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A B S T R A C T   

This research proposes a new strategy for Mars orbit injection, based on aerocapture and low-thrust nonlinear 
orbit control. The range of periapse altitudes that allow aerocapture is identified as a function of the hyperbolic 
excess velocity at Mars arrival, with reference to a large variety of atmospheric density profiles and different 
ballistic coefficients. This analysis proves that a safe periares altitudinal range leading to aerocapture in all at
mospheric conditions does not exist. Three different correction maneuvers, aimed at avoiding both impact and 
escape, are identified. After the atmospheric arc, the spacecraft orbit exhibits large dispersions in terms of orbit 
elements. Therefore, the identification of an effective autonomous guidance strategy, capable of driving the 
spacecraft toward the desired operational orbit, is mandatory. To do this, low-thrust nonlinear orbit control is 
proposed as an effective option. A feedback law for the low-thrust direction and magnitude, with saturation of 
the thrust magnitude, is defined, and is proven to enjoy global stability properties. As a result, the spacecraft 
travels toward the operational orbit of interest, i.e. either (a) an areostationary orbit, (b) a quasi-synchronous 
inclined orbit, or (c) a low-altitude, sunsynchronous orbit. Monte Carlo simulations, with stochastic density 
profiles and uncertain initial conditions, point out that the strategy at hand is successful and allows reducing the 
overall propellant budget in comparison to direct orbit injection based on chemical propulsion. Moreover, the 
overall time of flight typically ranges from 45 to 140 days, and therefore it is much shorter than that required 
with the use of aerobraking. As a last advantage, low-thrust nonlinear orbit control allows achievement of a 
variety of operational orbits, with great accuracy.   

1. Introduction 

Several types of orbit injection maneuvers were used in past missions 
to Mars, including long-duration, multiple aerobraking passes, aimed at 
selecting the desired operational orbit. Planetary aerobraking consists of 
several atmospheric passes, which reduce the semimajor axis and ec
centricity of the initial elliptic orbit about the planet of interest. It was 
investigated and performed in the context of the Mars Global Surveyor, 
Mars Odissey, and Mars Reconnaissance missions. Planetary aero
capture is a different technique and consists of a single atmospheric pass 
that reduces the hyperbolic velocity of a spacecraft (at planet arrival) to 
a value corresponding to an elliptic orbit. This kind of maneuver has 
been a subject of great interest in astrodynamics since the 1960’s. The 
first work on aerocapture was done by Finch [1], Repic et al. [2], French 
and Cruz [3], Mease et al. [4], Walberg [5], Fuhry [6], and Brans and 
Fuhry [7]. Then Calise [8], Powell et al. [9], and Wercinski and Lyne 
[10] investigated the same problem, focusing on aerocapture trajectory 
and guidance. Most recently, Vinh et al. [11] analyzed aerocapture 

trajectories based upon bank modulation, whereas Kumar and Tewari 
[12,13] treated the overall spacecraft dynamics (trajectory and attitude) 
during aerocapture and aerobraking. Further recent studies on aero
capture are due to Heidric et al. [14], Albert et al. [15], and Roelke and 
Braun [16]. Closely related to aerocapture, Pontani and Teofilatto [17] 
focused on the identification of frozen, repeating-ground-track orbits 
after aerocapture at Mars. 

This research proposes a new strategy for Mars orbit injection, based 
on aerocapture and low-thrust nonlinear orbit control. The range of 
periapse altitudes that allow aerocapture are identified as a function of 
the hyperbolic excess velocity at Mars arrival, with reference to a large 
variety of atmospheric density profiles. This preliminary analysis 
regards different spacecraft, with distinct ballistic coefficients, and aims 
to identify safe aerocapture corridors, even in the presence of different 
(and uncertain) density profiles. Then, suitable correction maneuvers, 
aimed at avoiding both impact and escape, are investigated. After the 
atmospheric arc, the spacecraft orbit exhibits large dispersions in terms 
of orbit elements. Therefore, the identification of an effective 
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autonomous guidance strategy, capable of driving the spacecraft toward 
the desired operational orbit, is mandatory. To do this, low-thrust 
nonlinear orbit control is proposed as an effective option. Three 
different operational orbits are considered: (a) areostationary orbit, (b) 
quasi-synchronous, circular, inclined orbit, and (c) low-altitude, circu
lar, sunsynchronous orbit. Monte Carlo simulations, with stochastic 
density profiles, different ballistic coefficient, and uncertain initial 
conditions, are performed, for the purpose of showing effectiveness and 
efficiency (in terms of propellant consumption) of the orbit injection 
strategy based on aerocapture and low-thrust nonlinear orbit control. 

2. Orbit dynamics using modified equinoctial elements 

This section is concerned with orbit dynamics of the space vehicle 
directed toward Mars and modeled as a point mass, in the context of a 3- 
degree-of-freedom problem. Orbital motion is modeled in the dynamical 
framework of the perturbed two-body problem, with the use of modified 
equinoctial elements (MEE). 

2.1. Reference frames 

As a preliminary step, the Mars-centered inertial (MCI) frame is 
introduced. It is associated with the right-hand sequence of unit vectors 
(ĉ1, ĉ2, ĉ3), where (ĉ1, ĉ2) identifies the equatorial plane, ĉ1 is aligned 
with the intersection of the equatorial plane and the fundamental plane 
of the ICRF/J2000 system (with positive component along the ascending 
node of the orbit of Mars), and ̂c3 points along the Martian rotation axis. 
Two other useful frames (rotating together with the spacecraft) are the 
local horizontal (LH) frame, associated with (r̂, Ê, N̂), and the local 
vertical local horizontal (LVLH) frame aligned with (r̂, θ̂, ĥ). Unit vector 
r̂ is directed along the instantaneous position vector r

→
(taken from 

Mars’ center), Ê and N̂ are aligned with the local East and North di
rections, respectively, whereas ĥ points along the spacecraft angular 
momentum. Angles ξ (absolute longitude), φ (latitude), and ζ (heading) 
relate the MCI-frame to the LH-frame and to the LVLH-frame, 

[ r̂ θ̂ ĥ ]
T
=R1(ζ)[ r̂ Ê N̂ ]

T

= R1(ζ)R2(− φ)R3(ξ)[ ĉ1 ĉ2 ĉ3 ]
T (1)  

where Rj(χ) denotes the matrix associated with the elementary coun
terclockwise rotation by angle χ about axis j. Moreover, an additional 
relation between the ECI-frame and the LVLH-frame can be written in 
terms of orbit elements [18], 

[ r̂ θ̂ ĥ ]
T
=R3(ω+ f )R1(i)R3(Ω)[ ĉ1 ĉ2 ĉ3 ]

T (2)  

where Ω, ω, and f are respectively the right ascension of the ascending 
node (RAAN), argument of periapse, and true anomaly [18]. 

2.2. Orbit dynamics equations 

The spacecraft dynamics can be described in terms of either spherical 
coordinates or osculating orbit elements, i.e. semimajor axis a, eccen
tricity e, inclination i, RAAN Ω, argument of periapse ω, and true 
anomaly f. However, the Gauss equations [18,19], which govern the 
time evolution of the orbit elements, become singular in the presence of 
a circular or equatorial orbit (and also when an elliptic orbit transitions 
to a hyperbola). For these reasons, the modified equinoctial elements 
[20] l, m, n, s, and q are chosen, in conjunction with the semilatus rectum 
(parameter) p, used in place of a. The five elements l, m, n, s, and q are 
defined as [20] 

l = e cos(Ω + ω) m = e sin(Ω + ω)

n = tan
i
2

cos Ω s = tan
i
2

sin Ω q = Ω + ω + f
(3)  

These are nonsingular for all Keplerian trajectories, except for equatorial 
retrograde orbits (i = π). If η := 1+ l cos q+ m sin q, the instantaneous 

radius r =
⃒
⃒
⃒ r
→

⃒
⃒
⃒ is r = p/η. Letting x6 ≡ q and z :=

[ x1 x2 x3 x4 x5 ]
T
≡ [ p l m n s ]T, the governing equations 

can be written as 

ż=G(z, x6)a (4)  

ẋ6 =

̅̅̅̅̅̅μM

x3
1

√

η2 +

̅̅̅̅̅̅̅
x1

μM

√
x4 sin x6 − x5 cos x6

η ah (5)  

where μM is the Martian gravitational parameter, and 

G(z, x6) =
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x1
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√
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(6)  

with sϑ := sin ϑ and cϑ := cos ϑ (ϑ denotes a generic angle). The (3 ×

1)-vector a collects the components (in the LVLH-frame) of the non- 
Keplerian acceleration that affects the spacecraft motion. These are 
denoted with (ar,aθ,ah). Vector a includes both the thrust acceleration 
and the perturbing acceleration inherent to the space environment. It is 
convenient to distinguish these two contributions, thus a = aT + aP, 
where subscripts T and P refer to thrust and perturbations, respectively. 

Let Tmax and m0 represent the maximum available thrust magnitude 
and the initial mass. If x7 denotes the mass ratio and T the thrust 
magnitude, for x7 the following equation can be obtained: 

ẋ7 : =
ṁ
m0

= −
uT

c
(7)  

with 0 ≤ uT ≤ u(max)
T , whereas uT := (T /m0) and u(max)

T := (Tmax /m0). 
Symbol c represents the (constant) effective exhaust velocity of the low- 
thrust propulsion system. The magnitude of the instantaneous thrust 
acceleration is aT = uTm0/m = uT/x7 and is constrained to the 
0 ≤ aT ≤ a(max)

T , where a(max)
T = u(max)

T /x7. Moreover, the thrust acceler
ation can be expressed as aT = uT/x7, where uT has magnitude con
strained to [0,u(max)

T ]. 
In conclusion, the spacecraft dynamics are described in terms of the 

state vector x :=
[

zT x6 x7
]T

= [ x1 x2 x3 x4 x5 x6 x7 ]
T, 

whereas the control vector is uT , directly related to the thrust acceler
ation. Equations (4), (5) and (7) represent the governing equations. 

3. Dynamical environment 

While orbiting Mars, the space vehicle is affected mainly by its 
gravitational field, and its orbital motion can be appropriately investi
gated by employing a perturbed two-body-problem model. As a first 
perturbing action, the Martian gravitational potential differs to some 
extent from that generated by a spherical mass distribution. As a result, 
some significant harmonics of areopotential are to be included in the 
dynamical model, in order to yield more realistic results from simula
tions. Other than Martian asphericity, the third-body perturbation due 
to the gravitational attraction of the Sun represents an additional 
contribution. Moreover, for spacecraft that reach low altitudes, the drag 
perturbing acceleration plays a role as well. Lastly, also the perturbing 
effects due to solar radiation pressure are nonnegligible. This section 
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describes and models all these perturbations. 

3.1. Harmonics of the areopotential 

This study employs the Goddard Mars Model-3 (GMM-3) [21], which 
supplies the coefficients of zonal, tesseral, and sectoral harmonics of the 
Martian gravitational field. These coefficients (Jl,m and λlm) appear in the 
classical equation of planetary gravitational potentials (per mass unit), 
written in terms of Legendre polynomials Plm, 

U =
μM

r
−

μM

r

∑∞

l=2

(
RM

r

)l

JlPl0(sin φ)

+
μM

r
∑∞

l=2

∑l

m=1

(
RM

r

)l

Jl,mPlm(sin φ)⋅cos
[
m
(
λg − λlm

)]
(8)  

where RM is the mean equatorial radius, whereas λg is the spacecraft 
geographical longitude (taken from the Martian reference meridian). If 
θR denotes the absolute longitude of the reference meridian (taken 
counterclockwise from ̂c1), then the spacecraft geographical longitude is 
λg = ξ − θR. Both the latitude φ and the absolute longitude ξ can be 
expressed as functions of the orbit elements by comparing Eqs. (1) and 
(2). In turn, the latter variables can be written in terms of equinoctial 
elements using Eq. (3). 

In the (r̂, Ê, N̂)-frame, the gravitational acceleration is given by 

g
→

= ∇U where∇ = r̂
∂
∂r

+
Ê

r cos φ
∂

∂λg
+

N̂
r

∂
∂φ

(9)  

The previous expression, together with Eq. (8), leads to obtaining the 
three components (gr, gE, gN) in the local horizontal (r̂, Ê, N̂)-frame. 
Because gr includes the main gravitational term, the related disturbing 
acceleration components are a(H)

r = gr + μ/r2, a(H)

E = gE, and a(H)

N = gN. 
Using Eqs. (1) and (2), the components (a(H)

r , a(H)

θ , a(H)

h ) of a
→

(H) along (r̂,

θ̂, ĥ) can be obtained in a straightforward way. In this study, all the 
harmonics associated with 

⃒
⃒Jl,m

⃒
⃒ > 10− 6 are considered, i.e. J2, J3, J4, 

J2,2, and J3,1. 

3.2. Third body perturbation 

The gravitational influence of Sun and Jupiter can be modeled as a 
third body perturbation that affects the space vehicle while it orbits 
Mars. In general, the perturbing acceleration due to a third body can be 
expressed as 

a
→

(3B) = −
μ3

s3
3(1 + q3)

3/2

[

r
→

+ s
→

3q3
3 + 3q3 + q2

3

1 + (1 + q3)
3/2

]

(10)  

with q3 :=

(

r2 − 2 r
→

⋅ s
→

3

)/

s2
3 whereas μ3 denotes the gravitational 

parameter of the third body, s
→

3 represents its position vector relative to 

the main body (i.e., Mars), and s3 =

⃒
⃒
⃒ s
→

3

⃒
⃒
⃒. The previous expression 

makes use of the Battin-Giorgi [22,23] approach to the Encke’s method 
for orbit perturbations. 

In the MCI-frame, the instantaneous positions of both the Sun and 
Jupiter can be derived through interpolation of the ephemerides, using 
the approach described in Ref. 24. Then, s

→
3 can be projected onto the 

LVLH-frame using Eq. (2), to yield the three components of the per
turbing acceleration a

→
(3B), i.e. (a(3B)

r ,a(3B)
θ ,a(3B)

h ), for each celestial body. 

3.3. Solar radiation pressure 

Solar radiation pressure is associated with a further perturbing ac

celeration and derives from the interaction of photons with the space
craft when it is illuminated. For the sake of simplicity, the cannonball 
model is adopted [24], and the perturbing acceleration due to solar 
radiation is 

a
→

(SR) = − υPSR
cRSR

m
r̂S (11)  

where PSR is the solar radiation pressure at Mars, cR is the radiative 
coefficient, related to the nature of the radiation interaction with the 
space vehicle, SR is the spacecraft cross section that is illuminated, ̂rS is 
the unit vector aligned with the Sun position vector a

→
(3B) (taken from 

the Mars center), and υ is the shadow function. In this study, cR is set to 2 
(perfect reflection). In the MCI-frame, the instantaneous position of the 
Sun, r

→
S, is interpolated using again the approach described in Ref. 24. 

Then, r
→

S can be projected onto the LVLH-frame using Eq. (1), to yield 

the three components of the perturbing accelerations, i.e. (a(SR)
r , a(SR)

θ ,

a(SR)
h ). 

The shadow function υ equals either 0 (when the space vehicle is 
eclipsed) or 1 (when it is illuminated). Letting ϑ1 := arccos(RM /r), 

ϑ2 := arccos(RM /rS) (with rS =

⃒
⃒
⃒ r
→

S

⃒
⃒
⃒), and φ := arccos(r̂ ⋅r̂S), the space 

vehicle is eclipsed if φ > ϑ1 + ϑ2 [24]. Because RM/rS ≈ 0, the previous 
relation becomes 

cos φ< − sin ϑ1 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
RE

r

)2
√

(12)  

The term cos φ can be computed easily, after writing ̂r and ̂rS in the MCI- 
frame. Therefore, if inequality (12) is satisfied, then υ = 0, otherwise 
υ = 1. 

3.4. Aerodynamic drag 

If the spacecraft orbits Mars at relatively low altitudes (lower than 
300 km), also the aerodynamic drag is to be considered as a perturbing 
action. Let SD and cD denote the aerodynamic cross section and drag 
coefficient of the space vehicle. The drag acceleration a

→
(D) is given by 

a
→

(D) = −
1
2
cD

SD

m
ρvR v

→
R (13)  

where ρ is the local atmospheric density, v
→

R is the spacecraft velocity 

relative to the atmosphere, vR =

⃒
⃒
⃒ v
→

R

⃒
⃒
⃒, whereas β := m /(cDSD) is the 

spacecraft ballistic coefficient. In this research ρ is interpolated by 
means of a piecewise exponential function, based on tabular data [25]. 
Further details are provided in Section III.V. As atmospheric arcs are 
unpowered and are traveled at hypersonic velocities in rarefied flow 
regime, cD is nearly constant, as well as β. Under the assumption that the 
atmosphere rotates together with Mars, the relative velocity is 

v
→

R = v
→

− ωMr cos φÊ (14)  

where v
→

denotes the spacecraft inertial velocity, given by v
→

=

̅̅̅̅̅̅̅̅̅̅̅
μM/p

√
[r̂e sin f + θ̂(1 + e cos f) ], whereas ωM is the Martian rotation 

rate. Moreover, Ê can be written as Ê = θ̂cos ζ − ĥsin ζ, while both φ and 
ζ can be expressed as functions of the orbit elements by means of Eqs. (1) 
and (2). These can be written again in terms of equinoctial elements 
using Eq. (3). As a result, v

→
R can be finally projected in the LVLH-frame, 

as well as the drag acceleration a
→

(D). The respective components are 

denoted with (a(D)
r ,a(D)

θ ,a(D)
h ). 
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3.5. Atmospheric modeling 

The Martian atmosphere is very rarefied if compared to that of the 
Earth. For the purpose of investigating aerocapture, appropriate 
modeling of the atmospheric density is mandatory. 

This study uses the Mars Climate Database [25,26] (MCD), which 
collects a large set of data on the Martian atmospheric density, which 
depends on (a) altitude h, (b) geographical longitude λg, (c) latitude φ, 
and (d) environmental scenario. The latter includes all the possible 
conditions related to Martian weather and seasons, affected by the solar 
activity and depending on the true anomaly of Mars along its orbit. As a 
result, the dust concentration is subject to considerable variations, and 
this greatly affects the atmospheric density. On the basis of previous 
studies and simulations, the climatology model was identified as the 
standard model, based on former observations on dust distribution. 
Instead, the cold-scenario model assumes a very clean atmosphere, with 
low values of dust opacity and minimum solar activity. On the contrary, 
the warm-scenario model considers high values of dust opacity and 
maximum solar activity. Finally, the dust-storm-scenario model assumes 
the occurrence of storms over the entire planet and corresponds to the 
maximum values of density. Moreover, three different options exist for 
the climatology and the dust-storm-scenario models, associated with (i) 
minimum, (ii) average, and (iii) maximum solar activity. 

Once the most appropriate model is chosen, the density profile is 
available for the entire planet, at discrete locations (λg,j,φk) and altitudes 
href ,i (in the range [25,125] km). A systematic study was carried out, to 
evaluate the percentage of variation of the atmospheric density between 
(a) adjacent (discrete) altitudes and (b) adjacent locations, using 9 
comparison points for each location and altitude (href ,i,λg,j,φk), i.e. 
(
href ,i+1, λg,j,φk

)
,
(
href ,i, λg,j,φk±1

)
,(

href ,i, λg,j±1,φk
)
,
(
href ,i, λg,j±1,φk±1

) (15)  

over the entire planet, the percentages of mean and maximum density 
variations between two adjacent altitudes equal 

Δ(alt)
mean = 46.8 % and Δ(alt)

max = 56.2 % (16)  

whereas the same quantities referred to adjacent locations (at the same 
altitude) are 

Δ(loc)
mean = 14.0 % and Δ(loc)

max = 58.3 % (17) 

It is apparent that considerable variations of the density can be 
associated with nearby locations at the same altitude. However, if the 
previous analysis is restricted to the latitudinal range [− 15,15] deg, the 
preceding parameters become 

Δ(loc)
mean = 0.9 % and Δ(loc)

max = 16.4 % (18) 

Moreover, on average the atmospheric density is greater near the 
equator. This circumstance, together with the results (18), justifies the 
choice of restricting the latitudinal range to [− 15,15] deg where aero
capture takes place. In this way, the atmospheric density can be assumed 
to depend only on altitude, other than the specific environmental sce
nario. This assumption is adopted hence forward. In this research, 4 
distinct models, related to different scenarios, are finally identified: (a) 
climatology, (b) cold, (c) warm, and (d) dust storm. For each model, the 
minimum and maximum value of density are detected, at all discrete 
altitudes (in the latitudinal range [− 15,15] deg). As a result, for each 
scenario, two extreme profiles are defined, corresponding to minimum 
and maximum density. Furthermore, two further density profiles are 
introduced: (e) the maximum density profile, and (f) the minimum 
density profile, which respectively contain – for each altitude – the 
maximum and minimum value of density among all the models. Fig. 1 
illustrates 12 density profiles: 4 minimum profiles, 4 mean profiles, and 
4 maximum profiles (for models (a)-(d)). The two density profiles (e) 
and (f) are marked with * and overlap with two of the previous 12 

profiles. 
Because the atmospheric density ρ is available only at discrete alti

tudes, exponential interpolation is used to provide its values at a generic 
altitude, i.e. 

ρ(h) = ρ
(
href ,i

)
exp
[

−
h − href ,i

Hi

]
(
href ,i ≤ h ≤ href ,i+1

)
(19)  

where h represents the altitude (with the respective reference values 
denoted with subscript ref), Hi is the scale height, and i identifies a 
specific altitude interval. In the numerical simulations, stochastic den
sity profiles are generated, by first identifying the interval [H(min)

i ,H(max)
i ]

in which Hi is stochastically described by a uniform distribution. To do 
this, for each altitude href ,i the following steps are completed:  

(i) for each location, identified by (λg,j,φk), 9 comparison points are 
considered (cf. Eq. (15));  

(ii) the extremal (minimum and maximum) pair of density values are 
identified – using all models – for point (href ,i+1, λg,j,φk) and all the 
9 comparison points, and this leads to identifying the extremal 
values of Hi for location (λg,j,φk), denoted with H(min)

i,j,k and H(max)
i,j,k ;  

(iii) the absolute minimum and maximum values H(min)
i and H(max)

i are 
identified, by comparing all the values H(min)

i,j,k and H(max)
i,j,k in the 

latitudinal range [-15,15] deg. 

Then, once the interval [H(min)
i ,H(max)

i ] is defined at all reference alti
tudes, the atmospheric density is interpolated through the following two 
steps:  

(i) the atmospheric density ρref ,1 at the minimum altitude (25 km), is 
selected randomly, assuming uniform distribution in the interval 
[ρmin,1,ρmax,1];  

(ii) in interval i the height scale Hi is selected randomly, assuming 
uniform distribution in the interval [H(min)

i ,H(max)
i ].  

(iii) at a generic altitude h, ρ(h) is obtained with the use of Eq. (19), 
with 

ρref ,i+1 = ρref ,i exp
[

−
href ,i+1 − href ,i

Hi

]

(20)  

4. Aerocapture dynamics and maneuvering 

Aerocapture begins when the spacecraft enters the Martian atmo
sphere. Because tabular data on atmospheric density are available for 
altitudes lower than 125 km, the drag action is assumed to start at this 
altitude. The reference epoch, corresponding to the time when the 
spacecraft enters the Martian sphere of influence, is set to January 1, 
2025 at 0:00 UT. 

The spacecraft is assumed to maintain the same aerodynamic cross 
section SD along the atmospheric arc. Moreover, because the space ve

Fig. 1. Atmospheric density profiles using different models.  
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hicles flies at hypersonic velocities (in a rarefied atmosphere), the drag 
coefficient cD is assumed to be constant and equal to 2.2. As a result, the 
ballistic coefficient β := m /(cDSD) is constant in each numerical simu
lation. However, different values of β were considered, to model vehicles 
with different characteristics. More precisely, β is constrained to the 
interval [14.3,1000] Kg/m2. The upper bound corresponds to a vehicle 
not designed for aerocapture, such as the Trace Gas Orbiter, whereas the 
lower bound is defined in relation to the current technological capa
bilities [27]. The reference surface for the solar radiation pressure is 
assumed to equal SD. 

The dynamical conditions that precede aerocapture play a crucial 
role. First, the hyperbolic excess velocity at Mars arrival is constrained to 
[2,4] km/s [27] (with the special value 3.111 km/s corresponding to 
Exomars [28]). Second, the periapse altitude of the incoming hyperbola 
greatly affects aerocapture, and its accurate selection makes it feasible. 
Due to the choice of the latitudinal region useful for aerocapture, the 
orbit inclination is constrained to [0,15] deg, whereas the periapse is 
assumed to lie in the equatorial plane (where density is maximal). 

4.1. Aerocapture with no correction maneuver 

Aerocapture dynamics are first investigated, under the assumption 
that the spacecraft performs no correction maneuver. The aerocapture 
corridor is defined as the interval of periapse altitudes that allows safe 
aerocapture, i.e. an elliptic orbit (after the atmospheric pass) with 
apoapse altitude greater than 125 km and not exceeding 0.95rSOI, where 
rSOI denotes the radius of the Martian sphere of influence. 

As a preliminary step, the ballistic coefficient β and the hyperbolic 
excess velocity v∞ are considered as specified. For each environmental 
scenario, the maximum- and minimum-density profiles are assumed, 
and the aerocapture corridors are identified. Several cases are consid
ered, associated with different values of β and v∞. Fig. 2 – 4 portray the 
results if β = 14.3,100,500 Kg/m2 and v∞ = 3.111 km/s. It is apparent 
that for any scenario no overlapping occurs between the two corridors 
associated with minimum- and maximum-density profiles (using the 
same atmospheric model). This result is also apparent from inspection of 
all the remaining cases considered in this work (and omitted for the sake 
of brevity), associated with different values of β and v∞. 

The corridor exhibits strong dependency on the hyperbolic excess 
velocity. This is apparent by inspecting Fig. 5, which depicts the corridor 
in terms of v∞, assuming β = 100 Kg/m2 and using the minimum-density 
climatology model. The corridor reduces in width as v∞ increases. 
Moreover, both the upper and the lower bounds that define the corridor 
decrease as v∞ increases. This behavior is encountered in all cases, i.e. 
using different atmospheric models and values of β. Due to this, lower 
values of v∞ are advantageous to enlarge the aerocapture corridor. 

It is rather obvious that the corridor is also affected by β, which is 
related to the geometrical and mass specifications of the spacecraft. 
Fig. 6portrays the corridor in terms of β, assuming v∞ = 3.111 km/s and 
two extremal profiles, corresponding to (a) mimimum-density cold 

scenario and (b) maximum-density dust-storm scenario. It is apparent 
that the aerocapture corridor moves toward higher altitudes as β in
creases. Moreover, denser atmosphere (case (b)) shifts the aerocapture 
corridor toward higher altitudes. 

A Monte Carlo analysis is performed by assuming uncertain density 
and initial conditions. Let ρ(max)

W denote the maximum-density profile 
associated with the warm-scenario model. Stochastic density profiles are 
generated by assuming that the density varies in the range 
[0.7, 1.3]ρ(max)

W , using the methodology described in Section III.V. Un
certainties on the initial conditions are defined in terms of initial flight- 
path angle γ (at 125 km of altitude), v∞, inclination i, RAAN Ω, and 
argument of periapse ω. Their nominal values are 

v∞ = 3.111 km/s i = 0 Ω = 0 ω = 0 (21)  

whereas the nominal value of γ is such that the periapse altitude equals 
the central value of the aerocapture corridor (assuming nominal flight Fig. 2. Aerocapture corridors using different atmospheric models (β =

100 kg/m2 and v∞ = 3.111 km/s). 

Fig. 3. Aerocapture corridors using different atmospheric models 
(β = 500 Kg/m2 and v∞ = 3.111 km/s). 

Fig. 4. Aerocapture corridors using different atmospheric models 
(β = 14.3 Kg/m2 and v∞ = 3.111 km/s). 

Fig. 5. Aerocapture corridor as a function of v∞ (assuming β = 100 Kg/m2 and 
minimum-density climatology model). 

E. Fornari and M. Pontani                                                                                                                                                                                                                    



Acta Astronautica 213 (2023) 792–804

797

conditions). Perturbed variables are randomly generated, with normal 
distribution, mean value equal to the respective nominal value, and the 
following standard deviations: 

σγ = 0.25 deg σv∞ = 0.1 km
/

s
σi = σΩ = σω = 3 deg (22)  

All of these stochastic quantities are constrained to [ − 2σx,2σx], where 
σx denotes the respective standard deviation. It is worth remarking that 
the value of σγ roughly corresponds to 1/4 of the entire interval for γ that 
guarantees aerocapture. After the unpowered atmospheric arc, four 
possible outcomes are identified:  

(1) capture,  
(2) near-capture, if the apoapse altitude exceeds 0.95rSOI while e < 1,  
(3) escape, if e ≥ 1,  
(4) destructive entry, in all remaining cases. 

A Monte Carlo campaign composed of 500000 simulations was run, 
under the previously described assumptions, with the following per
centage outcomes:  

(1) 66.0 % (2) 1.4 % (3) 25.6 % (4) 7.0 %. 

Although unpowered aerocapture is successful in the majority of the 
cases, it is apparent that significant percentages are associated with 
escape trajectories and destructive entry. This circumstance points out 
the need of designing correction maneuvers, to avoid the undesired 
outcomes (2) through (4). Although the Monte Carlo analysis is per

formed by assuming specific uncertainties on the stochastic variables, 
qualitatively similar results can be expected with similar uncertainties 
and different (yet still uncertain) density profiles. Considerable increase 
of the success rate (outcome (1)) is associated with reducing the un
certainties on the atmospheric density and on the initial flight-path 
angle. 

4.2. Correction maneuvers 

This subsection is focused on three possible maneuvers aimed at 
correcting outcomes (2) through (4). They are performed through 
chemical propulsion, and the impulsive thrust approximation is used as 
a simplifying assumption. Three types of maneuvers are described in 
detail, i.e. (a) escape avoidance, (b) corridor selection, and (c) periapse 
raising. Maneuver (a) is used after the atmospheric pass, if outcome (2) 
or (3) occurs, whereas maneuver (b) is to be performed before the at
mospheric arc, and is particularly suitable for avoiding outcome (4). The 
third maneuver (c) consists of increasing the periapse altitude to 140 km 
at the first apoapse. 

Escape avoidance maneuver. After the atmospheric arc, the spacecraft 
is assumed to travel a hyperbolic path (condition (3)) or a near-capture 
elliptic orbit (condition (2)). In both cases, an in-plane impulsive ve
locity change is applied to reduce the orbit eccentricity and obtain the 
desired apoapse radius ra(= 0.95rSOI). The maneuver at hand minimizes 

J =Δv2
r + Δv2

θ (23)  

while holding 

a(1+ e) − ra = 0 (24)  

where Δvr = vr − vr,i and Δvθ = vθ − vθ,i; vr and vθ denote the two ve
locity components in the LVLH-frame, and subscript i indicates their 
values prior to the impulse. Using the expressions of the angular mo
mentum and the vis-viva equation for energy, Eq. (24) becomes 

f (vr, vθ)= v2
r +

(

1 −
r2

i

r2
a

)

v2
θ + 2μ

(
1
ra
−

1
ri

)

= 0 (25)  

The constraint equation is added to the objective function, to yield the 
extended function 

J̃ =
(
vr − vr,i

)2
+
(
vθ − vθ,i

)2
+ λf (vr, vθ) (26)  

where λ is the Lagrange multiplier associated with the constraint 
equation (25). This constrained optimization problem yields the 
following conditions for a stationary solution: 

vr =
A

A + λ
vr,i (27)  

vθ =
B

B + λ
vθ,i (28)  

v2
r

A
+

v2
θ

B
− 1 = 0 (29)  

where 

A=
1

2μ

(
1
ri
−

1
ra

)− 1

B=A
(

1 −
r2

i

r2
a

)− 1

(30)  

Insertion of Eqs. (27) and ( 28)into Eq. (29) yields a 4-th degree equation 
for λ, which finally leads to identifying the minimizing values of (vr,vθ), 
by means of Eqs.(27) and ( 28). Because the constraint equation (25), 
also rewritten in the form (29), is associated with an ellipse in the (vr,

vθ)-plane (cf. Fig. 7), the minimization problem corresponds to finding 
the minimum-distance segment that connects (vr,i, vθ,i) to the constraint 
ellipse. 

Fig. 6. Aerocapture corridor as a function of β (assuming v∞ = 3.111 km/s and 
either (a) minimum-density cold model or (b) maximum-density dust- 
storm model). 
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Corridor selection maneuver. Before the atmospheric arc, the space
craft travels a hyperbolic path. At a specified point, corresponding to (ri,

vr,i, vθ,i) an impulsive velocity change is applied, to obtain the desired 
peripase radius rp. The maneuver at hand minimizes 

J =Δv2
r + Δv2

θ (31)  

while holding 

a(1 − e) − rp = 0 (32)  

Using again the expressions of the angular momentum and the vis-viva 
equation for energy, Eq. (32) becomes 

g(vr , vθ)= v2
r +

(

1 −
r2

i

r2
p

)

v2
θ + 2μ

(
1
rp
−

1
ri

)

= 0 (33)  

J̃ =
(
vr − vr,i

)2
+
(
vθ − vθ,i

)2
+ λg(vr, vθ) (34)  

where λ is the Lagrange multiplier associated with the constraint 
equation (33). This constrained optimization problem yields the 
following conditions for a stationary solution: 

vr =
C

C + λ
vr,i (35)  

vθ =
D

D − λ
vθ,i (36)  

v2
r

C
−

v2
θ

D
+ 1 = 0 (37)  

where 

C=
1

2μ

(
1
rp

−
1
ri

)− 1

D= − C

(

1 −
r2

i

r2
p

)− 1

(38)  

Insertion of Eqs. (35) and (36) into Eq. (37) yields a 4-th degree poly
nomial equation for λ, which finally leads to identifying the minimizing 
values of (vr, vθ) by means of Eqs. (35) and (36). Because the constraint 
equation, also rewritten in the form (37), is associated with a hyperbola 
in the (vr, vθ)-plane, the minimization problem corresponds to finding 
the minimum-distance segment that connects (vr,i, vθ,i) to the constraint 
hyperbola (cf. Fig. 8). However, the desired periapse is defined in 
relation to the initial specific energy along the approaching hyperbolic 
trajectory. In general, an impulsive velocity change alters energy, unless 

v2
r + v2

θ = v2
r,i + v2

θ,i = E2 (39)  

The latter relation is associated with a circle of radius E in the (vr,

vθ)-plane. Fig. 8 portrays an illustrative sketch of the geometrical 

interpretation of the minimization problem. The blue lines are two arcs 
of hyperbola, associated with constraint (37), whereas the red dotted 
circle corresponds to Eq. (39). Two stationary solutions are shown (black 
lines). The upper segment is the minimizing solution (also visible in the 
inset). If the constraint (39) is enforced (with a certain tolerance, cf. 
purple dotted lines in the inset), then the solution marked with black * in 
the inset is to be selected. 

Efficiency of this impulsive maneuver can be expected to reduce as 
the spacecraft approaches the Martian atmosphere. In fact, Pontani [29] 
proved that the velocity variation needed to change the periapse of an 
incoming hyperbola tends to zero as the distance from the main 
attracting body tends to infinity. However, in practical scenarios ve
locity changes occur at finite distances. Fig. 9 illustrates the velocity 
variation needed to change the periapse altitude from its initial value 
(30 km) to any other altitude in the range [25,125] km, assuming 
different hyperbolic excess velocities and maneuver at the Martian 
sphere of influence (without taking into account the constraint (39)). 
Fig. 10 portrays the same plots if the maneuver takes place at 125 km of 
altitude. It is apparent that in the latter case the velocity change in
creases dramatically, and this testifies to the convenience of performing 
early corridor selection maneuvers. 

Periapse raising maneuver. After the atmospheric arc, the spacecraft 
may be traveling a near-circular orbit. In this case, low-thrust propulsion 
does not suffice to raise the periapse (after the first pass) before the 
subsequent periapse pass, and the spacecraft is subject to repeating at
mospheric passes, which finally lead to destructive entry. To avoid this, 
an impulsive velocity change is applied (tangentially) at apoapse, to 
raise the periapse altitude to 140 km. More specifically, the periapse 
raising maneuver is performed when eccentricity is less than 0.45 
(threshold value found through numerical analysis). 

Fig. 7. Constraint ellipse and minimum-Δv segment in the (vr , vθ)-plane (with 
zoom in the inset). 

Fig. 8. Constraint hyperbola and minimum-Δv solutions in the (vr , vθ)-plane 
(with zoom in the inset). 

Fig. 9. Velocity change (at the sphere of influence) needed to modify the 
periapse altitude. 
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5. Nonlinear orbit control 

Nonlinear orbit control represents a valid strategy to drive the 
spacecraft toward the final operational orbit, starting from dispersed 
initial conditions, after the atmospheric arc. 

In a preceding section, the spacecraft motion was shown to be gov
erned by Eqs. (4), (5) and (7). In particular, Eq. (4) can be rewritten as 

ż=G(z, x6)

(
uT

x7
+ aP

)

(40)  

where the perturbing acceleration aP includes the perturbing contribu
tions related to the space environment. It is worth noticing that Eq. (40) 
assumes a control-affine form in the absence of perturbing accelerations 
(aP = 0). For systems governed by Eq. (40) with aP = 0, the Jurdjevic- 
Quinn theorem provides a feedback control law that can drive the 
dynamical system to an arbitrary target state, making the controlled 
system Lyapunov-stable. 

The desired operational conditions related to the target orbit are 
assumed to depend only on z (cf. Eq. (3)) and can be formally defined by 

ψ(z)= 0 (41)  

The previous vector equation is problem-dependent and corresponds to 
q (≤ 5) relations that involve equinoctial elements x1 through x5. If q <

5, Eq. (41) identifies a target set that is assumed to be a connected and 
differentiable manifold. In this subsection, the operational orbit is 
specified in terms of its semimajor axis, eccentricity, and inclination, or, 
equivalently, periapse and apoapse radii, denoted respectively with rP,d 

and rA,d, and inclination id. Due to the definitions of Eq. (3), this means 
that the desired operational conditions correspond to 

x1 − rP,d

(

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
2 + x2

3

√ )

= 0 (42)  

x1 − rA,d

(

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
2 + x2

3

√ )

= 0 (43)  

x2
4 + x2

5 − tan2id

2
= 0 (44)  

The left-hand sides of Eqs. (42)-(44) are denoted with (ψ1,ψ2,ψ3) and 
form the vector ψ. The spacecraft motion is governed by Eqs. (5), (7) and 
(40). 

A feedback control law is sought that is capable of driving the 
dynamical system at hand (associated with Eqs. (5), (7) and (40)) to
ward the target conditions identified by Eq. (41). To do this, the 
following candidate Lyapunov function is introduced: 

V =
1
2
ψT Kψ (45)  

where K denotes a diagonal matrix with constant, positive elements, 

which play the role of arbitrary weights. These are selected a priori in 
relation to the application of interest. It is clear that V > 0 unless ψ = 0. 
Yet, further conditions are required in order that V be an actual Lya
punov function. Three propositions, whose proofs are reported in 
Ref. 30, provide the theoretical background to identify a saturated 
feedback law. 

Proposition 1. Let b := GT(∂ψ/∂z)TKψ. If and ψ and (∂ψ /∂z) are 
continuous, |b| > 0 unless ψ = 0, and u(max)

T ≥ x7|b + aP|, then the feedback 
control law 

uT = − x7(b+ aP) (46)  

leads a dynamical system governed by Eqs. (5), (7) and (40) to converge 
asymptotically to the target set associated with Eq. (41). 

The previous proposition includes the assumption u(max)
T ≥ x7|b +

aP|. If this condition is violated, the feedback control law (46) is infea
sible, because |uT| = x7|b+aP| would exceed the maximal value u(max)

T . In 
this case, in place of (46), an alternative feedback law can be used. 

Proposition 2. Let b := GT(∂ψ/∂z)TKψ. If and ψ and (∂ψ /∂z) are 
continuous, |b| > 0 unless ψ = 0, u(max)

T < x7|b+aP|, and bTaP ≤ 0, then the 
feedback control law 

uT = − u(max)
T

b + aP

|b + aP|
(47)  

leads a dynamical system governed by Eqs. (5), (7) and (40) to converge 
asymptotically to the target set associated with Eq. (41). 

It is worth remarking that the previous proposition requires the 
sufficient condition bTaP ≤ 0 to ensure V̇ < 0. An additional sufficient 
condition that ensures V̇ < 0 even if bTaP > 0, regardless of the specific 
time evolution, is provided by the following 

Proposition 3. Let b := GT(∂ψ/∂z)TKψ. If and ψ and (∂ψ /∂z) are 
continuous, |b| > 0 unless ψ = 0, and x7|aP| < u(max)

T < x7|b+aP|, then the 
feedback control law (47) leads a dynamical system governed by Eqs. (5), 
(7) and (40) to converge asymptotically to the target set associated with Eq. 
(41). 

The two feedback laws (46) and (47) can be written in compact form 
as 

uT = − u(max)
T

x7(b + aP)

max
{

u(max)
T , x7|b + aP|

} (48)  

Equation (48) incorporates the saturation condition on uT, i.e. 
|uT | ≤ u(max)

T , and provides a control law that can be actuated using 
steerable and throttleable propulsive thrust (with time-varying magni
tude and direction). 

Proposition 3 provides a very useful sufficient condition that has a 
straightforward meaning: if the thrust acceleration magnitude, 
u(max)

T /x7, exceeds the perturbation acceleration magnitude, aP, then V̇ <

0 unless ψ = 0. As a final remark, it is worth stressing that Propositions 1 
through 3 state some sufficient conditions for Lyapunov stability. This 
circumstance implies that the assumptions of Propositions 1 through 3 
can be violated (in some time intervals), without necessarily compro
mising asymptotic convergence to the desired final condition identified 
by Eq. (41). 

As first steps, both ψ and (∂ψ /∂z) turn out to be continuous in the 
entire domain where equinoctial elements are defined (i.e., i ∕= π). 

Then, vector b, whose components are {b1, b2, b3}, is derived 
analytically. The related expressions are 

b1 =

̅̅̅̅̅̅̅
x1

μM

√
x3 cos x6 − x2 sin x6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2 + x2
3

√
(
k1ψ1rP,d − k2ψ2rA,d

)
(49) 

Fig. 10. Velocity change (at the atmospheric boundary, altitude of 125 km) 
needed to modify the periapse altitude. 
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b2 =

̅̅̅̅̅̅
x1

μM

√ [( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
2 + x2

3

√

η +
x2 cos x6 + x3 sin x6

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
2 + x2

3

√
1 + η

η

)

⋅

⋅
(
k2ψ2rA,d − k1ψ1rP,d

)
+

2x1

η (k1ψ1 + k2ψ2)

]
(50)  

b3 =

̅̅̅̅̅̅
x1

μM

√

k3ψ3
(
1+ x2

4 + x2
5

) x4 cos x6 + x5 sin x6

η (51)  

The two terms with 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
2 + x2

3

√

in the denominator can be proven to be 
constrained to the interval [− 1,1]. In fact, the following identities hold: 

x3 cos x6 − x2 sin x6
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2 + x2
3

√ = − sin f (52)  

x2 cos x6 + x3 sin x6
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2 + x2
3

√ = cos f (53) 

The attracting set collects all the dynamical states that fulfill V̇ = 0. 
In fact, out of the attracting set V̇ < 0. The latter condition is met if b =

0, i.e. if the three components {b1, b2, b3} equal 0, for any choice of the 
positive coefficients {k1,k2,k3}. Inspection of Eq. (49) reveals that b1 = 0 
(regardless of {k1, k2}) if ((ψ1 = 0) and (ψ2 = 0)) or (x3 cos x6 −

x2 sin x6 = 0). However, the second equality is ruled out, because x6 is 
always time-varying (even in the target set). Then, the condition 
((ψ1 = 0) and (ψ2 = 0)) also ensures that b2 = 0. Finally, b3 = 0 if 
(ψ3 = 0) or (x4 = x5 = 0) or (x4 cos x6 + x5 sin x6 = 0). The latter 
equality is again ruled out because x6 is time-varying. In conclusion, the 
attracting set turns out to include the following three subsets:  

1. x1 = 0 (rectilinear trajectories);  
2. ψ1 = 0, ψ2 = 0, and x4 = x5 = 0 (equatorial orbits with periapse and 

apoapse radii equal to rP,d and rA,d);  
3. ψ1 = 0, ψ2 = 0, and ψ3 = 0 (operational conditions, cf. Eqs. (42)- 

(44)). 

Because the attracting set contains other subsets other than the target set 
(which coincides with subset 3), the asymptotic convergence toward the 
desired conditions is only local, based on Lyapunov’s stability theorem 
[31]. 

However, LaSalle’s principle [31] can be applied in order to rule out, 
if possible, subsets 1 and 2. Because ψ is continuous and V̇ < 0 (except in 
the attracting set, denoted with A henceforth), the condition V(z) ≤
V(z0) (where z0 is z evaluated at the initial time) defines a compact set C. 
The invariant set, which plays a crucial role in LaSalle’s principle, is to 
be sought in A ∩ C, i.e. in the portion of the attracting set contained in C. 
By definition, the invariant set collects all the dynamical states (in the 
attracting set of z) that remain unaltered when a ≡ 0. This means that 
once the invariant set is reached, b ≡ 0 at future times, which implies 
ḃ ≡ 0 while a ≡ 0. For the application at hand, the time derivatives of the 
three components of b, evaluated at a ≡ 0, assume the form 

ḃj =
∂bj

∂x6

̅̅̅̅̅μE

x3
1

√

η2 (j= 1, 2, 3) (54)  

Inspection of ḃj (j = 1,2, 3), whose lengthy expressions are omitted for 
the sake of brevity, leads to ruling out subset 1 (x1 = 0), associated with 
rectilinear trajectories Instead, both subsets 2 and 3 form the invariant 
set for the problem at hand. 

Actually, convergence toward subset 2 is only theoretical. In fact, the 
Lyapunov function can be rewritten in terms of orbit elements as 

V =
1
2
k1
[
p − rP,d(1 + e)

]2
+

1
2
k2
[
p − rA,d(1 − e)

]2

+
1
2

k3

(

tan2 i
2
− tan2id

2

)2 (55)  

where p, e, and i are the instantaneous semilatus rectum, eccentricity, 
and inclination. The partial derivative of V with respect to i is 

∂V
∂i

= k3 tan
i
2

(

tan2 i
2
+ 1
)(

tan2 i
2
− tan2id

2

)

(56)  

It is apparent that ∂V/∂i = 0 (i.e. V is stationary) at i = 0, which is 
consistent with the fact that subset 2 belongs to the invariant set. 
However, if i = iε > 0 (with iε arbitrarily small), then ∂V/∂i < 0, and the 
reduction of V leads i to increasing up to the desired value id, which is 
associated with subset 3, i.e. the target set. This means that the target set 
represents a stable equilibrium, unlike set 2. This circumstance has the 
very interesting practical consequence that – from the numerical point of 
view – the dynamical system of interest enjoys global convergence to
ward the desired operational conditions, provided that the control law 
(48) is adopted, while holding the assumptions of either Proposition 1, 
2, or 3. 

6. Orbit injection: numerical simulations 

This research considers three final orbits.  

(a) areostationary orbit,  
(b) quasi-synchronous, circular, direct orbit, and  
(c) sunsynchronous circular orbit. 

All orbits (a) through (c) are defined in terms of their semilatus rectum, 
eccentricity, and inclination. 

This section is focused on presenting the numerical simulations of the 
entire orbit injection maneuver, composed of four major phases: (i) se
lection of the aerocapture corridor, (ii) atmospheric arc, (iii-a) escape 
avoidance maneuver or (iii-b) periapse raising, and (iv) low-thrust 
nonlinear orbit control. The impulsive maneuvers (i), (iii-a), and (iii- 
b) are performed only if necessary. Numerical simulations prove that 
maneuver (iii-a) is unnecessary with outcome 2 (near-capture). 

The low-thrust system (used in phase (iv)) has the following char
acteristic parameters: 

c= 30 km / s, u(max)
T = 5⋅10− 5g0

(
g0 = 9.8 m

/
s2)

Instead, because the impulsive thrust approximation is adopted to model 
the effect of chemical propulsion, only the effective exhaust velocity cHT 
of the high-thrust (chemical) system (used in phases (i) and (iii)) is 
needed to evaluate the resulting mass depletion. In this study, cHT =

3.528 km/s. 
In all cases the atmospheric density profile is generated stochasti

cally in the range [0.6, 1.4]ρ(max)
C , where ρ(max)

C (h) represents the 
maximum-density profile of the climatology model. The nominal flight- 
path angle is such that the central periapse altitude of the corridor is 
targeted. Moreover, the following values are assumed for β and v∞: 

β= [14.3, 33.3, 100, 500, 1000] Kg
/

m2 (57)  

v∞ = [2, 3, 3.111, 4] km/s (58)  

For each pair of values of (β, v∞), 5 Monte Carlo simulations are per
formed, using a random displacement for the initial flight-path angle, 
with zero mean and standard deviation σγ = 0.25 deg. This process 
generates 100 simulations. Based on this, for each final orbit, a total 
number of 300 simulations are performed: (1) 100 associated with 
natural capture, (2) 100 corresponding to near-capture, and (3) 100 
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associated with escape. Capture, near-capture and escape refer to nat
ural motion, in the absence of propulsion correction maneuvers. 

6.1. Final areostationary orbit 

The areostationary orbit corresponds to the following elements: 

pd = 20428 km ed = 0 id = 0 deg (59) 

A Monte Carlo campaign composed of 300 simulations was run, and 
the related results are collected in Table 1 – 3, where MR is the final mass 
ratio, Δvapo denotes the velocity change to perform periapse raising, and 
Δvext represents the velocity variation to avoid escape (see Fig. 10). 
Periapse raising was needed in 24 cases out of 100, and the statistics in 
Table 1 refer to these 24 simulations only. Fig. 11 depicts the time his
tories of periapse and apoapse altitudes, and inclination, for a single 
simulation. 

The performance of the preceding strategy is compared to a more 
traditional approach, based on applying a single velocity change at a 
periapse altitude of 500 km (to get planetary capture), followed by low- 
thrust. The latter strategy yields the following results:  

v∞ = 2 km/s : MR = 0.829 and tf = 56.1 days
v∞ = 4 km/s : MR = 0.614 and tf = 46.2 days (60)  

It is apparent that aerocapture followed by low-thrust nonlinear orbit 
control is more advantageous than the traditional strategy. 

6.2. Final quasi-synchronous orbit 

The quasi-synchronous orbit represents a valuable option for satellite 
constellations [32], and corresponds to the following elements: 

pd = 32427 km ed = 0 id = 60.0 deg (61) 

A Monte Carlo campaign composed of 300 simulations was run, and 
the related results are collected in Table 4 – 6, whereas Fig. 12 depicts 
the time histories of periapse and apoapse altitudes, and inclination, for 
a single simulation. Periapse raising was needed in 40 cases out of 100, 
and the statistics in Table 4 refer to these 40 simulations only. 

The performance of the preceding strategy is compared again to a 
more traditional approach, based on applying a single velocity change at 
a periapse altitude of 500 km (to get planetary capture), followed by 
low-thrust. The latter strategy yields the following results: 

v∞ = 2 km/s : MR = 0.802 and tf = 74.7 days
v∞ = 4 km/s : MR = 0.591 and tf = 60.8 days (62)  

It is apparent that aerocapture followed by low-thrust nonlinear orbit 
control is more advantageous, while the traditional strategy approaches 

Table 1 
Injection into areostationary orbit: performance for trajectories with outcome 1 
(capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 44 days 21 days 
MR 0.948 0.032 
Δvapo 19 m/s 5 m/s  

Fig. 11. Injection in areostationary orbit: time histories of periapse and 
apoapse radii, and inclination (single MC simulation). 

Table 2 
Injection into areostationary orbit: performance for trajectories with outcome 2 
(near capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 69 days 4 days 
MR 0.930 0.003 
Δvext 0 m/s 0 m/s  

Table 3 
Injection into areostationary orbit: performance for trajectories with outcome 3 
(escape) after the atmospheric arc.   

Mean value Standard deviation 

tf 59 days 2 days 
MR 0.884 0.039 
Δvext 202 m/s 158 m/s  

Table 4 
Injection into quasi-synchronous orbit: performance for trajectories with 
outcome 1 (capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 83days 21 days 
MR 0.884 0.034 
Δvapo 21 m/s 11 m/s  

Fig. 12. Injection in quasi-synchronous orbit: time histories of periapse and 
apoapse radii, and inclination (single MC simulation). 
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the worst-case result (MR) obtained with aerocapture and low thrust 
only if v∞ = 2 km/s. 

6.3. Final sunsynchronous orbit 

A sunsynchronous orbit is considered, associated with the following 
elements: 

pd = 3897 km ed = 0 id = 93.2 deg (63) 

A Monte Carlo campaign composed of 300 simulations was run, and 
the related results are collected in Table 7 – 9, where Fig. 13 depicts the 
time histories of periapse and apoapse altitudes, and inclination, for a 
single simulation. Periapse raising was needed in 22 cases out of 100, 
and the statistics in Table 7 refer to these 22 simulations only. 

The performance of the preceding strategy is compared again to a 
more traditional approach, based on applying a single velocity change at 
a periapse altitude of 500 km (to get planetary capture), followed by 
low-thrust. The latter strategy yields the following results: 

v∞ = 2 km/s : MR = 0.743 and tf = 120.5 days
v∞ = 4 km/s : MR = 0.371 and tf = 203.5 days (64)  

It is apparent that aerocapture followed by low-thrust nonlinear orbit 
control is more advantageous, while the traditional strategy approaches 
the worst-case result (MR) obtained with aerocapture and low thrust 
only if v∞ = 2 km/s. 

6.4. Corridor selection maneuver 

Correction maneuver (ii), aimed at selecting the aerocapture 
corridor, is particularly effective for the purpose of recovering trajec
tories otherwise ending with destructive entry. However, sufficiently 
accurate information on the density profile is needed to successfully 
perform this maneuver. Moreover, instead of pursuing the central per
iapse altitude of the nominal corridor [h(min)

p ,h(max)
p ], the periapse altitude 

0.75 h(max)
p is targeted. This is an interesting option because the possible 

subsequent maneuver (escape avoidance) is simpler and much more 
economical than performing an atmospheric recovery maneuver (not 
described in Section IV.II) in the case of excessive braking. 

This subsection presents the results of 100 Monte Carlo simulations, 
starting for initial conditions that would lead to destructive entry. All the 
initial conditions coincide with those described at the beginning of 
Section VI, with the only exception that the density profile uncertainty is 
constrained to [0.9, 1.1]ρ(max)

C . 

Table 6 
Injection into quasi-synchronous orbit: performance for trajectories with 
outcome 3 (escape) after the atmospheric arc.   

Mean value Standard deviation 

tf 79 days 3 days 
MR 0.858 0.040 
Δvext 185 m/s 167 m/s  

Table 7 
Injection into sunsynchronous orbit: performance for trajectories with outcome 
1 (capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 138 days 32 days 
MR 0.805 0.047 
Δvapo 18 m/s 4 m/s  

Fig. 13. Injection in sunsynchronous orbit: time histories of periapse and 
apoapse radii, and inclination (single MC simulation). 

Table 8 
Injection into sunsynchronous orbit: performance for trajectories with outcome 
2 (near capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 138 days 0,4 days 
MR 0.836 0.001 
Δvext 8 m/s 5 m/s  

Table 9 
Injection into sunsynchronous orbit: performance for trajectories with outcome 
3 (escape) after the atmospheric arc.   

Mean value Standard deviation 

tf 132 days 4 days 
MR 0.786 0.037 
Δvext 222 m/s 164 m/s  

Fig. 14. Velocity changes for corridor selection.  

Table 5 
Injection into quasi-synchronous orbit: performance for trajectories with 
outcome 2 (near capture) after the atmospheric arc.   

Mean value Standard deviation 

tf 123 days 22 days 
MR 0.878 0.013 
Δvext 0 m/s 0 m/s  
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Fig. 14 depicts the magnitude of the velocity changes needed to 
select the aerocapture corridor, according to the preceding assumptions 
and methodology. The velocity variation, which is assumed to occur at 
125 km of altitude, has average value and standard deviation equal to 
52 m/s and 17 m/s, respectively. It is worth remarking that greater 
uncertainty in the atmospheric density may render the use of a single 
velocity change ineffective for the purpose of avoiding destructing 
entry. In this case, repeating velocity variations shall be applied, in the 
context of an iterative feedback guidance scheme, while the density 
estimation is refined during descent. 

6.5. Technological challenges 

Aerocapture, in conjunction with low-thrust propulsion, can be 
regarded as a viable option to perform Mars orbit injection. However, 
significant technological challenges may be associated with this strat
egy. If solar electric propulsion (SEP) is employed, then the solar panels 
can be either (i) arranged on the sides of the spacecraft or (ii) initially 
stowed and deployed only after the atmospheric pass. In case (i) they 
must not be subject to the aerodynamic interaction. In case (ii), they are 
to be deployed after aerocapture, to guarantee sufficient power to the 
low-thrust propulsion system. Recently, the ROSA experiment [33] has 
shown that solar panel deployment can be completed in a few minutes. 
Moreover, as an alternative option for power supply, radioisotope 
electric propulsion (REP) is gaining increasing attention, especially for 
space missions toward the outer planets. NASA already developed and 
qualified an advanced Stirling radioisotope generator (ASRG) engi
neering unit [34]. Moreover, in a broader context, the Joint Radioiso
tope Electric Propulsion Studies (JREPS) project [35] has recently 
investigated REP, with the final purpose of designing and testing 
different technological configurations. 

In conclusion, thorough tradeoff analysis is certainly needed to 
identify the most convenient technological solution for power supply 
(either SEP or REP), in terms of technological reliability and available 
payload mass. 

7. Concluding remarks 

Several types of orbit injection maneuvers were used in past missions 
to Mars, including long-duration, multiple aerobraking passes, aimed at 
selecting the desired operational orbit. This research proposes a new 
strategy for Mars orbit injection, based on aerocapture and low-thrust 
nonlinear orbit control. The range of altitudes that allow aerocapture 
are identified as a function of the hyperbolic excess velocity at Mars 
arrival and ballistic coefficients of the space vehicle, with reference to a 
large variety of atmospheric density profiles. This preliminary analysis 
demonstrates that a safe periares altitudinal range leading to aero
capture in all atmospheric conditions does not exist. This result is further 
confirmed through Monte Carlo simulations, assuming stochastic – yet 
realistic – atmospheric density profiles. This circumstance implies the 
need of designing suitable correction maneuvers, aimed at avoiding both 
impact and escape. Three such types of maneuvers are identified, by 
minimizing the velocity changes required to achieve aerocapture. 
However, sufficiently accurate information on atmospheric density and 
precise selection of the initial flight-path angle lead to avoiding or 
considerably reducing the need of correction maneuvers. At the end of 
the first phase, i.e. atmospheric pass, the spacecraft orbit exhibits large 
dispersions in terms of orbit elements. Therefore, the identification of an 
effective autonomous guidance strategy, capable of driving the space
craft toward the desired operational orbit, is mandatory. To do this, low- 
thrust nonlinear orbit control is proposed as an effective option. A 
feedback law for the low-thrust direction and magnitude, with satura
tion on the thrust magnitude, is defined, and is proven to enjoy global 
stability properties, using the Lyapunov direct method and the LaSalle 
invariance principle. As a result, the spacecraft travels toward the 
operational orbit of interest, i.e. either (a) a quasi-synchronous inclined 

orbit, (b) an areostationary orbit, or (c) a low-altitude, sunsynchronous 
orbit. Monte Carlo simulations, with stochastic density profiles, point 
out that the overall propellant budget is considerably reduced, in com
parison to direct orbit injection based on chemical propulsion. The 
overall time of flight typically ranges from 45 to 140 days, and therefore 
it is much shorter than that required with the use of aerobraking. 
Furthermore, low-thrust nonlinear orbit control allows the achievement 
of a variety of operational orbits, with great accuracy. Propellant con
sumption, time of flight, and reachable orbits represent unequivocal 
advantages with respect to alternative options, and make the strategy 
based on aerocapture and low-thrust nonlinear orbit control particularly 
attractive and convenient for Mars orbit injection. 
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