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Abstract: Contrast media are widely diffused in biomedical imaging, due to their relevance in the
diagnosis of numerous disorders. However, the risk of adverse reactions, the concern of potential
damage to sensitive organs, and the recently described brain deposition of gadolinium salts, limit
the use of contrast media in clinical practice. In recent years, the application of artificial intelligence
(AI) techniques to biomedical imaging has led to the development of ‘virtual’ and ‘augmented’
contrasts. The idea behind these applications is to generate synthetic post-contrast images through
AI computational modeling starting from the information available on other images acquired during
the same scan. In these AI models, non-contrast images (virtual contrast) or low-dose post-contrast
images (augmented contrast) are used as input data to generate synthetic post-contrast images, which
are often undistinguishable from the native ones. In this review, we discuss the most recent advances
of AI applications to biomedical imaging relative to synthetic contrast media.

Keywords: artificial intelligence; synthetic imaging; virtual contrast; augmented contrast; MRI; CT;
gadolinium-based contrast agents; iodinated contrast agents; neuroimaging; cardiac imaging

1. Introduction

Contrast media are essential tools in biomedical imaging, allowing for more precise di-
agnosis of many conditions. The main contrast agents employed in radiology are iodinated
contrasts for CT imaging and gadolinium-based contrast agents (GBCA) for MRI. As for any
molecule used for medical purposes, contrast media are not exempt from contraindications
and side-effects, which need to be evaluated against the known diagnostic benefits when
scans are ordered in clinical practice.

One of the main side-effects of iodinated contrasts, besides allergic reactions, is nephro-
toxicity [1]. Iodinated contrast media may lead to acute kidney injury (AKI) in certain
patients, and they represent a leading cause of hospitalization [1]. Although the exact
mechanism of renal damage is still debated, there is evidence of direct cytotoxicity of
iodinated contrasts on tubular epithelial and endothelial linings of the kidney. Additionally,
these contrasts seem to affect the renal hemodynamics, due to increased oxygen radicals
synthesis and reduction in blood flow in both glomerular and tubular capillaries related to
hyperviscosity [1]. GBCA toxicity was first reported as a multi-systemic condition known
as nephrogenic systemic fibrosis (NSF), described in few cases and mainly related to renal
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failure [2]. More recently, brain GBCA deposition was discovered through imaging [3–5],
animal models [6], and autopsy studies [7,8]. Brain accumulation of GBCAs depends on
their chemical structure, with higher de-chelation susceptibility for linear compounds. Such
evidence led to the suspension of linear GBCA from commerce [9], leading to changes
in clinical guidelines for contrast administration [10]. The existence of a definite clinical
correlate for GBCA brain deposition is still debated; however, different types of toxicity may
occur in the body according to the patient’s age and clinical state [3]. Oxidative stress may
play a role in gadolinium ions toxicity, as reflected by changes in intracellular glutathione
levels [11,12]. In this situation, finding new means to boost biomedical imaging diagnostic
power with low-dose contrast administration, and finding possible alternative diagnostic
methods to contrast media for common disorders [13], are extremely relevant in current
clinical practice.

In the last few years, artificial intelligence (AI) has revolutionized the field of medicine,
with remarkable applications in biomedical imaging [14]. Due to the high volume of imag-
ing data stored in PACS archives, AI applications have proven capable of fueling predictive
models for differential diagnosis and patient outcome in many different conditions [14–19].
Most recently, the field of ‘virtual’ and ‘augmented’ contrast emerged from the intersection
of AI and biomedical imaging. The idea behind these applications is to create virtual
enhancement starting from available information on non-contrast images acquired during
the same scan (virtual contrast) or to augment the enhancement obtained from a low-dose
administration (augmented contrast), through AI computational modeling.

In this review, we present the most recent advances in AI applications to biomedical
imaging relative to contrast media. This paper is divided into three sections: (1) we discuss
the main AI methods currently available to generate virtual and augmented contrast;
(2) we review the main applications of AI-powered contrast media to neuroradiology; and
(3) we review the main applications of AI-powered contrast media to body imaging. Finally,
we present our reflections on possible future developments.

2. AI Architectures in Synthetic Reconstruction

The term AI was formally proposed for the first time in 1956 at a conference at Dart-
mouth University, to describe the science of simulating human intellect behaviors through
computers, including learning, judgment, and decision making [20]. The application of
AI in medicine relies on machine learning and deep learning algorithms. These powerful
mathematical algorithms can discover complex structure in high-dimensional data by
improving learning through experience. There are three main types of algorithm learning:
(i) unsupervised, which is the ability to find patterns in data without a priori information;
(ii) supervised, which is used for data classification and prediction based on ground truth;
and (iii) reinforcement learning, a technique that enables learning by the trial-and-error ap-
proach [21]. Among the many applications of AI in medicine, recent years have witnessed
a rising interest towards medical image analysis (MIA). In this context, deep learning
networks can be applied to solve classification problems, and for segmentation, object
detection, and synthetic reconstruction of medical images [22].

Virtual and augmented contrasts can be considered an application of AI in the field of
synthetic imaging. Convolutional neural networks (CNNs) and generative adversarial net-
works (GANs) are the only known deep learning tools used for image reconstruction [23,24],
due to their ability to capture image features that describe a high level of semantic infor-
mation. These two groups of machine learning architectures have achieved considerable
success in the MIA field, and they are further explored in the following sections with
particular attention on deep learning architectures to synthesize new images (synthetic
post-contrast images) from pre-existing ones (either non-contrast images or low-dose post
contrast images) [25]. Previous studies relevant to this topic are summarized in Table 1.
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2.1. Convolutional Neural Networks in Synthetic Reconstruction

A CNN can be considered as a simplified version of the neocognitron model introduced
by Fukushima [26] in 1980 to simulate the human visual system. CNNs are characterized by
an input layer, an output layer, and multiple hidden layers (i.e., convolutional layer, pooling
layer, fully connected layer, and various normalization layers). Due to their architecture,
the typical use of CNNs is for image classification tasks, where the networks’ output is a
single class label related to an input image [27]. When addressing CNNs’ use in medical
research, the main applications here are also targeted toward classification problems [28,29].
However, the current literature includes several examples of successful implementation
of CNN architectures to address other machine learning and computer vision challenges,
such as image reconstruction and generation.

Gong et al., implemented a workflow with zero-dose pre-contrast MRIs and 10% low-
dose postcontrast MRIs as inputs to generate full-dose MRI images through AI (augmented
contrast) [30]. In this study, the model consisted of an encoder-decoder convolutional
neural network (CNN) with three encoder steps and three decoder steps based on U-net
architecture. The basic architecture of U-Net consists of a contracting part to capture
features, and a symmetric expanding part to enable precise localization and reconstruction.
A slightly modified version of the same model was tested by Pasumarthi et al., with
similar results [31]. Xie et al., also investigated a U-net based approach to obtain contrast-
enhanced MRI images from non-contrast MRI [32]. This type of network architecture has
demonstrated superior performance in medical imaging tasks such as segmentation and
MRI reconstruction [33–35].

2.2. Generative Adversarial Networks in Synthetic Reconstruction

Another approach to produce synthetic post-contrast images relies on generative
adversarial networks (GANs), which can be used to generate images from scratch, show-
ing increasing applications in current literature. Starting from a set of paired data, these
networks are able to generate new data that are indistinguishable from the ground truth.
Current state-of-the-art applications of GANs include image denoising and quality im-
provement algorithms, such as Wasserstein GAN (WGAN) [36] and the deep convolutional
GAN (DCGAN) [37–44]. Regarding image segmentation and classification, another exten-
sion of the GAN architecture—the conditional GAN (c-GAN) demonstrated promising
results [45]. Additionally, Pix2Pix GANs [46] are a general GAN approach for image-to-
image translation, which is very useful for generating new synthetic MRI images starting
from images of a different domain.

The most used GAN architectures to obtain synthetic diagnostic images ex novo from
MRI and CT scans are the CycleGAN networks [37,43,47]. These are a class of deep learning
algorithms that rely on the simultaneous training of two networks: the first is focused on
data generation (alias generator) and the second is focused on data discrimination (alias
discriminator). The two neural networks compete against each other, learning the statistical
distribution of the training data, which allows the generation of new examples from the
same distribution [48]. Specifically, the two generator models and the two discriminator
models mentioned above are simultaneously trained. One generator takes images from the
first domain and generates images for the second domain. Conversely, another generator
takes images from the second domain and outputs images for the first domain. The
discriminator models determine the plausibility of the generated images. An idea of cycle
consistency is used in the CycleGAN. This means that the output image of the second
generator should match the original image if the image output by the first generator was
used as input to the second generator. A schematic picture of the described architecture can
be seen in Figure 1. In all the reported studies, these networks are capable of generating
true diagnostic images from a qualitative and informative point of view, demonstrating the
enormous advantages of this type of application.
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Figure 1. The CycleGAN model consists of a forward cycle and a backward cycle. (a) In the
forward cycle, a synthesis network Synthc is trained to translate an input non-contrast image into
a contrast one. Network Synthnc is trained to translate the resulting contrast image back into a
non-contrast image that approximates the original non-contrast one. Discc discriminates between
real and synthesized contrast images. (b) In the backward cycle, Synthnc synthesizes non-contrast
images from input contrast images, Synthc reconstructs the input contrast image from the synthesized
non- contrast one, and Discnc discriminates between real and synthesized non-contrast images. Inc =
original non-contrast image; Ic = original contrast image.

2.3. Model Implementation

Model implementation typically includes three steps: (i) training: the model is trained
on an appropriate dataset for the given task; (ii) internal validation: during training, the
model is continuously validated on data that is not part of the training set to evaluate
the model’s performance; and (iii) external validation: after training, the model is tested
on a separate dataset, from which the final metrics are extrapolated [49]. Model internal
and external validation are extremely important steps to understand its robustness and
reliability. Internal validation involves collecting and analyzing information about the
model’s characteristics and outcomes, with the main purpose to ensure that the model is
operating correctly. External validation proves the generalizability of the model, which is a
prerequisite for clinical use [50]. Steps (ii) and (iii) are key operations to assess the efficacy
of a model during both initial research and development phases.

The choice of which metric to use, in steps (ii) and (iii), is strictly related to the type of
model data input and output to be compared [51]. For the purposes of generating synthetic
contrast, it is expected that the reconstructed images maintain the same information content
and quality as the original images to guarantee a correct diagnosis by medical physicians.
Bustamante et al., carried out a visual inspection of the synthetic images obtained with
GANs, finding no major differences compared to real images [24]. In experimental settings,
different scores can be used to test the equivalence of generated vs. native images. An
example of a rating score is the mean opinion score (MOS), an index score of quality ranging
between 1 and 5 (1 as the most inferior value) [52]:

MOS =
∑N

n=1 Rn

N
(1)

R: individual ratings for the object given by N subjects.
As a quantitative evaluation, the current literature proposes the structure similarity

index (SSIM), which accounts for luminance, contrast, and degradation of structural in-
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formation between two images [33]. SSIM principally refers to a structural information
variation, providing a good approximation of distortion in comparing images. Where x
and y the two nonnegative image signals, the measure is expressed as follows:

SSIM (x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µx2 + µy2 + c1

)(
σx2 + σy2 + c2

) (2)

µx, σx
2: average and variance of x

µy, σy
2: average and variance of y

σxy: covariance
c1, c2: two variables to stabilize the division with weak denominator

Further information about this metric can be found in the study of Wang et al. [53]
Another commonly used measure to quantify image reconstruction quality is the peak

signal-to-noise ratio (PSNR) metric. This is evaluated as the ratio between the maximum
possible power of an image and the power of corrupting noise that affects its quality [34].
In other words, to estimate the PSNR of an image, it is necessary to compare the real image
to an ideal one with the maximum possible power.

PSNR = 10 log10

(
MAX2

I
MSE

)
(3)

MAXI : maximum possible pixel value of the image
MSE: mean square error

As per its definition, higher PSNR values equal better quality of the reconstructed
output images [54].

Table 1. Synthetic reconstruction studies, including AI architectures, database used, specific al-
gorithms, and task characteristics. In particular, the database used is expressed according to not-
specified, private, or public availability, with the total number of patients included in brackets (N);
when the database is public, the name is reported. CNN = convolutional neural network; GAN =
generative adversarial network; BraTS = Brain Tumor Segmentation database.

AI
Architecture Reference Database (N) Specific Algorithm Task

CNN

[30] Private (60) U-net based To obtain 100% full-dose 3D T1-weighted images
from 10% low-dose 3D T1-weighted images

[31] Private (640) U-net based
To obtain 100% full-dose 3D T1-weighted images
from 10% low-dose 3D T1-weighted images and

pre-contrast 3D T1-weighted images

[32] Brats2020 (369) U-net based To obtain contrast-enhanced T1-weighted images
from non-contrast-enhanced T1-weighted images

GAN

[37] Not specified (222) CycleGAN To obtain high blood-tissue contrast from
non-contrast 4D flow MRI

[43] Private (26) 2D-CycleGAN To obtain contrast-enhanced CT from
non-contrast-enhanced CT

[46] Private (48) Conditional GAN To obtain fat saturated T1-weighted images from
non-contrast-enhanced T1-weighted images

[47] Brats2015
BraTS2015 (50)

CycleGAN with
Attention

algorithm integrated

To obtain contrast-enhanced T1-weighted images
from non-contrast-enhanced T1-weighted images
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3. Clinical Applications in Neuroradiology

In neuroradiology, the contrast enhancement of a lesion inside the brain tissue reflects
a blood–brain barrier rupture. This event occurs in many different brain diseases such
as some primary tumors and metastases, neuroinflammatory diseases, infections, and
subacute ischemia, for which contrast injection during MRI examination is considered
mandatory for accurate assessment, differential diagnosis, and monitoring [55–60]. Other
uses of contrast include the evaluation of vascular malformation and aneurysms. In this
scenario, the implementation of AI algorithms to reduce contrast usage could result in
significant benefit for the patients, and reduced scan times and costs [61]. However, the
main drawback of AI analysis, especially through deep learning (DL) methods, reside in
the need for a large quantity of data. For this reason, the literature of AI virtual contrast
in neuroradiology is focused on MRI examination of relatively common diseases such as
tumors and multiple sclerosis (MS) (Table 2).

3.1. AI in Neuro-Oncology Imaging

In neuro-oncology, contrast enhancement is particularly useful not only as a marker for
differential diagnosis and progression, but it is also considered the target for neurosurgical
removal of a lesion and an indicator of possible recurrence. Although in recent years
some authors suggested expanding the surgical resection of brain tumors beyond the
contrast enhancement [62,63], injection of gadolinium remains a standard for both first and
follow-up MR scans. To avoid the use of gadolinium, Kleesiek et al., applied a Bayesan DL
architecture to predict contrast enhancement from non-contrast MR images in patients with
gliomas of different grades and healthy controls [64]. The authors obtained good results in
terms of qualitative and quantitative assessment (approximate sensitivity and specificity of
91%). Similarly, other studies applied a DL method to pre-contrast MR images of a large
group of glioblastomas and low-grade gliomas with a good structural similarity index
between simulated and real postcontrast imaging, and the ability of the neuroradiologist
to determine the tumor grade [32,65]. These methods can also be applied to sequences
different from the T1. Recently, Wang et al., developed a GAN to synthetize 3D isotropic
contrast-enhanced FLAIR images from a 2D non-contrast FLAIR image stack in 185 patients
with different brain tumors [66]. Interestingly, the authors went beyond simple contrast
synthesis and added super-resolution and anti-aliasing tasks in order to solve MR artifacts
and create isotropic 3D images, which give a better visualization of the tumor, with a good
structural-similarity index to the source images [66]. Calabrese et al., obtained good results
in synthetize contrast-enhanced T1 images from non-contrast ones in 400 patients with
glioblastoma and lower-grade glioma [65]. In addition, the authors included an external
validation analysis, which is always recommended in DL-based studies [65]. However,
the simulated images appeared blurrier than real ones, a problem that could especially
affect discriminating progression in follow-up exams [65]. This shortcoming appears to be
a common issue of all ‘simulated imaging’ studies. As stated above, contrast enhancement
reflects disruption of the blood–brain barrier, information that is usually inferred from
the pharmacokinetics of gadolinium-based contrasts within the brain vasculature; this
explains the difficulty of generating information from sequences that may not contain
it. Moreover, virtual contrast may hinder interpretation of derived measures, such as
perfusion-weighted imaging, which have been proven crucial for differential diagnosis
and prognosis prediction in neuro-oncology [15,16,67,68]. Future directions could make
use of ultrahigh field scanners that may have enough resolution to be closer to molecular
imaging. In the meantime, another approach has been explored to address the issue.
Rather than eliminating contrast injection, different studies used AI algorithms to enhance
a reduced dose of gadolinium (10% or 25% of the standard dose), a method defined
as ‘augmented contrast’ [30,31,69,70]. This method, used on images of different brain
lesions, including meningiomas and arteriovenous malformations, allows the detection
of a rupture of the blood–brain barrier with a significantly lower contrast dose. Another
advantage is the better quality of the synthetized images, as perceived by evaluating
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neuroradiologists [30,31]. Such benefits persist with data obtained across different scanners,
including both 1.5T and 3T field strengths, a fundamental step for the generalizability
of results [30,69,70]. Nevertheless, augmented contrast techniques are not exempt from
limitations. Frequently encountered issues with these techniques are the difficulty of
detecting small lesions, the presence of false positive enhancement, probably due to flow
or motion artifacts, and coregistration mismatch [31,70]. Another concern is the lack of
time control between the two contrast injections. Most of the studies perform MRI in a
single session by acquiring the low-dose sequence first, followed by full-dose imaging after
injecting the remaining dose of gadolinium [30,31,69,70]. The resulting full-dose images are,
thus, a combination of the late-delayed pre-dose (10% or 25%) and the standard-delayed
contrast, which can result in a slightly different enhancement pattern from the standard
full-contrast injection. Future studies could acquire low and standard dose exams on
separate days, with controlled postcontrast timing. Lastly, future directions could include
prediction of different contrast imaging. In fact, other types of contrast are being developed
to give additional information on pathologic processes, such as neuroinflammation [71].
Another interesting application of AI in neuro-oncology imaging consists of augmenting
the contrast signal ratio in standard dose T1 images, in order to better delineate tumors and
detect smaller lesions. Increasing contrast signal for better detection of tumors, in fact, has
always been a goal when developing new MR sequences, leading recently to a consensus
for brain tumor imaging, especially for metastasis [72]. A recent study by Ye et al., used a
multidimensional integration method to increase the signal-to-noise ratio in T1 gradient
echo images [73], also resulting in contrast signal enhancement. By comparison, Bône et al.,
implemented an AI-based method to increase contrast signal similarly to the ‘augmented
contrast’ studies [74]. The authors trained an artificial neural network with T1 pre-contrast,
FLAIR, ADC, and low-dose T1 (0.025 mmol/kg). Once trained, the model was leveraged to
amplify the contrast on routine full-dose T1 by processing it into high-contrast T1 images.
The hypothesis behind this process was that the neural network learned to amplify the
difference in contrast between pre-contrast and low-dose images. Hence, by replacing the
low-dose sequence with a full-dose one, the synthesis led to a quadruple-dose contrast [74].
The results led to a significant improvement in image quality, contrast level, and lesion
detection performance, with a sensitivity increase (16%) and similar false detection rate
with respect to routine acquisition.

3.2. AI in Multiple Sclerosis Imaging

MS is the most common demyelinating chronic disorder, and mostly affects young
adults [75]. MRI is a fundamental tool in both MS diagnosis and follow-up, and gadolinium
injection is usually mandatory. In fact, contrast enhancement is essential to establish
dissemination in time according to the McDonald’s criteria, and to evaluate ‘active’ lesions
in follow-up scans [76]. Due to the relatively young age at diagnosis, MS patients undergo
numerous MRIs throughout the years. For this reason, different research groups are trying
to limit contrast administration in selected cases to minimize exposition and costs [40,53].
One study tried to develop a DL algorithm to predict enhancing MS lesions from non-
enhanced MR sequences in nearly 2000 scans, reporting accuracy between 70 and 75%,
leading the way to further research [77]. The authors used only conventional imaging such
as T1, T2, and FLAIR. Future studies could add DWI to the analysis as this sequence has
been proven to be useful in identifying active lesions [78]. Small dimensions of MS plaques,
as already seen above for brain tumor studies, could be a reason for the low accuracy
of synthetic contrast imaging; future directions could try enhancing low-dose contrast
injections by means of AI algorithms.

In conclusion, virtual and augmented contrast imaging have an interesting role in
neuroradiology for assessing different diseases for which gadolinium injection is, for
now, mandatory.
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Table 2. Studies in neuroradiology with field of application, database used, tasks, and results
characteristics. In particular, the database used is expressed according to not-specified, private, or
public availability with the total number of patients included in brackets (N); when the database
is public, the name is reported. BraTs= Brain Tumor Segmentation database; SSIM = structural
similarity index measures; PSNR = peak signal-to-noise ratio; FLAIR = fluid attenuated inversion
recovery; PCC = Pearson correlation coefficient; SNR = signal-to-noise ratio; MS = multiple sclerosis;
MR = magnetic resonance.

Field of Application Reference Database (N) Task Results

Neuro-oncology

[30] Private (60) To obtain 100% full-dose 3D T1-weighted images
from 10% low-dose 3D T1-weighted images

SSIM and PNSR increase
by 11% and 5 dB

[31] Private (640)
To obtain 100% full-dose 3D T1-weighted images
from 10% low-dose 3D T1-weighted images and

pre-contrast 3D T1-weighted images

SSIM 0.92 ± 0.02; PSNR
35.07 dB ± 3.84

[32] BraTs2020 (369) To obtain contrast-enhanced T1-weighted images
from non-contrast-enhanced MR images

SSIM and PCC 0.991 dB ±
0.007 and 0.995 ± 0.006

(whole brain);
0.993 ± 0.008 and

0.999 ± 0.003

[47]
Private 1 (185)
Private 2 (36)

BraTs2018 (73 for SR)

To obtain 3D isotropic contrast-enhanced T2 FLAIR
from non-contrast enhanced 2D FLAIR and image

super resolution

SSIM 0.932 (whole brain),
0.851 (tumor region);

PSNR 31.25 dB (whole
brain) 24.93 dB (tumor

region)

[64] Private (116) To obtain contrast-enhanced T1-weighted images
from non-contrast-enhanced MR images

Sensitivity 91.8%,
Specificity 91.2%

[65]
Private (400)

BraTs2020 (286)
(external validation)

To obtain contrast-enhanced T1-weighted images
from non-contrast-enhanced MR images SSIM 0.84 ± 0.05

[69] Private (83) To obtain 100% full-dose 3D T1-weighted images
from 10% low-dose 3D T1-weighted images

Image quality 0.73; image
SNR 0.63; lesion

conspicuity 0.89; lesion
enhancement 0.87

[70] Private (145) To obtain 100% full-dose 3D T1-weighted images
from 25% low-dose 3D T1-weighted images

SSIM 0.871 ± 0.04; PSNR
31.6 dB ± 2

[74] Private (250) To maximize contrast in full-dose 3D
T1-weighted images

Sensitivity in lesion
detection increase by 16%

Multiple Sclerosis [77] Private (1970) To identify MS enhancing lesion from
non-enhanced MR images

Sensitivity and specificity
78% ± 4.3 and 73% ± 2.7
(slice-wise); 72% ± 9 and

70% ± 6.3

4. Clinical Applications in Body Imaging
4.1. Abdominal and Thoracic Radiology

Imaging is a fundamental tool in both abdominal and thoracic imaging, ranging
from diagnosis in the emergency setting to more complex tumor differential diagnosis,
therapeutic planning, and follow-up. Contrary to neuroradiology, the implementation of
synthetic contrast algorithms is hindered by two main issues: (1) respiration of the patients,
which may lead to misalignment between different acquisitions, one of the main obstacles
to the development of synthetic imaging [30]; (2) the presence of multiple different organs
in these compartments, leading to possible anatomy misclassification. The latter is mainly
a problem of abdominal imaging. However, some studies attempted to generate synthetic
contrast imaging in these two contexts (Table 3).

MRI of liver neoplasms heavily relies on GBCA injection both for discerning liver
cancer from other entities (i.e., hemangiomas) and because some tissues are invisible before
GBCA injection [79]. A study by Zhao et al., used a tripartite-GAN model to generate con-
trast T1 images from non-contrast ones in 265 patients with either hepatocellular carcinoma
or hemangioma, and a few subjects without lesions with a good signal-to-noise ratio and
high tumor detection accuracy [80]. However, the results are rough enhanced images that
rely mainly on tumor structural information, leaving out other important features such
as presence of capsules and infiltrative growth. To address these shortcomings, Xu et al.,
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developed a reinforcement learning model that relies on a pixel-level graph to evaluate the
images and synthetize contrast-enhanced sequences [81], on 325 subjects with both benign
and malignant tumors and healthy controls. The authors achieved a structural similarity
index of 0.85 between synthetized and acquired images, prompting more feasible clinical
use. However, both studies used only non-contrast T1 images for AI training. Future
research should investigate the possibility of adding other sequences (T2, DWI) to boost
model performance.

CT scans for abdominal pain are very common in the emergency room setting and
very useful for diagnosis and decision making [82,83]. Since contrast injection is not
required for all patients with abdominal pain, Kim et al., sought to increase non-contrast
CT (NCCT) diagnostic performance by generating contrast-enhanced CT (CECT) through a
DL algorithm in more than 500 patients (divided into training, test, and external validation
sets) [84]. The consultant and in-training radiologists involved in the research reported
increased confidence in diagnosing, especially oncologic conditions such as biliary disease
or inflammatory conditions (appendicitis, pancreatitis, diverticulitis) [84]. However, the
main drawback of the study was the increased confidence in both correct and incorrect
diagnoses, raising some concerns about the utility of this approach. Future directions
should focus more on diagnostic accuracy.

Contrast agents are not usually required for detection of lung parenchymal lesions
on CT. Nonetheless, CECT is useful for the evaluation of other thoracic structures, such
as mediastinum, pleura, and vessels. In this regard, Choi et al., generated CECT from
NCCT in a small group of 63 patients (with external validation) acquired on scanners by
different vendors and with various scanning parameters [85]. The authors evaluated the
conspicuity of mediastinal lymph nodes, which was found to be higher on the synthetized
images [85]. However, the AI was fed with ‘virtual no-contrast’ images obtained on dual-
energy CT, which enabled perfect spatial registration between the input and the ground
truth; nonetheless, it also raises concerns about real ‘contrast synthesis’ since obtaining
virtual no-contrast imaging also requires contrast injection. Other interesting thorax CT
applications include contrast synthesis for cardiac left chamber evaluation [86] and to better
delineate the heart during radiotherapy for breast cancer [87], thus resulting in lower risk
of cardiac radio-induced toxicity.

4.2. Cardiovascular Radiology

Computed tomography angiography (CTA) is a computed tomography technique that
relies on iodine-based contrast administration to visualize arteries, and to diagnose and
evaluate the related diseases, such aneurysms, dissection, or stenosis. With the widespread
availability of state-of-the-art multidetector technology, CTA has become the imaging
test of choice for various aortic conditions because of its excellent spatial resolution and
rapid image acquisition. CTA provides a robust tool for planning aortic interventions and
diagnosing acute and chronic vascular diseases. CTA is the standard for imaging aneurysms
before intervention and evaluating the aorta in the acute setting to assess traumatic injury,
dissection, and aneurysm rupture [88,89]. Furthermore, the recently published results of
the DISCHARGE trial [90] support the use of CTA instead of invasive angiography for
the assessment of coronary artery disease in patients with stable chest pain. For all these
reasons, the diffusion of CTA will likely increment exponentially in the near future.

To avoid use of contrast, Chandrashekar et al., hypothesized that raw data, acquired
from a NCCT, could be used to differentiate blood and other soft tissues [91]. Blood is
predominantly fluid, with red/white blood cells, whereas a possible adjacent intralumi-
nal thrombus (ILT) is predominantly fibrinous and collagenous, with red cells/platelets.
These individual components vary in ultrastructure and physical density, which should
be reflected in different (albeit subtle) Hounsfield Units (HUs) on a CT scan (either in
individual HU values or in their spatial distribution/‘texture’). Using deep learning (DL)
generative methods, these subtle differences can be amplified to enable simulation of
contrast-enhanced images without the use of contrast agents.
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In this study, the authors investigated the ability of generative adversarial networks
(GANs) for this non-contrast to contrast image transformation task [92,93]. They first inves-
tigated differences between visually indistinguishable regions (lumen, interface, thrombus)
within NCCT, comparing the HU intensity distribution and radiomic features. The lat-
ter have been used to find disease features that fail to be appreciated visually. Then,
the authors showed that generative models enable the visualization of aortic aneurysm
morphology in CT scans obtained without intravenous (IV) contrast administration, and
that transformation accuracy was independent of aortic abdominal aneurysm (AAA) size
and shape.

Some authors showed that the evolution of 3D indices, especially thrombus volume, is
linked to AAA progression rupture risk, and even the incidence of adverse cardiovascular
events [94–96]. Furthermore, assessing ILT spatial morphology is important for surgical
planning and has been shown to influence postoperative outcomes, such as in the case
of type 2 endoleak onset [97]. Hence, this evidence reinforces the clinical impact of using
DL generative networks for image transformation. Using DL for pseudo-contrast CT
visualization of AAA, ILT and its side branches from an NCCT is a promising technique
and a safer alternative to the routinely obtained contrast-enhanced CTA. Future studies
are needed to validate the clinical utility of such techniques, especially in pre-operative
endovascular graft planning imaging.

In cardiac magnetic resonance (CMR), the use of GBCAs is essential for detecting
focal myocardial lesions and fibrosis in a variety of cardiovascular diseases using late
gadolinium enhancement (LGE) sequences [98,99]. The presence and extent of LGE are
independent risk factors for adverse outcomes [100–105]. Conventional LGE is dependent
on intravenous administration of GBCA and requires at least 10 min after injection to
visualize contrast redistribution [106]. LGE image quality is dependent on appropriate
adjustment of TI, although the phase-sensitive inversion recovery technique is less sensitive
to the TI setting.

Zhang et al., hypothesized that native T1 maps may be transformed into images similar
to LGE images [107]. Using novel AI approaches, a virtual native enhancement (VNE)
imaging technology was developed [43,47], which exploits and enhances existing contrast
and signals within the native T1 maps and cine frames, and displays them in a standardized
presentation. The VNE imaging was then validated by comparison against matching LGE
for image quality, visuospatial agreement, and myocardial lesion quantification. This
approach was developed first in hypertrophic cardiomyopathy (HCM) because its features
of regional heterogeneity and diverse tissue remodeling processes make it an ideal test case
for a wide range of cardiac diseases.

The proposed VNE technology uses two components: native T1 mapping images,
which provide image contrast and signal changes in myocardial tissue [108–110], and
pre-contrast cine frames of a cardiac cycle for additional wall motion information and
more defined myocardial borders. These images were fed to a DL generator to derive
a VNE image: an AI technology transformed native T1 map (together with cines) into
more readable presentation of LGE, ready for standard clinical interpretation [93,111–113].
The DL is effectively acting as a ‘virtual contrast agent’ creating ‘virtual LGE’ image from
native CMR sequences. Zhang et al., showed that VNE images had significantly better
quality than LGE images, demonstrating high agreement with LGE in myocardial lesion
visuospatial distribution and quantification [107]. The clinical utility of detecting subtle
lesions (often also seen in LGE) remains unclear, in line with literature reporting sensitivity
of T1 to early myocardial changes in HCM patients.

Finally, the VNE technology has the potential to significantly improve clinical practice
in CMR imaging, as it may allow significantly faster, lower-cost, and contrast-free CMR
scans, enabling frequent monitoring of myocardial tissue changes.
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4.3. Head and Neck Radiology

In head and neck radiology, MRI is a very useful diagnostic tool for identification,
staging, radiotherapy and surgery planning, and treatment evaluation of certain malignan-
cies, such as nasopharyngeal carcinoma (NPC) [114], especially at a stage when the disease
is not visible on endoscopy [115]. GBCAs are used for their power to enhance detectability
and boundaries of these tumors [116].

Very few applications of AI-powered contrast media have been proposed in head
and neck imaging to date. An exploratory study fed a DL model with non-enhanced
conventional MR sequences (T1- and T2-weighted), with the aim of distinguishing between
NPC and benign hyperplasia, as well as assessing the T stage, in more than 4000 subjects.
The model succeeded in discriminating NPC from benign hyperplasia with an accuracy
comparable to a model that included T1 post-contrast sequences (99%) [117]. In addition,
when both T1 and T2 non-contrast sequences were evaluated together, the model could
predict T stage comparably to enhanced sequences [117].

Although more research is needed to confirm these results, including the need of
external validation for generalizability of results, it represents a good example of contrast
substitution in oncologic radiology, suggesting a test for other malignancies.

Table 3. Studies in body imaging with field of application, database used, tasks, and results charac-
teristics. In particular, the database used is expressed according to not-specified, private, or public
availability with the total number of patients included in brackets (N); when the database is public,
the name is reported. SSIM = structural similarity index measure; PSNR = peak signal-to-noise
ratio; PCC = Pearson correlation coefficient; MR = magnetic resonance; CT = computed tomography;
ASD = average surface distance; DSC = dice similarity coefficient.

Field of Application Reference Database (N) Task Results

Abdominal Imaging

[80] Private (265)
To obtain contrast-enhanced T1-weighted

FS images from non-contrast-enhanced
T1-weighted FS images

PNSR 28.8; accuracy 89.4%

[81] Private (325)
To obtain contrast-enhanced T1-weighted

images from non-contrast-enhanced
T1-weighted images

SSIM 0.85 ± 0.06;
PCC 0.92

[84] Private (500) To obtain contrast-enhanced CT from
non-contrast-enhanced CT

Increased diagnostic
confidence and accuracy

of radiologist

Thoracic Imaging [85] Private (63) To obtain contrast-enhanced CT from
non-contrast-enhanced CT

SSIM 0.84; PNSR 17.44;
contrast-to-noise ratio

(lymph nodes) 6.15 ± 5.18

Head and Neck Imaging [117] Private (4478)

To distinguish NPC from hyperplasia in
non-contrast-enhanced MR images only

and including contrast-enhanced MR
images in the model

Similar ASD and DSC
between the two models

5. Conclusions and Future Directions

AI-powered contrast media have been proven to be capable of delivering impressive
results in several conditions. While current applications to new diagnoses of enhancing
lesions, especially in neuro-oncology [70], are still limited and need to be confirmed in
larger studies, virtual and augmented contrasts demonstrated promising results in disease
follow-up over time. This is especially true for multiple sclerosis, where the administration
of contrast can be repeated for years, leading to brain deposition. Many applications of
AI-powered contrast media are likely to develop in the next few years in the field of body
imaging, as demonstrated by the growing evidence of successful malignancy characteri-
zation on non-contrast MR with the use of AI [118,119]. Specifically, the characterization
of liver (for which there are already several studies) and prostate cancer may significantly
benefit from these techniques, decreasing unessential exposure to contrast media. Another
promising field of application is pediatric imaging. Contrast media toxicity and deposition
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is even more concerning in the pediatric population due to long life expectancy. AI-powered
contrast media may find fertile ground in pediatric imaging, such as in the follow-up of
demyelinating disorders [120], metabolic diseases [121,122], phacomatoses [123], and post-
treatment changes [124]. Furthermore, AI architectures are subject to constant growth and
improvement. The implementation of graphical interfaces (GUIs), through which it is
possible to fully exploit the generative potential of GANs architectures [125], is currently
under development. These advancements will lead to broader clinical applications of
virtual and augmented contrasts in the near future.
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