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Abstract: Vulnerability to land degradation in southern Europe has increased substantially in the last
decades because of climate and land-use change, soil deterioration, and rising human pressure. The
present work focuses on a quantitative evaluation of changes over time in the level of vulnerability to
land degradation of a Mediterranean country (Italy) using a composite indicator, the environmentally
sensitive area index (ESAI), which is the final outcome of a complex model conceived to assess land
vulnerability on the basis of climate, soil, vegetation, and human pressure. Considering four different
levels of vulnerability to land degradation (not affected, potentially affected, fragile, and critical), the
main trajectories of this index were highlighted in a long-time perspective (1960–2010), discriminating
dynamics over two sub-periods (1960–1990 and 1990–2010). The empirical results at a very detailed
spatial scale (1 km2 grid) reflect spatial consolidation of degradation hot-spots over time. However,
aggregated trajectories of change indicate an overall improvement in the environmental conditions
between 1990 and 2010 compared with what is observed during the first period (1960–1990). Worse
environmental conditions concerned southern Italian regions with a dry climate and poor soil
conditions in the first time interval, large parts of northern Italy, traditionally recognized as a wet
and affluent agricultural region, experienced increasing levels of land vulnerability in the second
time interval. Being classified as an unaffected region according with the Italian national action plan
(NAP), the expansion of (originally sparse) degradation hot-spots in northern Italy, reflective of an
overall increase in critical areas, suggests a substantial re-thinking of the Italian NAP. This may lead
to a redesign of individual regional action plans (RAPs) implementing place-specific approaches and
comprehensive measures to be adopted to mitigate land degradation.

Keywords: degradation risk; ESAI; land trajectories; indicators; Mediterranean basin

1. Introduction

The third World Atlas of Desertification defined land degradation as a phenomenon
leading “to a long-term failure to balance demand for and supply of ecosystem goods
and services” [1,2]. Being a worldwide threat covering a multitude of socioeconomic and
biophysical issues, land degradation implies several interacting impacts on soil quality and
landscape structure and configuration, most of them induced by natural risks (e.g., drought,
flood, landslide) on land, e.g., [3–6]. The encroachment of urban areas [7–10] and the
improper use of soil and vegetation [11,12], however, remain important causes of land
degradation in advanced economies.

The involvement of several dimensions underlying land degradation processes has
stimulated a global debate as to how far the political dimension is concerned and represents
a continuous challenge for scientists [13–15]. The synergistic effects of human drivers
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(whose impact reflects urban expansion, land-use intensification, tourism development,
demographic growth, and depopulation, among others) and natural forces (poor soil
features, scattered vegetation cover, rugged topography, climate aridity) contribute to the
intrinsic complexity of the phenomena of land degradation. These factors, on the one hand,
raise questions about the optimal methodologies identifying and monitoring affected areas
in a comparable manner [16,17] and, on the other hand, stimulate a broader debate on the
effectiveness of (direct and indirect) actions undertaken in any country of the world to
fight desertification [18–20]. A part of this semantic and disciplinary complexity is linked
to the range of socioeconomic, political, topographical, and climatic contexts impacted by
land degradation, which affects the majority of land in all the continents of the world [21].
Just to mention some key figures, about one third of the total land area is regarded as
degraded [22], with economic costs for recovery amounting to nearly 18–20 trillion USD
per year (http://catalogue.unccd.int/856_Land_Based_Adaptation_ENG.pdf accessed on
12 December 2022).

The critical role of a healthy land in providing ecosystem services is known (https:
//www.eea.europa.eu/data-and-maps/indicators/land-take-3/assessment, accessed on
12 December 2022). Today, taking account of land-use/land cover and its (beneficial or
detrimental) transformations over time becomes crucial with respect to the achievement of
the strategic targets established by the United Nations (UN) through the SDGs—Sustainable
Development Goals for 2030. This is particularly true for the specific target of land degra-
dation neutrality (LDN, [23]) at the global level and by the EU through the European Green
Deal at a continental scale [24]. In these contexts, the adoption of a system to ‘account’
environmental statistics in a harmonized, transparent, and easily interpretable manner is
essential to pave the way toward a sustainable use of natural capital [25].

A specific focus on environmental degradation in Europe is justified with the fact that
this continent—despite mostly affluent and technologically advanced—is not immune from
desertification risk. About 25% of European land was classified at high or very high land
degradation risk with a worrying trend of +14% with respect to the 2008 extent [17]. The
northern Mediterranean Basin has long been identified as the most affected area within
the continent [26]. A series of negative facts concern the high soil erosion rates [27], a
low level of soil organic matter [28], the endemic problems of thin soils [29], the millenary
artificialization of landscapes [30], and the high vulnerability to climate change due to rising
temperatures, changes in seasonality rainfall patterns, and a particularly high frequency
of extreme events (see, e.g., [31–35]). In such perspectives, Italy shares most of these
negative historical and geophysical traits with other Mediterranean countries, maintaining,
in turn, a strong (socioeconomic) gap between the northern and southern regions of the
country [36–38].

Bearing in mind the urgency of this issue, linked to the idea of sustainability, assess-
ment and monitoring of land degradation have been generally conducted by adopting
indicators that provide synthetic information on the status and trends of the underlying
degradation processes [39]. Indicators can be based on field measurements, socio-economic
surveys or, if computed over large areas, on remote sensing investigations [3,40–47].

This indicator-based approach also includes the well-known environmentally sensitive
area (ESA) methodology providing a comprehensive assessment of land vulnerability to
degradation [48–52]. The Mediterranean Basin was the first area of its extensive appli-
cation, and many studies demonstrate the reliability of this procedure when evaluating
land vulnerability to degradation, since it considers multiple indicators related to four
components: climate, soil, vegetation, and land management [53–55]. Research in the
literature focused on multiple snapshots of the current conditions of land systems classified
in terms of land vulnerability [56–58]. The typical approach adopted by ESA relies on
geospatial data concerning land cover transitions whereas, in this work, we made the
spatial transitions of land vulnerability classes completely explicit over a sufficiently long
time span (1960–2010). Nevertheless, detailed investigations spanning a sufficiently long
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time period and estimating spatial trends of indicators have been rather occasional in
Europe [59].

On the contrary, studies relying on the ESA procedure estimating subtle socioeconomic
and ecological mechanisms that contribute to triggering land degradation [60,61] are aimed
at capturing vulnerability changes over time from a vast set of indicators, revealing spa-
tially unbalanced socioeconomic and environmental dynamics, e.g., [25]. This imbalance
has inevitably reduced the effectiveness of policy actions contrasting land degradation
in southern Europe. A new deal of strategies should be incorporated into the national
framework to align Italy, and other Mediterranean countries, to Target 15.3 of the Sustain-
able Development Goals (SGDs), i.e., LDN by 2030 [22]. This consists of a broad corpus
of local-based measures conceived to adapt to rapidly changing conditions and to curb
land degradation risk, especially in areas classified as ‘historically not affected’ that, on
the contrary, are recently experiencing a sharp worsening of environmental/ecological
conditions, e.g., [62]. Based on these premises, the present work aimed to analyze the
spatial distribution of different indicators computed at three points in time (1960, 1990,
2010) and delineate the evolution (i.e., change or stability) of land vulnerability levels over
the Italian territory [63].

The analysis empirically estimates the transition probability of each elementary spatial
unit from one class to another, allowing verification of the transition frequency both in a
direction of a worsening of the boundary conditions with respect to desertification risk,
and through trajectories of stability or improvement. This assessment has been carried out
through raster-type spatial analysis methodologies, enabling the quantification of transition
probabilities as a function of the different discrete classes defined ex ante. The obtained
results can represent a useful tool to help policy makers in reaching (or, better, redefining)
environmental targets [64].

2. Materials and Methods
2.1. Investigated Area

Italy covers an area of over 300,000 km2 in the heart of the Mediterranean Basin.
Hills and mountains are the most common surfaces (42% and 35% of the national area,
respectively) followed by plains (23%). Italy is considered an intriguing case for land
degradation studies because of the asymmetric background concerning the three sub-areas
in which the country is typically subdivided (north, centre, south [65]). First, a consid-
erable socioeconomic gap exists among these three macro-regions [66–68] accompanied
by different conditions concerning biophysical conditions of soil [69], climate [70,71], and
vegetation quality [72]. This allows a refined analysis of the complex interplay between the
socioeconomic and geo-environmental dimensions that contribute to determining the level
of vulnerability to land degradation of a given territory [73]. In this context, the National
Action Plan for Combating Drought and Desertification (NAP) was approved in 1999 and
edited in accordance with the resolutions of the United Nations Assembly regarding the
struggle against desertification, drought, and poverty. The Italian NAP identified southern
Italy as an ‘affected’ region (Figure 1), whereas the northern and central regions of Italy
were categorized as unexposed to severe land degradation [74].

2.2. Input Data and Variables in the ESA Model

In this section, a summary overview of the ESA framework with its relative data, vari-
ables and the final composite index (hereafter, the ESAI) is provided. The environmentally
sensitive area (ESA) model, originally developed by Kosmas [75] within the MEDALUS
project, is a suitable framework for desertification studies aimed at estimating the overall
vulnerability level to degradation. Built up on a set of requirements affecting the reliabil-
ity of the spatial outcome [76–79], the model is based on four pillars: climate, soil, land
cover, and human pressure. To quantify the degree of vulnerability, a score system was
used on the basis of the estimated level of correlation between each variable and land
degradation [63,80,81].
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Figure 1. Partitions of Italy into: (a) 20 administrative regions according to nomenclature of territorial
units for statistics (NUTS-2); (b) latitudinal belts; (c) elevation classes.

Four indicators, containing information on land quality in terms of climate (climate
quality index, CQI), soil (soil quality index, SQI), vegetation (vegetation quality index,
VQI), and land management (land management quality index, MQI), were computed as
the geometric mean of the different scores for each variable [82]. The scores of the ESAI
ranged between 1 (the lowest vulnerability level) and 2 (the highest vulnerability level).
We identified eight classes of vulnerability that can be optionally included in four macro-
classes: not affected (NA), potentially affected (PA), fragile (F), and critical (C). The maps
generated from this procedure have the spatial resolution of 1 km2 [83].

Among the four pillars, climate is a recognized factor of most land degradation
processes [84,85]. The indicators of the CQI are based on data extracted from the National
Agrometeorological Database of the Italian Ministry of Agriculture [14,73,86]. Different
from climate, soil qualities are regarded as a quasi-static variable because their properties
change slowly and, thus, soil is frequently considered a stable layer over time [65]. Soil
data were extracted from various sources: (i) an Italian database of soil characteristics, (ii) a
soil quality map produced by the European Desertification Information System for the
Mediterranean (DISMED) project [87], (iii) ecopedological and geological maps of Italy,
and (iv) a 20 m digital elevation model covering the overall national surface [85].

Starting from the Corine land cover database (CLC [88]), VQI reflects a vulnerability
score system associated with each land cover on the basis of four variables: fire risk,
protection against soil erosion, resistance of vegetation to drought, and plant cover [61,80].
Lastly, the MQI was built up, taking into account the impact of anthropogenic factors
on land degradation through the evaluation of demographic and agricultural conditions
(i.e., population density and trends, intensification of agricultural practices) using census
data and CLC maps [25,63,81,89–91].

2.3. Procedure

Three ESAI rasters (dated 1960, 1990, and 2010) represent the input data of the geo-
graphic information system procedure aimed at extracting maps and relevant indicators
of land degradation evolution in Italy between 1960 and 2010 (Figure 2). First, according
to several authors [79,92,93], Italy was classified with a supervised segmentation of the
ESAI into eight vulnerability classes. These account for not affected areas (NA), potentially
affected areas (PA), fragile areas (including three classes with rising vulnerability levels:
F1, F2, F3), and critical areas (including three classes with rising vulnerability levels: C1,
C2, C3). Table 1 provides an overview of the main characteristics of each class. A ninth
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class was added to identify sealed areas, glaciers, and water bodies, which is useful to take
account of possible changes occurring over time. Once the three rasters were prepared
in a comparable way, we used the semi-automatic classification plugin (SCP, [94]) in the
QGIS environment (version 3.16.6) to enable spatial overlay and raster comparison. This
plugin was used to compare two rasters having the same number of classes that are labelled
following a common criterion. The outputs of the SCP plugin are made up of two files: (i) a
GEOTiff that visually enables the geography of occurred changes and (ii) a csv file reporting
descriptive statistics related to land cover changes for each time window (1960–1990 and
1990–2010).
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Table 1. Characterization of the eight classes segmenting the ESAI.

ESAI Class ESAI Score Vulnerability
Class Area Description

Not affected <1.17 Not affected Non-threatened areas

Potentially affected 1.17–1.22 Potentially
affected

Low vulnerability areas to be considered at risk only in the case of a severe
worsening of climate and land management conditions.

Fragile 1 1.23–1.26
Fragile

Medium vulnerability areas in which any change altering the balance
between natural and anthropogenic activities (e.g., climate change, occurrence

of natural disaster, land use/cover changes) can trigger land degradation.
Fragile 2 1.27–1.32
Fragile 3 1.33–1.37

Critical 1 1.38–1.41
Critical

Degraded areas (e.g., sparse vegetated zones characterized by erosional
processes) influencing surrounding areas.Critical 2 1.42–1.53

Critical 3 >1.53

Each pixel of the obtained GEOTiffs shows values representing a specific combination
between the two classifications, taking into account both stable and changing classes. For
instance, all the pixels moving from class 4 to class 1 in the transition 1960–1990 (i.e., from
F2 to NA) will have the value 7, whereas all the pixels moving from class 5 to class 1 (from
F3 to NA) will have the value 11, and so on. Once the GEOTiff file is rendered, land cover
change statistics appear in the ‘Output Tab’, making it simple to distinguish each class
change and giving information about the extent of stable and shifting areas (km2). For each
time span, the csv file includes the transition matrix from which it is possible to extract
relevant indicators assessing the evolution of land degradation in Italy between 1960 and
1990 and between 1990 and 2010. These indicators, along with the single classes, can be
displayed by applying a simple mask on the main GEOTiff file.

3. Results

Patterns of land vulnerability, relying on the ESAI, are shown in Figure 3 for three
time points (1960, 1990, 2010) with the corresponding surface area (Table 2).
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Figure 3. Classification of the Italian land according to the eight vulnerability classes for the years
1960, 1990, and 2010.

Non-vulnerable areas (NA+PA) expand over time (from 5% to about 9.5% of the
total landscape); the main transformations, however, concern the decrease in fragile areas
occupying almost two-thirds of the whole Italian territory in 1960 and reduced to less
than half of the national surface in the subsequent time point (1990 and 2010). Table 3
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reports a detailed vulnerability accounting after classification of the study area into eight
vulnerability categories.

Table 2. Spatial partition of land vulnerability macro-classes by year.

Vulnerability Class 2010 (%) 1990 (%) 1960 (%)

Not affected + potentially affected 9.468 9.048 5.002
Fragile 47.376 48.256 64.416
Critical 43.156 42.696 30.582

Total 100 100 100

Table 3. Partition of land vulnerability in eight classes for the time points 1960, 1990, and 2010.

Vulnerability Class 2010 (%) 1990 (%) 1960 (%)

Not affected 0.979 0.851 0.008
Potentially affected 8.488 8.197 4.994

Fragile 1 11.006 12.068 13.528
Fragile 2 18.940 19.932 29.796
Fragile 3 17.429 16.256 21.093
Critical 1 16.827 15.896 13.229
Critical 2 24.895 24.913 16.252
Critical 3 1.434 1.887 1.101

Total 100 100 100

Subsequently, we identify the positive and negative transitions observed in the
two timeframes analyzed (1960–1990 and 1990–2010, see Table 3). The most relevant
transition is the expansion of areas with higher vulnerability (from unaffected or potentially
affected to fragile land, Figure 4), concerning areas that are not considered vulnerable and
that pass to a state of initial land fragility. This is the main transition observed in both time
periods. Such a transition has a rather heterogeneous spatial distribution over time, with
an extension that doubles between 1990 and 2010 compared with the previous time interval
(from 2.5% to 5.3%, see Table 4). This land transition is concentrated in northern and central
Italy, especially in mountainous Apennine and upland contexts. In these areas, dedicated
monitoring efforts seem to be required.
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Table 4. Land vulnerability trajectories (per cent share in total landscape) in Italy by time interval.

Class Transition 1960–1990 (%) 1990–2010 (%)

NA+PA→F 2.47 5.30
F→C 18.6 11.32

NA+PA→C 0.15 0.03
NA+PA (no change) 1.96 2.45

F (no change) 17.68 13.62
C (no change) 12.37 17.20

F→NA+PA 6.10 5.21
C→F 6.61 10.23

C→NA+PA 0.30 0.96

The remaining transition (worse conditions) is from fragile to critical areas (Figure 5).
This step is very evident between 1960 and 1990 and less evident in more recent times,
meaning that the expansion of critical areas is fundamentally associated with pre-1990
dynamics and concentrated in already fragile areas, namely, those including northern
plains, flat and hilly areas of central Italy, and, above all, coastal areas. In southern Italy,
this transition between 1960 and 1990 is revealed to be equally striking. In general, this
transition is less evident between 1990 and 2010, and mainly concerns Sicily and Sardinia
and both coastal and hilly-mountain territories in the rest of Italy. In northern Italy, this
process seems to be less widespread in the last period than in southern Italy. In general, the
phenomenon slows over time, with an area that has dropped from 18.6% to 11.3% when
comparing the first with the second period (Table 4). The transition from fragile to critical
land highlights traditional degradation dynamics, strongly associated with rising human
pressure and loss of healthy vegetation cover, being, in turn, less dependent on recent
climatic dynamics.
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For both periods, the transition from non-vulnerable areas to critical areas is very rare,
featuring a jump of two classes, which represents a significant worsening of environmental
conditions (Figure 6). Worse conditions predisposed to land degradation are more scattered
across the national territory, consolidating hot-spots of variable size, namely, few pixels of
a few square kilometers, experiencing a sort of ‘pulsation’. Reversing this pattern implies
policies that cannot act exclusively on a national or regional scale, but requires monitoring
strategies that increasingly focus on the local scale.
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The stability of the less vulnerable classes, meaning the unaffected or potentially
affected classes, is mainly concentrated in Alpine and Apennine territories (Figure 7),
suggesting that these areas can be considered as buffer zones that strongly maintain
the structure of the territory and its characteristics of good quality, in terms of climate,
vegetation, and land use. These areas amount to 1.96% in the period 1960–1990 and grow
to 2.45% in the period 1990–2010 (Table 4).

Areas remaining stably in the ‘fragile’ (F) macro-class between 1960 and 1990 (17.7%
of total landscape) are distributed over the entire national territory, excluding the Po Valley,
southern Sicily, and Apulia (Figure 8). In the subsequent period, the same category shows
a decrease to 13.6% and a greater concentration of clusters in mountainous territories.

The percentage of land stably classified as ‘critical’ (C) increases from 12.4% (1960–1990)
to 17.2% (1990–2010). In both periods, areas classified in this macro-group are distributed
mostly along coastal and flat areas (Figure 9).

The switch from the fragile macro class (F) to the potentially affected class (PA) stands
at 5.6% for the period 1960–1990 and decreases to 4.7% in the period 1990–2010 (Figure 10).
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The areas gaining a lower vulnerability are mainly mountainous, belonging to the overall
Alpine arch and Apennine chain.
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In the first period (1960–1990), the percentage of critical areas (C) shifting to fragile
areas (F) is 6.6% and is concentrated in central and southern Italy, including major islands
(Figure 11). The same transition in the second period (1990–2010) increases to 10.2%, with a
countrywide distribution of the phenomenon and major clusters found in the Po Valley
and Apulia.
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Compared to what is reported for the transitions NA+PA→C, the positive change for
C→NA+PA consists of scattered locations widespread in Italy that do not feature a clear
geographical pattern (Figure 12). In the second period (1990–2010), their number increases,
meaning overall better environmental conditions.
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4. Discussion

This work assumes that the risk of desertification on a local scale in Italy takes place as
an intrinsic property of local systems that evolve according to complex (and frequently non-
linear) trajectories, and which are subject to the action of multiple drivers of change [12].
In this context, we adopted a composite index, the ESAI, to monitor land degradation
considering four relevant dimensions, namely, climate, soil, vegetation, and human pres-
sure [61]. Quality indicators allow for a multidimensional and integrated assessment of
land vulnerability, evaluating local contexts according to multifaceted criteria integrating
environmental, social, and economic dimensions of sustainability (e.g., [9]). Based on
this information, a trade-off between sustainability and resilience of local systems can
be outlined, whose long-term development is altered by exogenous shocks that limit or
modify their evolutionary path [95].

Desertification risk is one of these exogenous shocks, being associated with worse
conditions of land degradation [18]. With this perspective in mind, our analysis developed
a descriptive procedure reflecting the operational philosophy of transition matrices (and,
more generally, the idea underlying any change detection analysis), estimating the fre-
quency of change from one state to another, which can be assumed as a dynamic property
of complex local systems [96]. States were modelled in this study considering four vul-
nerability macro-classes, which express a gradient of land vulnerability [16]. Validity and
internal coherence of these classes, as a function of the increasing level of land vulnerability,
were verified both theoretically and through field work [76,97]. Classes were recognized as
appropriately conceived to delineate local conditions at a strongly disaggregated spatial
scale, such as the one used in our work [48]. Based on this background, the empirical
analysis estimates the transition probability of each elementary spatial unit from one class
to another, allowing a full comparison of transition frequencies (i.e., from a given vulner-
ability state to another) with stable trajectories over time [37]. These evaluations were
developed adopting a raster-type spatial analysis that quantified transition probabilities
as a function of a number of discrete classes fixed ex ante. The empirical analysis of the
transition probabilities from one class to another is considered a preparatory tool for the
construction of refined risk models from both probabilistic and non-linear perspectives,
mimicking long-term dynamics of local systems [98].

Our study analyses a long-time horizon (from 1960 to 2010) with a subdivision in two
intermediate time intervals (1960–1990 and 1990–2010). This timing enables the analysis of
short-term dynamics in the evolution of desertification risk on a national and local scale, ev-
idencing the inherent consolidation of processes of spatial convergence (or divergence) over
time [65]. Spatial convergence implies a consolidated trend towards worsening or improved
conditions of land vulnerability [99], being important for local policies, and allowing the
delineation of boundaries of the so-called hot-spots [100]. On these areas, it is appropriate
to intervene with formal policy mechanisms, or, conversely, they could represent examples
of direct or indirect good practices for the containment of land degradation [21], e.g., areas
that respond to the demands and targets of the LDN [101].

On the basis of the empirical results presented in this work, further research is needed
as regards the creation of reliable, spatially explicit, and temporally structured risk indica-
tors, allowing for a refined forecasting of desertification risk that local systems undergo
as a function of multivariate drivers [53]. From this perspective, risk indicators can be
calculated adopting both empirical and theoretical perspectives [12]. Risk frequency is
associated with the marginal elements of the statistical distributions that have shaped this
process. For instance, Markov chains, with a change of state that indicates greater or lesser
risk than the starting value, allow a stochastic modelling of these environmental processes,
both on a raster (pixel) basis and on a vector (polygon) basis. While the pixel-based analysis
helps in reducing some quantitative problems, such as the effect of territorial partitions
(the so-called modifiable areal unit problem (MAUP) [102]), the use of empirical or theoreti-
cal risk indicators on a polygonal scale (or administrative boundaries) allows for a more
immediate application to spatial planning.
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5. Conclusions

Land degradation is no longer associated exclusively with biophysical factors, such as
climate and vegetation loss, being increasingly dependent on the rising human pressure
on soil quality. The methodology here proposed highlights different spatial patterns of
land vulnerability between 1960–1990 and 1990–2010. These patterns can be traced back
to the effects of different land degradation drivers that have acted differentially in space
and time. Between 1960 and 1990, worse conditions predisposed to land degradation
involved areas already degraded or partially degraded. Between 1990 and 2010, the
geographical gradients associated with worse conditions predisposed to land degradation
were of socioeconomic relevance. Basically, land vulnerability was associated with spatial
heterogeneity, implicit in the ESAI model and hardly attributable to traditional elevation
(or urban–rural) gradients. In this sense, results suggest how policies should move further
away from the dashboard of national guidelines prescribed in the Italian national action
plan, which should be updated, similar to other Mediterranean countries with comparable
socioeconomic and environmental features. The revision of regional and local plans fighting
against desertification should accompany a through rethinking of the national action plan,
definitely delineating appropriate and efficient application scales in terms of governance.
This implies a new governance addressing the premises of zero net land degradation
strategy (ZNLD). The objective of ZNLD should be not exclusively achieved on a national
scale, focusing instead on the specificity of local territories and land degradation hot-spots.
For instance, land experiencing an overall improvement in the local conditions predisposed
to land degradation represents candidate examples of (formal or informal) good practices
to fight against desertification. Future research should increasingly focus on factors related
to the improvement in local conditions predisposed to land degradation and the underlying
socio-ecological dynamics.
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