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Abstract

Understanding textual description to generate
code seems to be an achieved capability of
instruction-following Large Language Models
(LLMs) in zero-shot scenario. However, there
is a severe possibility that this translation abil-
ity may be influenced by having seen target
textual descriptions and the related code. This
effect is known as Data Contamination.

In this study, we investigate the impact of Data
Contamination on the performance of GPT-
3.5 in the Text-to-SQL code-generating tasks.
Hence, we introduce a novel method to de-
tect Data Contamination in GPTs and exam-
ine GPT-3.5’s Text-to-SQL performances using
the known Spider Dataset and our new unfa-
miliar dataset Termite. Furthermore, we ana-
lyze GPT-3.5’s efficacy on databases with mod-
ified information via an adversarial table dis-
connection (ATD) approach, complicating Text-
to-SQL tasks by removing structural pieces of
information from the database. Our results indi-
cate a significant performance drop in GPT-3.5
on the unfamiliar Termite dataset, even with
ATD modifications, highlighting the effect of
Data Contamination on LLMs in Text-to-SQL
translation tasks.

1 Introduction

Large Language Models (LLMs) have largely
demonstrated their ability to understand the seman-
tics of text descriptions for generating code for a va-
riety of programming languages (Wang et al., 2023;
Zhang et al., 2023b; Chen et al., 2023). This ca-
pability showcases an impressive understanding of
the syntax and semantics of both natural language
and programming languages. Beyond capturing
and mastering the grammar of programming lan-
guages governed by a finite set of rules, these mod-
els are also proficient in semantically interpreting
natural language descriptions and then translating
them into a code snippet (Yuan et al., 2023).

LLMs are successful code generators even for
the challenging generation of SQL queries from tex-
tual description (Rajkumar et al., 2022; Gao et al.,
2023; Pourreza and Rafiei, 2023). Indeed, query
languages like SQL pose additional challenges
as code snippets depend on underlying databases.
Then, it is crucial to thoroughly understand the spe-
cific database structure with which the SQL code
will interact. This is because the effectiveness and
accuracy of the generated SQL code largely depend
on how well it aligns with the database’s schema,
constraints, and data types.

However, the evaluation of the LLMs’ capability
to generate SQL may be conflated by data con-
tamination (Magar and Schwartz, 2022; Ranaldi
et al., 2023a,b). Data Contamination refers to the
situation where a model may have been exposed
to, or trained on, parts of the dataset that are later
used for its evaluation. Indeed, many datasets that
are used to evaluate LLMs’ ability to generate SQL
code from text, like Spider (Yu et al., 2019), may
be included in the pre-training material of state-of-
the-art instruction following LLMs such as OpenAI
GPTs (OpenAI, 2023b).

In this paper, we aim to unravel the complicated
question of whether memorization is responsible
for text-to-SQL code generation capabilities of
LLMs. More specifically, we focus on the follow-
ing research questions:

• RQ1: Is it possible to determine data con-
tamination by solely analyzing the inputs and
outputs of existing LLMs?

• RQ2: Do recent GPTs excel in Text-to-SQL
tasks in a zero-shot setting both on potentially
leaked data and totally unseen one?

• RQ3: Is data contamination affecting the ac-
curacy and reliability of an existing GPT in
Text-to-SQL tasks?
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Hence, we propose Termite - a fresh dataset for
evaluating the task of text-to-SQL - in contrast to
the widely spread Spider (Yu et al., 2019), which
has possibly been used to pre-train LLMs such
as commercial GPTs. By comparing Termite and
Spider, we propose a measure to determine data
contamination in LLMs for tasks of text-to-SQL
(RQ1). We then experimented with GPT-3.5 (Ope-
nAI, 2023a), comparing the results in the text-to-
SQL task obtained on Termite and on Spider (RQ2).
Then, we tested GPT-3.5 by removing structural
information from the databases and demonstrate
that the model is more resistant to this adversarial
input perturbation on leaked data than unseen one
(RQ3).

Our results show that not only does GPT exhibit
clear knowledge about Spider, but this also leads
to an overestimation of the model’s performance in
Text-to-SQL tasks in zero-shot scenarios.

2 Background

Text-to-SQL represents a cutting-edge task in Nat-
ural Language Processing (NLP), where the goal
is to translate user queries expressed in natural lan-
guage into SQL queries that can be executed on a
database. This task is crucial in making database
interactions more accessible to users who may not
be familiar with SQL syntax.

In the early stages of Text-to-SQL research, the
focus was primarily on rule-based and heuristic
approaches (Warren and Pereira, 1982; Giordani
and Moschitti, 2012).

The landscape of Text-to-SQL began to evolve
significantly with the advent of neural network-
based approaches (Yin et al., 2016; Xu et al., 2017).
The shift towards neural models was facilitated by
the creation and availability of large, specialized
datasets such as Spider (Yu et al., 2019), which
provided diverse and complex natural language to
SQL examples.

The most recent advancements in Text-to-SQL
involve the use of Large Language Models (LLMs),
which have demonstrated remarkable capabilities
in handling various tasks without the need for spe-
cific pretraining or fine-tuning tailored to each task.
Gao et al. (2023) and Pourreza and Rafiei (2023)
have shown that GPTs are effective Text-to-SQL
coders on Spider, widely acknowledged as an ef-
fective benchmark for assessing performance in
this specific task. On the same dataset, approaches
that involve deconstructing the problem in smaller

ones via in-context learning (Pourreza and Rafiei,
2023; Zhang et al., 2023a) are also effectively ex-
plored. However, while LLMs performances have
been explored in detail, it remains unclear whether
the results may be conflated by data contamination.
Indeed, if it turns out that LLMs perform better on
tasks with data that have already been seen during
the pretraining phase, we would be facing an issue
of data contamination.

Data Contamination is a relatively new and
tricky problem in the field of machine learning, and
there are only a few studies that have addressed it.
Magar and Schwartz (2022) attempts to examine
how accuracies achieved by BERT (Devlin et al.,
2019) on certain tasks vary from previously seen
data e and unseen when the training set contains a
portion of the test set. Recently, the effect of data
contamination on BERT and GPT-2 performance
on NLU datasets has been discussed by training a
model from scratch and measuring the difference
in performance over seen and unseen data (Ranaldi
et al., 2023b; Jiang et al., 2024) or by evaluating
pre-trained vanilla transformers on definitely un-
seen data taken from the dark web (Ranaldi et al.,
2023a). This line of research is complementary
to the one we are proposing in this paper. In fact,
experimenting with very large language models is
still challenging. These technical limitations lead
to experiments that involve training on smaller net-
works, which resemble the original one but are
trained on fewer data and have fewer parameters
(as done both in Ranaldi et al. (2023b) and Jiang
et al. (2024)). Hence, a different strategy is needed
to address data contamination in closed models.
Like Carlini et al. (2021), we are trying to extract
pretraining data information from LLMs, while no
accurate information on pretraining data is avail-
able. The concern about Data Contamination is
growing along with the popularity of closed LLMs
(Sainz et al., 2023) and some efforts – like the Con-
tamination Index1 – are made to trace back training
data.

Our work contributes to understanding how data
contamination – also called "Memorization" by
Magar and Schwartz (2022) – plays a role in Text-
to-SQL tasks on black-box models, without any
further training step. In particular, we will test
GPT-3.5 on a well-known dataset –Spider– and
compare the performance it achieves on this dataset
to that obtained on a new, totally unseen one. Thus,

1https://hitz-zentroa.github.io/lm-contamination/
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taking inspiration from very recent work dealing
with Data Contamination in GPT-3.5 (Golchin and
Surdeanu, 2023; Chang et al., 2023; Deng et al.,
2023), we will design specific tasks to assess the
presence of data contamination and its effect on
model performance.

3 Text-to-SQL Datasets

To explore whether some test dataset has been
leaked during training (RQ1), meausure GPTs per-
formance in Text-to-SQL tasks both on potentially
known and unknown data (RQ2) and whether data
contamination is responsible for this performance
(RQ3), the first step is to introduce the used datasets.
In addition to the de-facto standard of Spider (Yu
et al., 2019) (described in Sec. 3.1), we propose
Termite, a Text-to-SQL dataset conceived to be a
new and never-seen resource (introduced in Sec.
3.2). Therefore, Termite lowers the probability of
performance boost due to data contamination.

3.1 Spider: Characteristics and Content

Spider (Yu et al., 2018) is the de-facto standard for
training and testing systems on the Text-to-SQL
task. Then, this dataset is used in our study on
GPTs and it is used to inspire the construction of
our Termite - Text-to-SQL Repository Made Invisi-
ble to Engines.

Spider appears as a collection of databases and
associated sets of pairs of natural language (NL)
questions and the corresponding SQL translations.
Databases are structurally represented inside the
dataset in the form of SQL dumps, which include
the CREATE TABLE operations and a limited number
of INSERT DATA operations for each table.

NL questions are organized into four difficulty
levels: EASY, MEDIUM, HARD, and EXTRA-HARD. The
difficulty of an NL question is assessed by con-
sidering the corresponding SQL query.Hence, the
difficulty is correlated with the number and kind of
operations that the gold query contains: the pres-
ence of JOIN operations, aggregation and WHERE
conditions contributes to the hardness of the query.
EASY queries do not involve more than one ta-
ble. MEDIUM and HARD queries span multiple tables:
MEDIUM queries contain only a JOIN or aggrega-
tion operation whereas HARD queries are more com-
plex both in terms of number of JOIN and aggre-
gations. Finally, EXTRA-HARD queries may contain
nested queries, and other operators like UNION and

INTERSECT 2.
Since our aim is to evaluate the GPT capabilities

in zero-shot scenario, we only considered the vali-
dation split of Spider. This portion of the dataset
consists of 20 databases and 1,035 pairs of NL-SQL
queries distributed on the four difficulty categories
(see Tab. 1).

3.2 Termite: a Text-to-SQL Repository Made
Invisible to Engines

The driving idea for proposing a new dataset for
the Text-to-SQL task is to reduce the possibility of
boosting performance due to data contamination.
Indeed, publicly available datasets are generally
not suitable for this purpose. Novel datasets made
available, for example, after training a model that
one wishes to test, but which are built from publicly
available resources such as Kaggle or Wikipedia
(this is the case for recently developed datasets like
BIRD (Li et al., 2023) or Spider itself), do not guar-
antee that they are as new as required. The same
issue may also be faced for "hidden" test sets. Also,
since freely available datasets are easily accessed
and tracked by engines, if not already contaminated,
they are at risk of being contaminated in the near
future. To address these challenges, we propose
Termite3. Termite aims to be a permanently fresh
dataset. Indeed, our dataset will be invisible to
search engines since it is locked under an encryp-
tion key that is distributed with the dataset. This
trick will reduce the accidental inclusion in a novel
training set for commercial or research GPTs.

Drawing inspiration from the characteristics of
Spider, Termite contains hand-crafted databases in
different domains. Each database has a balanced
set of NL-SQL query pairs: we defined an average
of 5 queries per hardness-level. The entire dataset
was designed to be comparable to the Spider Vali-
dation Set, not only in terms of database character-
istics such as size and table count (see Table 1) but
also in terms of query difficulty, which was mea-
sured using the same definition provided by Spider.
Moreover, as in Spider, during the construction of
Termite we took care to write unambiguous, direct
NL questions that can be solved by a model relying
only on its linguistic proficiency and on an analysis
of the schema, with no external knowledge needed.
The style adopted in the NL questions is plain and
colloquial in line with the style of Spider’s NL

2More details are available on the official Spider repository
3The repository will be available here under GPL-3.0 li-

cense. To access, use the password "youshallnotpass".
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Dataset
Spider Termite

#DB 20 10
avg #TABLES per DB 4.2 4.0
avg #COLUMNS per TABLE 5.46 5.56
#QUERY 1035 202
avg #QUERY per DB 51.75 20.2
avg #FK/#COLUMNS per DB 0.16 0.13
avg #Compound/#COLUMNS
per DB

0.63 0.51

avg #Abbr/#COLUMNS per DB 0.10 0.12

Table 1: Spider and Termite fact sheet. Termite is de-
signed to be comparable to the validation set of Spider.

questions. Spider and Termite are also comparable
in terms of number of tables and columns in each
dataset. We curated the column names to make
them similar to the ones in Spider, using a similar
percentage of abbreviations and compound names
(see Table 1 and Appendix A). This equivalence
will be crucial to limit the influence of the dataset it-
self on the following evaluations and will be further
explored in Section 3.3.

However, there is a significant and fundamental
difference between the two datasets, as the Ter-
mite is not openly available on the web or easily
retrievable nor built on pre-existing openly avail-
able resources. Therefore, we can be confident that
our dataset did not contribute in any way to the
pretraining of LLMs. This aspect will be crucial
in the next sections, where we will investigate data
contamination in GPT-3.5.

3.3 Comparing Hardness of Termite vs.
Spider

An inherently different hardness of Termite and
Spider may cause imbalances during a comparative
evaluation of LLMs over different sets. Then, we
aimed to produce an Termite that is as close as
possible to Spider.

Termite is designed to resemble Spider in terms
of measurable aspects, like the number of columns
and tables per database, as well as the lexicon used
in the schema definition. However, it remains dif-
ficult to quantify via some simple statistics how
hard it is to understand how to translate a natural
language question into an SQL statement.

To compare hardness of Termite and Spider, we
adopted a human-centered definition: if humans
can translate questions into an SQL queries on both
Spider and Termite with the same level of chal-

lenge, then it means that their hardness, at least
for a SQL-proficient human annotator, is the same.
Therefore, ten annotators were asked to judge the
equivalence in terms of hardness of the SQL trans-
lations that compose Spider and Termite by exam-
ining a random sample of queries of both datasets.
To measure the hardness of the two datasets, we
designed a simple test. Given a Entity-Relationship
schema of a database and a question in natural lan-
guage, each annotator is asked to choose among
three options the correct translation in SQL of the
question. Appendix B presents details on the con-
struction of the test.

On both Spider and Termite, taking as join anno-
tation the answer chosen by the majority of annota-
tors leads to almost perfect classification (0.975
accuracy on Spider and maximum accuracy on
Termite). The average accuracy per annotator is
0.91(±0.05) on Spider and 0.94(±0.07) on Ter-
mite. Moreover, Fleiss’s Kappa coefficients are
rather high (0.79 and 0.85 respectively) for both
Spider and Termite. Hence, we can conclude that
humans do not find a dataset more difficult than
the other. Then, the two datasets can be considered
equivalent in terms of hardness of translations.

4 Method: studying Data Contamination
and its Effect on the Text-to-SQL Task

Our intuition is that data contamination may play
an important role in GPT’s performance. However,
investigating the presence of data contamination
in GPT models is extremely difficult if there is no
possibility to access training datasets. Then, data
contamination can only be estimated.

To investigate our intuition, we first describe a
way to quantify the presence of data contamina-
tion on GPT by examining database dumps in the
Text-to-SQL datasets (Sec. 4.1). Then, we tested
GPT-3.5 on the Text-to-SQL task both on possibly
already explored and definitely hidden data (Sec.
4.2). We expect a decline in performance when
the model is required to make inferences on new
data not previously encountered. Finally, we de-
scribe an adversarial degradation of the input that
makes the task of Text-to-SQL translation harder
without prior knowledge (Sec. 4.3). Indeed, we
argue that if a model achieves high performance in
a task by memorizing previously seen information,
reducing the quality of input information would not
significantly impact its performance on data it has
encountered before.
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4.1 Tracing Data Contamination
Our aim is to understand whether data contami-
nation may have occurred before testing GPT-3.5
performances on Text-To-SQL task. The data con-
tamination issue criticality emerges when a model
is inadvertently trained on data that include or over-
lap with its testing dataset: this issue may lead to
skewed performance metrics and a misrepresenta-
tion of the model’s true capabilities. For models
like GPT-3.5 – black-box models with scarce infor-
mation about the sources of training – it is neces-
sary to find indirect measures to assess the presence
of data contamination.

In the specific case of Text-to-SQL, along with
the request to translate the query, the models trained
on this task are provided with information regard-
ing the database schema. In particular, LLMs may
also have been trained on the dumps of databases
in the Text-to-SQL datasets. Hence, it is possible
to assess the presence of data contamination on
Text-to-SQL datasets by measuring the previous
knowledge that a model has on these dumps.

A clue to determine whether the data contamina-
tion has occurred is that the model is able to recon-
struct missing information regarding the database
schema. Since LLMs are trained to produce text,
we propose to measure the accuracy that a model
achieves in reconstructing a dump that has been
masked. If the model is able to reconstruct this
information on potentially seen data –as Spider’s
validation dataset might be – and fails to recon-
struct it on the new resources – like Termite– we
argue that data contamination has occurred.

In particular, a dump was masked by replacing
the 25% of columns in each table with a [MASK]
token. Then, GPT-3.5 was prompted to reconstruct
the dump by replacing the masked tokens with ap-
propriate column names. In these experiments,
the INSERT instructions are also removed from the
dump to limit the possible inference regarding the
names of columns. It is important to note that the
task is still feasible even if no data contamination
has occurred: column names can be deduced from
the names of the tables and other columns. How-
ever, the task would be much easier in the presence
of data contamination.

Hence, given the reconstructed dump from GPT-
3.5, we define the DC-accuracy as the percentage
of times the predicted column name is equal to the
true column name:

DC-accuracy =
# of correct columns name

# of columns

It is possible to assess the presence of data contam-
ination by measuring the DC-accuracy both on the
Spider dumps and on the Termite dump databases.

4.2 Prompting LLMs for Text-to-SQL
Translation

Given an instruction in natural language, LLMs can
translate the request into code – and SQL queries,
in particular – to answer the given request. Specifi-
cally, OpenAI’s models for generating text have un-
dergone training to process both natural language
and code. These models produce text-based out-
puts as a result of the inputs they receive. For this
reason, it is possible to frame the Text-to-SQL as a
translation task: given a dump for a database and
a query in natural language, the model is asked to
translate the latter in the corresponding SQL query,
referring to tables and columns into the considered
database. The desiderata is an executable query,
semantically equivalent to a gold human-generated
query. In the next paragraphs, we first describe
how GPT-3.5 – in particular, gpt-3.5-turbo – is
prompted in order to obtain the translations and
then how it is possible to automatically evaluate
the performance of this system on both Spider and
Termite datasets.

Text-to-SQL as a Translation Task OpenAI
API’s enable to interrogate a model in a multi-
turn conversation format: chat models receive a
series of messages as input and generate a message
as output. We test the ability of GPT-3.5 on the
Text-to-SQL task by framing each translation from
natural language to SQL as a separate conversation.

In particular, given a target database, in the
first message, the model is given the dump of the
database. In each dump, information about the ta-
bles that constitute the database is provided by the
CREATE TABLE statements. In the CREATE instruc-
tions, the constraints of the primary and foreign
keys are also encoded. In addition, some realistic
data to fill the tables are provided by INSERT in-
structions. Given the dump, the model answers by
producing an interpretation of the dump. Typically,
this model response contains an explanation of the
contents of the dump. For example, considering
the database car_1 in the Spider dataset, the first
messages in the conversation are the following:

Then, given the dump and the interpretation that
the model gives of it, a message containing the
natural language question to be translated is sent.
In particular, the selected prompt ensures that the
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user: CREATE TABLE "continents" [...];
CREATE TABLE "countries" [...];

GPT-3.5: The code above includes the
creation of six tables: continents,
countries [...]

model translates natural language questions into
SQL queries with a limited amount of text that is
not SQL. These steps are repeated for each question
separately to obtain translations independently of
each other. However, to ensure that the model’s un-
derstanding of each database is comparable across
all questions, the database dump and the same in-
terpretation initially produced by the model are
sent as context, in the form of preceding messages,
before each translation is requested. Hence, build-
ing from the previous example, a conversation to
translate a question on the car_1 database would
be completed by the following messages:

user: Translate in SQL the following
query. Answer using only SQL. What is
the number of continents?

GPT-3.5: SELECT COUNT(*) as n_conts
FROM continents;

Our approach is completely zero-shot, to min-
imize the effect that the prompt itself–rather
than data contamination–can have on performance.
Once the translation process is completed, the SQL
code produced by the model is retrieved to evalu-
ate whether or not the generated query satisfies the
natural language query.

Test Suite Accuracy: the Evaluation Metric
We adopted the Test Suite Accuracy metric as an
evaluation metric in our experiments. This score
was introduced by Zhong et al. (2020) and currently
is the official metric for the evaluation of systems
tested on Spider4. In principle, given a query q
generated by a system, one would like to evaluate
whether q is semantically equivalent to a human-
generated gold query g. This metric, known as
semantic accuracy, is undecidable in general (Chu
et al., 2017). The Test Suite Accuracy metric aims
to approximate semantic accuracy and states the
correctness or incorrectness of q by comparing the
denotation of a gold query g and the denotation of
q. However, it introduces fewer false positives than
Execution Accuracy – that compares g and q on a
single database – by comparing the denotation of

4As reported on the Spider official website

both queries on as few databases as possible. This
set of random databases is called the Test Suite.

In our experiments, a Test Suite of maximum
1000 random databases is constructed for each
database upon which queries are defined, as re-
ported in the original paper. Therefore, a model-
generated query q is executed on the Test Suite
databases and labeled correct if no database can
distinguish it from the gold query q. The 97% of
the queries is automatically evaluated, while the
remaining ones are manually evaluated by three
SQL-proficient annotators. This step is necessary
because, in these rarer cases, the queries – either
gold or model-generated – make use of functions
not available in the SQL server used to execute the
queries.

Using the Test Suite Accuracy as an approxima-
tion of the semantic accuracy of the system, we
show that, among different databases and differ-
ent query difficulties, GPT-3.5 demonstrates dif-
ferent performance on Spider and Termite datasets
(Section 5.2). In addition, the same type of evalua-
tion will be performed on adversarially degraded
databases in Section 5.3 to establish that the highest
performance degradation occurs on unseen data.

4.3 The Adversarial Table Disconnection
The differences in performance over seen rather
than unseen data it is not, in principle, sufficient
to state that the observed differences are caused by
data contamination issues since it is still possible
that the datasets hinder some biases. On the one
hand, we designed the Termite dataset to be com-
parable to Spider; hence, once the hardness of the
queries is also fixed, performances are comparable.
On the other hand, we want to ensure that memo-
rization is, in fact, playing an important role. For
this reason, we propose an adversarial approach to
state the importance of memorization on this task.
We will refer to this method as Adversarial Table
Disconnection (ATD).

The ATD aims to make the translation process
from a request in natural language into SQL harder.
In particular, ATD disconnects the tables from each
other, making it more difficult to figure out on
which columns the JOIN needs to be performed.
ATD disconnects tables by removing the foreign
keys constraints. In particular, all instructions refer-
ring to the creation of the constraint are removed
from the dump. This structural information is criti-
cal to translating a questions into SQL queries: we
argue that the removal of this information has a
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crucial impact on translation, both for humans and
systems, unless the missing information can be re-
trieved. Given the importance of the presence of a
foreign key, our aim is to remove insights about the
relation between columns that may be directly used
to infer the removed relationship. Hence, ATD in-
volves the removal of all the INSERT instructions
from the dump. In fact, matching values into this
type of instructions may give direct clues about the
columns relationships. Crucially, our aim is not to
change the semantic of the database, but only to
make it less easy to understand. For this reason,
the original column names are kept, making infer-
ences about the content of the database still pos-
sible. Hence, after ATD a model is given a dump
deprived of structural information, with tables dis-
connected from one another but still semantically
equivalent to the original one.

Because ATD makes the task more difficult, a
drop in system performance is expected. However,
the drop can be mitigated by relying on prior in-
formation about the database structure. Therefore,
given the presence of data contamination, we ex-
pect GPT-3.5 to be robust to ATD perturbation on
Spider datasets, with a more pronounced perfor-
mance loss on Termite databases.

5 Experiments

5.1 Quantifying the Data Contamination in
Text-to-SQL datasets

It is possible to quantify the presence of data con-
tamination by comparing the DC-accuracy that
GPT-3.5 achieves in predicting column names on
a new dumps –from Termite– versus potentially
already seen dumps in Spider (as described in Sec-
tion 4.1). In Table 2, the average DC-accuracy over
Spider and Termite datasets is reported.

The model seems to find the task easier on Spider
databases than on Termite ones. In particular, the
average accuracy of Spider dumps is more than
33%, that is, on average, more than 20% higher
than the score on Termite. Moreover – while on
both datasets, some databases are hard to predict,
with a minimum accuracy of 0 – on the Spider
dataset, GPT-3.5 achieves a perfect accuracy on
two databases. The same does not hold for Termite,
where the highest accuracy is 44%. The different
performance of the model on these two datasets
suggests the presence of data contamination.

It is also interesting to notice that on 35% dumps
(7 dumps), the DC-accuracy is over 40%, while

DC-accuracy Spider Termite

Mean 33.42(±33.01) 13.21(±18.70)
Min - Max 0.00− 100.00 0.00− 44.44

Table 2: Average, min, and max accuracies of GPT-3.5
on predicting the masked columns names on dumps in
Spider and Termite. The overall performances in terms
of DC-accuracy over the Spider dataset are superior
with respect to the one that can be observed on Termite
dataset.

only on two databases among the ones in Termite
GPT-3.5 achieves (with a score of 44.44% and
40%) the same results. A complete list of accu-
racies per database can be found in Appendix C
The different performance in terms of DC-accuracy
over Termite with respect to Spider suggests the
presence of data contamination.

5.2 Measuring GPT-3.5 performances on seen
and unseen data

Having estimated the presence of data contamina-
tion, we focus on the analysis of the performance
of GPT-3.5 on the dataset presented in Section 3.
The results described here suggest the role that
memorization may play in the performance of a
Large Language Model like GPT-3.5. We analyze
the model’s performance by categorizing queries
according to their hardness and averaging across
the different databases of the two datasets (see Ap-
pendix D for the results on different databases).

Table 3 reports the average Test Suite Accuracy
results for each hardness level. We notice that, on
both sets of databases, the accuracy of the model
decreases as the hardness increases. In particular,
the EASY queries on the Spider dataset achieves,
on average, accuracy over the 90%. Accuracy de-
creases progressively, with the greatest drop (29%)
between MEDIUM and HARD levels. The worst accu-
racy is obtained on the EXTRA-HARD queries. The
same trend is also observed on the Termite dataset:
on the queries EASY GPT-3.5 achieves an average
accuracy of 74%. Again, a decrease in performance
is observed on the MEDIUM and HARD queries, while
on Termite EXTRA-HARD queries GPT-3.5 appears
to achieve performance similar to HARD queries.

However, comparing the results on the two
datasets, it is possible to notice that, given a cer-
tain hardness level, the accuracy of GPT-3.5 is not
comparable on the two datasets. In fact, the av-
erage performance difference between Spider and
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Hardness Original Dumps Adversarial Table Disconnection

Spider Termite Spider Termite

EASY 90.11(±11.65) 74.00(±21.19) 91.08(±10.32) 62.00(±19.89)
MEDIUM 77.21(±16.35) 67.06(±24.83) 72.71(±23.63) 63.70(±16.03)
HARD 48.83(±23.17) 28.33(±23.78) 48.71(±28.79) 22.67(±22.20)
EXTRA-HARD 30.94(±23.79) 31.14(±24.54) 28.96(±19.28) 28.98(±17.03)

Table 3: GPT-3.5 accuracy on the Spider Dataset and the Termite Dataset, across four levels of hardness of queries.
The results reported are average accuracy across all databases in the two datasets. The first two columns refer to
accuracies on the standard task, while the last columns show results after ATD.

the Termite dataset is remarkable: EASY query ac-
curacy decreases by 16%, 10% for MEDIUM ones.
The biggest drop is observed on HARD queries, with
a 20% difference in performance. The only accura-
cies that appear to be similar – and sensibly lower –
are on EXTRA-HARD hard queries.

These results provide insight that GPT-3.5 ca-
pability on the task may be highly influenced by
data contamination issues. In fact, given compa-
rable queries from a hardness perspective, results
on databases that have never been seen turn out to
be worse than those that have already been made
available and, likely, observed in training.

5.3 Robustness of GPT-3.5 on Text-to-SQL
performances after ATD on seen data

To better understand whether the data contamina-
tion is responsible for the difference in performance
observed in Table 3, we analyze the accuracy over
Spider and Termite after ATD.

As expected, a greater performance drop is ob-
served over Termite databases, while the model
seems to be robust against the ATD over the Spider
dataset. In particular, the accuracy over the EASY
queries decreases by 12 points on average on the
Termite dataset, while similar results (close to the
90%) can be observed in Spider. On the MEDIUM
queries, a slightly more pronounced difference in
performances can be observed over Spider (4.5
points) with respect to the one observed in Termite
(3.36 points). It is on the HARD queries, however,
that the different performances on seen and unseen
data are much more evident. Those queries require
more JOIN operations than the previous ones. On
the one hand, on the Spider databases, the average
performance is around 48% for both the original
dumps and the dumps on which ATD is applied.
On the other hand, an average performance drop
of 5.66 points is observed on the Termite dumps.

Finally, similar and generally lower performances
can be observed over the HARD queries.

Hence, this final experiment confirms that –since
the drop observed in the performance of GPT-3.5
after ATD is greater on new data than on contami-
nated ones – the memorization ability of the model
plays a crucial role in its performance.

6 Conclusions

This paper shows that data contamination is respon-
sible for overestimating the performance of GPT-
3.5 on Text-to-SQL. The experiments conducted,
using a novel metric for detecting data contamina-
tion, clearly demonstrate that GPT-3.5 possesses
prior knowledge on the contents of the Spider vali-
dation set in contrast to his ignorance of our con-
structed Text-to-SQL unseen dataset, Termite. In
fact, as results show, Text-to-SQL performances
on Spider are significantly better than on Termite.
This suggests that GPT-3.5 capabilities in zero-shot
scenario might not be as surprising as previously
thought. Observing the results of data contami-
nation alongside with performances achieved in
Text-to-SQL on the two datasets, we concluded
that it is indeed the prior knowledge of GPT-3.5 on
the test set that makes a significant difference. In
addition to this, we found that Adversarial Table
Disconnection impacts the results of Text-to-SQL
tasks differently across datasets: its influence is
relatively mild in the case of the Spider dataset but
more pronounced with the Termite dataset.

Since data contamination is the main responsi-
ble for overestimating performances on Text-to-
SQL and, possibly, on other tasks, a more thorough
reexamination of current LLM’s benchmarks for
downstream tasks in zero-shot scenarios would be
needed. Furthermore, it would be beneficial to de-
velop public datasets, like our Termite, that remain
outside the LLM’s pretraining. This may guaran-
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tee that evaluations on pretrained LLMs are not
impacted by Data Contamination.

Limitations

Our analysis of data contamination of GPTs has
some limitations. Below, we describe some of these
and suggest directions for future work

First, the impact of Data Contamination on the
performance of Text-to-SQL tasks has been tested
specifically on GPT-3.5. This is a limitation and
the analysis should be extended to other models.
However, we performed preliminary small-scale
pilot experiments akin to those conducted in this
study. Results suggest that Data Contamination
also affects GPT-4.

Furthermore, we used only a public dataset for
this task. However, this single dataset already
shows that data contamination is a relevant issue in
measuring performance.
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A Analysis of Column Names in Spider
and Termite

The following Table present the percentage of col-
umn names that consist in abbreviations or com-
pound nouns on both Spider and Termite dataset.
On average, both datasets presents a similar distri-
butions of this kind of columns names. The equiv-
alence in terms of abbreviations and compound
nouns, as discussed in Section 3.2 is crucial to a
fair evaluation during the estimation of data con-
tamination (Section 4.1).

Table Compound Abbreviation

Termite

bowling 0.63 0.00
centri 0.48 0.16
coronavirus 0.55 0.15
farma 0.62 0.29
farmacia 0.65 0.15
galleria 0.20 0.00
hackathon 0.62 0.00
pratica 0.33 0.00
recensioni 0.56 0.00
voli 0.48 0.43

Spider

battle_death 0.33 0.00
car_1 0.30 0.09
concert_singer 0.48 0.00
course_teach 0.60 0.00
cre_Doc_Template_Mgt 1.00 0.00
dog_kennels 0.80 0.04
employee_hire_evaluation 0.59 0.00
flight_2 0.54 0.23
museum_visit 0.67 0.17
network_1 0.57 0.00
orchestra 0.57 0.00
pets_1 0.64 0.36
poker_player 0.64 0.00
real_estate_properties 0.95 0.41
singer 0.60 0.00
student_transcripts_tracking 0.93 0.04
tvshow 0.52 0.04
voter_1 0.67 0.11
World_1 0.42 0.15
wta_1 0.86 0.28

B Measuring Hardness of queries in
Spider and Termite

As described in Section 3.3, we need to ensure
that Spider and Termite are comparable in terms
of hardness. Termite is designed with a similar
annotation protocol; however, a similarity in terms
of the hardness of the natural language questions
used is hard to quantify. For this reason, we asked
10 SQL-proficient annotators to perform a simple
yet effective test to measure how difficult it is for
them to translate questions both from Spider and
from Termite. The main idea is that if they can
translate both Spider and Termite questions with
the same level of accuracy, then it means that the
level of challenge is similar on both datasets.

In particular, given an E-R database schema and

13918

https://aclanthology.org/J82-3002
https://aclanthology.org/J82-3002
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1711.04436
https://doi.org/10.18653/v1/W16-0105
https://doi.org/10.18653/v1/W16-0105
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/2308.01240
http://arxiv.org/abs/2308.01240
http://arxiv.org/abs/2308.01240
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29


a natural language utterance, each test question
asks the annotator to choose from three options the
SQL query that satisfies the request. All three of
the options are syntactically correct SQL queries,
but the incorrect answers are semantically different
from the correct one. The first incorrect option
is designed by the authors, perturbing the correct
answer by removing or replacing some operations
or some retrieved columns, changing the field and
tables names with non-matching ones. The sec-
ond incorrect answer is, instead, another query ex-
tracted from the same dataset as the correct one.
The selected query is the most similar under the
Bag of Words assumption with respect to the cor-
rect one. The similarity of two queries, in order to
retrieve this third option, is measured via cosine
similarity of their BOW vector representations.

The complete test is composed of 20 randomly
selected queries from each dataset, Hence, the
resulting 40 questions are shared to 10 SQL-
proficient annotators: 60% of them are Computer
Science Master students, the remaining are already
graduated. Five of the annotators work in a field
that requires daily use of the SQL query language.
Finally, we further divided the test into two trials
of 20 queries each and administered it to the anno-
tators at two different times to limit the presence of
errors due to gradual loss of concentration.

C Assessing the presence of Data
Contamination

The following two tables show the DC-accuracy
of GPT-3.5 on the Spider (Table 4) and Termite
(Table 5). Notice that, as discussed in Section 5.1,
the overall performance in terms of DC accuracy
on the Spider dataset is higher than that observed
on the Termite dataset. Those results indicate the
presence of data contamination.

Database DC-accuracy
battle_death 0.16
car_1 0.00
concert_singer 0.78
course_teach 0.00
cre_Doc_Template_Mgt 0.40
dog_kennels 0.52
employee_hire_evaluation 0.20
flight_2 0.00
museum_visit 0.00
network_1 1.00
orchestra 0.43
pets_1 0.50
poker_player 0.50
real_estate_properties 0.46
singer 0.00
student_transcripts_tracking 0.22
tvshow 0.00
voter_1 1.00
wta_1 0.16

Table 4: GPT-3.5 DC-accuracy across the different
databases in Spider

Database DC-accuracy
bowling 0.14
centri 0.00
coronavirus 0.44
farma 0.00
farmacia 0.00
galleria 0.00
hackathon 0.33
pratica 0.00
recensioni 0.40
voli 0.00

Table 5: GPT-3.5 DC-accuracy across the different
databases in Termite
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D Text-to-SQL GPT-3.5 detailed performances

The following Table shows the results for each database in the Text-to-SQL task both for Spider and
Termite dataset. Notice that the accuracy decreases as the hardness increases and that on Termite, results
are generally lower.

Termite
difficulty hackathon galleria recensioni centri pratica

Original

easy 60.0 80.0 40.0 100.0 60.0
medium 50.0 100.0 40.0 100.0 50.0
hard 25.0 66.66 0.0 0.0 33.33
extra 50.0 30.0 0.0 25.0 57.14

ATD

easy 60.0 40.0 40.0 60.0 60.0
medium 50.0 80.0 60.0 71.42 50.0
hard 25.0 0.0 50.0 0.0 33.33
extra 33.33 30.0 0.0 25.0 57.14

Termite
difficulty coronavirus farmacia voli bowling farma

Original

easy 60.0 60.0 80.0 100.0 100.0
medium 60.0 40.0 100.0 55.55 75.0
hard 40.0 60.0 25.0 33.33 0.0
extra 0.0 40.0 20.0 14.28 75.0

ATD

easy 40.0 60.0 80.0 80.0 100.0
medium 60.0 60.0 100.0 55.55 50.0
hard 0.0 60.0 25.0 33.33 0.0
extra 40.0 20.0 20.0 14.28 50.0

Spider
difficulty battle_death car_1 concert_singer course_teach cre_Doc_Template_Mgt

Original

easy 100.0 94.44 100.0 75.0 100.0
medium 62.5 40.62 62.5 85.71 79.54
hard 0.0 18.75 61.54 62.5 40.0
extra 50.0 15.38 50.0 33.33

ATD

easy 100.0 88.89 100.0 75.0 91.66
medium 62.5 50.0 66.66 85.71 79.54
hard 0.0 18.75 76.92 62.5 40.0
extra 25.0 385 0.0 50.0

Spider
difficulty dog_kennels employee_hire_evaluation flight_2 museum_visit network_1

Original

easy 90.0 100.0 84.62 100.0 100.0
medium 80.55 92.86 76.66 87.5 77.27
hard 60.0 80.0 62.5 66.66 56.25
extra 53.85 0.0 12.5 25.0 83.33

ATD

easy 90.0 100.0 92.31 100.0 100.0
medium 77.78 100.0 46.66 100.0 81.82
hard 80.0 80.0 50.0 100.0 62.5
extra 50.0 25.0 6.25 0.0 50.0

Spider
difficulty orchestra pets_1 poker_player real_estate_properties singer

Original

easy 85.71 100.0 93.75 100.0 100.0
medium 83.33 81.82 100.0 50.0 100.0
hard 83.33 50.0 62.5 0.0 33.33
extra 50.0 30.0

ATD

easy 100.0 100.0 87.5 100.0 83.33
medium 77.78 68.18 100.0 0.0 88.89
hard 83.33 66.66 50.0 0.0 33.33
extra 50.0 30.0

Spider
difficulty student_transcripts_tracking tvshow voter_1 world_1 wta_1

Original

easy 65.38 80.0 66.66 79.16 87.5
medium 62.5 86.66 100.0 67.39 66.66
hard 37.5 60.0 50.0 42.86
extra 15.0 0.0 50.0 26.66 0.0

ATD

easy 65.38 85.0 100.0 75.0 87.5
medium 66.66 80.0 100.0 58.69 63.33
hard 25.0 30.0 45.0 21.43
extra 25.0 50.0 25.0 23.33 50.0

Table 6: Test-Suite Evaluation results for GPT-3.5
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