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In this paper, we provide a statistical analysis of high-resolution contact pattern data within
primary and secondary schools as collected by the SocioPatterns collaboration. Students are graph-
ically represented as nodes in a temporally evolving network, in which links represent proximity or

interaction between students.

This article focuses on link- and node-level statistics, such as the on- and off-durations of links as

well as the activity potential of nodes and links.

Parametric models are fitted to the on- and off-durations of links, inter-event times and node
activity potentials and, based on these, we propose a number of theoretical models that are able to
reproduce the collected data within varying levels of accuracy. By doing so, we aim to identify the
minimal network-level properties that are needed to closely match the real-world data, with the aim
of combining this contact pattern model with epidemic models in future work.

PACS numbers: 02.70.Uu, 87.10.Mn, 87.10.Rt, 87.23.Ge

I. INTRODUCTION

The use of networks to model contact pat-
terns or interactions between individuals has
proved to be a step change in how epidemics
and other spreading processes are modelled
B, , , , , %ﬁ The basic ingredi-
ent of such models is to represent individuals
by nodes and contacts between these as links
between nodes. The use of graph-theoretical
methods have helped to reveal and understand
the role of contact heterogeneity, preferential
mixing and clustering in how disease invade
and spread ﬂ, ] Having good network mod-
els is crucial. Simple mechanistic models that
capture and preserve key properties of empir-
ical networks are often employed as they offer
greater flexibility in changing and tuning var-
ious network properties. While such models
and theory are well developed for static net-
works, it is only recently that we have empir-
ically measured real-world time varying forms

* Based on work presented at the 13th Econophysics
Colloquium & 9th Polish Symposium on Physics in
Economy and Social Sciences, Warsaw, July 2017

(1, 3, B, 6, [8, 9, 18, [1d, 21, 23, [25).

Current underlying models for network-based
epidemiology fall into a handful of categories.
Some just use empirical data collected from sen-
sors and apply an appropriate disease model to
this [1, 18, [23]. Others use a fairly elementary
model where links appear as in gathered data,
but are given lifespans drawn from a uniform
distribution ﬂﬁ], or are given a simple weighting
drawn directly from the data [19, 23]. Others
take collected data and use it to convert a se-
ries of fully connected networks into sparse ones
[19]. Alternative methods involve the use of an
idealised network ﬂE], regular random network
[1], random Poisson network [1, [§], scale-free
random network [1] or lattice [§]. In this paper
our aim is to analyse an empirical time vary-
ing network, in a statistically rigorous way, and
build theoretical models that are able to repro-
duce and mimic the behaviour observed from
data.

We will re-analyse data previously col-
lected by the SocioPatterns collaboration
(http://www.sociopatterns.org/) with spe-
cial focus on time-varying contact patterns in
a primary [7, 24] and high [13] school. In par-
ticular we will focus on measuring properties
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such as activation time and duration of links as
well as off-durations of links. We will then pro-
pose and fit candidate parametric distributions
to the empirical data. Based on these, we will
propose a few different theoretical time-varying
network models. Two different model types are
proposed. The first model assigns on-off dura-
tions to each link from an appropriate probabil-
ity distribution. Our second model triggers ac-
tivations at appropriate times (with inter-event
times being drawn from an appropriate distri-
bution), before selecting the link to be activated
(using a probability matrix drawn from the orig-
inal data) and assigning an on-duration to that
link from an appropriate probability distribu-
tion. Even if these models do not capture all the
important features of the real-world network,
they still provide a useful first approximation.
Whilst we focus on school classrooms, our ap-
proach can be adapted to modelling other types
of social interactions.

II. DATA COLLECTION AND
DESCRIPTION

In the original data - both for the primary
and high school students - the participants were
equipped with sensors that deemed them ‘in
contact’ if they were within 1 to 1.5m of each
other (an interaction), chosen by the organizers
of the original study. This was to act as a proxy
of a close-range encounter during which a com-
municable disease infection can be transmitted,
for example, either by cough or sneeze, or di-
rectly by hand contact ﬂﬂ] Every 20s, a radio
packet would be exchanged between the sensors,
and all packets transferred would be relayed to
a central system to be recorded. This scale
was deemed to allow an adequate description of
person-to-person interactions that includes brief
encounters [24].

In both cases, this central system saved the
data in a CSV file, with each row containing
the timestamp (in 20s intervals), the IDs of
the two sensors in contact, and some additional
data about the two participants (such as their
class). We modify the original data slightly be-

fore our initial analysis. Firstly, we remove any
participants marked as staff from the data as
their behaviour could be potentially anomalous
when compared to that of the school children.
Whilst we acknowledge that this could remove
any potential impact of staff on the behaviour
of pupils, we feel justified in this as staff only
account for 11 participants and approximately
5% of the originally recorded links, which may
prove problematic in terms of drawing any sta-
tistically significant conclusions about potential
behaviour. In future work, including this addi-
tional layer may lead to an improved model -
however, we feel that more data describing these
interactions would be needed before we could
confidently add this to a model. We also split
the students into their separate classes. Whilst
this results in the discarding of approximately
20% of the originally recorded links, this given
us more samples to analyse; moreover, it allows
for a statistical comparison between the dynam-
ics of different classes. From a more practical
perspective, this restriction to classes has a con-
siderable impact on the runtime of the model
simulations (reducing this size from around 500
students to around 25).

The choice to restrict to classes is also justi-
fied from a modelling perspective as it is realis-
tic to assume (at least as an initial hypothesis)
that contacts outside of the classroom (during
break/lunch) would follow substantially differ-
ent behaviour.

We also split the data into individual days -
similarly to splitting by class, this helped reduce
the runtime of the simulation as well as increas-
ing the number of samples we could analyse.
Again, this is not unrealistic, as the interactions
between students in the same class can reason-
ably be assumed to be similar from one day to
another.

A. Analysis of Original Data

A series of MATLAB functions were written
to take these (separated) CSV files and perform
an analysis of a variety of network and tempo-
ral features, and attempt to do best-fit analysis



on all appropriate results - a full list of these
features below. Animations showing the net-
work evolution over time were also produced.
For a listing of the code and short descriptions
of the functions written to carry out this anal-
ysis, please see the handbook provided in the
Supplemental Materials.

We identified a variety of key features for
analysis. As usual, many more features can be
observed from the data, and indeed, in order to
approximate a completely realistic model, many
of these should be analysed and incorporated
into more detailed models. Our models are just
an initial step into understanding these socially-
interaction temporal networks, and we are only
focusing on aspects that categorise and describe
both the topology of the network and several
temporal properties of the system. These fea-
tures are presented below, along with brief def-
initions of these terms:

Active Nodes: The measure of active nodes at
a given time ¢ is defined as the number of pupils
involved in at least one interaction at time ¢, as
a fraction of all pupils active during that day.
Active Links: The measure of active links at a
given time ¢ is defined as the number of unique
(undirected) pupil-pupil interactions at time ¢,
as a fraction of all possible links for that day,
equal to pax = N(N — 1)/2, where N is the
number of pupils active during that day in the
class under consideration.

Node & Link Activity Potential: The ac-
tivity potential of a node is defined as the num-
ber of activations involving that node, as a frac-
tion of all node activations across the day HE]
We also define an analogue for links, defined as
the number of activations of that link, as a frac-
tion of all link activations across the day.
Global Clustering Coefficient: The global
clustering coefficient at a given time ¢ is de-
fined as the ratio between the number of closed
triplets and the number of connected triplets in
the network ﬂﬂ] That is, the ratio between
the number of triangles in the network and the
number paths of length 2, that do not have a
third edge connecting the end points.

Node Degree: The degree of node n is the
number of active links involving it [4].

Component Features: Defining a component
as a maximal subset of nodes that are fully con-
nected ], we can also examine properties such
as component count and nodes and links per
component at a given time t.

Activation Time: For each link, an activation
time is measured - defined as the period of time
it takes for that specific link to be activated for
the first time.

On-Duration: For each link, on-durations are
measured - defined as the period of time be-
tween the activation and deactivation of that
link.

Off-Duration: For each link, off-durations are
measured - defined as the period of time be-
tween the deactivation and reactivation of that
link.

B. Properties Identified from Original
Data

In the initial part of this article we use the ob-
served data to fit all of the above quantities to
certain distributions. These will act as a step-
ping stone to the second part of this article, in
which we develop theoretical models, in an at-
tempt to recreate the observations using Monte
Carlo simulations.

As we do not have any explicit theories for
the dynamics of any of our chosen proper-
ties, we shall test against a series of appro-
priate common probability distributions ﬂﬂ,
pp- 899-917] and variations on these, represent-
ing a range of behaviours defined on the semi-
infinite interval [0, 00). We will be using expo-
nential, gamma, Rayleigh, log-normal, Mittag-
Leffler, generalised Pareto and Weibull distibu-
tions. All of these will have best fit parame-
ters chosen using by three different methods -
method of moments [2], maximum likelihood es-
timators [20], and the curve fitting tool in MAT-
LAB (non-linear least squares) - and then com-
pared to the empirical complementary cumu-
lative distribution functions (eCCDFs) of the
original data to determine which one is most
optimal.

This comparison was achieved by looking at a



variety of statistical distances - Kolmogorov-D,
Cramer-von-Mises, Kuiper, Watson, Anderson-
Darling and modified versions of the Kullback-
Leibler and Jensen-Shannon m] These dis-
tances and comparisons were chosen as they em-
phasise a wide varying range of properties of the
distributions to be compared - with, for exam-
ple, some being more sensitive to changes in the
head and tail of the eCCDF, whilst others are
more sensitive to changes in the middle. Find-
ing a distribution that had ‘good’ values for all
of these distances would indicate that it was a
good fit across the entirety of the compared eC-
CDF.

In over 75% of cases, the curve fitting tool
in MATLAB produced the statistically best pa-
rameters, with the parameters chosen using this
method in the majority of the remaining cases
being only slightly different to those produced
using a more optimal method. As a result
of this, and additionally considering that the
method of moments and least likelihood estima-
tion do not work with all of our chosen distri-
butions, we shall conduct any additional anal-
ysis using only the curve fitting tool, and only
results produced using this method will be pre-
sented and used throughout this paper.

1. Results from Data

Below we present a summary of the distribu-
tions chosen using the method described above.
Best-fit parameters and comparative distances
have been excluded for brevity.

Active Links: The optimal tested distribu-
tion for the primary school data was Log-
Normal, whilst for the high school data, both
the Rayleigh and log-normal distributions gave
similar fits, with log-normal being slightly more
optimal.

Active Nodes: The optimal tested distribu-
tion for the primary school data was gamma,
whilst for the high school data, the gamma and
log-normal distributions both gave similar fits,
with log-normal being more optimal in all but
the most extreme values.

Node Activity Potential: In both data sets,

gamma and log-normal distributions gave simi-
lar fits, with gamma being fractionally better.
Links per Component: For the primary
school data, gamma and log-normal distribu-
tions both gave similar fits, with log-normal
being marginally more optimal. Whilst for
the high school data, gamma, log-normal and
Rayleigh distributions all gave similar fits, with
log-normal being slightly better.

Nodes per Component: For the primary
school data, gamma, log-normal and Rayleigh
distributions all gave similar fits, with log-
normal being slightly better. Whilst for the
high school data, gamma and log-normal dis-
tributions both gave similar fits, with no clear
optimal distribution.

Global Clustering Coefficient: In both data
sets, gamma, log-normal and Rayleigh distri-
butions all gave similar fits. For the primary
school data there was no clear optimal distribu-
tion between these, whilst for the high school
data, a gamma distribution was slightly better.
Interaction Times/On-Times: In both data
sets, the optimal tested distribution was gener-
alised Pareto.

Number of Components: In both data sets,
the optimal tested distribution was gamma.
Time Between Contacts/Off Times: In
both data sets, the best tested distribution was
log-normal.

2. Link Inhomogeneity

Not surprisingly, the off-durations of links
(recalling that links are off if participants ar not
in contact with each other) cannot be assumed
to be homogeneous across students. This is in
accordance with the realistic assumption that
certain children are more popular or sociable
than others. A further later of statistical fit-
ting determined that for attempting to recreate
the primary school data, it was optimal to have
the off-durations vary link-by-link. The optimal
choice for this was an exponential distribution
with log-normal parameters. We additionally
examined the triangle count within the net-
work, as well as inter-event times (the time



1%[5%
Active Links 10] 3
Active Nodes 139(125
Node Activity Potential 190(185
Global Clustering Coefficient| 67 | 46
Interaction Time 9|4
Time Between Contacts 30|19
Component Count 113| 94
Links per Component 62 | 50
Nodes per Component 63 | 54
Triangle Count 114199

TABLE I: Acceptances of Hy (see equation [I])
at 1% and 5% Levels (max: 190) (see
subsection [IB3 for full explanation)

between two consecutive link activations in the
network). For the first, a gamma distribution
was the optimal fitted distribution, whilst for
the second, a log-normal distribution was se-
lected.

These two features were chosen to be added
to the list of those analysed as the triangle
count offers an additional measurement of the
nature of the network structure alongside the
global clustering coefficient, whilst the inter-
event times were necessary for building our sec-
ond model.

3. Comparing Samples

When we create our models, we aim to have
little dependence on the original data - vary-
ing parameters only between differing settings
(primary school vs. high school), rather than
within these settings. For example, we would
aim to have the parameters for the random vari-
able generation for the model for class 5A in the
primary school to be the same as those in the
model for class 1B of the primary school. There-
fore, our first statistical test will be to test the
validity of this statement. Our Hj is

Ho : The two observed samples come

from a common distribution.

We compute two-sample Kolmogorov-Smirnov
distances ﬂﬂ, @] between each of our data sets
within each setting.

We present the number of acceptances of this
hypothesis (out of 190) for our primary school
data samples at the 1 and 5 percent levels in
Table [ Examining these results, we conclude
that while we do not have a unanimous degree
of acceptances for Hy, we have a substantial
number in some metrics and a notable level in
others. Other metrics have a very low degree
of matching - most noticeably in terms of ac-
tive links and interaction times. Whilst this is
not ideal for our aim to only vary parameters
between scenarios, for brevity we shall still pro-
ceed under this assumption - although it should
be noted that when we present our models we
do not actually fix the parameter in the dis-
tribution for our interaction times. Instead we
draw this parameter from a random distribu-
tion itself, which reflects this behaviour in the
data originally collected by the SocioPatterns
Collaboration.

III. MODEL CREATION

The aim of our model is to recreate the dy-
namics seen in the original data with as few
properties and parameters taken from the orig-
inal data as possible. In more precise terms,
we wish to test if the mechanism of interactions
within the original data can be explained by a
small number of key factors and identify and
refine those parameters. As with any model,
we doubt that we will be able to replicate every
property in the original data, but it is important
to examine the differences between our model
and the original data, and to put a measurement
on the distance between the two. Whilst there
will be some properties that we will be control-
ling, there will be several network and temporal
properties that emerge from our model that we
can compare to our original data, hence giving
us a measure of the distance between the two.
For the sake of brevity, we will only present the
results and parameter values for primary school
data below. Analysis supporting our choice of



distributions and parameters is provided in the
Supplemental Materials.

A. DModel 1

For this stage-0 model we look at each (poten-
tial) link individually and model its behaviour
as an alternating renewal process (ARP). We
also include an initialization phase for each link
that models the time (in seconds) until the first
activation of that link. This can be seen as the
following process for each link where Xj; ,, rep-
resents duration of the n-th on (or off) phase
for the link (4, 7), with the distributions chosen
using an empirical analysis of the data. Algo-
rithmically, we present this as:

1. Initialization Phase: Generate the ini-
tialisation time for this link with

XM ~ Exp(6278.0)

2. ARP On-Phase: Assign the link the on-

duration

X2 ~ Exp (Yi))

3,n

with parameter fixed for each (i, j) to

Yi; ~ LogNormal(3.5348,0.2807).

3. ARP Off-Phase: Assign the link the off-
duration as

X2+ LogNormal(6.3512, 1.3688).

ij,n

4. Repeating Process: Repeat Stages 2
and 3 until the total time has reached or
exceeded the simulation time.

B. Model 2a

In this stage-0 model, we will be dealing with
the system on a macroscopic basis. We are
drawing times between activations from an ap-
propriate distribution, then at each of these ac-

tivations, a link is chosen at random from a cus-
tom distribution constructed from the link ac-
tivity potentials (as defined in subsection [TA])
extracted from the data and represented by a
symmetric weighting matrix M. If the chosen
link is already active in the network, this selec-
tion is discarded, and another link is chosen for
that activation time. Once a link has been acti-
vated, it is given a lifespan from an appropriate
distribution. This can be seen as the following
process, with the distributions chosen using an
empirical analysis of the data. Algorithmically,
we present this as:

1. Time between Activations: Generate

t; ~ LogNormal(5.6901 x 10~*,1.7957).
2. Link Activation: At each activation
time T}, defined as

k
T = Z ti,
i=0

a link (n1,n2) is chosen using the relative
weights in the matrix M. If (ni,ns) is
already active at time T}, choose another
link for this time (nf,n5).

3. Assign On-Durations: This link is

given the duration
k
Xn1n2 ~ EXP(Ynﬂm)
as before with parameter fixed for each
(nl, 712) to

Yiino ~ LogNormal(3.5348, 0.2807).

C. Model 2b

In this model, we modify our Model 2a and
attempt to improve triangle count and cluster-
ing. Most of the method is similar to the ear-
lier model, but we force chosen links to close
a pair of links into a triangle at a fixed rate,
reweighting our selection matrix to only account
for these links (if no such links exist, we use the



original selection matrix), before proceeding as
before with this link selected. This can be seen
as the following algorithm, with the distribu-
tions always chosen using an empirical analysis
of the data:

1. Time between Activations: Generate

t; ~ LogNormal(5.6901 x 10794, 1.7957).

2. Triangulation Bias: Generate a ran-
dom number u such that

u ~ Unif]0, 1].

If w > 0.0640 (our ‘forcing’ rate, calcu-
lated from the data), proceed to Stage 3a,
else proceed to Stage 3b.

3. Link Activation:

(a) Standard Activation: At each ac-
tivation time T}, defined as

k
T = Z ti,
i=0

a link (n1,m2) is chosen using the
relative weights in the matrix M.
If (n1,n2) is already active at time
T}, choose another link for this time
(nf,n5). Proceed to Stage 4.

(b) Triangle-Biased Activation:

i. Matrix Reweighting: Gener-
ate the (symmetric logical) ma-
trix C' of links that will com-
plete triangles. If this matrix
is 0, set ¢ = 1. Create the
adjusted weighted matrix M’
where M{J = CZJMZJ

ii. Link Activation: At each ac-
tivation time T%, defined as

k
Tp=> t,
i=0

alink (ny,ng) is chosen using the
relative weights in the adjusted

matrix M'. If (nq,ng) is already
active at time T}, choose an-
other link for this time (n},nj).
Proceed to Stage 4.
4. Assign On-Durations: This link is
given the duration
X71§17l2 ~ Exp(Ynan)
as usual with parameter fixed for each
(n1,n2) to

Yi1n, ~ LogNormal(3.5348,0.2807).

D. Model 2¢

We shall again build upon our previous model
- Model 2b - this time changing our matrix
M. Previously, this has been a fixed matrix ex-
tracted from the data, but we wish to move to a
randomly generated one to reduce this strict de-
pendency on the original data. Analysing these
(symmetric) matrices, we examine the row (or
column) sums, which we attempt to find a dis-
tribution for. From an analysis of the data,
we choose an appropriate distribution for these
sums - we shall use row sums

Mg = M;; ~T(12.3109,0.0037).
j=1

For our first attempt at generating an appro-
priate random matrix M, we shall assume that
each term is taken from a gamma distribution
with

Mij ~ (i, 0.0037) + T(p7,0.0037)

for i < j, Mij =0 for i :_] and Mij = Mji for
¢ > j. This distribution is chosen in a simple
yet natural way that ensures correlations across
rows and columns. We also construct this in
such a way that the choice of a self-loop is im-
possible, whilst also ensuring symmetry (which
is to be expected as our network is undirected).
Due to the additive properties of the gamma
distribution, this is equivalent to the distribu-



tion
M;j ~T(u + 1?,0.0037)

fori<j, Mij:Ofori:jandMij:Mji for
i> .

We can use the properties of the gamma dis-
tribution to specify the parameters uf‘ and uf
as follows. As this matrix has to be symmet-
ric, we modify those entries below the diagonal
accordingly. To sum across a row, we first add
the entries to the right of the diagonal, which is
equal to

n
(n—i)u+ Y uf.
j=it1

We then notice that the entries to the left of
the diagonal, are equal to the column sum to
the diagonal, equal to

i—1
(i = Duf +> s
j=1
giving to total sum to be

n 1—1
(n—i)ut + > pP+ =Dl +> " u
j=it1 j=1

To match the distributions for the row sums, we

require that:
n
(n—pit+> p?
j=2

=(n—2pus + > 1P +pf +ui

j=3
n 2
=(m=3)us+ > pf+2uf +> pf
j=4 j=1
n—2
= ph )+ (= 2)pl o+ Z sy
j=1
n—1
=(n -l +> p =12.3109
j=1
The trivial solution to this is pf! = uf =
o Vij e {1,2,...,n}, giving p* =

12.3109/2(n — 1). Our initial model for a ran-
domly generated symmetric M shall be with

12.3109
M ~T ([ —=—= 0.
; (2(n_1) 00037)

fOI‘i<j, Mij:Ofori:jandMij:Mji
for ¢ > j. Whilst the use of this trivial solution
is somewhat simplistic, we believe that the in-
clusion of this method is an important step as
it allows us to examine behaviours and test me-
chanics before examining non-trivial solutions
in future work.

E. Summary

In Table [Tl we present a concise comparative
summary of the data dependencies of each of
our 4 model variants. For most of our mod-
els, we feel as though the parameter count is
acceptable considering the complexities of the
behaviours we are attempting to capture. In
Model 2b, the parameter count is much higher
than reasonable due to the explicit dependence
on the original data, suggesting that this would
not be an ideal model to fully implement - how-



Model Parameters Parameter Values Parameter Count
X7 ~ Exp(\) A = 6278.0
Model 1 | Y;; ~ LogNormal(p1,07) (u1,07) = (3.5348,0.2807) 5
X" ~ LogNormal(py, 03) (p2,03) = (6.3512,1.3688)
t; ~ LogNormal(uy1,07) [(u1,0%) = (5.6901 x 10~%,1.7957)
Model 2 : : 4
odel 2a 5 e Normal (2, 02)| (113, 0%) = (3.5348, 0.2807)
t; ~ LogNormal(uy,07) [(u1,0%) = (5.6901 x 10~%,1.7957)
Yiin, ~ LogNormal(pz, 03) (u2,03) = (3.5348, 0.2807) n(n—1)
Model 2b u > uy (our ‘forcing’ rate) uy = 0.0640 i
n X n symmetric matrix
t; ~ LogNormal(u1,0%) [(u1,07) = (5.6901 x 10~%,1.7957)
Yi,n, ~ LogNormal(uz, 03) (p2,03) = (3.5348,0.2807)
Model 2 u > uy (our ‘forcing’ rate) uy = 0.0640 7
M;; ~T(k,0) (k,0) = (13 2109 ) 0037)

TABLE II: Summary of Model Dependencies (see subsection [[ITE for full explanation and
subsection [IT{ for the definitions of uy and M)

ever it is included in our analysis in order to
allow us to observe the accuracy of Model 2c.

IV. MODEL ANALYSIS

Please note, in the figures highlighting key re-
sults, simulated data is represented by crosses
whereas observed data is represented by dot-
ted lines, with the data displayed as an eCCDF
with log-log axes (with scaling preserved be-
tween models). Each colour represents a differ-
ent simulation or data set. In order, the four eC-
CDF's shown represent active nodes, node activ-
ity potentials, component counts and the global
clustering coefficients. We choose these metrics
to illustrate as they represent both promising
behaviours and less-optimal ones, thereby giv-
ing a representative snapshot of our results. Ad-
ditionally, these eCCDFs are some of the clearer
and easier ones to read, allowing us to demon-
strate a number of behaviours in a brief and
compact manner. It should be noted that in
some cases (most apparent in the case of the
global clustering coefficients) that some of these
eCCDF's appear not to start at 1 as expected -
this is a result of a high prevalence of the value
0 in our data, with a large jump between this

and other values. For readability, this jump
has been excluded from the graphics, with our
images only showing the section of the graph
where the majority of our values fall.

We also present comparative data in two ta-
bles. In Table [IIl we show a summary of
the two-sample Kolmogorov-Smirnov distances
ﬂﬂ, ] between our collection of 20 empirical
samples and 20 simulated data samples from
each of the 4 models presented above - show-
ing the minimum, maximum, mean and mode
of the distance between any of the 20 sets of real
world data and any of the 20 sets of generated
data. We also compare horizontally, compar-
ing each empirical data set against 50 data sets
generated using our chosen metrics. We test the
hypothesis Hg, in this case, this is

Ho : The chosen empirical and generated
data samples come from a common (2)

distribution.

In Table [Vl we present the total number of ac-
ceptances (out of a possible 1000) at the 5%-
level of this hypothesis when tested on a partic-
ular metric.
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mean | 0.2212 [0.09876| 0.308 | 0.04169 | 0.04195 | 0.06908
mode | 0.1739 [0.01835[0.03448(0.004412| 0.00467 {0.002869
min 0.08 ]0.02513{0.03112]0.004466|0.003064{0.005029

Model 2b max | 0.4377 | 0.2065 | 0.5274 | 0.08203 | 0.08203 | 0.2011
mean | 0.2241 [0.08137| 0.2838 | 0.0373 | 0.03754 | 0.05605
mode | 0.2273 [0.06793]0.03112{0.004466|0.003064|0.005029
min [0.08696]0.03049]0.03836|0.005304|0.006754|0.003863

Model 2¢ | 18X 0.4945 | 0.2036 | 0.552 | 0.08004 | 0.08004 | 0.1842
mean | 0.2485 [0.07893| 0.3087 | 0.04149 | 0.04166 | 0.04898
mode | 0.2273 [0.07942]0.03836(0.005304|0.006754|0.006151

TABLE III: Selected Two-Sample Kolmogorov-Smirnov Distances (see section [[V] for full

explanation)
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Additionally, we present Figure[lto highlight
long-term behaviours in our model. In this fig-
ure, the transparency of each link represents its
relative activity in comparison to other links,
and the size of each node represents the rela-
tive activity of each node. The 5 images in this
figure represent this behaviour at ¢ = 15000 sec-
onds for an example of the original data, Model
1, Model 2a, Model 2b and Model 2c. Using
this figure, we can see systemic behaviours, such
as possible grouping of nodes into friendship
groups or similar metrics that would be more
difficult to measure empirically. This also gives
us an intrinsic definition for link spread. Fig-
ure demonstrates a poor spread - the long-
term behaviour is relatively homogeneous with
fewer darker links. Similarly, a simulation that
resulted in long-term behaviour that only had
darker links limited to a very small number of
nodes would also suffer from poor spread. Com-
paratively, Figure [[a has a better edge spread -

there are a higher number of darker links spread
among a larger number of nodes. More pre-
cisely, this is measuring a combination of fac-
tors - including activity potentials, component
structures and other network features - but al-
lows us to get an impression of many of these
features at a glance. We do not expect a perfect
matching between the examples here due to the
randomness of the data, but are instead looking
for system-wide similarity in behaviour. Differ-
ences are expected in the placement of stronger
links and nodes (and indeed, do occur between
simulation runs). However, we would expect a
well-fitting model to exhibit similar numbers to
those in the original data and with a similar re-
lationship between them (for example, as Figure
[Talhas many nodes being involved in at least one
stronger link, a well-fitting model would not be
expected to have all of its strong links emanat-
ing from a common node).



.

(a) Original Data (b) Model 1

(c) Model 2a

(e) Model 2c

FIG. 1: Long Term Behaviours for Original
Data and Models - Size of Nodes &
Transparency of Links Represent Relative
Activities (see last paragraph of the opening of
section [[V] for full explanation and the relevant
subsections of section [[V] and section [V] for an
analysis of these results). One immediate
observation is that Model 1 homogenises much
faster - note the limited number of darker
links.

A. DModel 1

Looking at Figure[2] the appropriate sections
of Tables [Tl and [V] and other comparative and
graphical results not directly presented in this
paper for brevity, as a first attempt at creating
a model, we see promising results. The model
produces acceptable fits for several of the exam-
ined features. Active links, active nodes and on-
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FIG. 2: Selected Results for Model 1.
Simulated data is represented by crosses
whereas observed data is represented by

dotted lines. Each colour represents a different
simulation or data set. See subsection [V Al for
full explanation.

durations all produce graphically acceptable re-
sults, although using our Kolmogorov-Smirnov
acceptances (shown in Table [[V]), there are im-
provements to be made in terms of these fits.
For off-durations, when we compare our eC-
CDFs, we observe a reasonable fit in certain
areas of the distibution although this fit deteri-
orates for extreme values and once again we no-
tice that our acceptances indicate that the cur-
rent construction of this model requires refine-
ment to fully capture this behaviour. For our
global clustering coefficient (presented in Figure
2) and triangle count, we have poor fits where
comparing the data sets graphically, although
we are getting a small number of acceptances
with our two-sample Kolmogorov-Smirnov tests
- likely as a result of an extreme prevalence of
certain values in these data sets. For nodes
per component, links per component and the
component count (partially presented in Figure
2)), we observe acceptable fits graphically and
are indeed accepting a small number of these
fits when calculating our statistical distances, as
shown in Table[[Vl This also indicated indicates
that slight refinement to this fit may be possi-
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FIG. 3: Selected Results for Model 2a.
Simulated data is represented by crosses
whereas observed data is represented by

dotted lines. Each colour represents a different
simulation or data set. See subsection for
full explanation.

ble. For node activity potential, we have a good
fit, both graphically and when considering our
number of Kolmogorov-Smirnov acceptances.

It is evident that this model does have no-
ticeable differences to the observed data. We
have a substantial number of small linear com-
ponents in our model, which is impacting many
of the features described above. Additionally
there are problems with link selection spread
(defined in section sec:modelanalysis) as can be
seen when comparing the original behaviour dis-
played in Figure [al with that in Figure [l
resulting in very few popular links (reflecting
strong friendships), which could also explain
differences within the node activity potentials
at the tail of our CCDFs.

B. Model 2a

Considering Figure Bl the appropriate sec-
tions of Tables [[IT] and [V] and other results
measured, we see a substantially improved
model. As with Model 1, we have results
that appear graphically similar across the en-
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tirety or keys sections of the distribution for
active links, active nodes, global clustering co-
efficient, on-durations and off-durations, whilst
our Kolmogorov-Smirnov distances for these in-
dicate that there are still improvements to the
fits to be made here. For our triangle count,
we are seeing reasonable fits graphically and
are accepting a higher number of our statistical
comparisons. Again, for nodes per component,
links per component and the component count,
we observe acceptable fits graphically (partially
presented in Figure Bl) and are indeed accept-
ing a small number of these fits when calculat-
ing our statistical distances - overall a slightly
higher number than in Model 1, but with only
small variations in each one. For node activ-
ity potential, we have a very good fit, both
graphically and when considering Kolmogorov-
Smirnov distances. As can be seen when we
compare Figure [[al and Figure [Id we are also
producing an acceptable link selection spread
(defined in section sec:modelanalysis), which re-
flects the varying levels of friendships observed
in the real world data.

However, this model is insufficient to capture
the related component structure - with our gen-
erated data still having too many linear compo-
nents in comparison to triangles. Although at-
tempting to resolve this will increase our depen-
dence on the data, it is believed to be significant
enough to warrant this.

C. Model 2b

In Figure @ the relevant sections of our ta-
bles and other results measured, we see simi-
lar results to Model 2a. Again, we have fits
that have various levels of visual similarity
to the observed data for active links, active
nodes, on-durations and off-durations, whilst
our Kolmogorov-Smirnov distances as reported
in Tables [l and V] for these indicate that
there are issues with these. With our global
clustering coeflicient have reasonable fits graph-
ically, but similar to Model 2a are still having
issues with Kolmogorov-Smirnov acceptances.
Again, for nodes per component, links per com-
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FIG. 4: Selected Results for Model 2b.
Simulated data is represented by crosses
whereas observed data is represented by

dotted lines. Each colour represents a different
simulation or data set. See subsection [V.Cl for
full explanation.

ponent and the component count, we observe
acceptable fits graphically (partially presented
in Figure @) and note in Table [V] a slight in-
crease or similar levels in count of acceptances.
We have a similar result for the node activity
potential, with a very good graphic fit and a
very high number of Kolmogorov-Smirnov ac-
ceptances. For the triangle count in the net-
work, we observe good fits graphically and in
terms of our statistical tests, with a substanial
improvement over the results obtained in Model
2a. We also observe varying levels of popular-
ity in the links, reflecting the various levels of
friendships that can be seen in the original data

- as can be seen in comparing behaviours in Fig-
ure [Tal and Figure [Id

D. Model 2c

In most metrics, this model performs simi-
larly to Model 2b, with little to no difference
in all of our examined metrics. Whilst, as illus-
trated in Table[[V] some see a slight drop in the
number of acceptances of the null hypothesis for
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FIG. 5: Selected Results for Model 2c.
Simulated data is represented by crosses
whereas observed data is represented by

dotted lines. Each colour represents a different
simulation or data set. See subsection for
full explanation.

the two-sample Kolmogorov-Smirnov test, oth-
ers see a slight increase and overall we see a very
marginal increase in the total count. Overall
behaviours and link selection weighting reflect
the observed data with a reasonable degree of
accuracy as can be seen in Figure Bl and a com-
parison between Figures [Tal and [Id

V. MODEL COMPARISON

Overall, there is a considerable improvement
across most metrics between Model 1 and Model
2a. This can be seen empirically when we ex-
amine the statistical distances between the ob-
served data and our generated simulations and
the count of 5% acceptances (as illustrated in
Tables [Tl and [V]). Significant improvements
are made to the node activity potential and
triangle count, including a noticeable graphical
improvement to the global clustering coefficient,
as can been seen in Figures [2 and Whilst
modifications could be made to Model 1 to im-
prove its accuracy in some of these areas (such
as including the link selection preference ma-



Model 1{Model 2a|Model 2b|Model 2c
Active Links 1 0 1 0
Active Nodes 0 0 0 0
Node Activity Potential 954 1000 1000 999
Global Clustering Coefficient 0 0 0 0
Interaction Time 6 0 0 0
Time Between Contacts 24 2 2 2
Component Count 151 264 240 306
Links per Component 62 35 56 42
Nodes per Component 33 68 79 63
Triangle Count 152 503 637 637
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TABLE IV: Acceptances of Hy (see equation ) at 5% Level (max: 1000) (see section [V] for full
explanation)

trix), due to its improved performance with sim-
ilar levels of dependence on the data, the second
model will be the basis for all future work. We
also notice a substantial drop in link selection
spread (defined in section sec:modelanalysis) as
we move between these models, with Model 2a
reflecting real world behaviours much closer in
our observations, as displayed in Figure [l

Between Model 2a and Model 2b, many met-
rics remain similar, although as expected from
our modifications to the algorithm, we do no-
tice a considerable improvement to the triangle
count, illustrated in both Table [V] and when
observing the decrease in the maximum and
mean statistical distance for this metric in Ta-
ble [III However, one of the larger problems
with Model 2b is that the link selection pref-
erence matrix depends heavily on the original
data, and we note that we could reduce this
data draw considerably by generating this ma-
trix rather than extracting it directly from the
data. Model 2c attempts to do this, and can
be considered successful as we can observe in
Tables [IIl and [[V] although a deeper examina-
tion of the temporal and network properties in-
dicates that further improvements are still to be
made.

VI. MODEL VALIDATION

As indicated in Table [ our approach to us-
ing the same distributions through all of our
primary school models is not ideal. Therefore,
we shall examine our methods in such a way to
examine if the dynamics used in our models is
a valid choice. To do this we shall draw tempo-
ral data directly from the appropriate eCCDF's
- for Model 1, these are the on-, off- and acti-
vation times, whilst for Model 2, these are the
on-times and interevent times. We shall then
compare the data generated using this method
to the real world sample that we draw the eC-
CDFs from - if we have a low statistical dis-
tance between these, we can conclude that our
model dynamics have validity and that any is-
sues identified in the examination above can be
significantly addressed through parameter im-
provements and refinements to the choice of dis-
tributions for our random values.

In Table [Vl we present the results of our val-
idation. We take each of our 20 original data
samples and input the appropriate eCCDF's in
the place of the random generation outlined in
Methods 1, 2a and 2b as described in section [T}
We do not analyse Method 2c using this method
of validation as if we were to draw the link pref-
erential matrix in this method from the data,
this would be functionally identical to Model
2b.

We then generate 50 samples for each and
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Model 1|{Model 2a|Model 2b
Active Links 0 2 0
Active Nodes 56 389 362
Node Activity Potential 881 1000 1000
Global Clustering Coefficient 0 0 0
Time Between Contacts — 2 2
Component Count 0 211 364
Links per Component 0 43 45
Nodes per Component 0 42 48
Triangle Count 0 367 771

TABLE V: Validation Acceptances of Hg (see equation[3)) at 5% Level (max: 1000) (see
subsection [V for full explanation)

compare them to the original data (for a total
of 1000 comparisons for each metric and model).
Please node that interaction times for all mod-
els (and the time between contacts for Model
1) have been excluded from this table as they
are being controlled directly from the data and
thus, a validation using this metric would serve
no purpose. In this table our Hy is given as

Ho : The chosen observed and validation

samples come from a common

(3)

distribution.

Using this data, we can clearly see that our
variations of Model 2 have considerably im-
proved dynamics over Model 1, although we
can still see that there are still improvements
to be made. When we compare Tables [V] and
[Vl we observe whilst choosing the ‘right’ time
structures does lead to some improvements -
most notably in terms of active nodes - it is not
enough to ensure a fit across all chosen met-
rics, and therefore that changes to our overall
dynamics should be considered. From our ex-
amination of these results, we conclude that ef-
forts should be made to improve link dynam-
ics and hypothesise that by modifying our code
to change the number of links generated in the
network should improve our dynamics - espe-
cially for active nodes, although we would ex-
pect to also see improvements in our global clus-
tering coeflicient, component features and ac-
tive nodes. This should also improve our time

between contacts as changing the number of link
activations will have a direct impact on this
metric.

However, despite these small improvements
still to be made to our model, we conclude that
our Model 2b (and therefore 2¢) have justifiable
dynamics and that an improvement to the ran-
dom generations will lead to an improved model
overall.

VII. CONCLUSIONS

We have developed two forms of model for
the social interactions observed in the original
data collected by the SocioPatterns collabora-
tion ﬂ, , ] In terms of statistical distance,
both of these exhibit varying degrees of match-
ing with the original data - the second of our
models out-performing the first in almost all of
our chosen metrics. We have added refinements
to this, improving upon this matching, whilst
continuing to minimise the amount of depen-
dence on the underlying data. We also have run
a form of model validation and can certainly
acknowledge that our model dynamics have a
notable degree of validity in a number of key
metrics when compared to the real word data
- whilst this indicates that we do have addi-
tional improvements to the mechanisms in our
models to perform, we believe that our current
models are a promising step in a strong direct.
We also acknowledge that further refinement for



the parameters and distributions used may lead
to improved matching, although we believe the
models presented here provide a solid founda-
tion from which to proceed.

VIII. FUTURE WORK

Improvements to the method for generating
our matrix in Model 2¢ will have to be under-
taken before this algorithm is finalised. Addi-
tionally, further parameter and distribution re-
finement in our method will also be explored, in-
cluding potentially moving from a Log-Normal
distribution for the interevent times to a more
complicated method in order to improve the
matching between the generated time between
contacts and that in the real world data. We
will also attempt to make modifications as pro-
posed in our model validation in section [Vl al-
though these improvements are only hypothe-
sised to improve model dynamics. Once we have
completed our model for primary school data,
we shall move to the high school data by using
the same method and adjusting parameters.

We will also carry out a deeper theoretical
analysis of our model and examine any inter-
esting patterns or behaviours within it, look-
ing at long-term behaviours and, through sim-
ulation, the potential existence of any absorb-
ing states. Additionally, once we have a fi-
nalised model and thus a statistically rigorous
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understanding of the distributions behind the
observed behaviours, we can propose theoreti-
cal reasoning for these choices by examining the
significance and underlying mechanisms of such
distributions.

Eventually, we aim to place a network-driven
epidemic model on our time-varying network
and examine properties of disease spread and
potential predictive power, comparing both to
existing models and real data.

NOTES

Supplemental materials can
be found at the following  link:
https://drive.google.com/drive/folders/

InLpdt91XUNE1F1les2x3sm6qemqkQGrGf 7usp=sharing
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