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Abstract
In the paper we complete a case by case proof of Reeder’s Conjecture started in our previous
work, proving the conjecture for simple Lie algebras of typeD and for the exceptional cases.
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1 Introduction

The structure of g- representation of the exterior algebra �g, g a simple Lie algebra over C,
has been extensively studied in the last fifty years (see [14, 17] and [18] for many relevant
results on this topic). Despite its finite dimensionality, an uniform description of irreducible
components of �g is known only in a conjectural form.

In ’97 Reeder proved that for the irreducible representations Vλ indexed by certain dom-
inant weights λ called small (i.e., such that λ is in the root lattice and 2α is not smaller than
λ in the dominant order for all positive roots α), the multiplicity of Vλ in �g equals 2rkgm0

λ,
where m0

λ is the dimension of the zero weight space in Vλ. Moreover, inspired by the work
of Broer about small representations in the symmetric algebra (see [5]), he conjectured that
the problem of determining the graded multiplicities of small representations in the exte-
rior algebra can be reduced to a problem involving Weyl group representations on the zero
weight space V 0

λ .
The setup for the conjecture is the following: let g be a simple Lie algebra over C, fix a

Cartan subalgebra h and let � be the associated root system, with Weyl groupW . We denote
by ( , ) the W -invariant positive-definite inner product on h∗ induced by the Killing form
and by α∨ the coroot associated to α. We choose a set of positive roots �+ associated to a
simple system �. Let ρ be the corresponding Weyl vector and θ (resp. θs) the highest root
(resp. the highest short root). We will denote by 	+ the set of dominant weights, ωi will
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be the i-th fundamental weight. Let H (resp Hh) be the space of W -harmonic polynomials
(resp. of degree h) on h, i.e. polynomials annihilated by constant coefficients W -invariant
differential operators with positive degree.

Conjecture 1.1 (Reeder) Consider the two polynomials

P
(
Vλ,

∧
g, u

)
=
∑
n≥0

dimHomg

(
Vλ,

n∧
g

)
un,

PW

(
V 0

λ , q, y
)

=
∑
n≥0

dimHomW

(
V 0

λ ,

k∧
h ⊗ Hh

)
qhyk .

If Vλ is a small representation, then the following equality holds:

P
(
Vλ,

∧
g, q

)
= PW

(
V 0

λ , q2, q
)

This conjecture was implicitly proved in type An comparing the “First Layer Formulae”
of Stembridge [21] with the results due to Kirillov, Pak [13] and Molchanov [16]. Moreover
some general formulae for graded multiplicities are proved when Vλ is the adjoint or the
little adjoint module in [2, 7–9] and [22]. In these cases the description of the zero weight
space is quite simple and the proof of the Reeder’s Conjecture is completely straightforward
using the formulae proved in [12]. In our previous paper [10] we proved the conjecture for
Lie algebras of type B and C using the tools introduced by Stembridge in [22]. The aim of
this note is to complete a case by case proof of the Reeder’s Conjecture for the classical Lie
algebras showing that the conjecture holds for even orthogonal Lie algebras. Furthermore,
we checked using SageMath that the conjecture is true in the exceptional cases.

The first sections of the paper are dedicated to explain our tools and to make more explicit
the “Weyl group part” of the conjecture. Section 4 is devoted to prove Conjecture 1.1 for
even orthogonal Lie algebras. We use a mixed strategy with respect to what we have done in
our previous paper: we use the combinatorics of weights and the action of the Weyl group
to find nice closed expressions for the coefficients of Stembridge’s minuscule recurrences
and again we conclude using an inductive reasoning. Section 5 contains some technical
results about a suitable reduction of the Stembridge’s recurrences. Finally, in Section 6
we give an overview about small representations in the exceptional cases and describe the
computational approach that we followed to check the conjecture.

2 Stembridge’s Recurrences

Our work make an extensive use of results exposed in [22] about the the coefficients
Cμ(q, t) in the character expansion of Macdonald kernels. The reason for our inter-
est in these functions is that the evaluation Cμ(−q, q2) gives the polynomial of graded
multiplicities of Vμ in the exterior algebra.

Let �(q, t) denote the Macdonald kernel and define Cμ(q, t) ∈ C[q±1, t±1], μ ∈ 	+
by the relation �(q, t) = ∑

μ∈	+ Cμ(q, t)χ(μ), where χ(μ) denotes the irreducible char-
acter associated to the dominant weight μ. It is possible to extend the Definition of Cμ(q, t)

to any weight μ setting

Cμ(q, t) =
{
0 if μ + ρ is not regular,
(−1)l(σ )Cλ(q, t) if σ(μ + ρ) = λ + ρ , λ ∈ 	+, σ ∈ W .

(2.1)
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We will say that, if there exists σ such that σ(μ + ρ) = λ + ρ, the weight μ is conjugated
to λ and we will write μ + ρ ∼ λ + ρ. These rational functions Cμ(q, t) satisfy some
recurrences. The problem of their explicit computation reduces to solving a linear system
of equations with coefficients in C[q±1, t±1].

We recall that a weight (resp. coweight) ω is said to be minuscule if (ω, α∨) ∈ {0,±1}
(resp. (ω, α)) for all positive roots. Fix a dominant weight λ. If ω is a minuscule coweight,
then the following relation holds (see [22], formula (5.14)):

k∑
i=1

Cwiλ(q, t)

⎛
⎝ ∑

ψ∈Oω

(
t−(ρ,wiψ) − q(λ,ω)t (ρ,wiψ)

)⎞
⎠ = 0. (2.2)

Here w1, . . . , wk are minimal coset representatives of W/Wλ, where Wλ is the stabilizer of
λ, and Oω is the orbit Wλ · ω. We call this recursive relation the minuscule recurrence. The
Cμ appearing in Eq. 2.2 are not necessary in their reduced form (i.e. the weight μ is not nec-
essary dominant), but the reduced form can be always achieved according to the Definition
2.1. Considering only the reduced forms, Stembridge proves that the Cμ(q, t) appearing
in Eq. 2.2 are indexed only by weights μ smaller or equal to λ in the dominant order. We
recall that if λ is small, a weight μ ≤ λ is again small. Consequently our strategy becomes
clear: we determine closed formulae for the polynomials PW (V 0

λ , q, y)(explicitly computed
in [12]), and then we prove by induction that these closed formulae satisfy Stembridge’s
recursive relations, specialized in −q and q2.

In [10] we used the minuscule recurrence to prove Reeder’s Conjecture in type B. A
different approach is needed to obtain a proof in type C, where Stembridge’s quasi minus-
cule recurrence is more efficient. Our choice of using minuscule recurrence in type D

comes from a computational reason: in Dn the fundamental weight ω1 is minuscule and it
is consequently easier to reduce the polynomial coefficients to a simpler form.

3 Small Representations and their ZeroWeight Spaces

We say that an irreducible representation Vλ is small if its weight is small. We refer to [1]
and [19] for a complete classification of small representations and their zero weights spaces
as W representations.

As in the case of hyperoctahedral group Bn examined in [10], the irreducible repre-
sentations of the Weyl group Dn = Sn � (Z/2Z)n−1 are encoded by pairs of partitions
(ν, μ), ν 	 k, μ 	 h, h + k = n. In the Bn case, the irreducible representations can be real-
ized as πν,μ = IndBn

Bk×Bh
π ′

ν × π ′′
μ, where, if πτ is the irreducible Sp-module associated to

τ 	 p, and εq is the sign representation of (Z/2Z)q , we have (π ′
ν)|Sk

= πν , (π ′
ν)|(Z/2Z)k =

1k, (π
′′
ν )|Sh

= πμ, (π ′′
μ)|(Z/2Z)h = εh. All the irreducible representations of the Weyl group

of type Dn can be then obtained restricting to Sn � (Z/2Z)n−1 a representation of the
form πν,μ. If ν �= μ, the representation π̃ν,μ := ResBn

Dn
πν,μ remains irreducible, otherwise

ResBn

Dn
πν,ν splits in two non isomorphic irreducible components that we denote by π̃ I

ν,μ and

π̃ II
ν,ν . A complete description of zero weight spaces for small representations in type D is

displayed in Table 1.1

1In Table 1 the irreducible representations are described by the associated pair of partitions (ν, μ) when
ν �= μ. If ν = μ we denote by (ν, ν)I and (ν, ν)II the irreducible representations π̃ I

ν,μ and π̃ II
ν,ν , respectively.



S. Di Trani

Table 1 Zero weights space of small representations: Type D

Small representation Zero weight space

Highest weight (ν, μ) description

ω2i , i < n−1
2 ((n − i), (i))

2ωn−1, 2ωn (n even)
((

n
2

)
,
(

n
2

))
II

,
((

n
2

)
,
(

n
2

))
I

ωn−1 + ωn (n odd)
((

n+1
2

)
,
(

n−1
2

))

2ω1 ((n − 1, 1),∅)

ω1 + ω2i+1 , i < n−1
2 ((n − i − 1, 1), (i)) ⊕ ((n − i − 1), (i, 1))

ω1 + ωn−1 + ωn (n even)
((

n
2 , 1

)
,
(

n−2
2

))
⊕
((

n
2

)
,
(

n−2
2 , 1

))

ω1 + 2ωn−1, ω1 + 2ωn−1 (n odd)
((

n−1
2 , 1

)
,
(

n−1
2

))

Let us denote by P̄W the polynomial PW (V 0
λ , q, y) divided by

∏n
i=1(1 − qmi+1), where

m1, . . . , mn are the exponents of Weyl group W . We will determine explicit expressions for
the polynomial P̄W .

We will encode partitions λ = (λ1,≥ λ2, . . . ,≥, λn) by Young diagrams, displayed
in the English way. Here h(ij), c(ij) are the hook length and the content of the box (ij)

respectively; |λ| and n(λ) will denote the quantities
∑n

i=1 λi and
∑n

i=1(i − 1)λi . We recall
the following results about the P̄W polynomials for the hyperoctahedral group:

Theorem 3.1 ([12], Proposition 3.3) Let πα,β be the irreducible representation of the Weyl
group Bn indexed by the pair of partitions (α, β).

P̄Bn(πα,β; q, y) = q2n(α)+2n(β)+|β| ∏
(i,j)∈α

1 + yq2c(ij)+1

1 − q2h(ij)

∏
(i,j)∈β

1 + yq2c(ij)−1

1 − q2h(ij)
. (3.1)

We remark that the reflection representation of the hyperoctahedral group restrict to the
reflection representation of the group Sn � (Z/2Z)n−1. Moreover, denoting by Sgn(n) the
sign representation of Bn, the representation πα,β and πβ,α = πα,β ⊗ Sgn(n) restrict to the
same irreducible representation π̃α,β . As an immediate consequence, it is possible to obtain
the following relations between the PW polynomials in type B and in type D:

PD(π̃α,β; q, y) = PB(πα,β; q, y) + PB(πβ,α; q, y)

PD(π̃I
α,α; q, y) = PD(π̃II

α,α; q, y) = PB(πα,α; q, y)

Now we want to rearrange the above formulae in a more useful way. Let λ be a partition,
we define

Sλ(q) = (qn + 1)
∏

(ij)∈λ

(1 + yq2c(ij)+1) Rλ(q) = (qn + 1)
∏

(ij)∈λ

(q + yq2c(ij))

In the case of λ = (k, 1) or λ = (k), some nice relations hold:

S(k,1) = S(k)

(q + y)

q
, R(k,1) = R(k)

(q3 + y)

q2
, R(k) = qk−1S(k−1)(q + y).
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Now it is possible to express the P̄D polynomials for zero weight space representations in
Table 1 in a more compact way. SetH(λ) = ∏

(ij)∈λ(1−q4h(ij)), where (ij) ranges between
the boxes of λ.

P̄D(π̃(n−1,1),∅; q, y) = q2[R(n−1,1) + S(n−1,1)]
H(n − 1, 1)

,

P̄D(π̃(k),(n−k); q, y) = S(k)R(n−k) + R(k)S(n−k)

H(k)H(n − k) (1 + qn)

= qk−1S(k−1)S(n−k−1)(q + y)(qn−2k + 1)(1 + yqn+1)

H(k) H(n − k) (1 + qn)
,

P̄D(π̃(k,1),(n−k−1) ⊕ π̃(n−k−1,1),(k); q, y) = q2[S(k)R(n−k−1,1) + R(k)S(n−k−1,1)]
H(k) H(n − k − 1, 1) (1 + qn)

+q2[S(n−k−1)R(k,1) + R(n−k−1)S(k,1)]
H(n − k − 1)H(k, 1) (1 + qn)

= q2S(k−1)S(n−k−2)(q + y)

H(k+1)H(n − k) (1 + qn) (1 − q2)
Q(n, k).

Here we set

P(n, k, q, y) = qk−2(q + y)(1 + yq2(n−k−2)+1) + qn−k−4(q3 + y)(1 + yq2(k−1)+1)

and

Q(n, k, q, y) = P(n, k, q, y)(q2(k+1) − 1)(q2(n−k−1) − 1)

+P(n, n − k − 1, q, y)(q2k − 1)(q2(n−k) − 1).

4 Even Orthogonal Algebras

We recall now the realization of root system Dn as exposed in [4]. In an euclidean vector
space with basis {e1, . . . , en}, consider the set �Dn of vectors {±ei ± ej }i �=j,i,j≤n. We
fix a positive system of roots choosing the vectors {ei ± ej }i �=j,i,j≤n; according to such
a description, the fundamental weights are ωi = e1 + · · · + ei if i < n − 1, ωn−1 =
1
2 (e1 + · · · − en) and ωn = 1

2 (e1 + · · · + en). Moreover the coweight e1 is quasi minuscule
and the Weyl vector is ρ = ∑

(n − j + 1)ej . We have three different families of formulae
for PW (V 0

λ , q2, q), depending on the reducibility of representation V 0
λ . We will denote the

polynomials PD(π̃(k),(n−k); q2, q) by Ck,n, the polynomial PD(π̃(n−1,1),∅; q2, q) by C2|0,n
and the polynomials PD(π̃(k,1),(n−k−1) ⊕ π̃(n−k−1,1),(k); q2, q) by C2|k,n. Similarly we will
denote by Ck,n and C2|k,n (or simply by Ck and C2|k when the context is clear) the rational
functions appearing in the Stembridge’s recurrences, associated respectively to weight of
the form ω2k and ω1+ω2k+1, and specialized in−q and q2. The following relations between
the polynomials Ck,n and C2|k,n hold:

Ck+1,n = Ck,n

q2(1 + q2(n−2k−2))(1 + q4k−1)(1 − q4n−4k)

(1 + q2n−4k)(1 + q4n−4k−5)(1 − q4k+4)
, (4.1)

C2|k,n = Ck,n

Q(n, k, q2, q)

q2k−6(1 − q4)(1 − q4k+4)(1 + q2n−1)(1 + q2n−4k)(1 + q4n−4k−5)
(4.2)
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Remark 4.1 Observe that if we set n = 2k in Eq. 4.1, the ratio T n
k between Ck,n and Ck−1,n

becomes equal to

2 · q2(1 + q4k−5)(1 − q4k+4)

(1 + q4)(1 + q4k−1)(1 − q4k)

This is coherent with the fact that, if n is even, the specialization of PD(π̃(k),(n−k); q2, q) in
k = n

2 is equal to 2PD(π̃I
( n
2 ),( n

2 )
; q2, q).

4.1 Weights of the Formω2k , 2ωn−1, 2ωn if n is Even andωn−1 + ωn if n is Odd

We consider the recurrence (2.2) and make the evaluations q → −q and t → q2, obtaining

l∑
i=1

Cwiλ

k∑
j=1

(q−2(ρ,wiψj ) + q1+2(ρ,wiψj )) = 0. (4.3)

Writing all the Cμ in their reduced form the recurrence can be rewritten as
∑
μ≤λ

�λ,n
μ (q)Cμ(q) = 0, (4.4)

for some coefficients �λ,n
μ (q). Our purpose is to make more explicit these coefficients.

Remark 4.2 Set �λ, n
μ = {wλ |w ∈ W/Wλ, wλ + ρ ∼ μ + ρ}. The sign change on the

n-th coordinate εn induces a bijection between �
2ωn−1,n
μ and �

2ωn,n
μ . Observe now that the

general coefficient �λ,n
μ (q) does not depend on the last coordinate of the weights in �λ, n

μ

because the last coordinate of ρ is equal to 0. As a consequence �
2ωn−1,n
μ (q) = �

2ωn,n
μ (q)

for all μ ≤ λ and then C2ωn−1(q) = C2ωn(q). Coherently with the above notation, if n is
even we will denote the polynomial C2ωn(q) by Cn

2
.

Let us observe that, if λ = ω2k (resp. λ = 2ωn and λ = ωn−1 + ωn) then the non zero
integral dominant weights smaller than λ are of the form ω2i with i < k (resp. i < �n/2�).
For brevity we will denote the coefficient �

ω2k,n
ω2i (q) and the set �

ω2k,n
ω2i (resp. �

2ωn,n
ω2i (q)

and �
2ωn,n
ω2i , �

ωn−1+ωn,n
ω2i (q) and �

ωn−1+ωn,n
ω2i ) by �

k,n
i and �

k,n
i (resp. by �

n
2 ,n

i and �
n
2 ,n

i ,

�
n−1
2 ,n

i and �
n−1
2 ,n

i ). It is immediate to show that the only contributions to the coefficient

�
k,n
k come from the case wi = id and consequently �

k, n
k is equal to

�
k, n
k =

2k∑
i=1

(1 + q4(n−i)+1)

q2(n−i)
= (q4k − 1)(q4(n−k)−1 + 1)

q2(n−1)(q2 − 1)
. (4.5)

It is more difficult to obtain closed formulae for the generic �
k,n
h , however some nice

recurrences hold.

Remark 4.3 A direct inspection shows that the weights giving non zero contribution to
�

k,n
h , k > h > 0 are of the form e1 + · · · + e2h + μ, where μ has the first 2h coordinates

equal to 0. Considering the immersion of Dn−2h → Dn induced by the Dynkin diagrams,
this means that μ can be contracted to a weight in �

k−h,n−2h
0 . By abuse of notation, we

denote this contraction process writing μ ∈ �
k−h,n−2h
0 .
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As a consequence of the above Remark, the following relation holds:2

�
k, n
h = (−1)k−h�

h,n
h |�k−h,n−2h

0 | + �
k−h, n−2h
0 . (4.6)

We reduced to computing the coefficients �
k, n
0 . For the weights conjugated to 0 some

results similar to the ones proved in [10] for Bn and Cn hold:

Lemma 4.4 Let n be even. Set λ = 2ωn and let w ∈ W be such that wλ is conjugated to 0.

(1) wλ is equal to (−1, 1, . . . ,−1, 1) if n/2 is even and to (−1, 1, . . . , −1,−1) if n/2 is
odd.

(2) There exists an element σ ∈ W of sign sgn(σ ) = n/2 such that σ(wλ + ρ) = ρ.

Lemma 4.5 Set λ = ω2k , 2k < n or λ = ωn−1 + ωn, n = 2k + 1 and let w ∈ W be such
that wλ is conjugated to 0. Then wλ is of one of the following form:

(1) The 2k non zero coordinates of wλ are pair of consecutive coordinates
((wλ)(j), (wλ)j+1) of the form (−1, 1).

(2) There are 2(k − 1) non zero coordinates that are pair of consecutive coordinates
((wλ)(j), (wλ)j+1) of the form (−1, 1) and the latter two are equal to −1.

In both cases there exists an element σ ∈ W of sign sgn(σ ) = k such that σ(wλ + ρ) = ρ.

This produce an explicit formula for the number of weights in �
λ,n
0 :

|�λ,n
0 | =

{
1 if λ = 2ωn and n is even or λ = 0
n
k

(
n−k−1
k−1

)
if λ = ω2k and 2k < n or λ = ωn−1 + ωn and n = 2k + 1.

Furthermore, the coefficient �
n
2 ,n

0 can be easily computed. Set

r(n, q) = q2(n−1) − q−2(n−1)+1 + q−2(n−2) + q2(n−2)+1 = (q + 1)(q2n−3 + q−2n+3)

then

�
n
2 ,n

0 = (−1)
n
2

n
2∑

i=1

r(2i, q) = (−1)
n
2 r(n, q) − �

n−2
2 ,n−2

0 . (4.7)

In the general case, producing explicit formulae for �
k,n
0 is more complicated. As a conse-

quence of Lemma 4.5 we obtain a case by case analysis of the weights in �
k, n
0 that leads us

to some recursive expressions for �
k,n
0 . Let μ be a weight in �

k, n
0 :

Case 1: If n = 2k + 1 then μ must be of the form −e1 + e2 + ν with ν ∈ �
k−1,2k−1
0 or

μ = (0, μ2, . . . , μn) where μ′ = (μ2, . . . , μn) ∈ �
k,2k
0 or εnμ

′ ∈ �
k,2k
0 ,

Case 2: If n �= 2k, 2k + 1 then μ must be of the form −e1 + e2 + ν with ν ∈ �
k−1,n−2
0

or μ = (0, μ2, . . . , μn) where μ′ = (μ2, . . . , μn) ∈ �
k,n−1
0 .

We obtain the recursive relations:

�
k, 2k+1
0 = (−1)kr(2k + 1, q)|�k−1,2k−1

0 | − �
k−1,2k−1
0 + 2�k,2k

0 , (4.8)

�
k, n
0 = (−1)kr(n, q)|�k−1,n−2

0 | − �
k−1,n−2
0 + �

k,n−1
0 . (4.9)

2Here we set by convention �
1,2
0 = {(−1,−1)}, �1,3

0 = {(−1, 1, 0), (0,−1,−1), (0,−1, 1} and coherently

�
1,2
0 = r(2, q), �1,3

0 = r(3, q) + 2r(2, q) (c.f.r. Eq. 4.7)
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The above recurrences between the coefficients allow us to reduce the triangular system
given by Stembridge’s relations as described in the following Proposition, that we prove in
Section 5. Set

bk,n =

⎧⎪⎪⎨
⎪⎪⎩

(q4k−1)
q2k−1(q−1)

if n = 2k,

(q2n−1)(q2(n−2k)+1)
q2(n−k)−1(q−1)

otherwise.

Proposition 4.6 Let Ri be the recurrence for Ci written in reduced form. Then there exist
a family of integers {Ak,n

i }i≤k such that

k∑
i=1

A
k,n
i Ri = �

k,n
k Ck −

k∑
i=1

bi,n−2(k−i)Ck−i (4.10)

Now, we apply an inductive reasoning. We recall that the base case of weight ω2 can
be obtained comparing PD(V 0

ω2
, q2, q) with the formulae proved by Stembridge in [22].

Observe now that the following relations between the bk,n hold:

bi,n−2(k−i) − bi−1,n−2(k−i) = − (q + 1)(q2(n−2k+1) − 1)

q2(n−2k)+1
· (q2(n−2(k−i)) − 1)

q2i
,

2bi,2i − bi−1,2i = − (q + 1)(q2 − 1)

q
· (q4i − 1)

q2i
.

If k < n
2 , considering the difference between the recurrences of the form (4.10) for Ck and

Ck−1 we obtain:

�
k,n
k Ck − (b1,n−2(k−1) + �

k−1,n
k−1 )Ck−1 =

k∑
i=2

[bi,n−2(k−i) − bi−1,n−2(k−i)]Ck−i

= − (q+1)(q2(n−2k+1)−1)

q2(n−k)+1

k−2∑
i=0

q2i (q2(n−2i)−1)Ci

Set
C(k, n, q) = �

k,n
k T n

k − b1,n−2(k−1) − �
k−1,n
k−1 ,

D(k, n, q) = − (q + 1)(q2(n−2k+1) − 1)

q2(n−k)+1
.

The conjecture in this case is then reduced to prove that

C(k, n, q)

D(k, n, q)
Ck−1 =

[
q2(k−2)(q2(n−2(k−2)) − 1) + C(k − 1, n, q)

D(k − 1, n, q)

]
Ck−2. (4.11)

and then to check a polynomial identity. This can be easily computed by a symbolic algebra
software. We checked the above equality using SageMath [20]. In the case of 2ωn with
n = 2k, we have to consider 2 times (4.10) for Cn

2
minus the recurrence for Ck−1, obtaining

�
k,n
k 2Cn − (2b1,2 + �

k−1,n
k−1 )Ck−1 =

k∑
i=2

[2bi,2i − bi−1,2i]Ck−i

= − (q + 1)(q2 − 1)

qn+1

k−2∑
i=0

q2i (q2(n−2i) − 1)Ci,
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and the computation is exactly the same as in the previous case. Observe that our choice
of taking 2 times recurrence (4.10) for Cn

2
in the above computation is coherent with the

Remark 4.1.

4.2 Weights of the Form λ = ω1 + ω2k+1, λ = ω1 + ωn−1 + ωn if n is Even
and λ = ω1 + 2ωn−1,ω1 + 2ωn if n is Odd

We remark that in this case Wλ · e1 = {e1} and then the minuscule recurrence becomes
more explicit. We consider the recurrence (2.2) and make again the evaluations q → −q

and t → q2, obtaining
l∑

i=1

Cwiλ

(1 − q1+4(ρ,wie1))

q2(ρ,wie1)
= 0. (4.12)

The recurrence (4.12) can be written in reduced form as:

Rk :
k∑

i=0

C2|i�2|k,n
2|i +

k+1/k∑
i=0

Ci�
2|k, n
i = 0,

for some coefficients �
2|k,n
2|i and �

2|k,n
i that we are going now to analyze more closely. We

underline that the index of the second sum goes from 0 to k if n = 2k + 1 and to k + 1 if
n > 2k + 1. In the special case n = 2k + 2 the recurrence can be displayed as follows:

Rk :
k∑

i=0

C2|i�2|k,n
2|i +

k∑
i=0

Ci�
2|k, n
i + Ck+1

[
�

2|k, n
2ωn

+ �
2|k, n
2ωn−1

]
= 0.

Using an argument similar to Remark 4.2 we have �
2|k, n
2ωn

= �
2|k, n
2ωn−1

and then the recurrence
becomes:

Rk :
k∑

i=0

C2|i�2|k,n
2|i +

k∑
i=0

Ci�
2|k, n
i + 2Cn�

2|k, n
k+1 = 0.

Moreover, by the same reasoning of Remark 4.2, if n = 2k + 1 we obtain that
Cω1+2ωn−1(q) = Cω1+2ωn(q) and then we reduce to computing only Cω1+2ωn(q) (that for
brevity we will denote by C2|k, 2k+1 ). As in the previous case we want to determine closed
formulae and recursive relations for the coefficients that allow us to reduce the system.

Remark 4.7 Similarly to what we observed in the case ω2k , the only contributions to �
2|k,n
2|h

come from weights of the form 2e1 + e2 + · · · + e2h+1 + μ with μ ∈ �
k−h,n−2h−1
0 .

Set

s(n, q) = (1 − q4n+2)

q2n
,

by previous Remark we obtain:

�
2|k,n
2|h = (−1)k−hs(n − 1, q)|�k−h,n−2h−1

0 |. (4.13)

Coherently with the notation of the previous section, we will denote by �
2|k,n
2|h (resp. �2|k,n

h )

the set �
ω1+ω2k+1,n
ω1+ω2h+1

(resp. �ω1+ω2k+1,n
ω2h ). It is immediate to show that the weights in �

2|k,n
k+1
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are all of the form e1 +· · ·+ej−2 +2ej +· · ·+e2(k+1) for j ≤ 2(k +1). As a consequence,
we obtain the following formula:

�
2|k,n
k+1 = −

2k+2∑
j=2

s(n − j, q) = − (q4(n−k−1)−2 − 1)(q4(k+1)−2 − 1)

q2(n−2)(q2 − 1)
. (4.14)

Remark 4.8 (Reeder’s Conjecture for 2ω1) Formulae (4.13) and (4.14) describe explicitly
the coefficients �

2|0,n
2|0 and �

2|0,n
1 . By direct inspection it is possible to prove that �

2|0,n
0 =

{−2en−1} and consequently �
2|0,n
0 = s(−1, q) = −s(0, q). Now R0 is explicit and the

Reeder’s Conjecture in this case can be proved comparing the obtained expression for C2|0,n
with the formula for PD(π̃(n−1,1),∅; q2, q).3

To find a recursive expansion of the coefficients �
2|k,n
h for k ≥ 1 we have to consider the

cases n = 2k + 1, 2k + 2 and n generic in three different ways. Firstly suppose k ≥ h > 1.
If n = 2k + 1 a weight μ ∈ �

2|k,n
h must be of the form ω2 + μ′ with μ′ ∈ �

2|k−1,n−2
h−1 ,

obtaining

�
2|k,n
h = �

2|k−1,2(k−1)+1
h−1 .

The case n = 2k + 2 needs a closer analysis. A weight μ ∈ �
2|k,n
h can be of one of the

following forms:

Case 1 μ = e1 + e2 + μ′ with μ′ ∈ �
2|k−1,n−2
h−1 ,

Case 2 μ = 2e2 + μ′ with μ′ ∈ �
k,n−2
h−1 ∪ εn�

k,n−2
h−1 or equivalently μ1 = 0 and μ̃ =

(μ2, . . . , μn) ∈ �
2|k,n−1
2|h−1 ∪ εn�

2|k,n−1
2|h−1 ,

Case 3 μ = (1, 0, 2, 1, μ5, . . . , μn) where μ̃ = (μ5, . . . , μn) ∈ �
k−1,2k−2
h−2 ∪

εn�
k−1,2k−2
h−2 .

This analysis can be translated in the following relation:

�
2|k,2k+2
h = �

2|k−1,2k
h−1 − 2�2|k,2k+1

2|h−1 − 2(−1)k−h+1s(2k − 1, q).

The case of n generic is completely analogous to the previous one, except for the fact that
�

k,n−2
h−1 ∪ εn�

k,n−2
h−1 = �

k,n−2
h−1 and �

k−1,n−4
h−2 ∪ εn�

k−1,n−4
h−2 = �

k−1,n−4
h−2 leading to the

recurrence:

�
2|k,n
h = �

2|k−1,n−2
h−1 − �

2|k,n−1
2|h−1 − (−1)k−h+1s(n − 3, q)|�k−h+1, n−2h

0 |.
The case h = 1 must be considered differently. If n = 2k + 1, the elements in �

k,2k+1
1 are

of the form:

Case 1 μ = ω2 + μ′ with μ′ ∈ �
2|k−1, n−2
0 ,

Case 2 μ = (1,−1, 2, μ4, . . . , μn) with μ̃ = (μ4, . . . , μn) ∈ �
k−1,n−3
0 ,

3Observe that, to prove inductively the Conjecture, it is also needed to check explicitly the cases ω1 + ω3 in
D4 and ω1 + ω5 in D5. In these cases to list directly the weights involved in the computation of coefficients
is quite simple. It is possible to achieve a description coherent with the general analysis in the paper setting
by convention �

2|0,n
0 = {(−2, 0)} for every n > 1 and �

2|1,3
0 = {(−1,−1, 2), (−2, 1,−1)}, �

2|1,3
1 =

{(1,−1, 2)}. Coherently �
2|1,3
0 = s(0, q) + s(−2, q) and �

2|k−1,2(k−1)+1
h−1 = −s(0, q).
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obtaining the recurrence:

�
2|k,2k+1
1 = �

2|k−1,2k−1
0 − (−1)k−1s(2k − 2, q).

In the other cases we must consider a third family of weights, i.e. of the form
(0, μ2, . . . , μn) where μ̃ = (μ2, . . . , μn) is contained in �

2|k,2k+1
2|0 ∪ εn�

2|k,2k+1
2|0 if n =

2k + 2 and in �
2|k,n−1
2|0 for n generic. Consequently we obtain:

�
2|k,2k+2
1 = �

2|k−1,2k
0 − 2�2|k,2k+1

2|0 − (−1)k−1s(2k − 1, q)|�k−1,2k−1
0 |,

�
2|k,n
1 = �

2|k−1,n−2
0 − �

2|k,n−1
2|0 − (−1)k−1s(n − 3, q)|�k−1,n−3

0 |.
Finally, we will find recurrences for coefficient �2|k,n

0 . Again, let us start from n = 2k + 1.
The only relevant cases are:

Case 1 μ = (−1, 1, μ3, . . . , μn) with μ̃ = (μ3, . . . , μn) ∈ �
2|k−1,n−2
0 ,

Case 2 μ = (−1,−1, 2, μ4, . . . , μn) with μ̃ = (μ4, . . . , μn) ∈ �
k−1,n−3
0 ,

Case 3 μ = (−2, 1, 1, μ4, . . . , μn) with μ̃ = (μ4, . . . , μn) ∈ �
k−1,n−3
0 ,

and consequently we obtain:

�
2|k,2k+1
0 = −�

2|k−1,2k−1
0 + (−1)k−1[s(2k − 2, q) + s(−2k, q)].

As in the case h = 1, if n �= 2k+1 we have to add to the previous list the weights of the form
(0, μ2, . . . , μn) with μ̃ = (μ2, . . . , μn) contained respectively in �

2|k,2k+1
0 ∪ εn�

2|k,2k+1
0

if n = 2k + 2 and in �
2|k,n−1
0 for n generic. This yields to the recurrences:

�
2|k,2k+2
0 = 2�2|k,2k+1

0 − �
2|k−1,2k
0 + (−1)k−1[s(2k − 1, q) + s(−2k − 1, q)]|�k−1,2k−1

0 |,

�
2|k,n
0 = �

2|k,n−1
0 − �

2|k−1,n−2
0 + (−1)k−1[s(n − 3, q) + s(−n + 1, q)]|�k−1,n−3

0 |.
Set now

dk,n := s(k, q) + s(n − k − 1, q) = q2k(1 − q2n)(1 + q2(n−2k−1))

q2(n−1)
,

imposing that the coefficients �
2|k,n
2|h must cancel, we are again able to find a nice reduction

of the triangular system, proved in Section 5.

Proposition 4.9 Let Ri be the reduced recurrence for C2|i . Then there exist a family of

integers {Ek,n
i }i≤k , with E

k,n
k = 1 and

∑k
i=h(−1)i

(
n−i−1

i

)
Ekn

i = 0, such that

k∑
i=0

E
k,2k+1
i Ri = �

2|k,2k+1
2|k C2|k,2k+1+�

2|k,2k+1
k Ck,2k+1−

k−1∑
j=0

s(k−j, q)Cj,2k+1, (4.15)

and

k∑
i=0

E
k,n
i Ri = �

2|k,n
2|k C2|k,n + �

2|k,n
k+1 Ck+1,n + �

2|k,n
k Ck,n −

k−1∑
j=0

dk−j,n−2jCj,n. (4.16)

for some suitable coefficients �
2|k,2k+1
k , �2|k,n

k+1 and �
2|k,n
k .
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We remark that it is possible to find a recursive expression similar to Eq. 4.14 for the
coefficient �2|k,n

k (c.f.r. Section 5, Proposition 5.4, computations for �
2|k,n
h ):

�
2|1,n
1 = −s(0, q) − s(n − 2, q) − s(n − 3, q)

�
2|k,n
k = �

2|k−1,n−2
k−1 − [s(n − 2, q) + s(n − 3, q)]

A direct inspection shows that �
2|2,5
2 = −∑3

j=0 s(j, q) and, starting from the formula for

�
2|1,n
1 , it is possible to obtain the following expressions:

�
2|k,2k+1
k = −

2k−1∑
j=0

s(j, n) = − (q4k − 1)2

q4k−2(q2 − 1)
, �

2|k,n
k =−s(0, q)+s(n−2k−2, q)+�

2|k,n
k+1 .

4.3 Reeder’s Conjecture for λ = ω1 + ω2k+1, λ = ω1 + ωn−1 + ωn if n is Even
and λ = ω1 + 2ωn−1,ω1 + 2ωn if n is Odd

We recall that in Section 4.1 we shown the identity:

C(k, n, q)

D(k, n, q)
Ck−1 =

k−2∑
i=0

q2i (q2(n−2i) − 1)Ci . (4.17)

Substituting Eq. 4.17 in Eq. 4.15 we obtain

�
2|k,2k+1
2|k C2|k,2k+1 = −�

2|k,2k+1
k Ck,2k+1 +

k−1∑
j=0

s(k − j, q)Cj,2k+1

= −�
2|k,2k+1
k Ck,2k+1 −

k−1∑
j=0

q2j (q2(2k+1−2j) − 1)

q2k
Cj,2k+1

= −�
2|k,2k+1
k Ck,2k+1 − Ck−1,2k+1

q2k

[
q2(k−1)(q6 − 1) + C(k, n, q)

D(k, n, q)

]

= −Ck−1,2k+1

q2k

[
q2k�

2|k,2k+1
k T 2k+1

k + q2(k−1)(q6 − 1) + C(k, n, q)

D(k, n, q)

]
,

and analogously, substituting Eq. 4.17 in Eq. 4.16

�
2|k,n
2|k C2|k,n = −�

2|k,n
k+1 Ck+1,n − �

2|k,n
k Ck,n +

k−1∑
j=0

dk−j,n−2jCj,n

= −�
2|k,n
k+1 Ck+1,n − �

2|k,n
k Ck,n + (q2(n−2k−1) + 1)

q2(n−k−1)

k−1∑
j=0

q2j (q2(n−2j)−1)Cj,n

= −Ck,n

[
�
2|k,n
k+1 T n

k+1 + �
2|k,n
k + (q2(n−2k−1) + 1)

q2(n−k−1)

C(k, n, q)

D(k, n, q)

]
.

Again proving Reeder’s Conjecture is equivalent to a polynomial identity that we checked
with SageMath [20].
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5 Proof of Propositions 4.5 and 4.7

In this Section we denote by �(n.k, h) the quantity |�k,n
h | = |�k−h,n−2h

0 |.

Remark 5.1

�(n, k, h) = �(n, k, h + 1) + �(n − 1, k, h),

�(2k + 1, k, h) = �(2k + 1, k, h + 1) + 2�(2k, k, h).

Set now

A
k,n
h =

⎧⎨
⎩

0 if h > k or h ≤ 0,
1 if h = k,

−∑k
i=h+1(−1)i−h�(n, i, h)A

k,n
i otherwise.

(5.1)

Proposition 5.2 Let Ri be the recurrence for Ci written in reduced form. Then

k∑
i=1

A
k,n
i Ri = �

k,n
k Ck −

k−1∑
i=0

bk−i,n−2iCi . (5.2)

Proof We will use �
k,n
h to denote the coefficient of Ch in

∑k
i=1 A

k,n
i Ri . Using Remark 5.1

and Definition (5.1) it is possible to prove that the integers of the form A
k,n
h satisfy some

nice iterative properties:

Lemma 5.3 (1) A
k,n
h = A

k−1,n−2
h−1 for h > 1,

(2) A
k,n
h = A

k,n−1
h + A

k−1,n−1
h if n �= 2k, 2k + 1,

(3) A
k,2k
h = A

k−1,2k−1
h ,

(4) A
k,2k+1
h = 2Ak,2k

h + A
k−1,2k
h .

Using (1) it is easy to prove that �k,n
h = �

k−h,n−2h
0 if k > h > 0:

�
k,n
h =

k∑
j=h

A
k,n
j �

j,n
h

=
⎡
⎣

k∑
j=h

(−1)j−h�(n, j, h) A
k,n
j

⎤
⎦�

h,n
h +

k∑
j=h+1

A
k,n
j �

j−h,n−2h
0

=
k−h∑
t=1

A
k−h,n−2h
t �

t,n−2h
0 = �

k−h,n−2h
0 .

To recover the coefficients of Eq. 5.2 we have to compute �
k,n
0 . In particular we want to

prove by inductive reasoning that

�
k,2k
0 = −

k+1∑
j=2

r(j, q), �
k,2k+1
0 = 2�k,2k

0 −r(k+2, q), �
k,n
0 = �

k,n−1
0 −r(n−k+1, q).
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The formula for �
2,4
0 can be easily checked by direct computations. We have to distinguish

three different cases. If n = 2k and using (1) and (3) of Lemma 5.3 we have:

�
k,2k
0 =

k∑
j=1

[�j,n−1
0 − �

j−1,n−2
0 ]Ak.n

j +
k∑

j=1

[(−1)j�(n, j, 1)Ak,n
j ]r(2k, q)

=
k−1∑
j=1

A
k−1,n−1
j �

j,n−1
0 −

k−1∑
t=1

A
k−1,n−2
t �

t,n−2
0

= �
k−1,2(k−1)+1
0 − �

k−1,2(k−1)
0 =Ind �

k−1,2(k−1)
0 − r(k + 1, q).

The computation in the case n = 2k + 1 needs the additional use of (4).

�
k,2k+1
0 =

k−1∑
j=1

[�j,n−1
0 − �

j−1,n−2
0 ]Ak,n

j +
k∑

j=1

[(−1)j�(n, j, 1)Ak,n
j ]r(2k + 1, q)

+2�k,2k
0 − �

k−1,2k−1
0

=
k−1∑
j=1

A
k,n
j �

j,2k
0 + 2�k,2k

0 −
k−1∑
t=1

A
k−1,n−2
t �

t,n−2
0

=
k−1∑
j=1

[
A

k−1,2k
j + 2Ak,2k

j

]
�

j,2k
0 + 2�k,2k

0 − �
k−1,n−2
0

= �
k−1,2k
0 + 2�k,2k

0 − �
k−1,n−2
0

= Ind2�k,2k)
0 − r(k + 2, q).

The case of n generic is completely analogous and uses (2) of Lemma 5.3 instead of (3).

�
k,n
0 =

k∑
j=1

[�j,n−1
0 − �

j−1,n−2
0 ]Ak,n

j +
k∑

j=1

[(−1)j�(n, j, 1)Ak,n
j ]r(n, q)

=
k∑

j=1

[Ak−1,n−1
j + A

k,n−1
j ]�j,n−1

0 − �
k−1,n−2
0

= �
k−1,n−1
0 + �

k,n−1
0 − �

k−1,n−2
0

= Ind�
k,n−1
0 − r(n − k + 1, q).

Now it is straightforward to show that �k,n
0 = bk,n and then �

k,n
h = �

k−h,n−2k
0 = bk−h,n−2h.

Set now �(n, k, h) = �(n − 1, k, h) and define

E
k,n
h =

⎧⎨
⎩

0 if h > k or h < 0,
1 if h = k,

−∑k
i=h+1(−1)i−h�(n, i, h)E

k,n
i otherwise.

(5.3)
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Proposition 5.4 Let Ri be the reduced recurrence for C2|i . Then
∑

E
k,2k+1
i Ri = �

2|k,2k+1
2|k C2|k,2k+1 + �

2|k,2k+1
k Ck,2k+1

−
k−1∑
j=0

s(k − j, q)Cj,2k+1, (5.4)

∑
E

k,n
i Ri = �

2|k,n
2|k C2|k,n + �

2|k,n
k+1 Ck+1,n + �

k,n
k C2|k,n

−
k−1∑
j=0

dk−j,n−2jCj,n. (5.5)

Proof Coherently with notation of Section 4, we will denote by �
2|k,n
2|h (resp �

2|k,n
h ) the

coefficient of C2|h (resp. Ch) in
∑

E
k,2k+1
i Ri . Observing that Ek,n

h = A
k,n−1
h we obtain an

analogous of Lemma 5.3:

Lemma 5.5 (1) E
k,n
h = E

k−1,n−2
h−1 for h > 1,

(2) E
k,n
h = E

k,n−1
h + E

k−1,n−1
h if n �= 2k + 1, 2k + 2,

(3) E
k,2k+1
h = E

k−1,2k
h ,

(4) E
k,2k+2
h = 2Ek,2k+1

h + E
k−1,2k+1
h .

An immediate consequence of Definition 5.3 is that �
2|k,n
2|h = 0 if h < k. If k > h > 0,

we have:

�
2|k,2k+1
h =

k∑
j=h−1

E
k,2k+1
j �

2|j,n
h

=
k∑

j=h−1

E
k,2k+1
j �

2|j−1,2k−1
h−1 −

k−1∑
j=h−1

E
k,2k+1
j �

2|j,2k
2|h−1 − s(2k − 2, q)

×
⎡
⎣

k−1∑
j=h−1

(−1)j−h+1E
k,2k+1
j �(2k, j, h − 1)

⎤
⎦

=
k∑

j=h−1

E
k,2k+1
j �

2|j−1,2k−1
h−1 −

k−1∑
j=h−1

E
k−1,2k
j �

2|j,2k
2|h−1 − s(2k − 2, q)

×
⎡
⎣

k−1∑
j=h−1

(−1)j−h+1E
k−1,2k
j �(2k, j, h − 1)

⎤
⎦

= �
2|k−1,2k−1
h−1 ,
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�
2|k,2k+2
h =

k∑
j=h−1

E
k,2k+2
j �

2|j−1,2k
h−1 − 2�2|k,2k+1

2|h−1 −
k−1∑

j=h−1

E
k,2k+2
j �

2|j,2k+1
2|h−1 +

−s(2k − 1, q)

⎡
⎣2(−1)k−h+1�(2k + 1, k, h − 1)

+
k−1∑

j=h−1

(−1)j−h+1E
k,2k+2
j �(2k + 1, j, h − 1)

⎤
⎦

= �
2|k−1,2k
h−1 −

k∑
j=h−1

[2Ek,2k+1
j + E

k−1,2k+1
j ]�2|j,2k+1

2|h−1 +

−s(2k − 1, q)

⎡
⎣

k∑
j=h−1

(−1)j−h+1(2Ek,2k+1
j +E

k−1,2k+1
j )�(2k+1, j, h−1)

⎤
⎦

= �
2|k−1,2k
h−1 − 2

k∑
j=h−1

E
k,2k+1
j �

2|j,2k+1
2|h−1 −

k−1∑
j=h−1

E
k−1,n−1
j �

2|j,n−1
2|h−1

= �
2|k−1,2k
h−1 ,

�
2|k,n
h =

k∑
j=h−1

E
k,n
j �

2|j−1,n−2
h−1 −

k∑
j=h−1

E
k,n
j �

2|j,n−1
2|h−1 − s(n − 3, q)

×
⎡
⎣

k∑
j=h−1

(−1)j−h+1E
k,n
j �(n − 1, j, h − 1)

⎤
⎦

= �
2|k−1,n−2
h−1 −

k∑
j=h−1

[Ek,n−1
j + E

k−1,n−1
j ]�2|j,n−1

2|h−1

= �
2|k−1,n−2
h−1 −

k∑
j=h−1

E
k,n−1
j �

2|j,n−1
2|h−1 −

k−1∑
j=h−1

E
k−1,n−1
j �

2|j,n−1
2|h−1

= �
2|k−1,n−2
h−1 .

We reduced again to the computation of explicit formulae for the zero coefficient in the
recurrences.

�
2|k,2k+1
0 =

k∑
j=0

E
k,2k+1
j �

2|j,n
0

=
k−1∑
j=0

E
k,2k+1
j �

2|j,2k
0 −

k∑
j=1

E
k,2k+1
j �

2|j−1,2k−1
0
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+(s(2k − 2, q) + s(−2k, q))

⎡
⎣

k∑
j=1

(−1)j−1E
k,2k+1
j �(2k + 1, j, 1)

⎤
⎦

=
k−1∑
j=0

E
k−1,2k
j �

2|j,2k
0 − �

2|k−1,2k−1
0

= �
2|k−1,2k
0 − �

2|k−1,2k−1
0 ,

�
2|k,2k+2
0 = 2�2|k,2k+1

0 +
k−1∑
j=0

E
k,2k+2
j �

2|j,2k+1
0 −

k∑
j=1

E
k,2k+2
j �

2|j−1,2k
0

+(s(2k − 1, q) + s(−2k − 1, q))

⎡
⎣

k∑
j=1

(−1)j−1E
k,2k+2
j �(2k + 2, j, 1)

⎤
⎦

= 2�2|k,2k+1
0 +

k−1∑
j=0

[2Ek,2k+1
j + E

k−1,2k+1
j ]�2|j,2k+1

0 − �
2|k−1,2k
0

= 2�2|k,2k+1
0 + �

2|k−1,2k+1
0 − �

2|k−1,2k
0 ,

�
2|k,n
0 =

k∑
j=0

E
k,n
j �

2|j,n−1
0 −

k∑
j=1

E
k,n
j �

2|j−1,n−2
0

+(s(n − 3, q) + s(−n + 1, q))

⎡
⎣

k∑
j=1

(−1)j−1E
k,n
j �(n, j, 1)

⎤
⎦

=
k−1∑
j=0

[Ek,n−1
j + E

k−1,n−1
j ]�2|j,n−1

0 − �
2|k−1,n−2
0

= �
2|k,n−1
0 + �

2|k−1,n−1
0 − �

2|k−1,n−2
0 .

A direct computation shows that �
2|2,5
0 = −s(2, q). Using the above relations between the

�
2|k,n
0 , the Proposition now follows proving by induction the identities

�
2|k,2k+1
0 = −s(k, q), �

2|k,n
0 = −s(k, q) − s(n − k − 1, q).

6 The Exceptional Cases

The most efficient way to verify the Reeder’s Conjecture in the Exceptional cases is to
compute explicitly the coefficients appearing in Stembridge’s recurrences (evaluated in −q

and q2) using a computer algebra software (in our case, SageMath 9.3 [20]) and prove
that the polynomials computed by Gyoja, Nishiyama and Shimura for [12] satisfies such
recurrences. We underline that a crucial ingredient for these computations is the strong
efficiency of the Stembridge’s algorithms.
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Table 2 Type E6
Small representation Zero weight space

Highest weight φα,β description

ω1 + ω6 φ20,2

ω4 φ30,3 + φ15,5

ω1 + ω3, ω5 + ω6 φ64,4

3ω1, 3ω6 φ24,6
Minuscule coweights: ω1, ω6

Table 3 Type E7
Small representation Zero weight space

Highest weight φα,β description

ω6 φ27,2

ω3 φ56,3 + φ21,6

2ω7 φ21,3

ω2 + ω7 φ120,4 + φ105,5
Minuscule coweight: ω7

Table 4 Type E8
Small representation Zero weight space

Highest weight φα,β description

ω1 φ35,2

ω7 φ112,3 + φ28,8

ω2 φ210,4 + φ160,7
Quasi-minuscule coweight: ω8

Table 5 Type F4
Small representation Zero weight space

Highest weight φ′
α,β description

ω3 φ′
8,3 + φ′

1,12
Quasi-minuscule coweight: ω4



Reeder’s Conjecture for Even Orthogonal Lie Algebras

As pointed out in [22], for cases F4 and E8 it is not possible to use minuscule recurrences
(these algebrae do not have a minuscule coweight) and then we were forced to use Stem-
bridge’s quasi-minuscule recurrence ([22], Formula (5.13)), already used to prove Reeder’s
Conjecture in type C (see [10]).

We list in Tables 2, 3, 4 and 5 the small weights different from 0, θs and θ in the excep-
tional cases. We used the labeling of Dynkin diagrams as in [4]. The description of their
zero weight spaces is exposed in [1, 19] using the notation of [6]. Moreover, for the F4 case
we used the computations contained in [3] and the results of Section 4.10 in [15].

We point out that, for type E6, some nice symmetries can be used to reduce the num-
ber of cases that need to be examined. We remark that in Table 2 there are two pairs of
weights that have the same zero weight space representation. Set X1 = {3ω1, ω1 + ω3} and
X6 = {3ω6, ω5 +ω6}. We recall that the automorphism of the E6 Dynkin diagram that send
labelled vertices 1 to 6 and 3 to 5 induces an involution J on the weight lattice that pairwise
exchange the weights inX1 with weights inX6. Let us denote byR

ω1
λ (resp.Rω6

λ ) the minus-
cule recurrence for the weight λ, obtained choosing ω1 (resp. ω6) as a minuscule coweight.
Fix λ ∈ X1. We observed empirically that the involution J sends R

ω1
λ to R

ω6
J (λ), preserving

the coefficients appearing in the recurrences. This proves that Cλ(q) and CJ(λ)(q) satisfy
the same recursive relations and then we reduced to prove Reeder’s Conjecture only for
weights in X1. Our computations are available at the link in Bibliography [11].
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