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Activity induced delocalization and 
freezing in self-propelled systems
Lorenzo Caprini1, Umberto Marini Bettolo Marconi2 & Andrea Puglisi  3

We study a system of interacting active particles, propelled by colored noises, characterized by an 
activity time τ, and confined by a single-well anharmonic potential. We assume pair-wise repulsive 
forces among particles, modelling the steric interactions among microswimmers. This system has 
been experimentally studied in the case of a dilute suspension of Janus particles confined through 
acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are 
negligible - increasing the persistent time, τ, pushes the particles away from the potential minimum, 
until a saturation distance is reached. We compute the phase diagram (activity versus interaction 
length), showing that the interaction does not suppress this delocalization phenomenon but induces 
a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior is observed: 
a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher 
values, when the delocalization occurs, a further increase of τ induces freezing inside the densest 
regions. An approximate analytical scheme gives fair predictions for the density profiles in the weakly 
interacting case. The analysis of non-equilibrium heat fluxes reveals that in the region of largest particle 
concentration equilibrium is restored in several aspects.

Recently the theorists’ attention has been attracted by the study of so-called self-propelled particles1–3 in the 
context of active matter. Typical experimentally accessible examples come from biological systems: swimming 
bacteria, such as the E. Coli4, unicellular protozoa5 and spermatozoa6 but also more complex systems such as 
actin filaments7, active nematics8, living tissues9 or the so-called motor-proteins10. Moreover, artificially realized 
micro-swimmers, such as self-propelled Janus particles11,12 and colloidal particles immersed in a bacterial sus-
pension13, have been shown to behave as active systems. All these examples show common features both at the 
level of the single particle trajectory14, and at the collective level, which cannot be captured by an equilibrium 
Brownian motion model. Regardless of their nature, these systems propel themselves in some space direction for 
a finite time, by employing different mechanisms. Typically, biological systems employ mechanical tools, such as 
Cilia or Flagella, or complex chemical reactions. Active colloids are typically activated through light15,16, which 
injects energy into the system, or chemically through the decomposition of hydrogen peroxide17,18. Independently 
on their origins, on one hand, an isolated self-propelled particle in absence of any external potentials displays 
an anomalously long persistent motion, with respect to a Brownian particle. This anomaly is enterely due to the 
self-propulsion. Of course, at very long times - when velocity correlations have decayed - normal effective diffu-
sion is recovered when active particles are not confined. On the other hand, a suspension of interacting active par-
ticles shows interesting collective phenomena such as the so-called motility induced phase separation (MIPS)19–26 
or dynamical ordering phenomena such as flocking27. All these phenomena cannot be explained through an 
equilibrium approach, i.e. in terms of a Maxwell-Boltzmann distribution. For this reason, a series of simplified 
models have been recently proposed, in particular, the Run and Tumble model28–30 and the Active Brownian 
Particles (ABP) model31–33: the connection between these two modelizations was discussed in34,35, showing a 
good consistency between them, at least in a range of values of the control parameters. Since the two-time cor-
relation of stochastic activity force in the ABP, averaged over the angular degree of freedom, has an exponential 
shape, the Active Ornstein-Uhlenbeck Particles (AOUP) model was introduced, as the simplest model with such 
time-correlation behavior36–40. Despite its apparent simplicity, many aspects of the active phenomenology were 
reproduced37,41, providing consistency with this model. The possibility in AOUP of obtaining clear theoretical 
results may lead to new predictions which may trigger future experimental investigations.
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With this aim, here we implement numerical simulations42 of interacting AOUP particles within a confin-
ing single-well potential, reproducing a “delocalization” phenomenon, i.e. the escape of particles far from the 
potential minimum, recently observed in experiments with Janus particles. In particular, in43 the system was 
dilute enough to make inter-particle interactions negligible. At variance with44, our model considers a constant 
mobility and neglects any kind of hydrodynamic interactions, supposed to be small. Moreover, we do not involve 
any alignment and consider only pairwise repulsive potentials to model the steric repulsion among the spherical 
microswimmers. Moreover, in a previous work45 a slightly different modelization for the activity is employed 
which seems to be not consistent with the experimental result of43. Our study first demonstrates that delocaliza-
tion increases with activity and is robust also in the presence of interactions, at least up to a certain effective den-
sity. We also reveal a complex interplay between interactions and activity, inducing a freezing phenomenon which 
is consistent with the one observed with ABP particles in46,47. The relative simplicity of the AOUP model allows 
understanding the physical origin of both delocalization and freezing. In particular, an approximation method, 
the so-called Unified Colored Noise Approximation (UCNA), well reproduces the density profiles, offering a 
simple principle for determining the density in the case of non-interacting particles subject to external fields. An 
interesting observation concerns the role of detailed balance (DB)48,49 which is locally satisfied only in regions of 
space having the highest probabilities of being occupied, while in the remaining regions DB is violated and the 
local velocity distribution displays strongly non-Gaussian shapes.

Model and Numerical Results
As mentioned in the Introduction, one of the most popular models describing self-propelled particles is ABP. The 
microswimmers are approximated as points and the hydrodynamic interactions due to the fluid feedback are 
neglected. The self-propulsion mechanism is represented by a force of amplitude v0 and direction eiˆ . For instance, 
in two dimensions eiˆ  is a vector of component (cos θi, sin θi), being θi the orientational angle of particle i. 
Therefore, the radial component of the activity is assumed to be constant. The ABP dynamics describing a suspen-
sion of N particles in a two-dimensional system reads:
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where ξi and wi are independent white noises (i.e. δ-correlated in time and with zero average). Dr is the rotational 
diffusion coefficient, which states the typical time associated to the activity directional change, τr ~ 1/Dr. Fi is the 
total force acting on the particle i, which can be decomposed as = −∇ − ∇Φ …UF x x x( ) ( , )i i i i N1 , i.e. into the 
force due to the external and to the interaction pairwise potential, respectively. We call l and R, respectively, the 
typical length of U and Φ, such that Rx x( / )i j i jφΦ = ∑ | − |<  and U = U(x/l). For the sake of simplicity, l is set to 
one in the numerical study. The parameters γ and Dt denote the solvent viscous damping and the bare diffusivity 
due to thermal fluctuations (i.e. in the absence of forces and activity). Notwithstanding its clarity, deriving further 
analytical predictions for the ABP model may be difficult even in simple cases. The form of the autocorrelation 
function, 〈 ⋅ ′ 〉t te e( ) ( )i jˆ ˆ , of the orientational d-dimensional vector êi is well known in the theory of rotational 
diffusion of polar molecules50. For generic d, averaging over the angular distributions at time t and t′, we simply 
obtain t t t t D de e( ) ( ) exp( ( 1))i j r ijδ〈〈 ⋅ ′ 〉〉 = −| − ′| −Ωˆ ˆ , being 〈⋅〉Ω the average over the angular degrees of free-
dom. For this reason, as already mentioned in the Introduction, the AOUP model has been introduced as a sur-
rogate able to capture the ABP phenomenology. Indeed, the AOUP model is perhaps the simplest model which 
exhibits the same two-time correlations matrix as the ABP. In the AOUP one replaces ˆv e ui i

a
0 →  in Eq. (1), where 

each component of ui
a evolves as an independent Ornstein-Uhlenbeck process. AOUP dynamics reads:
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where ηi is a d-dimensional noise vector, whose components are δ-correlated in time and have unit variance and 
zero mean. In this approximation the term γui

a represents the self-propulsion mechanism, the internal degree of 
freedom which converts energy into motion, such that τ τ δ〈 ⋅ ′ 〉 = −| − ′|t t D t t du u( ) ( ) / exp( / )i

a
j
a

a ij . Finally, the 
non-equilibrium parameters τ and Da are, respectively, the persistence time and the diffusivity due to the activity, 
which is usually some order of magnitude larger than Dt, an approximation often employed also in the ABP 
model. The identification of the two correlations matrices imposes relations among the coefficients, namely in 

τ=v d D/ /a0
2  and Dr(d − 1) = 1/τ. Since the third, fourth, and so on, correlation matrices are in general non-trivial 

in the ABP, the AOUP model can be considered as its effective Gaussian approximation. Moreover, the unitary 
constraint of activity is removed meaning that the radial component of the activity has itself a dynamics. As 
revealed by extensive numerical studies, these approximations seem not to be particularly relevant in order to 
recover the self-propelled particles phenomenology and for these reasons one could claim the possibility to con-
sider the AOUP as a basic model itself and not simply as an ABP approximation.

We point out that in the potential-free model there are two natural temperatures: the solvent temperature 
Tb = γDt and the effective active temperature51 Ta = μ〈u2〉 = μDa/τ = γDa, where we have defined the effective 
mass μ = γτ (see below). We fix the value of γ = 1 and inspired to the connection between the AOUP and the ABP 
model39 - we also fix the ratio Da/τ = 10 that is the variance of the self-propulsion velocity. This protocol allows us 
to use a single parameter, τ, to tune the relevance of activity in the system. In fact, taking the limit τ → 0 leads to 
T Ta b , providing a vanishing contribution with respect to the thermal noise. On the contrary, at large values of 
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τ one has T Ta b : self-propulsion becomes important and the thermal bath can be neglected. We restrict to this 
second regime, where the system temperature Ta has a limited significance since it represents the temperature of 
the system only in few specific cases discussed below and in the Supplementary Information (SI). In general, the 
system is out of equilibrium and many of its statistical properties are hardly comparable to a thermal system.

A well-known result for this model concerns the existence of MIPS in the large activity regime, when ≡U 0 
and Φ is given by the sum of pairwise repulsive potentials41. In this work, the particles are confined by an external 
radial potential, U(r) ∝ r2n with r = |x|. We choose n > 1 since the case n = 1 - when thermal noise and 
particle-particle interactions are negligible - is trivial even at τ > 0, corresponding to a Gibbs density distribution 
~e U r T( )/ eff−  with some temperature Teff (see discussion after Eq. (3) and SI). If n > 1 and τ > 0, DB is broken and the 
steady phase-space distribution is not amenable to a simple representation in terms of U(r). In the presence of an 
external potential, a useful dimensionless parameter can be defined:

U l( )ν τ
γ

=
″

.

It represents the ratio between the persistence time and the relaxation time due to the external force: ν is a 
relative measure of the activity in our system and determines how far from equilibrium is the system. Indeed, 
when ν 1, the relaxation time of the active force is smaller than the typical time over which a significant change 
of the microswimmer position, due to the potential, occurs: thus from Eq. (2) we have Du 2i

a
a η≈ . In this case, 

one recovers an equilibrium-like picture, which can be explained in terms of the effective temperature, Ta = γDa 
(SI for more details). When 1ν , the situation dramatically changes: we have to take into account the dynamics 
of both degrees of freedom in Eq. (2) and we expect significant departures from an equilibrium-like picture. Note 
that keeping fixed the strenght of the activity, τ =D v d/ /a 0

2 , γ and U(r), one has that both Ta and τ are proportional 
to ν.

Phase diagram: delocalization and induced freezing. In Fig. 1 we display pictorially the phase dia-
gram of a system in 2 dimensions, varying ν and the rescaled interaction radius R/l, (keeping fixed the number 
of particles and the external potential), which play the role of control parameters. Through R/l we control the 
excluded volume of the system, while through ν we tune the relevance of the activity ingredient.

Considering the non-interacting regime - Φ = 0 or equivalently R/l small enough as in the left column of 
Fig. 1(a) - the equilibrium-like regime for 1ν  is consistent with a Brownian-like picture and does not reveal any 
surprises: particles accumulate around the minimum of the potential, exploring an effective average volume 
determined just by the interplay between the external potential and the random force. Indeed, the system has 
effective temperature Ta, and no far-from-equilibrium physics is involved. In the non-equilibrium regime, namely 
 1ν  in Fig. 1(a), the area close to the potential minimum empties and the system shows strong delocalization in 

favour of a peripheric (annular in 2d) region at an average distance r* from the origin. At large values of ν, r* 
appears to saturate and a further increase of ν just produces a dynamical effect, leading to a slowdown of the par-
ticles (see SI for details). This phenomenology reproduces the experimental result obtained in43 for Janus particles 
inside an acoustic trap with negligible interactions.

Let us to discuss the interacting case, that is when R/l is not negligible. The equilibrium-like regime, when 
 1ν  in Fig. 1(a), can be again understood in terms of a Brownian picture. Indeed, the system has temperature 

Ta, regardless of R/l, and we recover the three equilibrium-like aggregation phases, as expected: a dilute-phase (or 
gas), where interactions between particles are rare and the volume explored by the particles is only controlled by 
the random force; a solid-like phase, where the random force is very small compared to the inter-particle interac-
tions and produce only oscillations around the almost-fixed particles positions; and finally; an intermediate 
liquid-like phase where both these terms are relevant and produce a correlated and complex dynamics. These 
different internal structures can be roughly identified by the study of the pair correlation function52, g(r), which is 
estimated by taking into account a region approximately uniform in density, in the densest part of the system 
(namely the annular region): in the dilute regime g(r) is flat or “quasi”-flat, in the liquid one g(r) displays, some 
peaks before approaching to one and finally in the solid regime these peaks become more pronounced, showing 
the typical structure of hexagonal lattice (in 2D with radial inter-particles interactions). In all the equilibrium-like 
aggregation phases the increasing of ν produces an expected fluidization phenomenon, which can be easily 
understood in terms of the effective temperature, Ta ∝ ν. In particular, in the liquid-like regime, as shown in the 
first two left columns of Fig. 1(a), the increase of ν enhances the effective volume occupied - when the excluded 
volume becomes negligible compared to noise-fluctuation -, leading to the transition from the liquid-like to the 
gas-like structure. In the solid-like regime - last two right columns in Fig. 1(a) -, the interactions are very strong 
and the effectively occupied volume is determined by the balance between the inter-particle repulsion and the 
confinement due to the external potential. In this case, the increase of Ta leads only to the fluidization of the inter-
nal structure of the system, determining the transition from a solid-like to a liquid-like structure.

Restricted to 1ν  , the delocalization phenomenon persists when the interaction radius R/l increases, as 
shown in Fig. 1(a). In that case, it is interesting to analyze the internal structure of the system, exploiting analogies 
and differences with respect to the equilibrium picture. In this regime of ν, this analysis leads to the identification 
of non-equilibrium aggregation phases which resemble the equilibrium scenario but with important differences, 
which already emerges from the static structure. Indeed, non-equilibrium effects manifest themselves in two 
ways: 1) in the dilute case - i.e. left column of Fig. 1(a) - a peak at r ~ R appears in the g(r), not expected for dilute 
Brownian particles at the same conditions in terms of density and temperature (Fig. 1(b) and SI for details): this 
is likely to be similar to that observed in37; 2) increasing R/l, the system displays liquid-like and solid-like 
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structures but with evident shifts in position and intensity with respect to an equilibrium structure with compa-
rable average energy per particle and density, as shown in Fig. 1(c,d) (see SI for details). At large R/l - but still far 
from close packing - the system freezes into an almost periodic lattice structure just by increasing ν ~ τ. This 
analysis suggests that a purely dynamical quantity, the persistence time, τ, can produce a dramatic change in the 
internal structure of the system. Finally, when the interaction radius R/l brings the system to an effective close 
packing, the radial delocalization is completely suppressed and the system comes back to a homogeneous phase 
with ordered (solid-like) internal structure. In this regime, inter-particle interactions dominate compared to 
active forces, which are completely negligible.

Summarizing, for all the explored values of R/l, namely in all the aggregation phases, our numerical study 
suggests a reentrant behavior of the structural properties of the system induced by ν. The first fluidization, 
explained by the effective temperature approach, is followed by an induced far-from-equilibrium freezing for 

1ν , which requires a more subtle analysis to be understood. The discussion, at least regarding the delocaliza-
tion phenomenon, remains qualitatively valid in three dimensions.

Figure 1. Top: Phase diagram illustrated by simulation snapshots as a function of R/l and τ. Colors indicate the 
internal density structure (see SI for details): gaseous (red), liquid (blue), solid (green). Bottom: g(r/R) for 
R 10 , 10 , 3 103 2 2= ⋅− − − , and for two different values of τ = 1, 102, respectively red and blue dots. Each box is 
realized confining N = 103 particles through the interaction potential R x/i j ij

4 4Φ ∼ ∑ | |< . Parameters: n = 2, 
Da/τ = 102 and Dt = 10−5.
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Theoretical Approach
In order to make analitycal progress, it is common to map Eq. (2) onto a different system, going from the descrip-
tion in the variables x u( , )i i

a  to 


≡x v x( , )i i i , i.e. considering the evolution of the coarse-grained velocity of each 
particle instead of their the activity. When the thermal noise is negligible (i.e. D Dt a ), deriving with respect to 
time Eq. (2) and eliminating ui

a in favor of vi, leads to53 (see also SI):
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where we use Latin and Greek indices for indicating the N particle and for the d components of the particle coor-
dinates, respectively. We point out that this mathematical passage can be considered only as a change of variables 
and thus does not involve any approximations. Moreover, viα is not the real velocity of such a particle but has to be 
interpreted just as a coarse-grained velocity, i.e. xiα by definition, where xiα is the position of the overdamped 
dynamics, i.e. such that timescales of molecular interaction and inertia relaxation are filtered out. The original 
over-damped dynamics of each particle is mapped onto the under-damped dynamics of a particle immersed into 
a fictitious bath with its effective diffusion coefficient, related to the activity parameters. The non-equilibrium 
feature of such a dynamics is fully contained in the space-dependent, ⋅d N( )2 dimensional friction matrix, Γ, 
which naturally produces a violation of the Fluctuation Dissipation Relation. The dynamics of one particle is 
coupled to all the degrees of freedom through both the interaction potential and Γ. When particle-particle inter-
actions are negligible, Γ reduces to a d-block diagonal matrix, which provides just a coupling among the different 
components of the dynamics of a single particle. In this case, when ν 1 , the Γ matrix reduces to a spatially 
homogeneous matrix and the system reaches a Gibbs steady state ~exp(−H/Teff) with H = μ|v|2/2 + U(x) and 
Teff = Ta, meaning that Ta can be identified as the effective temperature of the system54,55. The peculiarity of the 
case n = 1 emerges in the dilute regime since Γ is constant for all ν and Teff = Ta(1 + ν)−1. In the case n > 1 and 
non-negligible ν, only approximations of the stationary pdf41,56,57 are known.

The representation of the dynamics given by the Eq. (3) sheds some light on both freezing and delocalization 
phenomena observed above. The freezing can be understood by the slowing down induced by the increase of Γ, 
determined by the internal forces among active particles in the large persistence regime. The radial delocalization 
phenomenon which is observed even in the presence of negligible interactions can be physically understood as 
follows: the effective damping coefficient, Γ(x)/τ, is small near the minimum of the potential well and increases as 
x departs from it. Therefore, particles with x ≈ 0 can attain large velocities and leave the region, while for x large 
enough they reduce their “effective speed”, v, for the combined effects of viscous damping and the external force.

UCNA approximation. To make this argument quantitative we employ the unified colored noise approx-
imation (UCNA). UCNA was developed first time in58,59 in the context of electric fields with a correlated noise, 
but the methodology has been adapted to interacting active particles systems in53. This approximation consists in 
an effective equilibrium approach which predicts the spatial distribution of the particles in terms of an effective 
potential, which involves the derivatives of U + Φ. The prediction can be derived by dropping the inertial term in 
Eq. (3) in the limit of vanishing current, or by performing the usual adiabatic elimination in the FP-equation49. Its 
derivation is reviewed in the SI and the final result reads:

p e

H U F D
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2
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i a ik
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In spite of the fact that the UCNA is derived under the assumption of vanishing currents and thus restores 
the DB, at least in some regimes it is able to capture many interesting aspects of the observed phenomenology of 
self-propelled particles.

In order to assess this approximation, we consider a one-dimensional system of non-interacting particles and 
show, in Fig. 2(a), the comparison between the numerical probability density in space, p(x), and pu(x). 
Remarkably, the effective potential Hu takes the shape of a double well which fairly reproduces the numerical 
simulations. The comparison is optimal when τ  1, and gives fair quantitative information for the location of 
the density maxima also when  1τ . In particular, pu correctly predicts the accumulation in some regions, 
depending on τ, but it undererrates the probability of finding a particle in the bottom of the well, for large τ. This 
double-well effective phenomenology may be also related to the results obtained in60, explaining why the 
time-dependent response function of the system shows two different characteristic times for large values of the 
activity.

Hydrodynamics. We also consider a hydrodynamic approach, explained in details in ref.56, which provides 
a useful tool to improve the understanding of the observed phenomenon. In particular, let us start from the 
Fokker Planck (FP) Equation associated to Eq. (3), in 1d in the non-interacting case. Multiplying by a polynomial 
basis in powers of v and integrating out the velocity, we can construct an infinite herarchy of equations, involving 
the probability density p(x), the first velocity momentum, 〈v〉x, the second velocity momentum, 〈v2〉x, and so on. 
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Here, we have introduced the notation ∫〈⋅〉 = ⋅dv p x v p x( , )/ ( )x , which points out that each observable is an 
explicit function of the position x. The zero-order equation, obtained just by integrating out the velocity in the FP 
Eq., is equivalent to the mass conservation. The first order equation obtained by multiplying FP by v and integrat-
ing out the velocity reads:

μ
γ
μ

∂
∂

〈 〉 +
∂
∂

〈 〉 =




 −

Γ
〈 〉





 .

t
p x v

x
p x v F v p x[ ( ) ] [ ( ) ] ( )

(5)
x x x

2

Equation (5) expresses the evolution of the particles momentum, in terms of 〈v2〉x and p(x). Note that 〈v2〉x 
is not constant in space, at variance with ordinary underdamped equilibrium dynamics. Iterating this procedure 
in the polynomial v-basis leads to an infinite hyerarchy of equations, which cannot be solved without employing 
some closure. Since in the stationary state 〈v〉x = 0, the minima of p(x) correspond to the minima of the function 
〈e〉x = 〈v2〉x + U/μ. The slowdown of the particles in regions far from the minima balances the increasing in the 
potential energy. These results are well verified in Fig. 2(b). Let us notice that the space dependence of 〈v2〉x is 
determined by the correlation between x and v and connected with the violation of the detailed balance condition 
and of the equipartition theorem41,61.

Heat, temperature and local detailed balance. The last observation suggests the existence of 
non-trivial thermodynamics balances in this system. The analysis of Eq. (3) shows that additional temperature 
scales exist, which are space-dependent. Their definitions are clear for one particle in one dimension, where Eq. 
(3b) without external potential takes the form of an equilibrium bath at temperature θ(x) = Ta/Γ(x). In the multi-
dimensional case the symmetric matrix Γ can be diagonalised and one obtains a vector of temperatures62 (for 
instance in the radial 2d case one has a radial temperature and a tangential temperature). In56,62 it was shown that 
such a temperature satisfies a generalized Clausius relation coupling entropy production and heat exchanged with 
the bath. In particular, following a stochastic thermodynamics approach63–67, the entropy production rate of the 
medium Sm

  can be calculated. Despite the recent dispute about Sm, the validity of the result was definitively con-
firmed in68. Moreover, Sm and the heat rate density, q x( ) , in 1D, are related through the relation62:

∫ θ=

S dx p x q x x( ) ( )/ ( ), (6)m

Figure 2. Top Panel: on the left p(x) computed from data (line + dot) and pu (line), for different values of τ. 
On the right, for τ = 10: p(x) (blue points), energy 〈e〉x (red points), 〈v2〉x (green line) and U(x) (orange line). 
Two vertical black lines are drawn at x = xm, corresponding to the most probable position. Bottom Panel: p(v|x) 
for three different positions, x = −0.3, −0.15, 0, from left to right. The black line is the equilibrium prediction. 
Parameters: Da = 1, τ = 10, k = 10/4, n = 2.
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Physically speaking, at x a local flux of heat is transferred from the system to the active bath if (μ〈v2〉x − θ(x)) 
is positive while the reverse occurs in the negative case. In the Fig. 3(a), we numerically compare the temperature 
θ and μ〈v2〉x, showing a clear discrepancy in the central part of the system which increases with τ. Interestingly, 
both temperatures rapidly decrease when moving from the origin to the periphery of the well, making it clear that 
the annular region where density is high is also very cold. In the proximity of highest density, we have μ〈v2〉x ~ 
θ(x), meaning that in that region the particles reach an effective thermal equilibrium with the heat bath so that the 
DB is locally satisfied, although globally it is not. This picture is confirmed by Fig. 3(b) where the local exchange 
of heat is shown, becoming negligible in the positions corresponding to the density maxima. Therefore, we can 
identify two symmetric space regions (ER), where the system is almost in equilibrium and others where it is 
strongly far from it (NER). In order to confirm our intuition, we plot the local conditional probability, p(v|x) = p(x, 
v)/p(x), in the bottom graphs of Fig. 2 (Panels (c and d)). The Gaussian prediction at temperature θ(x) in the ER 
and a strongly non-Gaussian shape in the NER are confirmed: going towards the origin, p(v|x) becomes an asym-
metric function with a skewed tail until the symmetrization is again reached in x = 0, where the non Gaussianity 
is still quite clear. Comparing p(x) and p(v|x), we note that a particle spends most of its time in the ER, where it 
accumulates a small amount of heat per unit of time through the coupling with the fictitious bath. When a fluctu-
ation gives it enough energy, it can overcome the effective barrier which separates the two effective symmetric 
wells, rapidly crossing the NER, and rapidly returning all the heat, absorbed before, to the bath (indeed numeri-
cally dx p x q( ) 0∫ = ), in order to come back in the ER.

Summary and Conclusion
In conclusion, we have reproduced the recent experimental observation of the delocalization phenomenon by 
means of a simple model of self-propelled particles. We showed that interactions do not suppress the phenome-
non (unless close packing is reached) but may induce interesting internal structures which, when self-propulsion 
is relevant, can be hardly captured by equilibrium modeling and are sensitive to changes of activity time. 
Interestingly, in the delocalized regime, a local detailed balance condition is verified in the preferred regions. Our 
conjecture is that this is the reason why the peaks of the density distribution are fairly reproduced by the UCNA 
approximation in terms of an effective double well potential and an equilibrium-like approach works69. Escape 
times through the effective double well potential could be interesting and improve previous studies70,71 where the 
authors found just a polynomial correction to the Kramers-formula48.
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