels that pass through the placenta and the uterine wall, running perpendicular to
myometrium and involving the uterine serosa–bladder junction; however, these techniques
require more skills and experience than grey-scale imaging machines. A meta-analysis by
Jauniaux et al., evaluating the diagnostic accuracy of US techniques (including grey-scale
imaging, CD and PD) in women with placenta previa or with a previous history of caesarean
delivery, reported a pooled sensitivity of 88% (95% CI, 81–93) and 97% (95% CI, 93–99)
in retrospective and prospective studies, respectively [69]. Use of a combination of signs
increases the detection rate of US for PAS disorders, especially for placenta percreta [65,69].

The disadvantages of US, including operator dependence and limited penetration/field
of view, are overcome by MRI. The most attractive advantage of MRI lies in the ability to
depict the entire placental–myometrial interface in detail, due to higher contrast resolution
and tissue-specific characterization than US [51]. US and MRI have similar accuracy in
PAS disorder diagnosis [64,70], whereas FIGO recommendations stated that MRI is “not
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essential” [18]; however, if US findings are equivocal for abnormal placentation, MRI repre-
sents a useful adjunctive diagnostic tool, especially for placentas in lateral and posterior
positions (or in patients with previous uterine surgery), with an excellent interobserver
agreement in detecting the presence and depth of placental invasion [71]. A meta-analysis
including twenty studies (1080 pregnancies scanned on MRI) showed a sensitivity of 94.4%,
100%, and 86.5% for detection of placenta accreta, increta, and percreta, respectively, with
corresponding values of specificity of 98.8%, 97.3%, and 96.8% [72]; however, the majority
of these patients had an MRI performed after US prediction for PAS disorders. Prena-
tal MRI can also assess the precise topography of placental invasion and adjacent organ
involvement, necessary for surgical planning [71].

MRI findings of PAS disorders that reached strong consensus recommendation (at
least 80% agreement in favor) in the recent SAR-ESUR publication [73] are as follows.

Dark placental bands on T2WI: linear or nodular hypointense bands thicker (>1 cm)
than the normal placental septa, extending across the myometrium–placenta interface, with
random distribution, reflect increased fibrin deposition due to placental hemorrhage or
infarct. Familiari et al. observed that the detection of T2 dark placental bands is the most
sensitive MRI finding for the diagnosis of placenta percreta (82.6%); however, specificity
was only moderate (58.5%) [72]. Therefore, this criterion is most valuable in conjunction
with other supporting features. The maximum length of T2 dark bands has been shown to
predict intraoperative hemorrhage [74]. Pain et al. highlighted the importance of this sign
for the differential diagnosis of placenta percreta (PP) versus placenta accreta (PA) [75].

Thinning or loss of T2 hypointense interface: loss of a thin dark line between the
placenta and the myometrium, depicted on T2WI [73], reflects the loss of the retroplacental
clear zone on US [63].

Myometrial thinning has been described as the earliest MRI finding to suggest placenta
accreta. The myometrium may appear thin (less than 1 mm) or even imperceptible in the
area of placental implantation. Due to the physiological thinning of the myometrium
that occurs with the progression of gestation, this sign has low sensitivity and specificity;
therefore, it should not be used as an independent sign but used in conjunction with other
findings suggestive for PAS [76].

Abnormal vascularization of placental bed: the vascular architecture at the placental
bed appears bizarre and disorganized, with prominent and tortuous vessels non-uniformly
distributed and very heterogeneous in size. These vessels may extent from the placenta to
the underlying myometrium into the uterine serosa or urinary bladder wall (the so called
“bridging vascularity”) [76]. The more invasive the placentation, the more pronounced the
uteroplacental vascular abnormalities. This MRI criterion showed the greatest diagnostic
accuracy for PAS with sensitivity, specificity, PPV, and NPV of 81.6%, 100%, 100%, and
61.1%, respectively [77]. Moreover, Chen et al. observed that abnormal vascularization of
the placental bed is a specific MRI feature for differentiating PP from PA [78].

Bladder wall interruption: this sign describes disruption of the bladder wall contour
and abnormal superior tenting on the bladder dome by the placenta in the supine position.
The finding of placental tissue spreading into the bladder lumen is extremely specific (100%)
for bladder involvement; however, it is reported in a small number of women with PP. The
bladder vessel sign, defined as an abnormal vascular network within the vesicouterine
space, represents an accurate predictor of bladder invasion [73,77].

Focal exophytic mass: placental tissue typically located toward the bladder or laterally
toward the parametrium is very specific for PP [72].

Placental/uterine bulge: deviation of the uterine serosa from the expected plane
caused by abnormal bulge of placental tissue toward surrounding organs (typically toward
the parametrium and bladder) can cause the uterus to take on an “hourglass” configuration
due to widening of the lower uterine segment, resulting in a loss of the typical inverted pear-
shape, best depicted on sagittal and/or coronal images. This finding showed a sensitivity
and specificity for the diagnosis of PAS of 76.6% and 62.5% [72] (Figure 4). The specificity
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of this criterion increases where the bulging in the uterine contour is associated with a focal
interruption of the myometrium [73].
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Figure 4. A 32-year-old pregnant patient at 28 weeks of gestation with acute pelvic pain. Axial (a)
and sagittal T2-weighted images (b) demonstrate a heterogeneous placenta, with abnormal placental
bulging, dark intraplacental bands, and interruption of the myometrium.

The others four signs that did not achieve consensus (with less than 80% agreement)
were classified as “uncertain”: placental protrusion into the cervix, placental ischemic
infarction, placental heterogeneity, and abnormal intraplacental vascularity [73].

Do et al. showed that radiomics features on placental MRI may represent a quantitative
tool for the objective assessment of PAS severity, discriminating patients who required
caesarean hysterectomy from those who did not [79].

3.4. Uterine Rupture

Uterine rupture (UR) is a rare yet sometimes fatal complication for both mother and
fetus, often occurring during the third trimester of gestation, labor, or immediately after
delivery [80].

UR is defined as a full-thickness tear of the uterine layers, including the overlying
serosa, resulting in direct communication between the amniotic and peritoneal cavities. This
may lead to severe uterine bleeding, fetal distress, and expulsion of the placenta and/or
fetus into the abdominal cavity [81]. The average incidence reported in an unscarred uterus
is 5 in 10,000 patients, whereas this rate increases to 20–80/10,000 in women with uterine
scars, mostly resulting from prior caesarean section (CS). Therefore, previous CS represents
the leading cause of overall uterine ruptures [82].

Uterine dehiscence (UD) refers to an incomplete separation of the myometrium at the
site of a previous scar that preserves peritoneal serosa and amniotic membranes, allowing
visibility of the fetus through the perimetrium: this is a much more frequent and often
asymptomatic condition, which rarely results in life-threatening complications [83]. The
incidence of uterine dehiscence is unknown, because it may not be recognized in the setting
of a successful vaginal delivery without assessment of the lower uterine segment [84].

There is no reliable modality to predict UR or UD in patients undergoing trial of labor
after caesarean section (TOLAC); however, US in the third trimester may be a useful com-
plementary tool to predict uterine scar defects in these women [85]. Several studies have
demonstrated that ultrasonographic measurements of both the full low uterine segment
(LUS) and myometrial thickness during the third trimester of pregnancy are inversely cor-
related with uterine scar rupture/dehiscence at delivery [85,86]. US finding of thicknesses
of the full low uterine segment and myometrial layer of less than 2.3 mm and 2.5 mm,
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respectively, could predict these complications. However, no precise threshold value could
be recommended [81,85,87].

In peripartum and during delivery, the acute clinical presentation of UR obviates
the need for diagnostic imaging, which is most helpful when this complication occurs
earlier in the pregnancy. US is the first method of choice, owing to its availability, cost
effectiveness, and lack of ionizing radiation. While transabdominal US provides a wider
field of view (FOV) and better general evaluation of the pregnant status, transvaginal US
allows more accurate assessment of the reproductive system [88]. In expert hands, US
may depict the site of perforation, as an anterior hypo/anechogenic line, extending to the
serosa; the uterus appears bulky and empty, while the placenta and fetal parts are located
in the abdominal cavity. The ancillary non-specific findings of UR, such as concomitant
hemoperitoneum and extrauterine hematoma, are the most commonly detected. On Color
Doppler imaging, vascularity at the site of uterine breach may be decreased due to intra-
myometrial hematoma [85,89,90]. When US in inconclusive, MRI represents a problem-
solving tool with a larger FOV and improved visualization of the uterine wall, helping to
diagnose antepartum UR (Figure 5).
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Figure 5. Acute abdominal pain in a 37-year-old patient at 34 weeks of gestation, with the suspicion
of acute appendicitis. Axial T2-weighted fat-sat image (a) shows a full-thickness tear within the
anterior uterine wall that also includes the uterine serosa, with herniation of the hand of the fetus
through the defect, as highlighted by the square (b).

On T2-weighted images, the placenta and amniotic sac are hyperintense, whereas the
myometrium is isointense to muscle, allowing the detection of the tear itself. The high-
contrast-tissue resolution of MRI provides for the depiction of fetal parts and extrauterine
membranes. On T1-weighted images, hyperintensity of blood products identifies the
hemoperitoneum [4,7,91].

Additionally, MRI is more accurate than US in differentiating UR from other uterine
wall defects, such as UD, due to its ability to identify an intact overlying serosal layer.
A correct differential diagnosis between UR and UD is crucial for setting up the most
suitable treatment: UR requires an emergency caesarean section, whereas UD can be treated
conservatively with antibiotics [7,81].

MRI allows for the detection and characterization of large bladder flap hematomas
(>4 cm in size) associated with UR or more often with UD (Figure 6).
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Figure 6. Puerperal patient, 34 years old, on the 14th day after caesarean section. Sagittal T2-weighted
sequence shows large bladder flap hematoma (6.5 cm in maximum diameter), resulting from uterine
dehiscence at the incision site and located between low uterine segment and bladder wall.

When they are abscessed, large hematomas may cause fever and abdominal pain: in
these patients, cross-sectional imaging reveals a peripheral-enhancing purulent collection
between the lower uterine segment and the bladder wall (Figure 7).
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Figure 7. Bladder flap hematoma complicated by an abscess in a patient who had undergone cae-
sarean delivery 8 days earlier, presenting with fever and hypogastric tenderness. Sagittal-reformatted
contrast-enhanced CT image shows a rim-enhancing and gas-containing collection at the anterior
lower incision site that communicates with the endometrial cavity.

The use of MRI in emergencies is limited by availability in emergency departments
and by the long scan times. According to the guidelines established by ACOG, the use of
CT in pregnant patients should be considered when the benefit of the mother outweighs
the potential harm from ionizing radiation [92]. CT is the modality of choice in postpartum
patients and shows significantly higher sensitivity than other imaging modalities in the
detection of pneumoperitoneum or abscesses associated with uterine perforation [8]. The
tear is depicted as a hypodense myometrial defect in uterine layers, extending from the
serosal surface to the myometrium. Multi-planar reconstructions may help in identifying
the site and extent of the breach [93].
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3.5. Postpartum Hemorrhage

Postpartum hemorrhage (PPH) is one of the leading cause of maternal morbidity
and mortality, accounting for 8% of maternal deaths in developed countries and 20% of
maternal deaths in developing regions [3,94]. Primary PPH occurs within the first 24 h
after delivery and is the most common type of obstetric hemorrhage with an incidence of
4–6% of all deliveries, whereas secondary PPH develops between 24 h and 12 weeks after
delivery [95]. Uterine atony, defined as the absence of uterine contraction after delivery,
represents the main cause of primary PPH, accounting for 75–90% of cases [95,96]: the
diagnosis is established during the physical exam immediately upon conclusion of an
obstetric vaginal or caesarean delivery, with a poor role for imaging [97]. Other causes
of primary PPH include delivery-related lacerations, coagulation diseases, PAS disorders,
uterine rupture, and RPOC.

Secondary PPH complicates 0.2 to 1% of deliveries; the main cause is RPOC, accounting
for 30% of cases [98]. Less-common causes of secondary PPH include uterine arteriovenous
malformations (AVMs), endometritis, and subinvolution of the placental site.

Contrast-enhanced CT should be performed to detect and localize active bleeding that
appears as extravasation of the contrast agent. Significant arterial bleeding can be identified
on the arterial phase, while small arterial or venous oozing can be detected during the
delayed phase (Figure 8) [97].
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Figure 8. Primary postpartum hemorrhage occurring 6 h after delivery, in a 28-year-old patient with
previously undiagnosed PAS disorder. Axial early arterial phase (a) contrast-enhanced CT scans
demonstrate a subtle intrauterine contrast extravasation (arrow) in the left side of the endometrial
cavity. The contrast extravasation is clearly depicted in the portal phase (b), whereas the delayed
phase (c) demonstrates a more diffuse contrast extravasation in the same side.

3.5.1. Retained Products of Conception (RPOC)

RPOC is defined by intrauterine retention of residual placental or trophoblastic tissue,
representing one of the most common causes of post-abortion or postpartum hemor-
rhage [99]. RPOC complicates 1% of all full-term pregnancies, occurring more frequently
after second-trimester miscarriage or surgical pregnancy termination with a reported rate of
6%. In women who underwent medical abortions, a prevalence up to 15% is reported [100].
RPOC associated with PAS has increased, especially in patients who have achieved preg-
nancy through assistive reproductive technology [101]. The clinical symptoms of RPOC
include vaginal bleeding, pelvic pain, and fever. Although an accurate and timely diagnosis
of RPOC represents a challenge, it is crucial for guiding proper management. Transvaginal
US is the first-line imaging modality and a useful diagnostic tool in differentiating RPOC
from normal intrauterine lochia and clots [99]. The main US features of RPOC include a
thickened endometrium (ranging from 8 to 13 mm) and a variable amount of heterogeneous
and echogenic material within the endometrial cavity, sometimes presenting as a mass,
with vascular flow at Color Doppler US [8]. Sellmeyer et al. observed that the detection
of any vascularity in a thickened endometrial echo complex (EEC) or mass is likely to
represent RPOC with a predictive positive value of 96%; however, the lack of vascularity at
Color Doppler US does not exclude the diagnosis of RPOC [99]. Four vascularity patterns
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have been established, in which the degree of vascularity of the endometrial versus the
myometrial component is compared in the same image section and classified as type 0, 1, 2,
or 3. Type 0 vascularity, defined as no detectable vascularity in a thickened EEC or mass,
may correspond to a blood clot or avascular RPOC. The vascular patterns 1–3 show an in-
creasing flow of endometrium compared to myometrium, helping the clinical management
of RPOC [8,99]. Type 3, defined as marked endometrial vascularity (higher than that of
normal myometrium in the same US section), has a PPV of 100%; in these patients, flow can
be so robust as to mimic a uterine arteriovenous malformation (AVM). However a mass in
the puerperal uterus with vascularity on US is much more likely to represent RPOC than
uterine AVM. AVMs can be considered when RPOC have been ruled out and Color Doppler
US demonstrates serpiginous tubular vascular structures centered in the myometrium [102].
When US is inconclusive, CT or MRI should be performed. On MRI, RPOC appear as
intracavitary uterine soft-tissue mass with variable T1 and T2 signal intensities, depending
on the degree of bleeding and necrosis (Figure 9).
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Figure 9. Postpartum hemorrhage occurring 11 days after delivery. Axial T2-weighted fat-sat
sequence (a) shows hyperintense soft-tissue mass within the endometrial canal, briskly enhancing
on T1-weighted post-contrast images (b). This findings were confirmed at surgery to represent
components of retained placenta (RPOC).

Post-contrast MRI is useful to assess the enhancement, which is also heterogeneous
(and can be partial, complete, or delayed). Other features to take into account are a variable
degree of associated myometrial thinning and obliteration of the junctional zone [8,103].
The aforementioned US and MRI findings can overlap with those of gestational trophoblas-
tic disease (GTD), a broad spectrum of clinical and histopathological entities arising from
uncontrolled growth of trophoblastic tissue and including hydatiform moles (complete
and partial), invasive moles, choriocarcinoma, and placental site trophoblastic tumor [104];
therefore, clinical and lab context are crucial. Specifically; the serum β human chorionic
gonadotropin (beta hCG) value is typically normal or low in women with RPOC and signif-
icantly increased in those with GTD [103]. GTD should be considered in the differential
diagnosis of hemorrhagic conditions with a positive pregnancy test after a delivery, a
miscarriage, or a query ectopic.

US plays a key role in patients with suspected GTD to exclude pregnancy as a cause
of elevated hCG levels [105]. Once GTD is suspected, Doppler US is a valuable tool to
confirm the diagnosis; however, MRI represents a problem-solving method in selected cases,
especially when malignancies are suspected to evaluate the local extent of disease [106].

3.5.2. Uterine Arteriovenous Malformation

Uterine AVMs are uncommon and underdiagnosed vascular disorders that may cause
life-threatening postpartum vaginal bleeding. AVMs are broadly classified as congenital
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or acquired. Acquired uterine AVMs usually result from previous trauma, infection,
gestational trophoblastic disease, endometriosis, or uterine surgery [8,107]. Clinically,
puerperal patients present pelvic pain associated with vaginal bleeding, which can be heavy
or irregular, requiring blood transfusion and/or emergency hysterectomy. Transvaginal US
is commonly performed as the first-line imaging test representing a useful, non-invasive
diagnostic modality. At US, uterine AVM in seen as an ill-defined mass that consists
of multiple hypoechoic tubular or cystic areas within the myometrium with a normal
adjacent endometrium [108]. Color Doppler US shows in those same areas low resistance,
multidirectional, and high-velocity turbulent flow, confirming the vascular nature of these
lesions. Doppler findings of uterine AVM may overlap with other conditions, including
gestation trophoblastic disease (GTD); therefore, serum b-hCG testing is recommended to
rule out GTD (negative with AVM, positive with GTD) [109,110].

When US is indeterminate, MRI or CT can reveal an ill-defined mass with multiple
serpiginous and ectatic vessels in the myometrium and parametrium, connecting to the
uterine arteries: this finding, clearly depicted on MR-angiography, corresponds to the
hypervascular areas on Color Doppler US, representing a hallmark of uterine AVMs [8]. In
congenital AVMs, several arterial feeders may be detected, with a more prominent nidus,
whereas acquired types are typically supplied by a single intramural and hypertrophied
feeding artery draining directly in a single parauterine vein [111]. Other MRI features of
AVM include bulky uterus, focal disruption of the junctional zone, and flow-void artifacts
(Figure 10).
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Figure 10. Uterine AVM in a 34-year-old patient who underwent uterine curettage after a miscar-
riage and presented to the emergency department with pelvic pain and vaginal bleeding. Sagittal
T1-weighted contrast-enhanced image depicts in the fundus and anterior myometrium multiple
serpiginous and ectatic vessels that enhance intensely. The myometrium has a bulky appearance.

Contrast-enhanced CT is the modality of choice for confirmation of the diagnosis in
puerperal patients presenting to the emergency department with severe hemorrhage [8].

The definitive diagnosis is still made on the basis of conventional angiography, which
remains the gold-standard imaging technique reserved for patients undergoing therapeutic
embolization. Arteriography shows a nidus of vessels, supplied by dilated feeding uterine
arteries, with high-flow vascular dynamics and early venous drainage [111].

Conservative treatment and observation have been suggested for stable patients with
a clinical suspicion of AMV, whereas selective uterine arterial embolization (UAE) or
hysterectomy is recommended only for unstable patients. Surgical treatment should be
reserved for those women in which UAE is not feasible or contraindicated [112].
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3.5.3. Endometritis

Postpartum endometritis is defined as an infection of the decidua or uterine lining that
can involve all the layers of the uterus. This complication is the most common cause of low-
grade postpartum fever, occurring in 2–3% of vaginal births and in up to 28% of caesarean
sections [113]. The likelihood of developing postpartum endometritis is doubled in patients
who underwent caesarean delivery compared to those who deliver vaginally; the risk also
increases without antibiotic prophylaxis and with prolonged labor or RPOC [114]. Signs
other than fever include abnormal vaginal discharge, vaginal bleeding, uterine tenderness,
persistent uterine enlargement, and leukocytosis [113]. Endometritis is diagnosed and
managed clinically with little role for imaging, which is often used to exclude concurrent
pathologies (RPOC, infected hematoma, abscess) or when conventional antibiotic therapy is
unsuccessful. US findings are nonspecific, overlapping with expected postpartum changes:
an enlarged uterus with thickened, heterogeneous endometrium containing intracavitary
fluid or echogenic debris consistent with clot [115]. Echogenic foci with distal shadowing
or ring-down artifacts may be observed in women with gas in the endometrial cavity,
raising suspicion of infection. However, intracavitary gas may also be a normal finding
in puerperal uterus [97]. Rule et al. (2018) showed that sonographic features such as
a subserosal hypoechoic rim and endomyometrial junction indistinctness are helpful in
distinguishing patients with postpartum endometritis from other complications [116]. The
diagnosis cannot be made according to a single finding, but it is crucial to integrate imaging
features into the clinical scenario [115].

CT and MRI can be employed to further rule out underlying entities such as an abscess
or pelvic septic thrombophlebitis.

The CT findings of postpartum endometritis are also non-specific, including a thick-
ened endometrium with diffuse wall enhancement and an enlarged endometrial cavity
within fluid, air, or debris. MRI can also demonstrate similar findings to CT scans, with
air depicted as signal void on T1- and T2-weighted images [117]. Contrast administration
can be helpful in detecting parametrial inflammation and pelvic abscess. A pelvic abscess
is shown as a thick-walled and well-defined fluid collection with rim enhancement. An
air–fluid level within the abscess and/or fat stranding of the surrounding peritoneal fat,
due to inflammatory changes, can also be observed [118].

The treatment of endometritis is broad-spectrum antibiotics administration with proper
management for any associated RPOC, infected hematoma or pelvic abscess (Figure 11) [113].
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Figure 11. Endometritis in a 31-year-old patient admitted to the emergency department with fever
and pelvic soreness 14 days after undergoing cesarean delivery. Axial T2-weighted fat-sat image
(a) demonstrates dilated and fluid-filled endometrial cavity. After gadolinium administration (b),
endometrium appears as thickened with heterogeneous enhancement.
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