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Abstract: Currently, reducing energy consumption and fossil fuel emissions are key factors placed
in the first position on the European agenda. District heating technology is an attractive solution,
able to satisfy the energy and environmental goals of policymakers and designers. In line with
this, a different approach to planning a district heating grid based on the optimization of building
clusters is presented. The case study is Wilhelmsburg, a district of Hamburg city. This approach also
investigates the usage of industrial waste heat as the grid’s heat source, which is CO2-neutral. First,
the data acquisition regarding the buildings’ location and heat demand are described in detail. Based
on the derived data and the source of the industrial waste heat, the district heating grid is created
by clustering the buildings and connecting the obtained nodes. Furthermore, the grid’s efficiency
is improved by eliminating nodes, which are too distant from the heat source, or have lower heat
demand. Finally, a single building is simulated in Matlab/Simulink, showing the energy-savings and
ecological results. The usage of the district heating grid saves 97.32 GWh annually, which results in
financial savings of €5.83 million, and avoided CO2 emissions of 19,585 tCO2.

Keywords: district heating; industrial waste heat; optimization; building clustering; GIS

1. Introduction

The building sector is one of the largest energy consumers in Europe today, therefore
the identification of appropriate measures to reach the European reduction target is a
current challenge for policymakers and designers [1]. As a result, many interventions
and measures are now forecasted using planning tools and methods [2,3]. Local energy
planning has therefore gained popularity in recent years, as geographic information sys-
tem (GIS) applications spread and computing power has increased [4,5]. Recently, there
have been numerous strategies proposed for conserving energy in the building sector,
including thermal insulation, double and triple glazing, solar shadings [6,7], the efficient
usage of HVAC equipment [8], hybrid energy system [9] and using renewable energy
sources [10,11]. As well as these technologies, district heating systems are another viable
solution for improving energy efficiency [12] and sustainable assessment [13] in buildings.
Consequently, this technology is ideal for urban areas with high thermal demand densities.
Heat sources, users, and distribution networks constitute the general components of DHSs.
The complexity of a DHS depends on various factors [14,15]. Starting from the beginning
of this technology, it was not easy to obtain proper and coherent results in line with the real
problems of a district network [14].

Many advantages of this energy system are well-known, starting from the renewable
energy source inclusion [16] to positive environmental impacts, also for improving the
outdoor comfort for citizens [17,18]. Due to its relevant benefits, different works were
developed during the last years to improve its capabilities, such as optimizing the operation
of the thermal plants [19] and the supply temperature [20] or the settings of the pumping
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system [21]. Those approaches are often focused on specific components or issue of the DH,
missing a global approach to plan the entire network. Therefore, there is still an urgent call
to develop and investigated affordable approach to design the district heating in different
urban areas [22–24]. The two most famous planning methods available in literature are the
Danish method [25] and the German method [26]. In both methods, smaller branches are
merged into bigger branches and the heat loads of the removed branches are incorporated
into the preserved branches. Among this, Guelpa et al. [27] proposed a method to increase
the performance of district heating minimizing the thermal peaks. A clustering approach
is also involved to optimize the pipe grid. Results demonstrate an average reduction of
the thermal peak load up to 14% thanks to this optimization. Another work [28] is focused
on optimizing the multi-source energy plant sizing using different climatic scenarios,
using Matlab for modelling the environment understudy. As well, Widen and Aberg [29]
developed a fixed model structure (FMS) that requires only general information about DH
systems for cost-optimization studies. The results demonstrate the usefulness of the FMS
for DH system optimisation studies, and that increased building energy efficiency leads to
a reduction in fossil fuel and biomass consumption.

A few papers have been published on multi-source production plants or distribution
hubs and how to expand or redesign a distribution hub to connect new consumers to it.
Among this, biomass-based district-heating networks, which represents the basis of Italian
industry’s successful production, are designed using a system optimisation approach [30].
Instead, Burer et al. [31] proposed an optimized district heating and cooling plant pro-
viding heat and power to a small number of residential buildings, to minimize cost and
CO2 emissions. According to Corrado et al. [32], heat pumps, wood boilers, condensing
boilers, and solar energy (thermal and photovoltaic) can be combined to generate energy.
Cogeneration with solar energy and wind energy was combined by Sontag et al. [33]. An
interesting study developed by Trillat et al. [34], integrated CHP with an absorption chiller
and desiccant cooling; while Lee et al. [35] studied the integration of solar water heating,
solar photovoltaic, ground source heat pumps, electric chillers, and gas boilers into an
integrated renewable energy system.

In this framework, this study aims to fulfill this field of research proposing a different
approach to connect existing district heating with new one, optimizing the building cluster-
ing. In fact, few papers explore the issue of expanding or redesigning a DHS to connect new
consumers to multi-source production plants. The developed method is applied to a district
of Hamburg, named Wilhelmsburg. Industrial waste heat is used as heat source, which is
CO2-neutral. Based on the data acquisition, the district heating grid is created by clustering
the buildings and connecting the obtained nodes, also using GIS technology. The grid of
the network is improved, cleaning and reducing the branches and nodes wherein the heat
demand is not so relevant. To show the advantages of this approach, a single building is
simulated with Matlab/Simulink. Results underlined the financial and ecological benefits
not only for the building case study, but for the entire district heating network.

2. Materials and Methods
2.1. Building Location and Heat Demand Data

Firstly, the data acquisition and allocation regarding the buildings’ location and heat
demand are presented in detail. It is necessary to acquire detailed information on the
buildings’ location, area, and heat demand in the district, to model a realistic heating
grid. The averaged and assumed building properties are not sufficient, since the location
and heat demand determine the characteristics of the heating grid. Furthermore, yearly
averaged heat demand data cannot take the essential seasonal differences in the heating
behavior into account. The buildings’ location and area are acquired from the open-source
project OpenStreetMap [36], where a polygon spanning the district, or an arbitrary area
can be selected and exported. The data file contains information on buildings, land use,
natural objects, places, points, railways, roads, and waterways in the selected area. The
land use highlights the usage of the area within the polygon. This land use is of varying
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types, e.g., residential, commercial, but also grass or farmland. For this project, only the
buildings and the land use are considered. The data is imported into the software QGIS,
where the geoinformation is stored and viewed, and new variables are calculated.

Table 1 shows exemplary fictional building data, here for a house and a commercial
building. Each building has a unique ID, a type, an area, and a longitudinal and latitudinal
coordinate. Here, the variable x_value denotes the longitude of the building’s center,
and y_value the latitude. In Wilhelmsburg, the longitude ranges from xmin = 9.9707◦ to
xmax = 10.0610◦, and the latitude ranges from ymin = 53.4615◦ to ymax = 53.5239◦. The type of
a building is often not declared, and hence the land use is considered. For that, the buildings’
information is intersected with the land use data and hence each building is assigned its
land use type, which is used whenever the building’s type is unknown. Subsequently,
the types are matched to their corresponding categories, i.e., the category accommodation
contains, amongst others, the types of houses, apartments, and residential. Thereby, the
buildings can be summarized more broadly. Figure 1 shows real exemplary building data
from Wilhelmsburg. Here, accommodational buildings are indicated in red and commercial
buildings in blue. The extracted data contains the information on 6.129 buildings in
Wilhelmsburg. In this manuscript, only accommodation and commercial buildings are
considered, because the other categories, such as civic or religious, are miscellaneous and
can hence not be easily considered regarding their heat demand.

Table 1. Exemplary, fictional building data extracted in QGIS.

Id [-] Type [-] Area [m2] X_Value [◦] Y_Value [◦]

1 house 100.123 10.0100 53.4900
2 commercial 200.456 10.0200 53.5100
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Figure 1. Exemplary building data for an apartment (red) and a commercial (blue) building.

The heat demand for the accommodational and commercial buildings is obtained from
the Wärmekataster Hamburg (heat registry Hamburg) [37]. The registry provides the heat
demand and geoinformation of accommodational and commercial buildings in Hamburg.
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For data security reasons, the buildings are allocated in clusters of minimum 5 buildings.
Hence, the heat demand cannot be matched to a single, unique building, though applying
the same intersection as used for the land use matches the heat demand to each building.
Some buildings are not listed in the registry and are thus outside any cluster, so the broader
block of buildings is used. The available information contains:

• The specific annual heat demand for accommodational buildings in the cluster [kWh/(y m2)]
• The absolute annual heat demand for all buildings in the cluster [kWh/y]
• The area of accommodational buildings in the cluster [m2]
• The area of commercial buildings in the cluster [m2]

To calculate the absolute heat demand of each building, the specific heat demand
for accommodational and commercial buildings is needed. The specific heat demand for
accommodational buildings qspec,acc is already listed in the registry’s data, whereas the
specific heat for commercial buildings qspec,com can be calculated using qspec,acc, the total
absolute heat demand qabs,tot, the area of accommodational buildings Aacc and the area of
commercial buildings Acom:

qabs,tot = qspec,acc Aacc + qspec,com Acom → qspec,com =
1

Acom

(
qabs,tot − qspec,acc Aacc

)
(1)

If the specific heat demand cannot be retrieved for a building, the heat demand of the
building from the same category with the closest area is used. Since the information on
the heat demand is only available for the building categories accommodation and com-
mercial, the number of buildings is reduced to those buildings that can be unambiguously
matched to these categories. Furthermore, outliers are ignored by allowing only those
buildings with an area smaller than 3000 m2 and a specific annual heat demand lower than
250 kWh/(a m2). Thereby, the number of considered buildings is reduced to 4884 buildings,
which will be considered in the district heating grid.

So far, only the information on the annual heat demand is available, but for a detailed
analysis and the subsequent dimensioning of the heating grid, a more detailed allocation is
desired. The BDEW [38] propose generic heat load profiles as a function of the ambient
temperature ϑ = Tamb. Each building type is matched to a sigmoid equation h = f (ϑ) with
the building type specific parameters A, B, C, D and ϑ0:

h =
A

1 +
(

B
ϑ−θ0

)C + D (2)

The parameters for the building types of single-family household, multi-family house-
hold, commercial, and industrial are listed in Table 2, whose evolution over the ambient
temperature are presented in Figure 2. Note that the accommodational buildings have a
flatter curve than the commercial buildings and are hence not as sensitive to a change in
temperature. It is assumed that the h-values of accommodational buildings do not depend
on the day of the week, whereas the commercial buildings have a higher heat demand on
weekdays and a lower demand on weekends. The correction factors FWD for the h-values of
commercial buildings are listed in Table 3. Since the h-values of accommodational buildings
are independent of the day, FWD = 1 is set for each day and building type [38].

Table 2. Parameters for sigmoid equations for different building types [38].

Building Type A B C D ϑ0

Single-family household 3.0722215 −37.1842844 5.6975234 0.0904188 40
Multi-family household 2.4207684 −34.7277917 5.7668252 0.1082275 40

Commercial 3.5811214 −36.9650065 7.2256947 0.0448416 40
Industrial 3.7882424 −34.8806130 6.5951899 0.0540329 40
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Table 3. Daily correction factors FWD for h-values of commercial buildings [38].

Building Type FMon FTue FWed FThu FFri FSat FSun

Commercial 1.0358 1.0232 1.0252 1.0295 1.0253 0.9675 0.8935
Industrial 1.0699 1.0365 0.9933 0.9948 1.0659 0.9362 0.9034

The ambient temperature data Tamb for the year 2019 is obtained from the DWD
(German Meteorological Service), which provides the data in an hourly resolution [39].
Hence, the hourly heat demand qhourly can be calculated for each of the 8760 h of the year:

qhourly(t) = α h(ϑ(t))FWD(t) (3)

The multiplication factor α is different for each building and is calculated with the
annual heat demand qannual, derived from the heat registry Hamburg:

qannual =
8760h

∑
t=1

qhourly(t) =
8760h

∑
t=1

αh(θ(t))FWD(t) (4)

Figure 3 shows the load duration curve for total heat demand in all considered build-
ings in Wilhelmsburg. The peak load is 64 MW, which corresponds to an ambient tem-
perature of −7.8 ◦C. The higher the ambient temperature, the lower is the heat demand,
whose minimum value is 1.9 MW. Here, the ambient temperature is 35.5 ◦C. In conclusion,
utilizing the building data from OpenStreetMaps, the heat data from the heat registry
Hamburg [36], the sigmoid equations from the BDEW [26] and the temperature data
from the DWD [37], the hourly heat demand for each of the 4884 considered buildings in
Wilhelmsburg is calculated.

2.2. Building Clustering and Grid Improvement

Based on the derived data and the source of the industrial waste heat, the district
heating grid is created by clustering the buildings and connecting the obtained allocated
nodes. Furthermore, the grid’s efficiency is improved by eliminating nodes, which are too
distant from the heat source or have too little heat demand.
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To reduce the computational load, the buildings are allocated into clusters, which then
represent the buildings’ heat demand. The general idea is to create 15 bins in x-direction
and 10 bins in y-direction, resulting to 150 clusters, which are equidistantly distributed.
Subsequently, the size of the clusters is adjusted in order to level the heat demand between
clusters, i.e., seeking an equal heat demand in each cluster. The clusters with no buildings
within are dropped and not considered any further. Hence, the number of clusters is
reduced from 150 to 123. Afterwards, the cluster centers are calculated as the heat weighted
mean coordinates of the buildings, which are located within the cluster. The calculation is
heat weighted, so that the center of the cluster is closer to the buildings with the highest
heat demand. Subsequently, the buildings are allocated to the closest cluster center. Hence,
the clusters lose their rectangular shape for a polygonal boundary, and buildings change
clusters. The center coordinates are not reevaluated.

Figure 4 shows the final clusters with their cluster centers and boundaries. The size of
the buildings’ markers correlates with their heat demand, i.e., larger circles mean higher
heat demands. The clusters vary in shape and size, and as desired the clusters in denser
areas are smaller than the clusters in the outskirts. Each cluster with all its buildings and
the center node is transformed into a graph object using the graph function in Matlab,
which creates a connection between each pair of buildings. Subsequently, the minspantree
function is applied to the graph to find the shortest connection of all buildings, starting
from the center node. The length of the connections is saved as the internal pipe length of
the cluster.

The connection of the cluster nodes depends on the root node, i.e., the location where
the heat is supplied to the grid. In this model it is assumed that only one heat source is
present. Most district heating grids are supplied by a heating plant or a combined heat
and power (CHP) plant, which burn fossil fuels to generate heat—and in the case of CHP
additionally power. The usage of fossil fuels emits CO2, and it must hence be critically
discussed whether that can provide a more sustainable alternative for domestic gas boilers.
Alternatively, biomass can be used to power the heating plant, which is then carbon-neutral,
but the amount of bioenergy necessary to supply an entire district with heat exceeds any
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feasible scale. On the other hand, the largest share of Hamburg’s energy-intensive industry
is located in the port and is hence close to Wilhelmsburg.
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As is common for heating systems, the base load provider is only designed for the
base load and not the peak load, because otherwise the system would be oversized for the
few moments in which the peak load is demanded. Hence, the 18 MW are an appropriate
base load. Furthermore, it is assumed that the temperatures at the root node are constantly
90/60 ◦C, and the maximum supplied heat power

.
Qsup,max is constant and amounts to

18 MW.
Analogous to the connections in each cluster, the general heating grid is derived by

applying Matlab’s minspantree function to the nodes, transformed into a graph object. The
123 nodes are hence connected by 122 connections, because each node needs exactly one
connection leading to it. The root node however does not have a connection, because the
grid starts there. The initial heating grid is depicted in the upper plot in Figure 4. The
nodes are numbered from 1 to 123, beginning in the bottom left corner and ending in the
upper right corner. The root node is node 111. Note that the heating grid is finely branched,
with long distances to the end nodes, e.g., node 1 in the bottom left corner or node 10 in
the bottom right corner. Longer distances evidently result in higher heat losses, which
lower the efficiency of the heating grid. It is hence desired to balance the delivered and lost
heat. Consequently, the connectivity density rcon,node is calculated as the ratio between the
supplied heat Qsup,node and the distance to the node Snode [40]:
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rcon,node =
Qsup,node

Snode
=

Qsup,node

2(Sroot,node + Sin,node)
(5)

The distance to the node Snode is composed of the distance from the root node Sroot,node
and the distance of the grid within the cluster Sin,node, multiplied by 2 to account for
the return flow. Hence, to discard the least efficient nodes, the nodes with the worst
connectivity density are iteratively eliminated from the graph. Afterwards, the minspantree
is reevaluated for the new, smaller grid. Thereby, less heat is supplied, but on the other
hand, the heat losses are simultaneously reduced. This elimination is continued until the
supplied heat falls below 85% of the initially demanded heat.

2.3. Building Location and Heat Demand Data

In the next step, the properties of the heating grid, including especially the diameter
of the pipes, are calculated. This determines the heat loss along the edges of the grid, as
shown below. Consequently, the lost heat reduces the feed temperature and raises the
return temperature. It is still assumed that the first node has the supplied feed and return
temperatures of 90 ◦C and 60 ◦C.

The cumulated heat flow on each edge in hourly resolution
.

Qcum,edge, i.e., the total
heat flow on this edge which supplies all subsequent nodes, is the product of the mass
flow on the edge

.
medge, the heat capacity of water cw, and the difference of the feed and the

return temperature on this edge Tin,edge and Tout,edge:

.
Qcum,edge = cw

.
medge

(
Tin,edge − Tout,edge

)
→ .

medge =

.
Qcum,edge

cw

(
Tin,edge − Tout,edge

) (6)

It is assumed that the temperatures remain constant on each edge, and are equal to the
temperatures of the previous node. Thus, for example, the two edges leading away from
the root node have the same temperature as the root node.

The diameter of an edge Dedge is a function of the maximum mass flow on the edge
.

medge,max. With a fixed specific pressure loss of R = ∆p/l = 300 Pa/m, the flow coefficient λ,
the density of water ρw and

.
medge,max, Dedge is calculated as [40]:

Dedge =
5

√√√√8λ
.

m2
edge,max

$wπ2R
(7)

For high enough Reynold numbers, λ depends on Dedge and the roughness height k,
which is set to 0.01 mm [28]:

λ =
0.25[

log10

( 3.715Dedge
k

)]2 (8)

The two equations for Dedge and λ are iteratively repeated until the relative change in
λ is ∆λrel < 10−3. The calculation converges after 4 iterations. With Dedge, the specific heat
loss coefficient Uedge is calculated. The Planungshandbuch Fernwärme (planning manual
district heating) [40] proposes empirical values for Uedge, which are then logarithmically

approximated. The heat loss in feed direction
.

Qloss,in,edge and in the return flow
.

Qloss,out,edge
are subsequently calculated with the edge length ledge as:

.
Qloss,in,edge = ledgeUedge

(
Tin,edge − Tamb

)
(9)

.
Qloss,out,edge = ledgeUedge

(
Tout,edge − Tamb

)
(10)
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The ambient temperature Tamb is the ground temperature in Wilhelmsburg for the year
2019 at a depth of 1 m [39]. Hence, the flow into a node or from a node loses heat, which
can be translated in a lost temperature difference ∆Tin,edge and ∆Tout,edge:

∆Tin,edge =

.
Qloss,in,edge

.
medgecw

(11)

∆Tin,edge =

.
Qloss,out,edge

.
medgecw

(12)

As before, the edge corresponding to a node is the edge leading to the root node. The
node temperatures Tin,node and Tout,node are then calculated as:

Tin,node = Tin,prev − ∆Tin,edge (13)

Tout,node = Tout,prev − ∆Tout,edge (14)

The index prev denotes here the previous node connected by the edge, which is
assumed to have the same temperature as the edge.

As seen above, the heat loss determines the temperatures, which in return determine
the heat loss. Thus, the calculation is started at the root node where the temperatures are
set as a boundary, and subsequently the heat loss on the adjacent edges is calculated. The
temperatures on the then adjacent nodes are calculated next. This procedure is continued
until the end nodes. The problem with this procedure is that the physicality of the solution
cannot be guaranteed because the feed and return flows are calculated separately. Hence,
at the furthest nodes, the temperatures can change places. The reason for this behavior is
that far nodes with relatively little heat demand have a higher heat loss than heat demand,
which is not physical. Hence in this project, the nodes’ heat demand is iteratively increased.
The new cumulated heat demand

.
Qcum,node,new is the sum of the previous heat demand

.
Qcum,node,prev and the heat losses which occur in both flows until the node

.
Qloss,node:

.
Qcum,node,new =

.
Qcum,node,prev +

.
Qloss,node (15)

But a higher heat demand leads to a higher mass flow, which leads to a larger diameter,
which itself leads to a higher heat loss coefficient. Hence, the heat losses themselves are
higher as well. Thus, the recalculation of the heat demand is iteratively repeated until
the change in heat demand is lower than 0.1%. The result, which converges after three
iterations, can be seen in the bottom plot of Figure 5.

2.4. Numerical Model

This chapter described the heating circuit of one building as an example for the reader.
The Simulink model is split into three parts: first the calculation of the necessary feed and
return temperatures of the heating circuit, second the partial supply of heat by the district
heating, and third the peak load boiler.

Figure 6 depicts the general structure of the heating in the building. The cold heating
water temperature Treturn is increased by the provided heat from the district heating

.
Qprov

to a medium temperature TDH, which varies dependent on the demanded feed temperature
Tf eed and the provided heat. If the district heating can supply the entire heat demand, the
boiler is not used and TDH = Tf eed. The peak load boiler then burns gas represented by the

chemical power
.

Qgas to supply the rest of the demanded heat
.

Qboiler:

.
Qboiler =

.
Qdemand −

.
Qprov (16)
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First, the heating temperatures Tf eed and Treturn are calculated. Assuming a constant
mass flow in the heating circuit

.
mw,heat, the load ratio mdemand between current demand

.
Qdemand and nominal, i.e., maximum possible demand

.
Qdemand,0 is:

mdemand =

.
Qdemand
.

Qdemand,0

=

.
mw,heatcw

(
Tf eed − Treturn

)
.

mw,heatcw

(
Tf eed − Treturn

)
0

=

(
Tf eed − Treturn

)
(

Tf eed − Treturn

)
0

(17)

The nominal temperatures are Tf eed,0 = 70 ◦C and Treturn,0 = 55 ◦C. Derived from the
thermodynamic characteristics of radiators, the mean water temperature Tw = 1/2(Tfeed + Treturn)
is [41]:

Tw = Tl + (Tw − Tl)0m1/n
demand (18)

with the room temperature Tl = 20 ◦C and the exponent n = 1.3. Tf eed and Treturn are then
calculated as [41]:

Tf eed = Tw + 1/2
(

Tf eed + Treturn

)
0
mdemand (19)

Treturn = Tw − 1/2
(

Tf eed + Treturn

)
0
mdemand (20)

Note that the temperature difference increases for higher loads. Figure 7 shows the
Simulink subsystem to calculate the feed and return temperatures. Most of the inputs are
constants, whereas

.
Qdemand is variable and hence passed to the model as a timeseries object

through a “From Workspace” block. Subsequently, the provided heat
.

Qprov is translated
into a temperature difference ∆TDH in the heating circuit with the

.
mw,heat and cw (21):

∆TDH =

.
Qprov

.
mw,heatcw

(21)
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Thus, the temperature after the district heating TDH is calculated, as seen in Figure 8.
.

Qprov is variable and hence passed as a timeseries object. The heat transfer from the district
heating grid to the domestic heating circuit is not modeled in detail. Furthermore, the
Boolean benableDH sets whether the district heating is used in the simulation. To calculate
.

Qboiler and the boiler efficiency ηboiler, Tf eed and TDH are passed to the subsystem “Boiler”.
In the subsystem “Boiler” (Figure 9), the toolbox Carnot is used to simulate the boiler

operation with the Condensing Boiler block, as seen in Figure 8. Furthermore, a PID
controller is used to control Tf eed. The controller manipulates the supplied chemical energy
to the boiler. Inherently, the integral behavior of the PID controller ensures no steady-state
control error in Tf eed. The fuel block is set to gas, and the water temperature entering the
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boiler is set to TDH. The efficiency ηboiler,
.

Qboiler and the load factor βboiler =
.

Qboiler/
.

Qdemand,0
are passed back to the workspace.
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Figure 9. Simulink subsystem to calculate the boiler power and efficiency. Usage of toolbox Carnot
and PID controller. Constants (blue), inputs (grey), Condensing Boiler block (red) and To Workspace
blocks (green). The block to calculate THD concatenate the mass flow and temperature information
to be passed to the boiler block.

ηboiler is calculated as (22):

ηboiler =

.
Qboiler

.
Qgas

(22)

The Carnot toolbox works on a seconds-based time scale, and the variable input
signals

.
Qprov and

.
Qdemand are therefore interpolated from an hours-based to a seconds-

based time scale. Furthermore, a simulation interval of two days is selected where the
district heating can sometimes provide the entire heat, and sometimes cannot. Figure 10
shows the results of the two simulated days. The district heating provides the base load,
while the boiler provides the peak load. In the afternoon of both days, the district heating
covers the entire heat demand, and the boiler is off. The extracted variables ηboiler and βboiler
are used to calculate a generic fit of ηboiler as a function of βboiler. Since it is assumed that
this characteristic is the same for each building and boiler, the load factor and subsequently
the efficiency are calculated for each building.
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Figure 10. Power results from simulation of median building, shared supply between district heating
(blue) and boiler (orange).

2.5. Building Location and Heat Demand Data

Wilhelmsburg is located south of the northern main river branch on the largest river
isle, as depicted in Figure 11. It is Hamburg’s largest district by area (35.4 km2) and its
fifth largest district by population (53,519), according to the Statistikamt Nord (census
bureau north) [42]. Historically, the southern districts were closely interlinked with the
port, the second largest port in Europe. Due to its location close to the port and south of
the Elbe, Wilhelmsburg traditionally offered low priced housing and hosted low-income
workers who were employed at the port or the adjacent industry. As in all of Germany,
after the second World War, many immigrant families came to Hamburg to work in the
industry and hence lived predominantly in districts like Wilhelmsburg [43,44].

Hamburg has a widespread district heating grid, which satisfies circa 22% of the
city’s heat demand, and is hence Germany’s second largest district heating grid. As of
1 December 2020, more than 500,000 households are connected to the heating grid [45].
Though, this heating grid is only placed north of the Elbe, i.e., in the districts adjacent to
the city center. Wilhelmsburg is not part of this heating grid, even though it is close to the
heating plants supplying the grid.
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3. Results

The goal of district heating is to substitute the usage of conventional heating partially
or entirely, which are mainly domestic gas boilers in each building. Hence, the previous
results of the district heating grid are used to calculate the saved gas in Wilhelmsburg. The
boiler efficiency is derived by implementing the district heating connection and the boiler
in Simulink for the median building of the district. Afterwards, the calculated efficiency
characteristics are applied to all buildings to calculate the saved gas. Figure 12 depicts the
elimination of nodes, beginning with the upper plot with the initial nodes, to the lower
plot, where the remaining 77 nodes after the elimination are shown. Note that the nodes
and connections close to the root node remain the same, since their distance to the root
node is small and thus their connectivity density is high.
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Figure 12. District heating grid with nodes and connection before (top) and after (bottom) node
elimination. Reduction from 123 to 77 nodes.

Figure 13 shows the resulting heat demand at each node and hence the necessary heat
flow along the connections of the heating grid. The heat is supplied at the root node 68
and distributed across the grid to each node. In summary, by allocating the buildings to
clusters, the computational load can be reduced. Hence, the 4884 buildings are condensed
to 123 clusters, which then incorporate the heat demand of the buildings in each cluster.
The clusters are connected to a heating grid by utilizing the graph theory functions in
Matlab, especially minspantree, to calculate the shortest connection between the nodes.
Furthermore, to increase the overall connectivity density and hence efficiency of the heating
grid, the 46 nodes with the lowest connectivity density are eliminated from the grid.
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Figure 13. Annual heat demand in district heating grid at each node and connection (logarith-
mic scale).

All feed temperatures are higher than the return temperatures, even though the
furthest nodes still have the lowest temperature difference. In practice, the temperature
difference at node 1 might be too small to be technically feasible, which is neglected in
this article. Figure 14 depicts the load duration curves of the heat demand before node
elimination (compare Figure 3), the heat demand after node elimination, the provided heat
at the buildings

.
Qprov,buildings, and the provided heat with losses, which is equivalent to

the effectively supplied heat from the energy provider at the root node
.

Qsup,root. There is

an almost constant offset of roughly 2.5 MW between
.

Qsup,root and
.

Qprov,buildings, which
indicates the overall heat loss. This results in an average efficiency of the district heating
grid ηgrid of (23):

ηgrid =
∑8760h

t=1

.
Qprov,buildings

∑8760h
t=1

.
Qsup,root

= 83.54%→ ∆Qloss,rel = 1− ηgrid = 16.46% (23)

Thus, the overall relative heat loss amounts to ∆Qloss,rel = 16.46%, which is undistin-
guishably similar to the benchmark of ∆Qloss,rel,bm = 16.5% of a real district heating grid
presented by the Planungshandbuch Fernwärme [40]. Aurubis provides a maximum heat
power of 18 MW and an annual amount of energy of 120 GWh [46]. Applying the same
maximum heat power to the model in this article as seen in Figure 14, the provided annual
energy amounts to 119.63 GWh. That shows that the assumptions made in this project
hold and thus the model represents the behavior of real heating grids well. In summary,
in this project a district heating grid is developed based on openly accessible data for the
buildings in Wilhelmsburg and their heat demand, which are then allocated in clusters.
Subsequently, the clusters are connected to a heating grid starting from the root node. In
the last step, the least efficient nodes are eliminated and the heat loss along the edges is
calculated. The heat loss is then iteratively added to the supplied heat.
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As seen in Figure 14, the supplied heat is lower than the overall heat demand, first
due to the elimination of nodes in the grid and second due to the maximum heat power
of 18 MW. The remaining heat is thus still supplied by domestic gas boilers, which are
then used as peak load boilers. Hence, the cold heating water is first heated by the
district heating and then—if necessary—heated further by the boiler to the desired feed
temperature. It is assumed that each building shows the same boiler properties, i.e., the
boiler efficiency characteristics are the same for every building. Thus, a single building
is selected, and the boiler efficiency is calculated. To select a building which shows an
appropriate characteristic, the median heat demand of all accommodational buildings is
selected and matched to its building. Then, the building’s heat demand

.
Qdemand and the

provided heat
.

Qprov are extracted and fed into the Simulink model.
The amount of consumed gas is characterized by the consumed chemical energy

Qgas = Qboiler⁄ηboiler(βboiler). With the previous calculations, the chemical energy is derived for
each building and summed up for all 4884 buildings. Due to the different load factors—and
hence efficiencies—for when the district heating is used and when it is not, Qgas is evalu-
ated for both cases Qgas,noDH and Qgas,DH. The entire consumption is Qdemand = 182.59 GWh,
while the provided heat by the district heating grid is Qprov = 99.91 GWh. Without district
heating the consumed amount of gas is Qgas,noDH = 186.49 GWh, while this is reduced to
Qgas,DH = 89.17 GWh when the district heating is used. Hence, by utilizing the district
heating, a total amount of gas of ∆Qgas = 97.32 GWh per year is saved. The Bundesnet-
zagentur (Federal Network Agency of Germany) lists an average domestic gas price in
Hamburg for the year 2019 of kgas = 0.0599 €/kWh [47]. The CO2 emissions of domestic gas
are egas = 0.2012 kgCO2/kWh according to the Umweltbundesamt (German Environment
Agency) [48,49]. Hence, by saving ∆Qgas = 97.32 GWh of gas annually, CO2 emissions of
∆mCO2 = 19,585 tCO2 are avoided, and the customers save ∆Kgas = €5.83 mil annually. In
the existing project by Aurubis and Enercity, the benchmark use of the district heating grid
avoids ∆mCO2,bm = 20,000 tCO2 annually [46]. As before, the model presented in this article
tracks the benchmark project well in terms of CO2 avoidance.
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In summary, the simulation of the heating circuit in an exemplary median build-
ing yields the boiler efficiency as a function of the boiler’s load, which is then used to
calculate the saved gas of every building. The usage of the district heating grid saves
∆Qgas = 97.32 GWh annually, which results in financial savings of ∆Kgas = €5.83 mil and
avoided CO2 emissions of ∆mCO2 = 19,585 tCO2.

4. Discussions and Conclusions

In this paper, a different approach is presented to plan a district heating grid based on
the optimization of building clusters with the aim of improving the nodes of the grid. GIS
technology was also employed to collect and group data of the buildings, from geometrical
to heat demand. In the literature, few works described in detail those approaches, therefore
this research wants to fill this gap. A case study is chosen to validate the method proposed,
in the district of Hamburg city, Wilhelmsburg. The scope is to connect this district with
the existing thermal network of the city. Moreover, this approach investigates the usage of
industrial waste heat as the grid’s heat source, which is CO2-neutral. Most of Hamburg’s
energy-intensive and high-temperature industry is located at the port, which spans across
the islands in the river. To simulate the model, Matlab/Simulink is used. After the data
collection, the district heating grid is created by clustering the buildings and connecting the
obtained nodes. A single building is modelled to investigate the benefit in terms of energy
saving due to the replacement of gas boilers with DH systems. As a result, the usage of
the district heating grid saves 97.32 GWh annually, which provides financial savings of
€5.83 million, and avoided CO2 emissions of 19,585 tCO2. Last but not least, the proposed
method allows other designers and practitioners to adapt it to different urban settlements;
this issue is also the core of this research. Future developments will be involved for the
investigation of the substations of the buildings connected to the grid, being an essential
key for the economic and environmental assessment of users.
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Nomenclature

q annual heat demand [kWh/yr] e Emission factor [kgCO2/kWh]
A Area [m2] K Gas expenditure [€]
ϑ Temperature [◦C] Subscripts
F Correction factor [-] spec specific
Q Heat Power [MW] abs absolute
r connectivity density [] acc accommodational buildings
.

Q Heat flow [kW/m2] tot total
c Heat capacity [kWh/kg K] com commercial buildings
.

m Mass flow [kg/s] amb ambient
D Diameter [m] w water
R specific pressure loss [Pa/m] prov provided
λ flow coefficient [-] Abbreviations
ρ Density [kg/m3] GIS Geographic information systems
k roughness height [mm] DH District Heating
U specific heat loss coefficient [W/m K] DWD German Meteorological Service
β load factor [-] CHP Combined Heat and Power
η Efficiency [-]
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