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Abstract: The ongoing climate change is manifesting itself through the increasing expansion of Urban
Heat Island (UHI) effects. This paper evaluates the microclimate benefits due to cool road pavements,
greenery, and photovoltaic canopies in a parking lot in Fondi (Italy), identifying the best strategy to
counteract the negative effects of UHIs. The ENVI-met software allowed a microclimatic analysis of
the examined area in July 2022 through the comparison of the thermal performances between the
current asphalt pavement and ten alternative scenarios. The proposed layouts were investigated
in terms of air temperature (AT), surface temperature (ST), mean radiant temperature (MRT), and
predicted mean vote (PMV). The results showed that the existing asphalt pavement is the worst one,
while the cool pavement integrated with vegetation provides appreciable benefits. Compared to the
current layout, a new scenario characterized by light porous concrete for carriageable pavements and
sidewalks, concrete grass grid pavers for parking stalls, a 2-m-high border hedge, and 15-m-high
trees implies reductions of AT above 3 ◦C, ST above 30 ◦C, MRT above 20 ◦C, and a maximum PMV
value equal to 2.2.

Keywords: urban heat islands; green furniture; cool pavements; photovoltaic canopies; predicted
mean vote; thermal comfort

1. Introduction

In the early 1800s, the meteorologist Howard [1–3] observed in London that the urban
air temperature was higher than that of the surrounding areas. Over the decades, the
economic and social opportunities of cities have attracted people from rural areas [4]. This
phenomenon has contributed to reducing green and countryside areas and increasing
facilities [5,6]. The anthropization factor caused the increase in air pollution and fostered
the development of Urban Heat Islands (UHIs) [7,8]. In the last decades, the effects of
the current global warming have exacerbated UHIs; new planning schemes are necessary
to improve urban livability [9–11] with cost-effective measures. Indeed, urban artificial
surfaces (e.g., roads, roofs, and buildings) over the day absorb solar radiation and store
thermal energy; at night, heat energy is transferred to the atmosphere and causes a 1–3 ◦C
air temperature increase [3,12]. This is enhanced by the summer diurnal temperatures and
affects the physical and psychological discomfort of citizens [13]. Moreover, UHIs have a
serious economic impact due to the energy consumption for cooling indoors [2,14].

According to [15,16], it is possible to counteract UHIs by means:

• light and permeable road pavements to improve the heat transmission between air
and buildings;

• greenery and trees to realize urban green infrastructures (UGIs);
• sustainable transport and mobility to reduce the negative effects s private vehicles or

conventional transport;
• evapotranspiration to decrease the heating of the local urban atmosphere;
• urban ventilation to improve the heat exchange.
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A recent Italian standard provided for mandatory measures to counter UHIs, cool
pavement materials, at least 60% permeable surfaces, and green furniture should be de-
signed for all public parking works [17]. In this study, an existing parking lot in Fondi
(Lazio, Italy) is modeled with the software ©2022 ENVI-met GmbH to gain its twin dig-
ital model. The survey area was chosen to conduct a preliminary assessment of the best
sustainable redevelopment strategies for the site with a view towards future upgrades.
The ENVI-Met software allows to recreate a real urban area and to evaluate its thermal
conditions [18,19] through the return of reliable outputs in the real conditions [20,21]. After
a validation procedure by comparing actual microclimate data with software output data,
the current layout was modified with permeable light pavements and soft engineering solu-
tions to investigate their effectiveness in mitigating UHI. This article proposes to replace the
current layout of the studied area with 10 different scenarios based on recent cool pavement
technologies. This study is a useful tool in order to evaluate which strategy appears to be
the most appropriate to counteract the significant climate changes. The results expressed in
terms of thermal and comfort parameters (i.e., AT, ST, MRT, and PMV) show quantitatively
the interventions in an urban context that can ensure a high level of well-being.

2. Materials and Methods

The increase in temperatures in urban areas is caused by the daytime thermal energy
absorbed by artificial surfaces that is radiated during the night. This process is driven
by both the albedo and emissivity of materials [3,14,15]. Albedo is the ratio between the
reflected energy and the incident energy over a unit area [22]. It depends on: the material
color and influences the surface temperature (ST), especially during the daytime [6,23,24],
the wavelength of shortwave solar radiation, and the incident angles of variable direct
solar radiation during the day [25]. Emissivity is the ratio between the energy radiated by
an object compared to that radiated by a black body. It affects the surface temperatures
of pavements, especially during the night [6,23,26]. In addition to the above two thermal
properties, the conductivity (k) and thermal capacity (cp) also have an effect on the thermal
response of an urban road pavement [23,27]. Thermal conductivity affects ST; the greater
the thermal conductivity, the lower the daytime ST, and the opposite occurs at night. High
cp values imply a reduction of the maximum ST, whereas low values favor the increase of
the minimum ST [28,29]. However, k and cp cannot counteract UHI.

Therefore, the best two strategies are based on high albedo and emissivity building
materials. The former relies on pavements with cool materials (e.g., limestone, light stone,
and light concrete), the latter on permeable pavements to increase evapotranspiration
and decrease the heating of the local urban atmosphere. Whatever the climate, cool
materials could be effective, whereas porous pavements are suitable for warm temperate
climates, such as in the studied parking lot. Three pavement materials were examined as
an alternative to the existing asphalt:

• Porous light concrete has a 15–25% void structure. The high porosity gives mechanical
strengths lower than those of traditional concrete and requires periodical cleaning to
avoid pores’ occlusion [30]. Large joint gaps between concrete blocks give permeable
pavement as well [31].

• Concrete grass grid pavers allow both the evaporation of rainwater and evapotran-
spiration of grass. They are suitable for parking lots, because their use implies a low
bearing capacity and high roughness [30,32].

• Stone pavers (e.g., limestone, basalt, and porphyry) are used in urban areas because of
their aesthetic value. The blocks allow different layouts of the surfaces [33].

Table 1 synthesizes the pros and cons and the physical characteristics of the existing
and the proposed building materials [34–36].
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Table 1. Pros and cons of the examined building materials.

Material Photo Pros Cons Albedo Emissivity Color

Asphalt
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The software © ENVI-met 5.0.3 was used for the microclimatic analysis, although it
is not suitable for simulating an evaporative cooling effect of pervious pavements. Three
input interfaces about the geometric, physical, and meteorological characteristics of the site
permit processing three-dimensional (3D) simulation models. The results were analyzed
with the Leonardo interface in terms of Air Temperature (AT), Surface temperature (ST),
Mean Radiant Temperature (MRT), and Predicted Mean Vote (PMV) [37–39]. The PMV
predicts people’s thermal comfort in steady-state conditions (Equation (1)). In this study,
the reference man is 35 years old, 1.75 m tall, and weighs 75 kg [40,41]:

PMV = (0.303 exp − 0.0336M + 0.028) × {(M −W) − 3.5 × 10−3 × [5733 − 6.99 × (M −W) −
pa] − 0.42 × (M − 58.5) − 1.7 × 10−5 ×M × (5867 − pa) − 0.0014 ×M × (34 − AT) − 3.96 ×

10−8 × fcl × [(tcl + 273)4 − (tr + 273)4] − fcl × hc × (tcl − AT)}
(1)

where M is the metabolism rate, W is the external work, pa is the partial water vapor
pressure (Pa), fcl is the surface area factor of clothing, tcl is the surface temperature of
clothing (◦C), hc is the convective heat transfer coefficient (W/(m2 × K)), AT is the air
temperature (◦C), and tr is the radiant temperature (◦C). Three different conditions are
defined for the PMV according to the range of values assumed: ideal conditions (IC) for
values between slightly cool (−1) and slightly warm (+1), acceptable conditions (AC) for
values between (−3, −1) and (1, 3), and critical conditions (CC) for values over ±3.

The MRT quantifies the effect of environmental radiation on the human body. It
depends on the surface’s emissivity and the shadows of the environment [42–45]. ENVI-met
calculates the MRT according to Equation (2):

MRT4 = ∑N
i=1 T4

i Fp→i, (2)

where N is the number of the surrounding surfaces, Ti is the temperature of the ith sur-
face, and Fp→i are the factors of view between the person and the whole surrounding
environment.

The examined area is Archimede Rotunno Square in Fondi (Lazio, Italy; lat. 41◦21′12′′–
long. 13◦25′29′′). The model is composed of a grid of 40 ×3 0 × 30 with a resolution of
2 × 2 × 2 m (x, y, z). The model includes the central parking area (with six pink points that
identify the receptors), an urban asphalt straight road on the right, two concrete buildings
at the top and bottom of the image, and a green park on the left (Figure 1).
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Figure 1. Archimede Rotunno Square in Fondi overlapped on the ENVI-Met.

The base model (S0) describes the current layout, with asphalt carriageable pavements
and porphyry sidewalks (Figure 2). The rugged areas are sandy soil with albedo equal to
0.25 and emissivity equal to 0.90.
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Figure 2. Three-dimensional model of the base model (S0).

Six receptors (1–6 pink and red points in Figures 1 and 2, respectively) were in the
parking area to conduct the analysis. As performed in previous studies carried out by
the authors [46], S0 was validated by comparing the AT calculated in the six receptors
with those measured by the authors with the wi-fi weather station SBS-WS-500 Steinberg
Systems (wind speed: 0–50 m/s, wind speed accuracy: ±10%, humidity: 10–99%, humidity
accuracy: ±5% (between 20% and 90%; 0–45 ◦C), and air temperature: −40–+60 ◦C (out-
side), temperature accuracy: ±1 ◦C). The comparison gave an average difference equal
to 1.65 ◦C (the maximum value was 3.67 ◦C and the minimum one 0.08 ◦C). S0 presents
the results in terms of the AT, MRT, and PMV consistent with the negative effects of UHIs;
therefore, the authors propose to replace the current pavement with different layouts to
improve microclimatic conditions (Table 2):

• Case 1.x focuses on the sidewalk’s pavements; x ranges between 1 and 3, varying the
sidewalk material;

• Case 2.x focuses on all the road pavements; x ranges between 1 and 3, varying the
pavement material;
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• Case 3.x focuses on all the road pavements and adds green furniture or photovoltaic
panels to the area; x ranges between 1 and 4, varying the layout.

Table 2. Characteristics of the examined scenarios.

Scenario Characteristics
S0 Asphalt carriageable pavements and porphyry pavers for sidewalks

S1.1 Asphalt carriageable pavements and concrete grass grid pavers for sidewalks
S1.2 Asphalt carriageable pavements and light porous concrete for sidewalks
S1.3 Asphalt carriageable pavements and grass for sidewalks
S2.1 Concrete grass grid pavers for carriageable pavements and sidewalks
S2.2 Light porous concrete for carriageable pavements and sidewalks

S2.3 Light porous concrete for carriageable pavements and sidewalks, and concrete
grass grid pavers for stalls

S3.1
Light porous concrete for carriageable pavements and sidewalks, and concrete
grass grid pavers for stalls + 2-m-high boundary hedge around the area + 11

5-m-high trees

S3.2
Light porous concrete for carriageable pavements and sidewalks, and concrete
grass grid pavers for stalls + 2-m-high boundary hedge around the area + 43

5-m-high trees

S3.3
Light porous concrete for carriageable pavements and sidewalks, and concrete
grass grid pavers for stalls + 2-m-high boundary hedge around the area + 43

15-m-high trees

S3.4
Light porous concrete for carriageable pavements and sidewalks, and concrete

grass grid pavers for stalls + 2-m-high boundary hedge around the area +
photovoltaic canopies over the parking stalls

The choice of the proposed scenarios and layouts aims to identify the best combination
to mitigate the effects of UHIs. Scenarios S1.x and S2.x focus the microclimate investigation
on the effects of sidewalks and pavement, respectively. Scenarios S3.x investigate the
positive effects of the renewal of both the sidewalks and the lane with cool materials and
also with the addition of green surfaces and photovoltaic panels, which can make parking
management more sustainable.

The microclimate analysis was conducted in July 2022, as it is the most severe
month [46]. The authors verified with a comparison with a 72-h simulation that a
48-h analysis is enough to reach numerical stability during the model spin-up phase (the
maximum difference of PMV was 0.012, the maximum difference of AT was 0.097 ◦C, and
the maximum difference of TMR was 0.155 ◦C). Therefore, a 48-h analysis was performed
starting from 06.00 a.m. on 1 July 2022. Table 3 lists the meteorological input data [47].

Table 3. Meteorological input data.

Input Data Value Unit

Wind speed 2.00 m/s
Wind direction 90 ◦

Humidity at 2500 m 8 g/kg
Initial air temperature 23 ◦C

Maximum air temperature 30 ◦C
Initial humidity 70 %

Maximum humidity 75 %

For each receptor and scenario, the AT, ST, MRT, and PMV were assessed every
six hours as of 12:00 a.m. on 2 July 2022 until 6:00 p.m. on 3 July 2022.

The main purpose of this study is to identify the layouts able to improve the environ-
mental conditions and guarantee physical well-being and thermal comfort perceived by
individuals, especially during the daytime.
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3. Results

The Results section is divided into four subsections, one for each case examined. In this
way, it is possible to interpret in detail the benefits resulting from a targeted intervention in
the study area (i.e., sidewalks, road pavement, UGI, and canopies).

3.1. Current Scenario (S0)

Table 4 lists the results of S0 in terms of the PMV, AT, and MRT.

Table 4. Results of S0 in terms of the PMV, AT, and MRT.

Receptor

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

12:00 a.m. 2 July 6:00 p.m. 2 July 00:00 a.m. 3 July 06:00 a.m. 3 July

1 3.96 32.39 57.99 1.89 30.10 33.13 0.28 25.25 18.44 0.07 24.12 17.80
2 4.15 33.99 57.86 2.94 31.31 47.56 0.28 25.40 18.29 0.69 24.36 29.78
3 4.12 33.25 57.79 2.92 30.71 47.50 0.26 25.13 18.18 0.65 24.10 17.56
4 4.20 33.93 58.16 2.33 30.78 38.78 0.29 25.27 18.68 0.73 24.32 30.06
5 4.17 33.99 57.52 2.91 31.04 47.21 0.23 25.09 18.03 0.70 24.18 29.51
6 4.21 33.87 57.62 1.87 30.72 30.89 0.26 25.13 18.19 0.74 24.22 29.63

The daytime results highlight higher than 4 PMV values and higher than 57 ◦C MRT
values that imply serious thermal stress and discomfort. However, the nighttime results are
not critical: PMV is less than 0.7, and MRT and AT are about 18 ◦C and 25 ◦C, respectively.
Figure 3a–d represents the AT, MRT, PMV, and ST map at 12.00 a.m. on 2 July, respectively.
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The maps in Figure 3 show critical conditions for most of the modeled surfaces. Indeed,
the existing black pavement absorbs a significant amount of heat, a direct consequence of
the low albedo and high heat capacity of the asphalt-wearing layer [48].

3.2. Case 1.x

Case 1.x focuses its attention on the pedestrian surfaces surrounding the parking
area. Porphyry pavers were substituted by concrete grass grid pavers (S1.1), light porous
concrete (S1.2), and 5-cm-high grass (S1.3). Table 5 lists the results of Case 1.x in terms of
the PMV, AT, and MRT.

Table 5. Results of Case 1.x in terms of the PMV, AT, and MRT.

Scenario Receptor

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

12:00 a.m. 2 July 6:00 p.m. 2 July 00:00 a.m. 3 July 06:00 a.m. 3 July

S1.1

1 3.89 31.51 60.69 1.67 29.12 32.30 0.07 24.53 16.88 −0.11 23.45 16.66
2 4.12 32.70 60.55 2.68 29.97 47.03 0.04 24.46 16.74 0.49 23.47 29.04
3 4.03 32.18 60.49 2.69 29.56 46.97 0.03 24.32 16.63 −0.13 23.35 16.43
4 4.17 32.76 60.85 2.08 29.56 38.07 0.05 24.37 17.12 0.54 23.46 29.34
5 4.14 32.72 60.17 2.65 29.72 46.66 0.00 24.20 16.49 0.51 23.33 28.80
6 4.14 32.71 60.26 1.61 29.52 30.00 0.03 24.25 16.65 0.56 23.37 28.92

S1.2

1 3.92 31.51 61.39 1.68 29.13 32.41 0.07 24.52 16.85 −0.11 23.45 16.74
2 4.17 32.73 61.25 2.68 29.96 47.13 0.03 24.44 16.71 0.49 23.46 29.11
3 4.07 32.21 61.19 2.70 29.56 47.06 0.03 24.31 16.60 −0.12 23.34 16.51
4 4.21 32.79 61.55 2.08 29.56 38.17 0.05 24.36 17.09 0.54 23.49 29.42
5 4.17 32.73 60.87 2.65 29.71 46.75 −0.01 24.18 16.46 0.50 23.32 28.87
6 4.17 32.71 60.96 1.61 29.51 30.11 0.02 24.24 16.61 0.55 23.36 28.99

S1.3

1 3.81 31.78 57.65 1.64 29.24 31.43 0.06 24.51 16.80 −0.12 23.46 16.46
2 3.98 33.11 57.52 2.67 30.17 46.27 0.03 24.42 16.65 0.49 23.49 28.85
3 3.96 32.52 57.46 2.66 29.71 46.20 0.03 24.29 16.54 −0.13 23.36 16.23
4 4.03 33.08 57.82 2.05 29.69 37.24 0.04 24.34 17.03 0.54 23.48 29.17
5 4.02 33.22 57.18 2.64 29.92 45.90 −0.01 24.15 16.40 0.51 23.35 28.62
6 4.07 33.11 57.27 1.58 29.64 29.13 0.02 24.24 16.56 0.55 23.39 28.74

Whatever the hour, the PMV results do not differ significantly between the scenarios
of Case 1.x (the minimum value is 3.89, 3.92, and 3.81 in S1.1–S1.3, respectively). Low
differences are between S0 and Case 1.x over the nighttime (the average value of the PMV
is 0.27 in S0, 0.04 in S1.1, and 0.03 in S1.2 and S.13). Regarding AT, at 12.00 on 2 July, the
AT ranges between 31.51 ◦C of S1.1 and 33.22 ◦C of S1.3. S1.1 and S1.2 during the daytime
have a similar trend that is better than S0 (at 12.00, AT in S0 ranges between 32.39 ◦C and
33.99 ◦C). At 12.00 a.m., both the grass grid pavers in S1.1 and the porous concrete in S1.2
imply a 1 ◦C AT reduction compared to S0 (the average AT values are 32.43 ◦C and 32.45,
respectively, against 33.57 ◦C of S0). It should be noted that the software does not allow
simulations of the evaporative cooling effect of pervious pavements; the results are worse
than they should be. S1.3 gives slightly worse results (the average AT is 32.80 ◦C). At
midday, the MRT assumes high values both in S0 and Case 1.x (the minimum value is
57.52 ◦C in S0, 60.17 ◦C, 60.87 ◦C, and 57.18 ◦C in S1.1–S1.3, respectively). S1.1 and S1.2
give the worse results than S0, while S1.3 shows small improvements due to the sidewalk’s
grass. During the nighttime, both S0 and Case 1.x have absolute low values whose trends
are comparable to the daytime results.

Figure 4a–d shows the PMV map of S0 and S1.1–S1.3, respectively, at 12.00 a.m. on 2 July.
At midday, the minimum and maximum PMV values of Case 1.x range between 2.72

and 5.03 of S1.1, 2.76 and 5.06 of S1.2, and 2.58 and 4.99 of S1.3. This last scenario ensures
the best performance compared to S0, whose minimum and maximum PMV values are
2.66 and 5.28, respectively. The results highlight that replacing porphyry sidewalks with
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porous concrete pavements or concrete grass grid pavers brings about a negligible benefit.
The small extension of the modified surface justifies these results.
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3.3. Case 2.x

Case 2.x modifies both sidewalk and parking pavements. Concrete grass grid pavers
and porous light concrete are the overall pavements in S2.1 and S2.2, respectively. S2.3 has
concrete grass grid pavers for stalls and porous light concrete for the other road surfaces.
Table 6 lists the results of Case 2.x in terms of the PMV, AT, and MRT.

The best technical and environmental scenario is S2.3. Indeed, during the daytime,
road materials with high albedo and emissivity contribute to reducing both the AT and
PMV compared to S0 (average reduction of 0.88 ◦C and 0.37, respectively); at 6.00 p.m. on
2 July PMV is near the comfort zone (i.e., 2.15). Nevertheless, the average MRT value is
high both at 12.00 a.m. and 6.00 p.m. (54.54 ◦C and 37.88 ◦C, respectively). Figure 5a–d
shows the PMV map of S0 and S2.1–S2.3, respectively, at 12.00 on 2 July.

S2.1 has the best PMV values of Case 2.x (the average PMV is 3.61 at 12.00 on 2 July).
From an environmental perspective, S2.1 is the most suitable option, but concrete grass
grids make up a discontinuous pavement, resulting in discomfort for pedestrians or light
vehicles. Therefore, S2.3 is preferred, because its average PMV is 3.76 at 12.00 on 2 July
compared to 3.91 of S2.2.

Case 2.x partly transposes [17], because all the road surfaces are permeable and cool.
The results are better than Case 1.x, but they are not enough to guarantee a favorable state
of comfort or to mitigate the UHI.
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Table 6. Results of Case 2.x in terms of the PMV, AT, and MRT.

Scenario Receptor
PMV

(-)
AT

(◦C)
MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

PMV
(-)

AT
(◦C)

MRT
(◦C)

12:00 a.m. 2 July 6:00 p.m. 2 July 00:00 a.m. 3 July 06:00 a.m. 3 July

S2.1

1 3.44 31.41 52.61 1.69 29.55 31.21 0.19 24.75 18.26 −0.04 23.59 17.38
2 3.57 32.59 52.54 2.23 30.46 38.09 0.17 24.75 18.18 0.11 23.60 20.67
3 3.59 32.20 52.46 2.20 30.01 38.00 0.16 24.58 18.07 −0.05 23.49 17.20
4 3.65 32.69 52.80 2.01 30.12 35.10 0.18 24.65 18.52 0.14 23.56 20.97
5 3.68 33.10 52.32 2.21 30.35 37.84 0.13 24.47 18.04 0.11 23.47 20.53
6 3.70 32.93 52.39 1.66 30.10 29.04 0.15 24.49 18.17 0.14 23.49 20.60

S2.2

1 3.75 31.76 56.61 1.74 29.62 32.01 0.13 24.74 17.27 −0.09 23.58 16.61
2 3.89 33.10 56.49 2.77 30.61 30.06 0.10 24.72 17.13 0.51 23.62 28.96
3 3.90 32.54 56.42 2.76 30.12 46.66 0.09 24.55 17.02 −0.11 23.49 16.37
4 3.96 33.08 56.78 2.15 30.11 37.77 0.11 24.61 17.51 0.56 23.58 29.27
5 3.95 33.29 56.16 2.74 30.38 46.37 0.06 24.43 16.88 0.52 23.48 28.73
6 3.98 33.13 56.25 1.69 30.06 29.74 0.08 24.46 17.04 0.57 23.50 28.85

S2.3

1 3.70 31.57 56.42 1.74 29.59 32.00 0.13 24.75 17.33 −0.08 23.59 16.62
2 3.64 32.91 52.79 2.24 30.58 38.10 0.16 24.74 18.12 0.10 23.61 20.65
3 3.87 32.38 56.23 2.77 30.09 46.65 0.10 24.56 17.07 −0.10 23.49 16.39
4 3.70 32.96 53.05 2.01 30.17 35.10 0.17 24.63 18.46 0.13 23.58 20.95
5 3.94 33.23 56.01 2.75 30.39 46.40 0.07 24.45 16.96 0.54 23.48 28.76
6 3.73 33.08 52.63 1.65 30.10 29.03 0.14 24.48 18.10 0.13 23.49 20.60
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3.4. Case 3.x

Case 3.x fully transposes [17], because it adds green coverage for at least 10% of
the gross parking area, not less than a 1-m-high boundary hedge, and any photovoltaic
canopies above the stalls. Figure 6a–d represents the layout of S3.1–S3.4, respectively.
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1 3.02 30.48 47.01 1.71 29.08 31.67 0.59 25.12 23.32 0.34 23.94 22.00
2 3.51 31.84 51.32 2.26 29.98 38.05 0.43 25.15 20.88 0.18 23.90 19.61
3 3.21 31.39 47.65 1.76 29.17 32.47 0.60 24.85 24.45 0.36 23.77 23.01
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2 1.99 29.40 35.08 1.25 27.90 27.87 0.49 24.82 23.11 0.27 23.79 21.89
3 1.97 29.41 35.41 1.18 27.68 27.75 0.40 24.56 22.87 0.19 23.64 21.65
4 2.05 30.22 34.87 1.19 27.90 27.69 0.38 24.55 22.97 0.17 23.63 21.75
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4 2.27 29.69 40.04 1.14 27.94 26.68 −0.04 24.55 14.57 −0.17 23.60 15.08
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The green furniture in S3.3 guarantees thermal comfort, because the average PMV
decreases to 2.25 at 12.00 a.m. and 1.21 at 6.00 p.m. The photovoltaic canopies in S3.4 shadow
the area, reducing the ST and leading to an average PMV value of 2.68 at 12.00 a.m. According
to Tables 6 and 7, at night, there is a slight deterioration in terms of the AT and PMV, because
the trees are a barrier and retain the heat of the day under their foliage. At 00.00 a.m. and
6.00 a.m., S3.4 is the best solution (the average AT is 24.47 ◦C and 23.55 ◦C, respectively,
against 24.58 ◦C and 23.65 ◦C of S3.3). The average PMV is almost neutral, equal to−0.02 and
0.06, respectively, against 0.39 and 0.33 of S3.3). However, the trees contribute to the drastic
diurnal reduction of MRT; the average MRT at 12.00 a.m. on 2 July reaches 57.82 ◦C in S0,
while it is 53.64 ◦C in S3.1, 50.31 ◦C in S3.2, and 37.80 ◦C in S3.3. Overall, the daytime benefits
of trees far outweigh the disadvantages of the nighttime hours. The average MRT value of
3.4 at 12.00 a.m. is 46.02 ◦C; the performance of the layout with canopies is intermediate
between the current scenario and those with green furniture.

Figure 7a–d shows the PMV absolute difference between S0 and S3.1–S3.4, respectively,
at 12.00 on 2 July.
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(c) S3.3, and (d) S3.4.

At 12:00 a.m., S3.1 and S3.2 give similar PMV results compared to S0 (Figure 7a,b); the
average absolute difference is 0.42 and 0.68, respectively. On the other hand, S3.3 gives the
highest absolute difference PMV (i.e., above 1.8).

Figure 8a–d shows the absolute difference between MRT in S0 and S3.1–S3.4, respec-
tively, at 12.00 on 2 July.
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Figure 8. The MRT absolute difference map at 12.00 a.m. on 2 July between S0 and (a) S3.1, (b) S3.2,
(c) S3.3, and (d) S3.4.

The results confirm studies in the literature where dense and strategically arranged
trees reduced the MRT, especially in open sites [49] and canopy shade and reduced the
direct radiation, offering benefits against heat stress [50]. Figure 9a–d represents ST maps
of S0, S2.3, S3.3, and S3.4, respectively, at 12.00 on 2 July.

The ST maps in Figure 9 highlight the pivotal role of trees and shade to reduce ST. At
midday, in S0, the maximum ST value is 59.4 ◦C (Figure 9a), whereas it is 55.61 ◦C, 52.23 ◦C,
and 52.57 ◦C in S2.3, S3.3, and S3.4, respectively. In particular, the presence of shaded areas
is also beneficial for the surrounding areas, as confirmed by the ST trend of the road on the
east side of the model.
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4. Discussion

In this manuscript, the authors proposed an application of recent innovations in UHI
mitigation to a real case of study. In detail, the area examined was a parking lot in the
City of Fondi (Lazio, Italy). The implementation of the current parking lot conditions
in ENVI-Met software demonstrated the presence of adverse microclimatic conditions.
Therefore, in this study, several useful scenarios were proposed to foster and ensure better
living conditions for humans. They differed from each other in the gradual replacement
of the current conditions, so that improvements from the introduction of a particular cool
strategy could be read in detail. The results were analyzed in terms of the AT, MRT, ST,
and PMV and demonstrated in accordance with the scientific literature the benign effects
associated with the introduction of cool material and UGIs [51–53].

Figures 7–9 demonstrate that S3.3 gives satisfactory results, because it is possible to
achieve the objectives of reducing temperatures and ensuring PMV in the comfort zone
during the daytime. Moreover, this solution is sustainable due to the presence of large
trees and permeable road pavements [54]. According to recent studies, this article enhances
the cooling performance of permeable pavements [55,56] and green furniture in an urban
context [57,58]. Conversely, the absence of trees in S3.4 turns the alternative less “green” but
qualifies the proposed scenario as the best option from an energy point of view. Indeed, the
produced electricity can be used to recharge electric or plug-in hybrid vehicles. Therefore,
the authors conducted the energy analysis of S3.4 based on the following assumptions:

• On average, 7.2 m2 of solar cells are necessary to build a 1-kW power plant if they are
correctly positioned and tilted. In S3.4, the cells were horizontal; thus, the efficiency of
energy production was reduced by a factor of 0.75 [59];
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• A factor of 0.8 takes into account the system losses [60];
• The overall cell surface is 1500 m2.

According to [61], the annual solar radiation on the horizontal plane for Latina, a
city near Fondi, is 1673 kWh/m2. Therefore, according to [62], it is possible to value the
theoretical annual gain G of the plant, which is equal to 20,326.95 kWh. Since an electric
car consumes, on average, 15 kWh/100 km [63], the energy produced by the photovoltaic
canopies is enough to travel 120,906 km/year. Since 60 stalls are in the parking area, each
car parked during the year can recharge its batteries and travel about 2000 km. Therefore,
S3.4 would create new favorable solutions for the Italian energy market to reduce the
dependence on fossil fuels and promote carbon-neutral mobility.

The analysis focused on physical (air temperature, surface temperature, and mean
radiant temperature) and thermal–physiological (predicted mean vote) variables, but
structural issues cannot be overlooked [64,65]. The results showed that the thermophysical
properties of building materials play a pivotal role in improving the quality of life. Finally,
even during the hottest hours, the inclusion of UGIs and photovoltaic canopies boosted the
benefits of cool pavement, favoring the reduction of thermal parameters and increasing
human comfort.

5. Conclusions

Traditional black and low-permeable road asphalt pavements contribute to UHIs,
because the wearing material has low albedo and emissivity and a high thermal capacity.
They overheat and absorb heat from the sun in the daytime and radiate it out as the
temperature drops. The negative thermophysical effects overlap with those from climate
change and require mitigation strategies. Cool materials and green furniture improve
livability in the urban environment, because they reduce both the ST and AT and allow
evapotranspiration.

With ENVI-Met, a 3D twin digital model of a parking lot in Fondi (Lazio, Italy) was
modeled. According to the Italian Ministry of the Environment (2017), the current low-
permeable pavement was replaced with a permeable one and green furniture was added
in ten alternative scenarios. The microclimate of the examined area was described by
the air temperature, surface temperature, mean radiant temperature, and PMV in the
hottest month of the year. The results showed that the best scenarios from a technical–
environmental point of view have pavements composed of grass concrete grids and light
permeable concrete, respectively, for parking stalls and carriageable areas. Indeed, high
albedo and emissivity reduce the AT (e.g., at 12.00 a.m. AT is 32.69 ◦C in S2.3 compared to
33.57 ◦C in S0) and ensure thermal comfort (at 12.00 a.m. PMV is 3.76 in S2.3 compared
to 4.13 S0), but they are not enough to counteract the effects of UHIs. Therefore, green
furniture composed of trees and hedges has been added to the area; they shade surfaces,
reducing at 12.00 a.m. both the AT (there is a difference of over 3 ◦C between S3.3 and Case
S0 at 30.23 ◦C vs. 33.57 ◦C) and MRT (37.80 ◦C of S3.3 vs. 57.82 ◦C of S0). S3.3 is the best
scenario, as the main objective (i.e., mitigation of the heat island in the hottest hours) is
achieved with soft engineering strategies (i.e., greenery and permeable pavements) that
are compliant with the current Italian standards. Finally, a scenario with photovoltaic
shelters covering the parking stalls was modeled (S3.4). The thermal and environmental
results were appreciable during the day (at 12.00, the PMV and AT were 2.68 and 29.77 ◦C,
respectively, compared to 4.13 and 33.57 ◦C of S0). Case 3.4 not only shows thermal
and comfort benefits but also foreshadows the benefits associated with this strategy. The
incorporation of photovoltaic canopies in the parking area enables sustainable power
generation for public destinations and answers the rapid growth in e-mobility.

The results showed the great benefits from the implementation of the strategies pro-
posed to counteract and mitigate the effects of UHIs. The use of cool pavements, greenery
and canopies returned appreciable results in urban public spaces whose redesigns can
ensure a better quality of life. This case study is a useful tool to identify the best technology
to oppose UHIs and extend the chosen methodology to other real-world cases. In the future,
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further studies will be carried out to improve the proposed technologies and identify even
more efficient solutions to slow climate change and environmental degradation.
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