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AbstractWe deal with nested affine variational inequalities, i.e., hierarchical prob-
lems involving an affine (upper-level) variational inequality whose feasible set is
the solution set of another affine (lower-level) variational inequality. We apply this
modeling tool to the multi-portfolio selection problem, where the lower-level vari-
ational inequality models the Nash equilibrium problem made up by the different
accounts, while the upper-level variational inequality is instrumental to perform a
selection over this equilibrium set. We propose a projected averaging Tikhonov-like
algorithm for the solution of this problem, which only requires the monotonicity
of the variational inequalities for both the upper- and the lower-level in order to
converge. Finally, we provide complexity properties.

1 Introduction: context and motivation for the nested affine
variational inequalities model

Nested affine variational inequalities represent a flexible modeling tool for many
real-world applications like, e.g., the renowned multi-portfolio selection (see, e.g.
[5]). To introduce the general formulation of the model, we first briefly describe the
specific instance of the multi-portfolio optimization problem.
Consider 𝑁 accounts, with a = 1, . . . , 𝑁 . Each account a’s budget 𝑏a ∈ R+ is

invested in 𝐾 assets of a market. The decision variables 𝑦a ∈ 𝑌a ⊆ 𝑅𝐾 stand for the
fractions of 𝑏a invested in each asset, where 𝑌a is a nonempty compact polyhedron
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containing the feasible portfolios, e.g., the standard simplex. Let 𝑟 ∈ R𝐾 indicate
random variables, where 𝑟𝑘 is the return on asset 𝑘 ∈ {1, . . . , 𝐾} over a single-period
investment. We define `a = Ea (𝑟) ∈ R𝐾 as expectations of the assets’ returns for a,
as well as the positive semidefinite covariance matrix Σa = Ea ((𝑟 − `a) (𝑟 − `a)>).
We consider the following measures for portfolio income 𝐼a and risk 𝑅a , where we
use the portfolio variance as the risk measure: 𝐼a (𝑦a) , 𝑏a (`a)>𝑦a , 𝑅a (𝑦a) ,
1
2 (𝑏

a)2 (𝑦a)>Σa𝑦a .
When trades frommultiple accounts are pooled for common execution, individual

accounts can suffer the market impact that stems from a lack of liquidity. To take
account of this transaction cost effect, we introduce a positive semidefinite market
impact matrixΩa ∈ R𝐾×𝐾 whose entry at position (𝑖, 𝑗) is the impact of the liquidity
of asset 𝑖 on the liquidity of asset 𝑗 . For each account a we consider a linear market
impact unitary cost function. The total transaction costs term for a is:

𝑇𝐶a (𝑦1, . . . , 𝑦𝑁 ) , 𝑏a (𝑦a)>︸    ︷︷    ︸
Invested capital

Ωa
𝑁∑︁
_=1

𝑏_𝑦_︸         ︷︷         ︸
Unitary transaction costs

.

The multi-portfolio problem can be formulated as the following Affine Variational
Inequality AVI(𝑀 low, 𝑑low, 𝑌 ): find 𝑦 ∈ 𝑌 , 𝑌1 × · · · × 𝑌𝑁 such that(

𝑀 low𝑦 + 𝑑low
)>
(𝑤 − 𝑦) ≥ 0 ∀𝑤 ∈ 𝑌, (1)

where 𝑑low , −𝑏a`a and

𝑀 low ,

©«
(𝑏1)2 [𝜌1Σ1 +Ω1 +Ω1> ] 𝑏1𝑏2Ω1 · · · 𝑏1𝑏𝑁Ω1

𝑏2𝑏1Ω2 (𝑏2)2 [𝜌2Σ2 +Ω2 +Ω2> ] 𝑏2𝑏𝑁Ω2

.

.

.
. . .

𝑏𝑁 𝑏1Ω𝑁 𝑏𝑁 𝑏2Ω𝑁 (𝑏𝑁 )2 [𝜌𝑁Σ𝑁 +Ω𝑁 +Ω𝑁 > ]

ª®®®®®¬
.

Weassume thematrix𝑀 low to be positive semidefinite and, in turn,AVI(𝑀 low, 𝑑low, 𝑌 )
to be monotone: these properties can be guaranteed under mild assumptions,
see [5, Theorem 3.3]. We denote by SOL(𝑀 low, 𝑑low, 𝑌 ) the solution set of
AVI(𝑀 low, 𝑑low, 𝑌 ), which is a polyhedron (see [5, Theorem 2.4.13]). Note that
AVI(𝑀 low, 𝑑low, 𝑌 ) corresponds to an equivalent Nash Equilibrium Problem (NEP),
where the players’ objective functions are convex and quadratic. Since the set
SOL(𝑀 low, 𝑑low, 𝑌 ) is not necessarily a singleton in the framework we con-
sider, one has to discriminate among the solutions of AVI(𝑀 low, 𝑑low, 𝑌 ) ac-
cording to some further upper level criterion. Thus, to model the resulting se-
lection problem, we introduce the monotone nested affine variational inequal-
ity AVI

(
𝑀up, 𝑑up, SOL(𝑀 low, 𝑑low, 𝑌 )

)
, that is the problem of calculating 𝑦 ∈

SOL(𝑀 low, 𝑑low, 𝑌 ) that solves

(𝑀up𝑦 + 𝑑up)> (𝑤 − 𝑦) ≥ 0, ∀𝑤 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ), (2)
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where R𝑁𝐾×𝑁𝐾 3 𝑀up � 0 and 𝑑up ∈ R𝑁𝐾 . Problem (2), which has a hi-
erarchical structure, includes as a special instance the minimization of the con-
vex quadratic objective function 12 𝑦

>𝑀up𝑦 + 𝑑up>𝑦, where 𝑀up is symmetric, over
SOL(𝑀 low, 𝑑low, 𝑌 ). It is also worth mentioning the special instance where the 𝑁 ac-
counts form an upper-level (jointly convex) NEP to select over SOL(𝑀 low, 𝑑low, 𝑌 );
in this case, 𝑀up turns out to be nonsymmetric. We refer the reader to [1] for further
information about NEPs.

•! Remark

Convergent solution procedures have been devised in the literature (see, e.g., [3, 4])
to address monotone nested AVIs when 𝑀up is positive semidefinte plus, i.e. 𝑀up is
positive semidefinite and 𝑦>𝑀up𝑦 = 0⇒ 𝑀up𝑦 = 0 (see, [2, Ex. 2.9.24]). Requiring
𝑀up to be positive semidefinite plus is restrictive: for example, taking 𝑁𝐾 = 2, any
matrix

𝑀up =

(
𝑚1 2

√
𝑚1𝑚2 + 𝑚3

−𝑚3 𝑚2

)
with 𝑚1, 𝑚2 nonnegative scalars and 𝑚3 ≠ −√𝑚1𝑚2, is positive semidefinite but
not positive semidefinite plus. Actually, the class of semidefinite plus matrices is
“slightly” larger than the ones of symmetric positive semidefinite and positive definite
matrices.
Recently, a projected averaging Tikhonov-like algorithm has been proposed in [6]

to cope with monotone nested VIs allowing for matrices 𝑀up that are not required
to be positive semidefinite plus.

We present a solution method for problem (2). We apply the results presented in [6]
to the specific instance of monotone nested affine variational inequalities, taking full
advantage of some strong properties AVIs enjoy, such as error bound results. This
allows us to put forward an algorithm to address problems like the multi-portfolio
selection in a more general framework with respect to the literature, where the upper
level operator is invariably assumed to be monotone plus (see, e.g., [5]).

2 The Tikhonov approach

We require the following mild conditions to hold:

(A1) 𝑀up is positive semidefinite;
(A2) 𝑀 low is positive semidefinite;
(A3) 𝑌 is nonempty and compact.

The set SOL(𝑀 low, 𝑑low, 𝑌 ) is nonempty, convex, compact and not necessarily single-
valued, due to (A2) and (A3), see e.g. [2, Section 2.3]. It follows that the feasible set
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of the nested affine variational inequality (2) is not a singleton. Moreover, thanks to
(A1), the solution set of (2) can include multiple points.
Let us introduce the Tikhonov operator:

Φ𝜏 (𝑦) ,
(
𝑀 low𝑦 + 𝑑low

)
+ 1
𝜏
(𝑀up𝑦 + 𝑑up) .

For any 𝜏 > 0, by assumptions (A1) and (A2), Φ𝜏 is monotone and affine.
The following finite quantities will be useful in the forthcoming analysis:

𝐻 , max
𝑦∈𝑌
‖𝑀up𝑦 + 𝑑up‖2, 𝑅 , max

𝑦∈𝑌
‖𝑀 low𝑦 + 𝑑low‖2, 𝐷 , max

𝑣,𝑦∈𝑌
‖𝑣 − 𝑦‖2.

We propose a Linear version of the Projected Averaging Tikhonov Algorithm (L-
PATA) to compute solutions of (2).

Algorithm 1:
Linear version of the Projected Averaging Tikhonov Algorithm (L-PATA)

Data: 𝑤1 = 𝑧1 = 𝑦1 ∈ 𝑌 , 𝑖 ← 1, 𝑙 ← 0;

for 𝑘 = 1, 2, . . . do
(S.1) Y𝑘 = 𝑖−2, 𝜏𝑘 = 𝑖;
(S.2) 𝑦𝑘+1 = 𝑃𝑌

(
𝑦𝑘 − 1

2(𝑘−𝑙)0.5Φ𝜏𝑘 (𝑦𝑘 )
)
;

(S.3) 𝑧𝑘+1 =

∑𝑘+1
𝑗=𝑙+1

1
2( 𝑗−𝑙)0.5 𝑦

𝑗∑𝑘+1
𝑗=𝑙+1

1
2( 𝑗−𝑙)0.5

;

(S.4) if min𝑦∈𝑌 Φ𝜏𝑘 (𝑧𝑘+1)> (𝑦 − 𝑧𝑘+1) ≥ −Y𝑘 then
𝑤𝑖+1 = 𝑧𝑘+1, 𝑖 = 𝑖 + 1, 𝑙 = 𝑘;

end
end

Index 𝑖 refers to the outer iterations occurring as the condition in step (S.4) is verified,
which correspond to the (approximate) solutions 𝑤𝑖+1 of the AVI subproblems

Φ𝜏 (𝑦)> (𝑤 − 𝑦) ≥ −Ysub, ∀𝑤 ∈ 𝑌, (3)

with Ysub = 𝑖−2 and 𝜏 = 𝑖. The sequence {𝑦𝑘 } includes all the points obtained
by making classical projection steps with the given diminishing stepsize rule, see
step (S.2). The sequence {𝑧𝑘 } consists of the inner iterations needed to compute
(approximate) solutions of the AVI subproblem (3), and it is obtained by performing
a weighted average on the points 𝑦 𝑗 , see step (S.3). Index 𝑙 lets the sequence of
the stepsizes restart at every outer iteration, while considering solely the points 𝑦 𝑗
belonging to the current subproblem for the computation of 𝑧𝑘+1. We remark that
the condition in step (S.4) only requires the solution of a linear problem.
We now deal with the convergence properties of L-PATA. With the following

result we relate (approximate) solutions of the AVI subproblem (3) where Ysub ≥ 0
to approximate solutions of problem (2).
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Proposition 1 Assume conditions (A1)-(A3) to hold, and let 𝑦 ∈ 𝑌 satisfy (3) with
𝜏 > 0 and Ysub ≥ 0. It holds that

(𝑀up𝑦 + 𝑑up)> (𝑤 − 𝑦) ≥ −Yup, ∀𝑤 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ), (4)

with Yup = Ysub𝜏, and(
𝑀 low𝑦 + 𝑑low

)>
(𝑤 − 𝑦) ≥ −Ylow, ∀𝑤 ∈ 𝑌, (5)

with Ylow = Ysub + 1𝜏𝐻𝐷.

Proof We have for all 𝑤 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ):

−Ysub𝜏 ≤
[
𝜏

(
𝑀 low𝑦 + 𝑑low

)
+ (𝑀up𝑦 + 𝑑up)

]>
(𝑤 − 𝑦)

≤
[
𝜏

(
𝑀 low𝑤 + 𝑑low

)
+ (𝑀up𝑦 + 𝑑up)

]>
(𝑤 − 𝑦)

≤ (𝑀up𝑦 + 𝑑up)> (𝑤 − 𝑦),

where the first inequality is due to (3), the second one comes from (A2), and the last
one is true because 𝑦 ∈ 𝑌 and then

(
𝑀 low𝑤 + 𝑑low

)> (𝑦 −𝑤) ≥ 0. Hence, (4) is true.
Moreover, we have for all 𝑤 ∈ 𝑌 :(

𝑀 low𝑦 + 𝑑low
)>
(𝑤 − 𝑦) = Φ𝜏 (𝑦)> (𝑤 − 𝑦) −

1
𝜏
(𝑀up𝑦 + 𝑑up)> (𝑤 − 𝑦)

≥ −Ysub −
1
𝜏
𝐻𝐷,

where the inequality is due to (3). Therefore, we get (5). �

Here follows the convergence result for L-PATA.

Theorem 1 Assume conditions (A1)-(A3) to hold. Every limit point of the sequence
{𝑤𝑖} generated by L-PATA is a solution of problem (2).

Proof First of all, we show that 𝑖 → ∞. Assume by contradiction that this is false,
hence an index �̄� exists such that either �̄� = 0 or the condition in step (S.4) is satisfied
at the iteration �̄� − 1, and the condition in step (S.4) is violated for every 𝑘 ≥ �̄� . In
this case, it is true that 𝑖 → 𝚤, and then 𝜏𝑘 = 𝜏 , 𝚤 for every 𝑘 ≥ �̄� .
For every 𝑗 ∈ [ �̄� , 𝑘], and for any 𝑣 ∈ 𝑌 , we have

‖𝑦 𝑗+1 − 𝑣‖22 = ‖𝑃𝑌 (𝑦
𝑗 − 1

2( 𝑗−�̄�+1)0.5Φ�̄� (𝑦 𝑗 )) − 𝑣‖22
≤ ‖𝑦 𝑗 − 1

2( 𝑗−�̄�+1)0.5Φ�̄� (𝑦 𝑗 ) − 𝑣‖22
= ‖𝑦 𝑗 − 𝑣‖22 +

1
4( 𝑗−�̄�+1) ‖Φ�̄� (𝑦 𝑗 )‖22 −

1
( 𝑗−�̄�+1)0.5Φ�̄� (𝑦 𝑗 )> (𝑦 𝑗 − 𝑣),

and, in turn,
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Φ�̄� (𝑦 𝑗 )> (𝑣 − 𝑦 𝑗 ) ≥
‖𝑦 𝑗+1 − 𝑣‖22 − ‖𝑦

𝑗 − 𝑣‖22
( 𝑗 − �̄� + 1)−0.5

− 1
4( 𝑗 − �̄� + 1)0.5

‖Φ�̄� (𝑦 𝑗 )‖22.

Summing, we get

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

Φ�̄� (𝑦 𝑗 )> (𝑣 − 𝑦 𝑗 )

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

≥

𝑘∑︁
𝑗=�̄�

(
‖𝑦 𝑗+1 − 𝑣 ‖22 − ‖𝑦

𝑗 − 𝑣 ‖22 −
1

4( 𝑗 − �̄� + 1)
‖Φ�̄� (𝑦 𝑗 ) ‖22

)
2

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

=

©«‖𝑦𝑘+1 − 𝑣 ‖22 − ‖𝑦 �̄� − 𝑣 ‖22 −
𝑘∑︁
𝑗=�̄�

1
4( 𝑗 − �̄� + 1)

‖Φ�̄� (𝑦 𝑗 ) ‖22
ª®¬

2
𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

≥ −

©«‖𝑦 �̄� − 𝑣 ‖22 +
𝑘∑︁
𝑗=�̄�

1
4( 𝑗 − �̄� + 1)

‖Φ�̄� (𝑦 𝑗 ) ‖22
ª®¬

2
𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

,

(6)
which implies

Φ�̄� (𝑣)> (𝑣 − 𝑧𝑘 ) =

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

Φ�̄� (𝑣)> (𝑣 − 𝑦 𝑗 )

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

≥ −

©«‖𝑦 �̄� − 𝑣‖22 +
𝑘∑︁
𝑗=�̄�

1
4( 𝑗 − �̄� + 1)

‖Φ�̄� (𝑦 𝑗 )‖22
ª®¬

2

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

+

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

(Φ�̄� (𝑣) −Φ�̄� (𝑦 𝑗 ))> (𝑣 − 𝑦 𝑗 )

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

≥ −

©«‖𝑦 �̄� − 𝑣‖22 +
𝑘∑︁
𝑗=�̄�

1
4( 𝑗 − �̄� + 1)

‖Φ�̄� (𝑦 𝑗 )‖22
ª®¬

2

𝑘∑︁
𝑗=�̄�

1
2( 𝑗 − �̄� + 1)0.5

,

(7)
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where the last inequality holds thanks to the monotonicity ofΦ�̄� . Indicating by 𝑧 ∈ 𝑌
any limit point of the sequence {𝑧𝑘 }, taking the limit 𝑘 → ∞ in the latter relation
and subsequencing, the following inequality holds true:

Φ�̄� (𝑣)> (𝑣 − 𝑧) ≥ −

©«‖𝑦 �̄� − 𝑣‖22 +
∞∑︁
𝑗=�̄�

1
4( 𝑗 − �̄�)

‖Φ�̄� (𝑦 𝑗 )‖22
ª®¬

2

∞∑︁
𝑗=�̄�

1
2( 𝑗 − �̄�)0.5

= 0,

because
∑∞
𝑗=�̄�

1
2( 𝑗−�̄�)0.5 = +∞ and

(∑∞
𝑗=�̄�

1
4( 𝑗−�̄�)

)
/
(∑∞

𝑗=�̄�

1
2( 𝑗−�̄�)0.5

)
= 0, due to [6,

Proposition 4], and then 𝑧 is a solution of the dual problem

Φ�̄� (𝑣)> (𝑣 − 𝑧) ≥ 0, ∀𝑣 ∈ 𝑌 .

Hence, the sequence {𝑧𝑘 } converges to a solution of problem (3) with Ysub = 0 and
𝜏 = 𝜏, see e.g. [2, Theorem 2.3.5], in contradiction tomin𝑦∈𝑌 Φ�̄� (𝑧𝑘+1)> (𝑦−𝑧𝑘+1) <
−Y𝑘 = −𝚤−2 for every 𝑘 ≥ �̄� . Therefore we can say that 𝑖 →∞.
Consequently, the algorithm produces an infinite sequence {𝑤𝑖} such that 𝑤𝑖+1 ∈

𝑌 and
Φ𝑖 (𝑤𝑖+1)> (𝑦 − 𝑤𝑖+1) ≥ −𝑖−2, ∀ 𝑦 ∈ 𝑌,

that is (3) holds at 𝑤𝑖+1 with Ysub = 𝑖−2 and 𝜏 = 𝑖. By Proposition 1, specifically from
(4) and (5), we obtain(

𝑀up𝑤𝑖+1 + 𝑑up
)>
(𝑦 − 𝑤𝑖+1) ≥ −𝑖−1, ∀𝑦 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ),

and (
𝑀 low𝑤𝑖+1 + 𝑑low

)>
(𝑦 − 𝑤𝑖+1) ≥ −𝑖−1 (1 + 𝐻𝐷), ∀𝑦 ∈ 𝑌 .

Taking the limit 𝑖 →∞we get the desired convergence property for every limit point
of {𝑤𝑖}. �

We consider the natural residual map for the lower-level AVI(𝑀 low, 𝑑low, 𝑌 )

𝑉 (𝑦) , ‖𝑃𝑌 (𝑦 − (𝑀 low𝑦 + 𝑑low)) − 𝑦‖2. (8)

Function𝑉 is continuous and nonnegative, as reminded in [4]. Also,𝑉 (𝑦) = 0 if and
only if 𝑦 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ). Condition

𝑉 (𝑦) ≤ Ŷlow, (9)

with Ŷlow ≥ 0, is alternative to (5) to take care of the feasibility of problem (2).

•! Remark
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Since both the variational inequalities (1) and (2) are affine, then Yup and
either Ylow or Ŷlow give actual upper-bounds to the distances between 𝑦 and
SOL

(
𝑀up, 𝑑up, SOL(𝑀 low, 𝑑low, 𝑌 )

)
and SOL(𝑀 low, 𝑑low, 𝑌 ), respectively.

Theorem 2 If 𝑦 ∈ SOL(𝑀 low, 𝑑low, 𝑌 ) satisfies (4), then there exists 𝑐up > 0 such
that

dist
SOL

(
𝑀 up ,𝑑up ,SOL(𝑀 low ,𝑑low ,𝑌 )

) (𝑦) ≤ 𝑐upYup.

If 𝑦 ∈ 𝑌 satisfies (5), then there exists 𝑐low > 0 such that

distSOL(𝑀 low ,𝑑low ,𝑌 ) (𝑦) ≤ 𝑐lowYlow.

If 𝑦 ∈ 𝑌 satisfies (9), then there exists �̂�low > 0 such that

distSOL(𝑀 low ,𝑑low ,𝑌 ) (𝑦) ≤ �̂�lowŶlow.

Proof The claim follows from [2, Proposition 6.3.3] and [6, Proposition 3]. �

In view of Theorem 2, conditions (4) and either (5) or (9) define points that are
approximate solutions for problem (2), also under a geometrical perspective. In
particular, the lower the values of Yup and either Ylow or Ŷlow, the closer the point
gets to the solution set of the nested affine variational inequality (2).

We give an upper bound to the number of iterations needed to drive both the upper-
level error Yup, given in (4), and the lower-level error Ŷlow, given in (9), under some
prescribed tolerance 𝛿.

Theorem 3 Assume conditions (A1)-(A3) to hold and, without loss of generality,
𝐿Φ , ‖𝑀up + 𝑀 low‖2 < 1. Consider L-PATA. Given a precision 𝛿 ∈ (0, 1), let us
define the quantity

𝐼max ,

⌈
𝐻 + 1
𝛿

⌉
.

Then, the upper-level approximate problem (4) is solved for 𝑦 = 𝑧𝑘+1 with Yup = 𝛿

and the lower-level approximate problem (9) is solved for 𝑦 = 𝑧𝑘+1 with Ŷlow = 𝛿 and
the condition in step (S.4) is satisfied in at most

𝜎 , 𝐼max

⌈
max

{
𝐼8max
(𝐷 + 𝑅)4
(1 − 𝐿Φ)2

𝐶1, 𝐼
8

1−2[
max
(𝐷 + 𝑅)

4
1−2[

(1 − 𝐿Φ)
2

1−2[
𝐶2,[

}⌉
,

iterations 𝑘 , where [ > 0 is a small number, and

𝐶1 ,

(
𝐷2 + 5

4
(𝑅 + 𝐻)2

)2
, 𝐶2,[ ,

(
(𝑅 + 𝐻)2
(4[)

) 2
1−2[

. (10)

Proof See the proof of [6, Theorem 2]. �
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