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1 Introduction

In a celebrated paper published in 1845, Stokes [1] 
appears to have been the first to consider the impact 
of shear viscosity on the 1D propagation of linear 
acoustic waves in gases. Six years later, Stokes [2] 
went on to examine the propagation of linear, time-
harmonic, acoustic plane waves in a gas whose only 
loss mechanism is its ability to radiate heat to its sur-
roundings, the process of which he modeled using 
Newton’s law of cooling; see Appendix A. In 1910, 
Rayleigh [3, pp. 270–271] presented a partial analy-
sis of the isothermal1 propagation of an infinite (1D) 
“wave of condensation” in a constant viscosity, but 
thermally non-conducting, gas, the process of radia-
tion being invoked to maintain the flow’s isothermal 
nature. Later, Truesdell [5, p. 687], in 1953, general-
ized Stokes’ [2] radiant propagation model to include 
the effects of both viscosity and thermal conduc-
tion; see also Hunt’s [6] 1955 contribution, wherein 
is formulated a nonlinear theory of thermoviscous 
compressible flow with thermal radiation. In 2004, 
LeVeque [7], seeking to model the collision of dust 
clouds composed of “sticky particles” and surrounded 
by vacuum, investigated the propagation of 1D “delta 
shocks” in lossless perfect gases under the isothermal 
assumption. Because he did not consider the energy 
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equation, however, LeVeque’s analysis, like Ray-
leigh’s [3, pp. 270–271], must be considered as only 
partially complete.

The primary aim of the present study is to not 
only complete, but also extend Rayleigh’s analysis, 
wherein only the equation of motion (EoM) for the 
specific volume was derived and integrated, by con-
sidering the effects of various viscosity laws on the 
propagation and structure of dispersed shocks, i.e., 
those of nonzero “thickness” (or “width”), in the set-
ting of the isothermal piston problem. Specifically, we 
determine and analyze 1D traveling wave solutions 
(TWS)s, under the assumption that the temperature of 
the gas in question is held constant, based on the fol-
lowing four viscosity laws: (i) constant shear viscos-
ity (i.e., the case considered in Ref. [3, pp. 270–271]), 
(ii)  shear viscosity proportional to mass density, 
(iii)  von Neumann–Richtmyer artificial viscosity, 
and (iv)  Evans–Harlow–Longley artificial viscosity. 
These particular laws were selected primarily because 
all lead to model systems that are amenable to study 
by analytical means.

To provide a mechanism for achieving isothermal 
propagation, we, like Rayleigh, invoke the process of 
radiation, which like Stokes [2] we model via New-
ton’s law of cooling. To ensure that isothermal condi-
tions are not only mathematically but also physically 
possible, under each of the four cases considered, we 
also determine, based on the full form of the isother-
mal energy equation, the upper bound on the range of 
(piston) Mach number values corresponding to each 
case.

In the next section, we begin our investigation with 
a review of the thermodynamics of perfect gases and 
the formulation of our governing system of equations. 
Before doing so, however, we first present a brief 
review of applications involving isothermal com-
pressible flow phenomena.

Perhaps the best known example of isothermal 
flow involves a piston-cylinder-gas arrangement in 
which the period of the piston’s reciprocating motion 
is so long that the gas is always able to maintain 
thermal equilibrium with its surroundings; see Refs. 
[2] and [8, p.  26]. In contrast, the propagation in 
inviscid gases of linear acoustic plane waves of suf-
ficiently high frequency is, provided certain condi-
tions (e.g., r = 0 ; see Sect.  2.2) are satisfied, essen-
tially isothermal [9, § 1-10]. In general, as noted by 
Delany [10, p. 204], “Only in the neighbourhood of 

a heat-conducting boundary (as, for instance, when 
dealing with a sound field within a cavity or with 
porous absorbents) does propagation depart progres-
sively from adiabatic to isothermal as the sound fre-
quency is decreased.” With regard to the transition 
from adiabatic to isothermal propagation at low fre-
quencies, Jensen [11] emphasizes how this is related 
to the smallness of the device in question because 
“the thermal boundary layer stretches over the full 
device and is important in, for example, condenser 
microphones . . .”; see also Fletcher’s [12] analysis of 
this transition in small (e.g., capillary) tubes, where 
we note that the (low) frequency range over which the 
isothermal assumption holds is defined by Ref. [12, 
Eq. (16)] with the inequality sign reversed.

And, along with the rather ordinary applications 
just described, it should be noted that the isothermal 
approximation also arises when modeling certain 
astrophysical phenomena; recall Refs. [4, 7]; see also 
Ref. [13].

2  Formulation of mathematical model

2.1  Thermodynamical aspects of perfect gases

As defined by Thompson [14], a perfect gas is one in 
which p(> 0) , the thermodynamic pressure, !(> 0) , 
the mass density, and !(> 0) , the absolute tempera-
ture, obey the following special case of the ideal gas 
law [14, § 2.5]:

Here, cp > cv > 0 are the specific heats at constant 
pressure and constant volume, respectively, and 
! = cp∕cv , where ! ∈ (1, 5∕3] in the case of perfect 
gases. Furthermore, a zero (“0”) subscript attached 
to a field variable identifies the uniform equilibrium 
state value of that variable; i.e., in the present inves-
tigation, the gas is assumed to be homogeneous when 
in its equilibrium state.

With regard to the perfect gas assumption we note 
that the equilibrium state values of the adiabatic and 
isothermal sound speeds in the gas are given by

and

(1)p = cv(! − 1)"# (cp, cv ∶= const.).

(2)c0 =
√

cp(! − 1)"0
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respectively, where we observe that b0 ∈ (0, c0) . That 
is, c0 and b0 are, respectively, the speeds of infinites-
imal-amplitude acoustic signals under the adiaba-
tic and isothermal assumptions; see, e.g., Ref. [15, 
§  278], wherein b0 is referred to as the “Newtonian 
velocity of sound”.

In this study we will also make use of the ther-
modynamic axiom known as the Gibbs relation [14, 
p. 58], which in the case of a perfect gas can be writ-
ten as

where ! is the specific entropy and E is the specific 
internal energy. Here, we note for later reference the 
relations

where H is the specific enthalpy.

2.2  Navier–Stokes–Fourier system in 1D

For the 1D flow of a perfect gas along the 
x-axis of a Cartesian coordinate system, the 
Navier–Stokes–Fourier (NSF) system [9, p. 513] can, 
assuming the absence of all body forces, be written in 
the following form: 

 where p = p(x, t) , ! = !(x, t) , ! = !(x, t) , and 
! = !(x, t) under this flow geometry. In Sys.  (6), 
u = (u(x, t), 0, 0) and q = (q(x, t), 0, 0) are, 

(3)b0 = c0!
−1∕2 =

√
cv(! − 1)"0,

(4)! d" = dE − cv(# − 1)!$−1d$ (perfect gases),

(5)E = cv! = H∕" (perfect gases),

(6a)!"

!t
+ u

!"

!x
+ "

!u

!x
= 0,

(6b)
!
(
"u

"t
+ u

"u

"x

)
+ !cp

"#

"x
= !#

"$

"x

+
"

"x

(
%&

"u

"x

)
,

(6c)!"

(
#$

#t
+ u

#$

#x

)
−% = !r −

#q

#x
,

(6d)q = −K
!"

!x
,

(6e)cv ln(!∕!0) − cv(" − 1) ln(#∕#0) = $ − $0,

respectively, the velocity and heat flux vectors; !(> 0) 
is the shear viscosity; ! = 4

3
+ "b∕" is the viscosity 

number, where !b(≥ 0) is the bulk viscosity; K(> 0) 
is the thermal conductivity; r, which carries units of 
W/kg, represents the external rate of supply of heat 
per unit mass; ! , the dissipation function [9, 14], 
here takes the form

and Eq.  (6e) follows from integrating Eq.  (4) after 
substituting in E from Eq. (5).

In what follows we consider the compressive ver-
sion of the classic (1D) piston problem. That is, the 
piston, whose face we take to be thermally insulated, 
is located at x = −∞ and moving to the right with 
constant speed up(> 0) while the gas at x = +∞ is in 
its equilibrium state. In this regard, considering the 
piston’s motion is strictly compressive, and assuming 
the field variables are free of perturbation(s)2, it fol-
lows that u ∈ [0, up] and !u∕!x ≤ 0 will always hold 
under the assumed flow geometry.

Additionally, we will invoke the assumption

which of course is Stokes’ hypothesis [9, 14]. Here, 
we stress that Eq. (8), which in the case of air, e.g., is 
only an approximation [14, Table 1.1], will not be a 
limitation on our analysis. This is because our numer-
ical results will focus exclusively on the (monatomic) 
gas Ar—one for which Eq.  (8) has been shown, by 
both theory and experiment, to hold exactly; see, e.g., 
Refs. [16, 17].

Remark 1 The pressure gradient term that would 
normally have appeared in Eq.  (6b) was eliminated 
using the relevant 1D special case of the thermody-
namic relation [14, p. 71]

i.e., our momentum equation is expressed in “Fried-
mann form”.

(7)! = "#($u∕$x)2;

(8)!b = 0,

(9)!−1∇p = ∇H − "∇#,

2 The question of whether the TWSs derived here are stable 
relative to perturbation is an important one; but it is also one 
that lies beyond the scope of the present investigation; see, 
however, Ref. [20, § V].
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2.3  Isothermal piston problem

Assuming hereafter that the flow is isothermal, i.e., 
! ≡ !0 , we find that Eq.  (1) (i.e., our EoS) and the 
constitutive relations given in Eqs.  (6d) and  (6e) 
reduce, respectively, to

which is simply Boyle’s law [3];

since !"0∕!x = 0 ; and

which is the isothermal special case of Eq. (6e).
On carrying out these substitutions, followed by 

the use of Eqs. (6a), (7), and (8), Sys. (6) is reduced 
to 

 where our adoption of Stokes’ hypothesis yields 
! = 4∕3 . In Eq. (13c), we have taken r to be given by 
the isothermal special case of Newton’s law of cool-
ing, viz.,

where !e = !e(x, t) is the temperature of the surround-
ing environment and !0(> 0) , the “velocity of cool-
ing” [2, p. 307], carries units of 1/s; see also Refs. [5, 
pp. 651, 687] and [6, p. 1023]. [Note that Sys.  (13) 
is the 1D version of the special case of Hunt’s [6] 
system corresponding to isothermal propagation in a 
monatomic perfect gas.]

Under Sys. (13), !e is an additional dependent vari-
able that is controllable by the experimenter based on 
“output” from Eq.  (13c). That is, under the isother-
mal assumption, the role of our energy equation has 
changed; indeed, it has ceased to serve as the evolu-
tion equation for the temperature field and is now a 

(10)p = b2
0
! = p0!∕!0,

(11)q = 0,

(12)! − !0 = −cv(" − 1) ln(#∕#0),

(13a)!"

!t
+ u

!"

!x
+ "

!u

!x
= 0,

(13b)!
(
"u

"t
+ u

"u

"x

)
+ b2

0

"!

"x
−

4

3

"

"x

(
#
"u

"x

)
= 0,

(13c)!0 +
b2
0

cv!0
"u

"x
−

(4∕3)

cv!0
(
#

$

)(
"u

"x

)2

= !e,

(14)r = −cv!0(!0 − !e),

control function. This of course is necessary because 
the gas must be able to radiate away the resulting heat 
of its compression, at a rate that cannot be assumed 
constant, if our assumption of isothermal flow is to 
be everywhere satisfied3. (Note that the ability of the 
gas to conduct heat plays no role under the isother-
mal assumption.) In this regard, we have adopted the 
assumptions stated by Rayleigh [8, p.  28] regarding 
the physical and thermal characteristics of the enclos-
ing cylinder.

2.4  Viscosity laws: classical and artificial

In this subsection we give the precise statement of the 
four viscosity laws mentioned in Sect. 1. Note that the 
first two stem from classical continuum theory while 
the latter two are of the artificial type. 

 (i) Constant shear viscosity: 

 recall this is the case considered in Ref. [3, 
pp. 270–271]; it is also the exact form of ! for 
the current (i.e., isothermal) problem under the 
kinetic theory of gases.

 (ii) Shear viscosity proportional to mass density: 

 see Refs. [16, § 12.11] and [18].
 (iii) von Neumann–Richtmyer4 (vNR) artificial vis-

cosity: 

 see Refs. [20] and [21, § V-D-1].
 (iv) Evans–Harlow–Longley (EHL) artificial vis-

cosity: 

 see Refs. [21, § V-D-2], [22, p. 16], and [23, 
p. 11].

(15)! = !0;

(16)! = "0#;

(17)! = −!2
iii
"2
0
#
(
$u

$x

)
;

(18)! =
1

2
!iv"0#u;

3 To this end, in Sect. 8.4 we seek to determine upper bounds 
on up subject to the constraint !e > 0 ; i.e., the constraint that !e 
assumes only thermodynamically admissible values.
4 See Ref. [19], and those cited therein, for new insight into 
the important solo role Richtmyer played in the early (i.e., pre-
1950) development of artificial viscosity.
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Here, !0 and !0 = "0∕#0 represent, respectively, the 
(constant) equilibrium state values of the shear and 
kinematic viscosity coefficients; in the case of hard-
sphere molecules we have, according to the kinetic 
theory of gases [14, § 2.7],

an expression which also follows on setting “ ! ” in 
Ref. [24, Eq.  (9b)] equal to 5!∕32 ≈ 0.491 ; we let 
!0(> 0) denote the equilibrium state value of the 
molecular mean-free-path (see, e.g., Refs. [24, p. 680] 
and [14, pp.  95–97]); the equilibrium state value of 
the mean molecular speed is given by [14, p. 108]

and !iii(> 0) and !iv(> 0) are adjustable dimension-
less parameters [21, § V-D-1].

Lastly, since our investigation is to be carried out 
primarily by analytical methodologies, and we seek 
an approach that would allow us to compare/contrast 
these four cases in a consistent manner, we have taken 
!x = "0 , where !x is the spatial mesh increment used 
in the usual statements of both the vNR and EHL 
laws. And with regard to !0 we record here, for later 
reference, the following result from kinetic theory:

which is easily obtained after eliminating c̄0 
between Eqs.  (19) and  (20), and we note that 
16∕

√
50! ≈ 1.277.

3  Traveling wave reduction

3.1  Ansatzs and wave variable

Invoking the traveling wave assumption, we set

where ! ∶= x − vt is the wave (i.e., similarity) vari-
able, and where the parameter v(> 0) will be seen to 
represent the speed of the resulting shocks. On sub-
stituting the above ansatzs into Sys. (13), the latter is 
reduced to the following system of ODEs: 

(19)!0 =
5

32
"#0c̄0%0,

(20)c̄0 = c0
√
8∕("#) = b0

√
8∕#;

(21)!0 =
16"0

b0

√
50#

,

(22)
u(x, t) = f (!), "(x, t) = g(! ), #e(x, t) = $e(!),

 where a prime denotes d∕d!.
This system is to be integrated subject to the 

asymptotic conditions

which of course correspond to a shock moving to the 
right; recall that v > 0.

3.2  Shock speed and associated ODE

Using the fact that Eq. (23a) integrates to

allows us to, in turn, integrate Eq. (23b):

where the resulting constants of integration were 
found to be K1 = −!0v and K2 = !0b

2
0
 , respectively. 

Now eliminating g between the former and latter 
equations yields

i.e., a Riccati type equation. Employing the asymp-
totic conditions once again leads us to consider

a quadratic whose only positive root is

where Ma = up∕b0 is the piston Mach number.
With these results in-hand, we can reduce Sys. (23) 

to the two-equation system 

(23a)d

d!
(−vg + fg) = 0,

(23b)g(−v + f )f ′ + b2
0
g′ −

4

3

d

d!

(
"f ′

)
= 0,

(23c)!0 +

(
b2
0

cv!0
)
f ′ −

(4∕3)

cv!0
(
"

g

)(
f ′
)2

= #e,

(24)
f → up, f ′ → 0 (! → −∞),

g → "0, f , f ′ → 0 (! → +∞),

(25)g =
!0v

v − f
,

(26)−!0vf + b2
0
g − (4"∕3)f ′ = b2

0
!0,

(27)(4!∕3)(v − f )f ′ = "0[(b
2
0
− v2)f + vf 2],

(28)v2 − b2
0
= upv,

(29)
v =

up +
√

u2
p
+ 4b2

0

2
=

1

2
up

(
1 +

√
1 + 4Ma−2

)
,
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 Eq.  (30a) is the associated ODE of our traveling 
wave analysis; in the next four sections, we shall inte-
grate it, under each of the aforementioned cases of ! , 
subject to the wave-front condition f (0) = 1

2
up.

3.3  Definitions of shock thicknesses, Q-metric, and 
jump amplitude

Employing the notation

we define the thickness (or width) of the shock exhib-
ited by the velocity profile as

a definition which Morduchow and Libby [24, p. 680] 
attribute to Prandtl, and that exhibited by the density 
profile as

Here, ! = ! ∙
j
 and ! = !∗

j
 denote the relevant critical 

points of f ′ and g′ , respectively, i.e., f ′′(! ∙
j
) = 0 and 

g′′(!∗
j
) = 0 ; the subscript j represents the number 

[i.e., (i)–(iv)] of the case under consideration; and 
with regard to Eq. (33) we note the following:

and

(30a)(4!∕3)(v − f )f ′ + "0vup(1 − f∕up)f = 0,

(30b)

!0 −

(
b2
0

cv!0
)
|f ′| − (4"∕3)

cv!0
(
v − f

#0v

)
||f ′||2 = $e.

(31)
f (±∞) ∶= lim

!→±∞
f (!), g(±∞) ∶= lim

!→±∞
g(! ),

(32)!j ∶=
f (−∞) − f (+∞)

max ||f ′(!) ||
=

up

|f ′(! ∙
j
)| ,

(33)

lj ∶=
g(−∞) − g(+∞)

max ||g′(!) ||

=

(
2

−1 +
√
1 + 4Ma−2

)
"0

|g′(!∗
j
)| .

(34)g′(!) =
"0vf

′

(v − f )2
= −

3"2
0
v2(up − f )f

4#(v − f )3

(35)
g(−∞) =

!0v

v − up
= !0

(
1 +

√
1 + 4Ma−2

−1 +
√
1 + 4Ma−2

)

> g(+∞) = !0.

We also define the Q- (or asymmetry) metric

where

respectively. As Schmidt [25, p. 369]5 points out, not 
only is Q a “sensitive measure of asymmetry”, but it 
also complements the shock thickness as a character-
izing metric since the latter “fails to give sufficiently 
detailed information about [shock] structure; . . .” [25, 
p. 361]. In Sect. 8.3 (below), we use Q to quantify the 
degree of asymmetry exhibited by each of the four g 
vs. ! profiles studied below.

And lastly, we define, following Morro [26] and 
Straughan [27], the amplitude of the jump in a func-
tion ! = !(!) across the plane ! = !d as

where it is assumed that both limits exist and that 
they are different. Here, we call attention to the fact 
that [[!]] is positive (resp. negative) when the jump in 
! is from higher (resp. lower) to lower (resp. higher) 
values.

4  Constant shear viscosity case

Recall that under Case  (i), ! = !0 ; consequently, 
Eq. (30a) becomes

which on setting F(!) = −1 + (2∕up)f (!) is reduced 
to

This ODE, like the former, is a particularly simple 
special case of Abel’s equation [28, p. 74]; as such, it 

(36)Q(Ma) =
∫ 0

−∞
[1 − R(!)] d!

∫ +∞

0
R(!) d!

,

(37)R(!) =
g(! ) − "0

g(−∞) − "0
⟹ lim

!→∓∞
R(!) = 1, 0,

(38)[[!]]
|||!d = lim

!→!−
d

!(!) − lim
!→!+

d

!(!),

(39)(4!0∕3)(v − f )f ′ + vup(1 − f∕up)f = 0,

(40)(k + F)F′ =
3v

4!0
(1 − F

2).

5 Eq. (36) differs from Schmidt’s expression for Q because in 
Ref. [25] the shocks propagate to the left.
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is easily integrated and yields the exact, but generally 
implicit6, TWS:

Here, the constant of integration is zero, by way of 
the fact that f (0) = up∕2 implies F(0) = 0 ; we have 
set

and we note for later reference (in Appendix B) that 
Eq. (41) can also be expressed as

Because k < −1 , the integral curves described by 
Eq.  (41) can only take the form of fully dispersed 
shocks, also referred to by some as kinks; see, e.g., 
Ref. [29, §  5.2.2]. For this velocity traveling wave 
profile, therefore, we can show that the shock thick-
ness is given by

to which corresponds the critical point

here, we observe that

which when related back to f yields

(41)

(
3v

4!0

)
"

= k tanh−1(F) −
1

2
ln(1 − F

2) (|F| < 1).

(42)k = 1 − 2v∕up = −
√
1 + 4Ma−2 ;

(43)

(
3v

2!0

)
" = (k − 1) ln(1 + F)

− (k + 1) ln(1 − F) (|F| < 1).

(44)!i =
8(!0∕b0)Ma

3
(
Ma +

√
4 +Ma2

)(
−2 +

√
4 +Ma2

) ,

(45)

! ∙
i
= −

(
4"0
3v

)[√
1 + 4Ma−2

× tanh−1

(
−2 +

√
4 +Ma2

Ma

)

+
1

2
ln

(
−8 + 4

√
4 +Ma2

Ma2

)]
;

(46)F(! ∙
i
) = F

∙
i
∶= |k| −

√
k2 − 1 = |k| − 2∕Ma,

In order to determine li , we must first determine the 
(only) positive root of !(Y) = 0 , where

This quadratic arises when we attempt to solve 
g′′(!) = 0 after expressing it in terms of F  and sim-
plifying, i.e., when seeking the solution of

which we do subject to the constraint |F| ∈ (0, 1) . 
Denoting the aforementioned root by Y = F

∗
i
 , it is not 

difficult to establish that

which when related back to f yields

where the critical point of the corresponding g′ vs. ! 
profile is given by

With Eq.  (50) in hand and observing that, under 
Case (i), Eq. (34) becomes

the density profile is seen to admit the shock thickness

Remark 2 Small-|! | and large-|! | approximations 
to F  can easily be determined from the correspond-
ing expressions for “ U ” given in Ref. [29, Remark 9], 
wherein “ ! ” plays the role of ! . Mention should also 
be made of the explicit, but approximate, result [29, 
Remark 10]

(47)f (! ∙
i
) = f ∙

i
∶=

1

2
up(1 + |k| − 2∕Ma).

(48)!(Y) = Y2 + 2|k|Y − 3.

(49)[3(1 − F
2) + 2F(k + F)]F′ = 0,

(50)F(!∗
i
) = F

∗
i
∶= −|k| +

√
k2 + 3 ,

(51)f (!∗
i
) = f ∗

i
∶=

1

2
up

(
1 − |k| +

√
k2 + 3

)
,

(52)

!∗
i
=

[
8"0

3up(|k| + 1)

]{
k tanh−1(F∗

i
) −

1

2
ln
[
1 − (F∗

i
)2
]}
.

(53)g′(!) = −
3"0v

2(upf − f 2)

4#0(v − f )3
=

(
3v2"0
2up#0

)
(1 − F

2)

(k + F)3
,

(54)li =
16(!0∕b0)

3Ma(|k| − 1)(|k| + 1)2

{
|k + F

∗
i
|3

1 − (F∗
i
)2

}
.

(55)f (!) ≈
1

2
up

[
1 − tanh

(
2!∕!̂i

)]
(Ma ≪ 1),

6 Except for certain values of Ma that yield explicit expres-
sions; see Appendix B.



 Meccanica

1 3
Vol:. (1234567890)

for which the shock thickness is !̂i = 16"0∕(3b0Ma) , 
and we note that Ma ≪ 1 implies |k| ≫ 1.

5  The case ! ∝ "

Under Case (ii), ! = "0× Eq. (25); as such, Eq. (30a) 
is reduced to the following Bernoulli-type equation:

which is easily integrated and yields the exact (Taylor 
shock) TWS

where the shock thickness for this case of f is given 
by

With the aid of Eq.  (57), the density profile for this 
case is found to be

and this profile admits the shock thickness

with corresponding critical point

From the latter it is readily established that !∗
ii
< 0 , 

which follows from the fact that Ma > 0 , and, moreo-
ver, that

which follows from the Taylor expansion of the ln-
term about Ma = 0.

(56)(4!0∕3)f
′ + up(1 − f∕up)f = 0,

(57)f (!) =
up

1 + exp
(
4!∕!ii

) ,

(58)!ii =
16(!0∕b0)

3Ma
(" ∙

ii
= 0).

(59)

g(!) = "0

(
1 +

√
1 + 4Ma−2

)

×

[
1 +

√
1 + 4Ma−2 −

2

1 + exp
(
4!∕!ii

)
]−1

;

(60)lii = !ii,

(61)!∗
ii
=

(
!ii

4

)
ln

(
−1 +

√
1 + 4Ma−2

1 +
√
1 + 4Ma−2

)
.

(62)!∗
ii
≈ −

(
!iiMa

4

)(
1 −

Ma2

24

)
(Ma ≪ 1),

6  von Neumann–Richtmyer artificial viscosity

Under this formulation [i.e., Case (iii)], ! is given by 
Eq. (17); Eq. (30a), therefore, becomes

or the equivalent

A phase plane analysis of Eq.  (64) reveals that its 
equilibrium solutions f̄ = {0, up} are rendered (one-
sided) stable and (one-sided) unstable, respectively, 
and thus consistent with the compressive version of 
the piston problem, only when the “−” sign case is 
selected. Regardless of the sign selected, however, 
it should be noted that uniqueness is not assured 
because the right-hand side of Eq. (64) does not sat-
isfy a Lipschitz condition [28, § 4.3] at either of the 
equilibria; i.e., the tangents to the phase portrait at 
f̄ = {0, up} are vertical lines.

On rejecting the “ + ” sign case, it is a straightfor-
ward matter to integrate Eq. (64) (see, e.g., Refs. [18, 
20]) and show that the velocity TWS under the vNR 
case is given by the following semi-compact7, com-
posite integral curve:

the shock thickness of which is [recall Eq. (32)]

We also find, on substituting Eq.  (65) into Eq.  (26) 
and making use of Eq. (29), that the density TWS for 
this case is given by

(63)
(
4!2

iii
!2
0

3

)
(f ′)2 − up(1 − f∕up)f = 0,

(64)
df

d!
= ∓

( √
3

2!iii"0

)√
f
(
up − f

)
.

(65)

f (!) =

⎧
⎪
⎨
⎪⎩

up, ! ≤ −
"

4
!iii,

up

2

[
1 − sin(2!∕!iii)

]
, −

"

4
!iii < ! <

"

4
!iii,

0, ! ≥ "

4
!iii,

(66)!iii =
4!0!iii√

3
(" ∙

iii
= 0).

7 We employ here the terminology of Destrade et al. [30].
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to which corresponds the (density) shock thickness 
[recall Eq. (33)]

The critical point corresponding to liii is given by

which we note can also be expressed as

where we observe that − !

4
!iii < "∗

iii
< 0.

Remark 3 The f vs. ! profile admits a pair of weak 
discontinuities8, both of second order; i.e., the f ′′ vs. 
! profile exhibits two jumps, the amplitudes and loca-
tions of which are:

Likewise, the present g vs. ! profile also exhibits 
(two) weak discontinuities of order two; in the case of 
these jumps we have

(67)

g(! ) = "0

×

⎧
⎪
⎪
⎨
⎪
⎪⎩

1+
√
1+4Ma−2

−1+
√
1+4Ma−2

, ! ≤ −
#

4
!iii,

1+
√
1+4Ma−2

sin(2!∕!iii)+
√
1+4Ma−2

, −
#

4
!iii < ! <

#

4
!iii,

1, ! ≥ #

4
!iii,

(68)

liii = !iii

(
Ma

4
√
2

)

×

⎡
⎢
⎢
⎢⎣

20 + 9Ma2 − 3
√
(4 +Ma2)(4 + 9Ma2)√

−4 − 3Ma2 +
√
(4 +Ma2)(4 + 9Ma2)

⎤
⎥
⎥
⎥⎦
.

(69)

!∗
iii
=

1

2
!iii sin

−1

(√
1 + 4Ma−2 −

√
9 + 4Ma−2

2

)
,

(70)

!∗
iii
= −

1

2
!iii

× cos−1
⎛
⎜
⎜⎝

√
−3 − 4Ma−2 +

√
16Ma−4 + 40Ma−2 + 9

2

⎞
⎟
⎟⎠
,

(71)[[f ′′ ]]
|||− !

4
!iii

= [[f ′′ ]]
|||+ !

4
!iii

= 2up∕!
2
iii
.

respectively.

Remark 4 The composite nature of the TWS under 
this case and the associated discontinuities signals the 
fact that the nonlinearity exhibited by the vNR law 
has turned the normally parabolic momentum equa-
tion into one that exhibits a distinctive degeneracy. 
Specifically, while the vNR-based momentum equa-
tion exhibits a parabolic character within the shock 
transition layer, where |!u∕!x| is close/equal to its 
maximum value, it assumes the character of the Euler 
(i.e., lossless) momentum equation outside this layer, 
i.e., as !u∕!x → 0 ; see, e.g., Refs. [20, § III] and [21, 
V-D-1].

7  Evans–Harlow–Longley artificial viscosity

Under this formulation [i.e., Case (iv)], for which ! is 
given by Eq. (18), Eq. (30a) reduces to

Performing a phase plane inspection of this ODE, 
after expressing it in standard form, reveals that its 
phase portrait exhibits a removable-type discontinu-
ity at f = 0 while the equilibrium solution f̄ = up is 
unstable. Nevertheless, the integration of Eq.  (73) is 
not difficult; omitting the details, we find that

which like its Case  (iii) counterpart is a semi-com-
pact, composite integral curve of its “parent” ODE. 
The shock thickness of this profile is given by

(72)

[[g′′ ]]
|||∓ !

4
!iii

=

4"0

(
1 +

√
1 + 4Ma−2

)

!2
iii

(
1 −

√
1 + 4Ma−2

)2
,

4"0

!2
iii

(
1 +

√
1 + 4Ma−2

) ,

(73)f

[(
2!iv!0

3

)
f ′ + up(1 − f∕up)

]
= 0.

(74)
f (!) =

{
up
[
1 − (1∕2) exp(!∕!iv)

]
, ! < !iv ln(2),

0, ! ≥ !iv ln(2),

(75)!iv = (2∕3)!0!iv,

8 Here, we use the terminology of Bland [31, p. 182].
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which we computed by evaluating the limit9

Similarly, we have for the density profile

which admits the shock thickness

with

Remark 5 With regard to the present TWS, the 
removable discontinuity noted above manifests itself 
as an acoustic acceleration wave10; in other words, 
the f ′ vs. ! profile under this case suffers a jump dis-
continuity, the amplitude and location of which are:

From Eq. (77) it is clear that the g vs. ! profile also 
exhibits an acceleration wave, whose amplitude and 
location are

Remark 6 The composite nature of the TWS under 
this case and the associated discontinuity stem from 
the fact that the nonlinearity exhibited by the EHL 
law has turned the normally parabolic momentum 
equation into one that is degenerate parabolic-
hyperbolic; see, e.g., Ref. [32], wherein the present 
degeneracy corresponds to p = 2 . That is, while the 

(76)lim
!→(! ∙

iv
)−

up

|f ′(!)| (! ∙
iv
= !iv ln 2).

(77)g(!) = "0

{
1+

√
1+4Ma−2

exp(!∕!iv)−1+
√
1+4Ma−2

, ! < !iv ln(2),

1, ! ≥ !iv ln(2),

(78)

liv =
8!iv

1 +
√
1 + 4Ma−2

=
16!iv!0

3
(
1 +

√
1 + 4Ma−2

) ,

(79)!∗
iv
= !iv ln

(
−1 +

√
1 + 4Ma−2

)
.

(80)[[f ′ ]]
|||!iv ln(2)

= −up∕!iv.

(81)[[g′ ]]
|||!iv ln(2)

=
−2(!0∕!iv)Ma

Ma +
√
4 +Ma2

.

EHL-based momentum equation is strictly parabolic 
for u > 0 , it is degenerate on the level set {u = 0} , 
where we have employed the terminology of Chen 
and Perthame [32], who state that: “Even though the 
nonlinear equation is parabolic, the solutions exhibit 
a certain hyperbolic feature, which results from 
the degeneracy.” The “feature” referred to by these 
authors, as they go on to note, is that: “The supports 
of these solutions propagate at finite speeds . . .”

8  Numerical results

8.1  Parameter values: Ar

In the case of Ar at !0 = 300K and p0 = 50mTorr , 
the gas/conditions on/under which Alsmeyer’s [34] 
shock experiments were performed, we have the 
following:

from which we find that

We have also used the result ! = 5∕3 , which accord-
ing to kinetic theory holds not only for Ar, but also 
for all monatomic gases [14, 16, 17]. The values of 
!0 , !0 , and c0 were obtained from the NIST Chemis-
try WebBook, SRD 69 (see: https:// webbo ok. nist. gov/ 
chemi stry/ form- ser/); those of b0 , !0 , and !0 , in con-
trast, were computed using Eq. (3), the defining rela-
tion !0 = "0∕#0 , and Eq. (21), respectively.

And so as to achieve

which follows from Roache’s11 recommendation after 
recalling our assumption !x = "0 , we henceforth take 
!iii =

1

4

√
27 and !iv = 9∕2.

(82)

!0 = 0.00010676 kg/m3, "0 = 2.2656 × 10−5 Pa ⋅ s,

c0 = 322.59m/s,

(83)
b0 ≈ 249.88m/s, !0 ≈ 0.212m2/s, "0 ≈ 1.084mm.

(84)!iii = !iv = 3!0,

11 Roache [21, p. 232] contends that: “The most generally suc-
cessful method for [numerically] handling shocks is to artifi-
cially smear out the discontinuity so that !S = 3 to 5(!x) , . . 
.”, where !S denotes the shock width in Ref. [21]; because of 
the shock thickness definition we have adopted (see Sect. 3.3), 
however, this reduces to “ !S = 3"x ” [21, p. 233].

9 Made necessary by the fact that, due to the jump discontinu-
ity exhibited by f ′ under this case (see Remark 5), Eq. (32) is 
not applicable.
10 See, e.g., Ref. [27, § 8.1.3], as well as those cited therein; 
such a wave is also referred to by some as a “first order weak 
discontinuity” [31, p. 182] and a “discontinuity wave” [33].

https://webbook.nist.gov/chemistry/form-ser/
https://webbook.nist.gov/chemistry/form-ser/
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8.2  Shock thickness results

Figure 1 has been generated in accordance with Ref. 
[34, Fig. 2], which displays data for non-isothermal 
shock propagation in Ar. In doing so, we have intro-
duced the dimensionless reciprocal shock thickness 
parameter, viz.,

and the shock Mach number Ms = v∕b0 , where we 
observe that Ms > 1.

Figure 1 reveals that, of the four curves we have 
plotted, only the one corresponding to Case  (ii) 
exhibits qualitative agreement with Ref. [34, 
Fig.  2]. The quantitative disagreement, however, 
between this curve and the data in Ref. [34, Fig. 2], 
i.e., the fact that the former predicts a smaller shock 
thickness than the latter, is not unexpected. This 
is because under the isothermal assumption, K is 
absent from the NSF system [recall Sys. (13)]; i.e., 
the dissipation associated with the gas’s ability to 
conduct heat, which tends to increase the shock’s 
thickness, does not occur in isothermal propagation.

(85)!j = "0

(
lj
|||Ma=(M2

s
−1)∕Ms

)−1

(j = i, ii, iii, iv),

8.3  Determination of Q-metric values

In Table 1, values of Q based on the parameter val-
ues given above for Ar are presented. While those 
for Cases  (ii)–(iv), as well as the Ms =

√
2 case of 

Case  (i) (see Appendix  B), were computed using 
expressions obtained from evaluating the integrals 
in Eq.  (36) analytically, the entries correspond-
ing to the remaining Ms values under Case (i) were 
computed from the numerical solution of Eq.  (39), 
the process of which involved both the NDSolve 

Fig. 1  !j vs. Ms , based 
on Ref. [34, Fig. 2], for 
the gas Ar. Blue: Case (i). 
Orange: Case (ii). 
Green: Case (iii). Laven-
der: Case (iv)

Table 1  Values of Q in Ar corresponding to Cases (i)–(iv) for 
selected Mach number values

†For this case, ∓∞ in Eq. (36) have been changed to ∓ 1

4
!!iii , 

respectively.
‡For this case, +∞ in Eq. (36) has been changed to !iv ln(2)

Case Ms ≈ 1.005
(Ma=0.01)

Ms =
√
2

(Ma=1∕
√
2)

Ms =
√
3

(Ma=2∕
√
3)

Ms = 2
(Ma=3∕2)

(i) 1.010 2 3.000 4.000
(ii) 1.015 2.710 4.819 7.213
(iii)† 1.014 2.585 4.464 6.535
(iv)‡ 2.625 6.885 12.239 18.378
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[ ⋅ ] and NIntegrate[ ⋅ ] commands provided in 
MATHEMATICA.

From Table 1 it is clear that, in all cases shown, 
Q is a strictly increasing function of the shock 
Mach number; i.e., profile asymmetry increases 
with Ms . This behavior, we observe, is in agreement 
with the data presented in Refs. [25, 34] for non-
isothermal shock propagation in Ar. It is also clear 
from Table 1 that Cases (i)–(iii) all yield values of 
Q that are quite close to unity (i.e., quite close to 
being perfectly symmetric), and to each other, for 
Ma = 0.01 . In this regard, we point out that Ma ≪ 1 
defines the “realm” of finite-amplitude (or weakly-
nonlinear) acoustics theory, within which velocity 
traveling wave profiles can be expected to have the 

form of Eqs. (55) and (57); see, e.g., Refs. [29, 35], 
as well as those cited therein.

Finally, the last three entries in the first row of 
Table  1 highlight the following noteworthy feature 
associated with Case (i):

for Ms =
√
2,
√
3, 2 . Interestingly, as shown in 

Appendix B, these values are three of the five shock 
Mach number values for which Case (i) yields explicit 
TWSs.

8.4  Determination of Masup values

Because of the thermodynamic requirement !e > 0 , 
the terms in Eq. (30b) must satisfy the inequality

Ensuring that this restriction is everywhere satisfied 
begins with determining the ! e

j
 , where

With the ! e
j
 in hand, the next step is to determine the 

value of Masup , where the subscript “sup” denotes 
supremum, for each of our four cases; doing this 
requires us to seek the smallest (positive) value of 
Masup that satisfies the equation !j(Masup) = 0 , 
where we have set

and where Te(!) is the dimensionless version of !e(") 
most appropriate to the case under consideration. The 
importance of Masup follows from the fact that tak-
ing Ma ≥ Masup means that isothermal propagation 
is not possible because the speed of the piston (i.e., 
up ) is too great relative to b0 ; in other words, taking 
Ma ≥ Masup requires !e ≤ 0 , which is impossible 
from the standpoint of classical thermodynamics.

The values of Masup presented below were 
computed using the parameter values for Ar (see 
Sect. 8.1) and are based, in part, on what we term 
the radiative Mach number Mr , where we define 

(86)∫
0

−∞

[1 − R(!)] d! = M2
s ∫

+∞

0

R(!) d! ,

(87)cv!0!0 >
{
b2
0
|f ′| +

[
4"(v − f )

3#0v

]
||f ′||2

}
.

(88)!′
e
(" e

j
) = 0 (j = i, ii, iii, iv).

(89)
!j(Masup) ∶= Te("

e
j
)
|||Ma∶=Masup

(j = i, ii, iii, iv),

(a)

(b)

Fig. 2  Te(!) vs. ! generated from Eq. (109) with Ma replaced 
by Masup and using the parameter values for Ar given in 
Sect.  8.1; here, M⋆

r
=

1

6

√
5("∕2)1∕4 ≈ 0.4172 , and we recall 

that !iv = 9∕2 ⟹ !iv = 3!0 . Blue curve: Mr = 1 ⟹ Masup 
given by Eq. (114). Red curve: Mr =

1

2
M⋆

r
⟹ Masup = 1∕4 

[see Eq. (113)]. Magenta-broken line: ! = ! e
iv
≈ 0.0012 . Black-

broken line: ! = ! ∙
iv
≈ 0.0023
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this (dimensionless) parameter as Mr ∶= b−1
0

√!0!0 . 
Here, we observe that, since the gas under consid-
eration is always the same (i.e., Ar), and the value 
of !0 is fixed, varying Mr corresponds to varying !0.
8.4.1  Case (i)

With the aid of Eq. (39), this case of Eq. (88) can be 
expressed in the more explicit form

where we have set !(!) = f (!)∕up . Apart from being 
able to show that

where we observe that 1∕2 < !(! e
i
) < 2∕3 for Ma > 0 , 

this case, unfortunately, does not readily lend itself to 
treatment by analytical means. Here, !(! e

i
) was deter-

mined using MATHEMATICA’S !"#$%[ ⋅ ] command to 
symbolically factor the quartic (in ! ) that results after 
performing the indicated differentiation in Eq. (90).

As such, we instead seek to determine bounds 
on the value of Masup under this case via numerical 
means. To this end, we return to Eq. (30b) and spe-
cialize it to Case (i), the result being:

where in the present case Te(!) = "e(!)∕#0 . If we 
now replace the right-hand side of Eq.  (92) with 
zero; set Ma ∶= Masup , where in this regard we recall 
that Ma = up∕b0 and that v is given by Eq. (29); and 
replace ! with !(! e

i
) , then it is a straightforward mat-

ter to establish, using the MATHEMATICA command 
!"#$%&[ ⋅ ] , that under Case (i):

In closing this subsection we observe that, because 
they stem from particular values of Ma, the present 
analysis is not applicable to the special case TWSs 
treated in Appendix B.

(90)
{

d

d!

[
!(1 − !)

v∕up − !
+

Ma2!2(1 − !)2

v∕up − !

]}|||||!=! e
i

= 0,

(91)!(! e
i
) =

1

6

(
3 + 2

√
1 +Ma−2 −

√
1 + 4Ma−2

)
,

(92)

1 −
3v(! − 1)Ma

4b0M
2
r

[
!(1 − !)

v∕up − !
+

Ma2!2(1 − !)2

v∕up − !

]
= Te,

(93)1.64108 < Masup < 1.64109 (Mr = 1).

8.4.2  Case (ii)

Using Eq.  (25), this case of Eq.  (88) can be 
expressed in the more transparent form

where ! e
ii
= ! ∙

ii
 is obvious on inspection. Because 

!′
e
(" ∙

ii
) = 0 and ! ∙

ii
= 0 , we can analytically solve 

!ii(Masup) = 0 to obtain the exact value of Masup for 
this case; here, with Te(!) = "ii(Mr)#e(!)∕$0 , we 
have

where

from which Eq.  (58) was used to eliminate !ii , and 
where !ii(Mr) = (16∕3)M2

r
∕(" − 1).

Since Eq. (96) is a bi-quadratic, it is easily estab-
lished that

which is the only positive root of !ii(Masup) = 0 . 
Thus, under Case (ii):

8.4.3  Case (iii)

Employing Eq. (25) once again, we find that this case 
of Eq. (88) can be expressed as

from which it is evident that ! e
iii
= ! ∙

iii
 . Because 

! = ! ∙
iii

 satisfies Eq.  (99) and ! ∙
iii
= 0 , we can ana-

lytically solve !iii(Masup) = 0 to obtain the exact 
value of Masup for this case as well; here, with 
Te(!) = "iii(Mr)#e(!)∕$0 , we have

(94)
{[

b2
0
+

(
8!0
3

)
|f ′|

]
f ′′
}|||||"=" e

ii

= 0,

(95)!ii(Masup) = Te(0)
|||Ma∶=Masup

,

(96)!ii(Ma) = "ii(Mr) −Ma2 − 1

4
Ma4,

(97)Masup =

√
−2 + 2

√
1 +!ii(Mr) ,

(98)Masup = 2 (Mr = 1).

(99)

{[
b2
0
+

(
27!2

0

4

)
(f ′)2

]
f ′′

}|||||"=" e
iii

= 0, |" | ∈ [0, #
4
!iii),

(100)!iii(Masup) = Te(0)
|||Ma∶=Masup

,
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where

from which the !iii = 1

4

√
27 [recall Eq. (84)] special 

case of Eq.  (66) has been used to eliminate !iii , and 
where

from which we have eliminated !0 with the aid of 
Eq. (21).

Since !iii(Masup) is a depressed cubic, applying 
Cardano’s formula is a relatively simple matter; omit-
ting the details, we find that

which is the only positive root of !iii(Masup) = 0 . 
Thus, under Case (iii):

Remark 7 The !′
e
(") vs. ! profile exhibits two 

jumps under Case  (iii), the amplitudes and locations 
of which are:

8.4.4  Case (iv)

Using Eq. (74), this case of Eq. (88) can be expressed 
in the (simplified) explicit form

where we have again made use of Eq. (25). Although 
doing so is not simply a matter of solving Eq. (106), 
due in part to the fact that ! e

iv
 varies with Ma, it can 

be shown that ! c
iv

 , the critical point of !e(") under the 
present case, is exactly given by

(101)!iii(Ma) = "iii(Mr) −
1

3
Ma − 1

12
Ma3,

(102)!iii(Mr) =
16M2

r

(" − 1)
√
50#

,

(103)
Masup =

3

√
6!iii(Mr) + 2

√
9!2

iii
(Mr) +

16

27

+
3

√
6!iii(Mr) − 2

√
9!2

iii
(Mr) +

16

27
,

(104)Masup ≈ 2.379 (Mr = 1).

(105)[[!′
e
]]
|||− "

4
!iii

= [[!′
e
]]
|||+ "

4
!iii

=
2b2

0
up

9cv!0#20 .

(106)

[
3Ma2 exp(2!∕!iv)

− 4Ma2 exp(!∕!iv) − 4
]|||!=! e

iv

= 0, ! < ! ∙
iv
,

where ! e
iv
= !iv ln[Yiv(Ma)] , and where

Here, we observe that ! = ! c
iv

 satisfies Eq. (106) only 
for Ma > 1 , in which case 0 < ! e

iv
< ! ∙

iv
 , where we 

also observe that ! e
iv
→ (! ∙

iv
)− as Ma → 1+.

Using Eqs. (74) and (75), the latter with !iv = 9∕2 
[recall Eq.  (84)], we now specialize Eq.  (30b) to 
Case  (iv); doing so yields, after expressing the 
result in terms of Te(!) and simplifying,

where !iv(Mr) = !iii(Mr) and, in this subsection, 
Te(!) = "iv(Mr)#e(!)∕$0.

We are now led to consider the algebraic equa-
tion !iv(Masup) = 0 , which can be solved analyti-
cally to obtain the exact value of Masup for this case; 
thus, utilizing only the ! < ! ∙

iv
 branch of Eq.  (109), 

we have

which after simplifying can be expressed as

Here, we call attention to the critical value

(107)! c
iv
=

{
! e
iv
, Ma > 1,

! ∙
iv
, Ma ≤ 1,

(108)Yiv(Ma) =
2Ma + 2

√
3 +Ma2

3Ma
(Ma > 1).

(109)

Te(!) = "iv(Mr)

−

⎧
⎪
⎪
⎨
⎪
⎪⎩

1

6
Ma exp(!∕!iv)

+
1

12
Ma3 exp(2!∕!iv)

−
1

24
Ma3 exp(3!∕!iv) ! < ! ∙

iv
,

0, ! ≥ ! ∙
iv
,

(110)

!iv(Masup)

=

⎧
⎪
⎨
⎪⎩

Te("
e
iv
)
|||Ma∶=Masup

, Mr > M⋆
r
,

lim"→(" ∙
iv
)− Te(")

|||Ma∶=Masup
, Mr ≤ M⋆

r
,

" < " ∙
iv
,

(111)

!iv(Ma) = "iv(Mr)

−

⎧
⎪
⎨
⎪⎩

1

6
MaYiv +

1

12
Ma3Y2

iv
−

1

24
Ma3Y3

iv
, Mr > M⋆

r
,

1

3
Ma, Mr ≤ M⋆

r
.
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where we observe that !iv(M
⋆
r
) = 1∕3 , and we recall 

that Yiv is a function of only Ma.
While it is a trivial matter to establish that

suffice it to say that the process of determining 
Masup for the cubic case of Eq. (111) is algebraically 
intensive—so much so that we now set our analyti-
cal efforts aside and return to our numerical tools. 
Hence, following an approach similar to that used in 
Sect. 8.4.1, we find that under Case (iv):

To help clarify the forgoing analysis, we have plot-
ted Te(!) vs. ! in Fig. 2(a, b), where the former and 
latter correspond to Mr > M⋆

r
 and Mr < M⋆

r
 , respec-

tively. From these plots it is clear that the Te(!) vs. 
! profile admits a stationary point only for Mr > M⋆

r
 ; 

see Fig. 2a. Because this (i.e., blue) profile is based 
on Masup , however, the stationary point is, from the 
physical standpoint, not its absolute minimum, but 
rather its infimum, i.e., inf[Te(!)] , whose value is 
of course zero. The Te(!) vs. ! profile depicted in 
Fig. 2b, in contrast, does not admit a stationary point, 
only an infimum, where inf[Te(!)] for this (i.e., red) 
profile is also zero.

(112)

M⋆
r
∶=

1

2

√
5(" − 1)

3

√
#

8
(0 < M⋆

r
< 0.42),

(113)Masup = 3!iv(Mr) (Mr ≤ M⋆
r
),

(114)2.92641 < Masup < 2.92642 (Mr = 1).

Remark 8 The temperature of the surrounding 
environment must exhibit a jump discontinuity across 
! = ! ∙

iv
 under the present case; specifically [recall 

Eq. (38)]

for all Ma > 0 . The plots in Fig. 2(a, b) also serve to 
illustrate this phenomenon. Evaluating numerically, 
we find that [[Te]]

||! ∙
iv

≈ −0.9755 and 
[[Te]]

||! ∙
iv

≈ −0.0833 , respectively, in Fig. 2(a, b).

9  Closing remarks and observations

◆ While f , g ∈ C
∞(ℝ) under both Cases (i) and (ii), 

the same is not true under Cases (iii) and (iv); spe-
cifically, f , g ∈ C

1(ℝ) and f , g ∈ C
0(ℝ) , respectively, 

under the former and latter. Exemplar velocity field 
plots illustrating these differences in smoothness 
between the classical and artificial viscosity cases 
are presented in Figs. 3 and 4 .

◆  By averaging the (1D) Euler system under 
finite-scale theory (FST), one obtains a system con-
taining an “effective viscosity” that is given by 
Eq.  (17) with !iii = 1∕

√
12 and !0 replaced by L, 

where L(> 0) is the length scale that appears in the 

(115)
[[Te]]

||! ∙
iv
= ("iv(Mr) −

1

3
Ma) −"iv(Mr) = −

1

3
Ma,

Fig. 3  Both plots depicted here were generated using 
Ma = 0.25 and the parameter values for Ar given in Sect. 8.1. 
Red curve: Plotted from Eq.  (43) after making use of the 
relation F(!) = −1 + (2∕up)f (!) . Blue curve:  Plotted from 
Eq. (74), with !iv given by Eq. (84)

Fig. 4  Both plots depicted here were generated using 
Ma = 0.25 and the parameter values for Ar given in Sect.n 8.1. 
Red curve:  Plotted from Eq.  (57). Blue curve:  Plotted from 
Eq. (65), with !iii given by Eq. (84)
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averaging transform of FST; see Refs. [18, 36] and 
those cited therein.

◆ The !e(") vs. ! profile under Case (iii) admits 
a pair of temperature-rate waves (see Refs. [26, 37, 
38]), i.e., jumps in !′

e
(") , across ! = ∓"!iii∕4 ; see 

Remark 7.
◆  A thermal shock (see, e.g., Refs. [37, 38]), 

i.e., a jump in Te(!) , must occur under Case (iv); see 
Remark 7.

◆  While they are quite distinct from those pre-
sented for Ar in Refs. [25, 34], the TWS profiles gen-
erated under Case  (iv), an example of which is the 
blue curve in Fig. 3, are very similar to those given in 
Ref. [39, Fig. 2], which depict non-isothermal shocks 
in CO2 ; see also Ref. [40].

◆  While they are so under Cases  (i)–(iii), under 
Case  (iv), Eqs.  (13b) and  (13c) are not invariant 
with respect to Galilean transformations [14, § 1.5]. 
(We thank Reviewer  2 for bringing this fact to our 
attention.)
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Appendix A: Comparison with Stokes (1851)

In this appendix the EoM derived by Stokes in Ref. 
[2], which describes non-isothermal propagation 
with radiation under the linear approximation, is 
re-derived. We also give the isothermal version of 
Stokes’ model and the linearized, reduced, version 
of the present (i.e., isothermal) governing system. 
Key aspects of all three models are noted and briefly 
discussed.

In terms of the present notation, the governing sys-
tem of equations considered by Stokes [2], and later 
Rayleigh [8, § 247]12, can be expressed as 

 In Sys.  (A.1), s = (! − !0)∕!0 is known as the con-
densation; we have set ! = (" − "0)∕"0 ; the term on 
the right-hand side of Eq. (A.1c) follows from taking, 
prior to cancellation of the product cv!0"0,

i.e., r to be given by the general (i.e., non-isothermal) 
form of Newton’s law of cooling; and ! , !b , and K 
have all been set equal to zero. (Unless stated herein, 
the definitions of all quantities, terms, etc., appearing 
in this appendix can be found in Section 2.)

Now using Eqs.  (A.1a) and  (A.1d) to elimi-
nate u and p, respectively, from Eq.  (A.1b) reduces 
Sys. (A.1) to 

 where we have re-written Eq.  (A.1c) in operator 
form.

At this point it is instructive to introduce the iso-
thermal counterpart of Sys. (A.3): 

(A.1a)st = −ux,

(A.1b)!0ut = −px,

(A.1c)!t − (" − 1)st = −!0!,

(A.1d)p = p0(1 + s + !).

(A.2)r = −cv!0!0",

(A.3a)stt = b2
0
sxx + b2

0
!xx,

(A.3b)(!0 + !t)" = (# − 1)st,

12 In Ref. [8, §  247(4)], the first two terms should be multi-
plied by !v , where !v is used in Ref. [8] to denote the specific 
heat at constant volume; see also Ref. [15, § 360(18)].

http://creativecommons.org/licenses/by/4.0/
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 where, as in Sect. 2.3, !e = !e(x, t) is controllable by 
the experimenter, and 

 which is easily obtained from the linearized version 
of Sys.  (13). Here, in parallel with the analyses car-
ried out in Sect. 8.4, we stress the fact that if st > 0 
(i.e., compression) is a possibility, then suitable 
additional restrictions must be placed on the bound-
ary and/or initial data for Eqs.  (A.4a) and  (A.5a) to 
ensure that Eqs. (A.4b) and (A.5b) are consistent with 
!e > 0 . If, however, max |st| ≪ !0 , then !e ≈ !0 ; 
recall the long-period piston example cited in Refs. 
[2] and [8, p. 26].

As we conclude this appendix, we return to 
Sys.  (A.3) and, on eliminating ! between its two 
PDEs, obtain the modern form of the EoM first 
derived by Stokes in 1851, viz.,

see Refs. [2, Eq.  (7)] and [8, §  247(6)]. (See also 
Truesdell’s [5, §  4] critiques of the analyses per-
formed in Refs. [2] and [8, § 247].) In recent years, 
many authors have begun referring to PDEs of this 
type as (Stokes–)Moore–Gibson–Thompson equa-
tions; see, e.g., Ref. [41, p.  3], wherein an interest-
ing stability condition for Eq.  (A.6) and its multi-D 
extensions is presented and discussed. With regard to 
modeling experiments involving both radiation and 
non-isothermal conditions, however, we observe that 
Sys.  (A.1) is preferred to Eq.  (A.6) in terms of ini-
tial data requirements; i.e., while both formulations 
require knowledge of s(x,  0), it appears to be much 
easier, from the standpoint of performing the experi-
ment, for one to accurately specify !(x, 0) , u(x,  0) 
than st(x, 0) , stt(x, 0).

(A.4a)stt − b2
0
sxx = 0,

(A.4b)!e = !0[1 − !−1
0
(" − 1)st],

(A.5a)stt − b2
0
sxx =

4

3
!0stxx,

(A.5b)!e = !0[1 − !−1
0
(" − 1)st],

(A.6)sttt − c2
0
stxx + !0(stt − b2

0
sxx) = 0;

Appendix B: Explicit TWSs under Case (i)

We begin with the observation that Eq. (43) can also 
be written as

where we recall that k < −1 . Prompted by the deriva-
tion of the special case TWS presented in Ref. [35, 
§  4], wherein Becker’s assumption (see also Ref. 
[24]) was adopted, we find that setting Ma = 1∕

√
2 

( ⟹ k = −3 , Ms =
√
2 ) reduces Eq. (B.1) to

which is readily solved to yield the explicit expression

where we recall our use of the relation 
F(!) = −1 + (2∕up)f (!) . In the case of Eq. (B.3), the 
shock thickness and corresponding critical point are 
given by

respectively.
The corresponding density TWS is easily found to 

be

a profile that admits the shock thickness

with corresponding critical point !∗
i
= −li ln (2).

(B.1)

3v!

2"0(|k| − 1)
= ln(1 − F)

−

(|k| + 1

|k| − 1

)
ln(1 + F) (|F| < 1),

(B.2)
(
3b0

√
2

4!0

)
" = ln

[
1 − F

(1 + F)2

]
,

(B.3)

f (!) =
1

4
up exp

[
−(3 + 2

√
2 )!∕!i

]

×

{
−1 +

√
1 + 8 exp

[
(3 + 2

√
2 )!∕!i

]}
,

(B.4)

!i =
!0(3 + 2

√
2)
√
8

3b0
, " ∙

i
=

(
4!0

b0

√
18

)
ln
[
1

4
(1 +

√
2 )
]
,

(B.5)

g(!) = "0

(
1 − 1

8
exp

[
−(3 + 2

√
2 )!∕!i

]

×

{
−1 +

√
1 + 8 exp

[
(3 + 2

√
2 )!∕!i

]})−1

,

(B.6)li = 2(!0∕b0)
√
6,
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We close by pointing out that four other explicit 
TWSs are possible under Case  (i). Apart from noting 
that their derivation requires one to solve the cubic and 
quartic equations

however, we leave this task to the reader; here,

where m(> 1) is given by m = (|k| + 1)(|k| − 1)−1 = M2
s
.
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