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Abstract: In this paper, we use two Fractional-Order Chaotic Systems (FOCS)—one for the sender
and one for the receiver—to determine the optimal synchronisation for a secure communication
technique. With the help of the Step-By-Step Sliding-Mode Observer (SBS-SMO), this synchronisation
is accomplished. An innovative optimisation method, known as the artificial Harris hawks optimi-
sation (HHO), was employed to enhance the observer’s performance. This method eliminates the
random parameter selection process and instead selects the optimal values for the observer. In a short
amount of time, the secret message that could have been in the receiver portion (signal, voice, etc.)
was successfully recovered using the proposed scheme. The experimental validation of the numerical
results was carried out with the assistance of an Arduino microcontroller and several electronic com-
ponents. In addition, the findings of the experiments were compared with the theoretical calculations,
revealing a satisfactory level of agreement.

Keywords: fractional-order systems; secure communication; Chua’s systems; synchronisation; chaotic
systems; harris hawks optimisation; Arduino; microcontroller

1. Introduction

The field of fractional calculus is a subfield of mathematical analysis that has garnered
the interest of a number of academics due to its intriguing potential as a one-of-a-kind
modelling tool across a wide range of scientific and engineering fields. Fractional dif-
ferential equations are utilised because it was discovered that simulating experimental
dynamics using these equations delivers better performance and superior results, enabling
the construction of powerful controllers. Out of the many advantages that this discipline
offers, model generalisation and long-term memory stand out as particularly advantageous.
Furthermore, fractional-order modelling is superior when it comes to attempting to build
a connection between any two places. It is possible to collect data for the instance of
interest at any time from a model that is of fractional order. When we use an integer-order
model, however, we are only able to obtain information that is relevant to this particular
circumstance. Based on the problem at hand and the information gathered, one would
select the most appropriate operator for the model. The definition proposed by Caputo is
one of the most widely accepted in current usage.
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In addition to investigating the numerous possibilities beyond the peculiar behaviour
of dynamical systems across a variety of domains such as electrochemistry [1], viscoelas-
ticity [2], and biology [3], it is possible to observe a great number of practical applications
of fractional calculus in contemporary theory [4–7]. As a challenging area of mathematics,
chaos theory is characterised by unexpected and complex behaviour. It focuses on deter-
ministic laws and underlying patterns that are hyper-sensitive to the initial conditions.
Chaos theory is a subject that is tough to study. In the past three decades, chaotic systems
have emerged as a subject of research. Some examples of chaotic systems include the
Lorenz system, the unified chaotic system, the Rossler system, the Lu system, and the
Chen system [8–11]. There are numerous applications of these highly effective systems
that have benefited from their chaotic and unpredictable behaviour, including commerce,
electricity, healthcare, mathematics, chemical and biological reactors, and security [8–11].
Additionally, these systems have been successfully applied in a wide variety of control
fields, including secure communication. According to the findings of researchers, the com-
bination of chaos theory and fractional calculus could produce superior outcomes in terms
of secure communication. This is due to the fact that FOCS exhibit significantly more
intricate behaviour [12–16].

It is guaranteed that a sliding-mode observer produces a set of state estimates directly
proportional to the transmitter’s real output, which is one of the unique characteristics
of the observer we employed in this study. Another powerful tool is the optimal SBS-
SMO. Many studies, such as [17,18], have resulted from the development of methods for
synchronising chaotic systems with fractional order employing a sliding mode observer;
thus, it is clear that there has been a lot of work in this area. An innovative approach to
communication security is suggested in this paper. It involves synchronising two fractional-
order Chua oscillators with an ideal SBS-SMO. The third-state derivative of fractional order
of the chaotic system contains the message in the emitter portion. It is believed that the
receiving procedure is flawed; hence, an SBS-SMO is employed to verify that the master
and slave are communicating and obtaining the secret data.

The importance of fractional-order chaotic systems lies in their applications in various
areas and fields, such as fractional evolution hemivariational inequalities generated by
non-instantaneous impulses, which was examined in [19]. In [20], an innovative approach
to the encryption of colour images was proposed, where the algorithm was based on
extended DNA coding, the Zig-Zag transform, and a fractional-order laser system [21].
Other notable works in this area include “Achieving Superior Multi-Image Encryption
Through the Use of Recently Conceived Fractional-Order 3D Lorenz Chaotic System and
2D Discrete Polynomial Hyper-Chaotic Map” [22] and “Fragmentary Fractional Order
Systems: Modeling and Initialization Using the Infinite State Representation” [23].

To achieve a secure real-time communication scheme, this work makes the following
contributions:

- The computation of the fractional order in the microcontroller needs memory al-
location to compute the cumulative integration; this limitation in the memory of
the atmega328p microcontroller was solved by using the numerical approximation
method, Rung Kutta 4.

- The noise produced by the electronics components, which negatively affects the quality
of the transmitted and received data, was solved in two ways: two capacitors were
added to the circuit to enhance the NRF24LO1 module’s performance, and a stochastic
filter was implemented to filter the estimated input (message) in the slave part.

- The optimal SBS-SMO parameters were chosen using HHO.

This paper is structured as follows. Fractional calculus is described in Section 2.
The transmitter model is explained along with the injection of secret information in Section 3.
In Section 4, the SBS-SMO and the recovered message are carefully revealed. In Section 5,
the receiver model is discussed in detail. The optimisation algorithm used with the sliding-
mode observer is explained in Section 6. In Section 7, it is shown that the proposed secure
communication method works successfully through real-time validation.
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2. Fundamental on Fractional Calculus

The Grünwald–Letnikov definition, the Riemann–Liouville definition, and the Caputo
definition are the three most common ways to describe the general fractional differintegral [24].

Definition 1 ([25]). Caputo presented a novel definition of the derivative of fractional order, which
is described as follows:

Da f (x) =
1

Γ(1 − α)

∫ t

0
(t − π)−α d f (τ)

dτ
dτ (1)

It is important to highlight Euler’s gamma function, which is the most powerful
component in fractional calculus. It is defined as follows:

Γ(n) =
∫ ∞

0
tn−1e−tdt

As a generalisation of a factorial, this function takes the following form:

Γ(n) = (n − 1)!

Definition 2 ([25]). In the case of 0 < α < 1 and f (t) being a causal function of t, that is,
f (t) = 0 for t < 0, the Riemann–Liouville integral is defined as:

0D−α
t f (t) =

1
Γ(α)

∫ t

0

f (τ)
(t − τ)1−α

dτ, for 0 < α < 1, t > 0 (2)

Definition 3 ([25]). The Grünwald–Letnikov fractional-order derivative is defined as:

Da f (x) ≈ 1
∆α

j=[t/∆]

∑
j=0

(−1)j
(

α
j

)
f (t − j∆) (3)

∆ = 0.001 is the time step used in the simulation.

3. The Transmitter System’s Configuration

Many electric and magnetic phenomena can be modelled using fractional calculus.
Many chaotic systems have been extended using non-integer-order derivatives, drawing
inspiration from Chua’s oscillator and other well-known chaotic systems. In this section,
we outline the transmitter system [26]:

Dq1 x(t) = δ1
[
−y(t) + αx2(t) + βx3(t)

]
Dq2 y(t) = δ2[x(t)− Ry(t)− z(t)]

Dq3 z(t) = δ3[i0 − γy(t)]

(4)

where δ1 = 1
C1

, δ2 = 1
L , and δ3 = 1

C3
. D[q] = [Dq1 Dq2 . . . Dqn ]T represents the fractional-

order differentiation vector operator qi ∈ R+, i = 1, 2, . . . , n. If all the orders of the
derivative qi are equal, which is qi = q, i = 1, 2, . . . , n, the system is said to be of equivalent
fractional order (commensurate) if and only if the fractional orders are equal. Take the
example of a commensurate fractional-order system, which is defined as

Dqx(t) = f (x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(5)

Table 1 presents the parameters used in the transmitter system, with the state variables’
initial conditions (x, y, z) set at zero. Figures 1–3 illustrate the time responses of the system’s
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states(x, y, z), and Figure 4 illustrates the three-dimensional space of the chaotic attractor
in (x, y, z).

Table 1. Parameter values of the model given in Equation (4).

Parameter q1 = q2 = q3 α β γ δ1 δ2 δ3 R i0

Value 0.9 1.5 −1 0.0035 100 1 1 0.1 0.0005

0 0.5 1 1.5 2

Time (S) 10
5

-1

-0.5

0

0.5

1

1.5

2

x

Figure 1. Time response of state variable x for initial condition of zero.
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Time (S) 105

-0.1
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0.5

0.6

y

Figure 2. Time response of state variable y for initial condition of zero.
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Figure 3. Time response of state variable z for initial condition of zero.
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Figure 4. Time responses of state variables x, y, z for initial conditions of zero.

The Inclusion of Private Information

Equation (4) is modified by adding a new term m(t) (secret information), which is
injected into the third derivative z(t) rather than x(t) in order to enhance the safety of the
communication system. The model of the transmitter system can be expressed as follows:

Dq1 x(t) = δ1
[
−y(t) + αx2(t) + βx3(t)

]
Dq2 y(t) = δ2[x(t)− Ry(t)− z(t)]

Dq3 z(t) = δ3[i0 + m(t)− γy(t)]

(6)

Remark 1. The secret message m(t) is considered as an unknown to be estimated and can represent
a signal, voice, or image. In the simulation section, interactive examples are investigated.

4. SBS-SMO Theory

According to [27], designing the SBS-SMO for integer-order nonlinear systems usually
involves a sequential method. This method involves injecting virtual inputs produced
from the iterative first-order SBS-SMO. Accurately estimating m(t) and xi, i = 1, n is
our objective.

The triangular representation of the commensurate fractional-order nonlinear system
is given as follows:

dq(xj−1, yj−1, zj−1)(t)
dt

= ρj−1(xj, yj, zj)(t) + ψj−1(xj, yj, zj)(t))

dq(xj, yj, zj)(t)
dt

= a(x, y, z) + b(x, y, z)m(t)

y(t) = x(t)

(7)

where y(t) ∈ R is the measured output, m(t) ∈ R is the secret message, and the nonlinear
functions are denoted by a(x), b(x), and Ψi, i = 1, n − 1. The parameters ρi ∈ R+ are all
non-zero constants.

Consider that the system in Equation (7) is a bounded-input bounded-state system,
and b(x), a(x), and m(t) are bounded, i.e.,

Assumption 1. |xi(t)| ≤ di, i = 1, n, |m(t)| ≤ Ms.

Assumption 2. |a(x)| ≤ As, |b(x)| ≤ Bs and b(x) ̸= 0 for all x ∈ D ⊂ Rn.

The purpose is to use the step-by-step first-order siding observers to estimate the
state variables and the unknown input m(t). Following the same approach used with
integer-order systems, the following equations characterise the suggested sliding-mode
observer that injects the available observed output signal y(t)
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dq(x̂j−1, ŷj−1, ẑj−1)(t)
dt

= ρj−1(x̂j, ŷj, ẑj)(t) + ψj−1
(
Y(t), (x̃j, ỹj, z̃j)(t)

)
+ Ej−2µj−1 sign

(
ẽj−1

)
dq(x̂j, ŷj, ẑj)(t)

dt
= Ej−1µj sign

(
ẽj
)
, j = 2, n

(8)

The secret message estimation is defined as follows:

m̂(t) = b(x̃, ỹ, z̃)−1(−a(x̃, ỹ, z̃) + Ej−1µj sign
(
ẽj
)

(9)

The terms µj in Equation (9) are parameters that are only positive and developed to
guarantee the observer’s convergence.

The following are the definitions of the auxiliary variables (x̃i, ỹi, z̃i) :

(x̃, ỹ, z̃)(t) = (x̂, ŷ, ẑ) +
1
ρi

Ei−1µi−1 sign(ẽi−1), i = 2, n (10)

The intermediate estimation errors ẽi(t) are expressed as

ẽi(t) = (x̃i, ỹi, z̃i)(t)− (x̂i, ŷi, ẑi)(t), i = 1, n (11)

where x̃(t) = x(t) = Y(t) through construction. The estimation errors are expressed as

ei(t) = (xi, yi, zi)(t)− (x̂i, ŷi, ẑi)(t), i = 1, n (12)

Remark 2. To obtain the convergence condition, the rule of the switching logic Ei must achieve:

Ei, i = 1, n − 1
{

∥x̃i(t)− x̂i(t)∥ ≤ ε, ε ≪ 0
Ei = 0 otherwise

(13)

Theorem 1. Let us assume that Assumptions 1 and 2 are accurate. In this situation, given the
existence of positive parameters µi, i = 1, n, the observer states (x̂, ŷ, ẑ) and the estimated input
m̂(t) converge to (x, y, z) and the secret message m(t), respectively, within a finite period of
time [26].

5. The Receiver System’s Configuration

In order to simplify the receiver design that relies on an SBS-SMO and ensure success-
ful synchronisation, we present a reformulation of Equation (6):

Dq1 x(t) = ρ1ŷ(t) + ψ1(x(t))

Dq2 y(t) = ρ2ẑ(t) + ψ2(x(t), y(t))

Dq3 z(t) = a(x) + b(x)m(t)

Y(t) = x(t)

(14)

where
ψ1(x(t)) = αx2(t) + βx3(t)

ψ2(x(t), y(t)) = δ2(x(t)− Ry(t))

ρ1 = −δ1

ρ2 = −δ2

a(x) = δ3[i0 − γy(t)]
b(x) = δ3
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The following sliding-mode observer describes the receiver:
Dq1 x(t) = ρ1ŷ(t) + ψ1(Y(t)) + µ1 sign(x(t)− x̂(t))

Dq2 y(t) = ρ2ẑ(t) + ψ2(x(t), ỹ(t)) + E1µ2 sign(ỹ(t)− ŷ(t))

Dq3 z(t) = E2µ3 sign(z̃(t)− ẑ(t))

(15)

The auxiliary variables ỹ(t), z̃(t) are defined as

ỹ(t) = ŷ(t) +
1
ρ1

E1µ1 sign(x(t)− x̂(t))

z̃(t) = ẑ(t) +
1
ρ2

E2µ2 sign(ỹ(t)− ŷ(t))

The recovered message m(t) is given by

m̂(t) = γỹ − i0 +
1
δ3

E2µ3 sign(z̃(t)− ẑ(t))

6. Selection of the Observer’s Optimal Parameters via HHO

In this section, the objective is to determine the optimal settings for the receiver system
through the utilisation of the novel HHO in order to accomplish synchronisation. HHO
was selected from a range of optimisation strategies documented in the literature due to its
superior performance across more than 50 benchmark optimisation issues in comparison to
other meta-heuristic algorithms. The concept of HHO was first suggested by Heidari et al.
in their study on artificial intelligence [28]. Our secure communication strategy is depicted
in Figure 5, whereas the overall HHO framework is depicted in Figure 6. The HHO method
is utilised to address the convex optimisation problem, formulated as an objective function
(16), aimed at minimising the mean square error (MSE) between the states of the emitter
and receiver.

J = min ∑


x(t)− x̂(t)

y(t)− ŷ(t)

z(t)− ẑ(t)︸ ︷︷ ︸
e


2

(16)

Figure 5. The proposed secure data transmission scheme.

In this section, the effectiveness of the proposed strategy is demonstrated. When it
comes to retrieving information in a short amount of time while maintaining high quality,
it is essential to make use of specific settings for the sliding-mode observer. Some works in
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the literature, on the other hand, use parameters that are chosen at random. As shown in
Figures 7 and 8, the proper parameters for the SBS-SMO can be achieved by employing the
described process. The simulation’s settings and values are presented in Table 2.

Figure 6. Structure of HHO.
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i
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e
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Figure 7. The greatest possible HHO score attained during iterations.

Figure 8. The optimisation vector of the HHO algorithm and its dynamic changes.
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Table 2. Parameters and values used in simulations and in real time.

Parameters Values

Search agents 15

Max iteration 50

Parameters [ µ1 µ2 µ3] [185.3, 80.1, 145.08]

7. Results and Discussion

Figures 9–11 show the responses of the states (x, y, z) and their estimations (x̂, ŷ, ẑ).
Figure 12 shows the collective estimation errors for the three state variables. This proves
that the two FOCS can be synchronised optimally within a finite amount of time. The initial
conditions are assumed to be (x(0) = y(0) = z(0) = 0), whereas the responding system’s
initial conditions are all set to zero (x̂(0) = ŷ(0) = ẑ(0) = 0).

Figure 9. Data set synchronisation of x and x̂.

Figure 10. Data set synchronisation of y and ŷ.

Figure 11. Data set synchronisation of z and ẑ.
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Figure 12. The estimation errors: x error, y error, and z error.

7.1. Retrieving the Secret Message

The purpose of this section is to use the properties and characteristics of the SBS-
SMO, specifically synchronisation and estimating the unknown inputs, for the information
encryption process. First, we include the secret information, which we consider to be
the sin, square, sawtooth, and voice signals. These signals are represented by the fol-
lowing formulations: m(t) = 0.1sin(2t), m(t) = 0.1square(2t), m(t) = 0.1sawtooth(2t),
and m(t) = voice, respectively. As shown in Figures 13–16, the recovered messages in
the receiver system are similar to the original ones, with (x(0) = y(0) = z(0) = 0) and
(x̂(0) = ŷ(0) = ẑ(0) = 0). Additionally, Table 3 presents a comparison between the pro-
posed work and the work in [26] across four distinct error messages: sin, square, sawtooth,
and voice. Although [26] did not succeed in retrieving the voice message, we made an
attempt to recover it for comparison with our own voice signal, revealing an MSE close to
zero during the recovery process.

Time (s)

0 1 2 3 4 5 6 7 8 9 10

A
m
p
l
i
t
u
d
e

-1.5

-1

-0.5

0

0.5

1

1.5

  The original message 

  The recovered message

Figure 13. The original message (sinusoidal wave m(t) = sin(t)) and the recovered m̂(t).
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Figure 14. The original message (m(t) = square(t)) and the recovered m̂(t).
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Figure 15. The original message (m(t) = sawtooth(t)) and the recovered m̂(t).
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Figure 16. The original message (m(t) = voice) and the recovered m̂(t).

Table 3. Comparison of different kinds of messages.

Methods Sin Message Square Message Sawtooth Message Voice Message

Proposed 7.5211 × 10−5 2.1165 × 10−4 2.0181 × 10−5 6.2521 × 10−4

[26] 8.2397 × 10−4 0.0024 0.0022 0.0069

7.2. Security Analysis and Check

Two primary modifications were made in order to evaluate the level of security
provided by the proposed secure transmission technique. These included alterations
in the initial conditions and the sequence of transmissions between the transmitter and
receiver. Due to the significance of the original voice message, it was selected from among
the other messages that were received (Figure 17). We only made a tiny modification
in the initial conditions of the transmitter system’s first state, which were (x(0) = 10−6,
y(0) = z(0) = 0). As a result of our investigation, the message that was contained was
completely lost by the receiver as well. The second check involved a small modification in
the first state order of the transmitter system. As depicted in Figure 18, the value of q1 was
0.905, the value of q2 was 0.9, and the value of q3 was 0.9. In addition, we discovered that
the message that was inserted had been completely missed.

The fractional order of the chaotic system q was chosen randomly; the sensitivity
of the chaotic system to this fractional order is advantageous. A small change in q was
accompanied by a significant change in the behaviour of the system, which complicated
the decoding of the proposed communication scheme’s encryption. Therefore, it was
considered key to the decryption process. The same fractional order can be used on both
sides, sender and receiver, with the same initial state conditions. Different values can be
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used as well, but for synchronisation to occur, the observer’s parameters must be chosen
corresponding to this case.

Time (s)

0 1 2 3 4 5 6 7 8 9 10

A
m
p
l
i
t
u
d
e

-15

-10

-5

0

5

10

15

Recovered voice

Original voice

Figure 17. The original message m = voice and the recovered m̂(t) with initial conditions
x(0) = 10−6, y(0) = 0, z(0) = 0, and (x̂(0) = ŷ(0) = ẑ(0) = 0). The order for both the trans-
mitter and receiver is q1 = q2 = q3 = 0.9.

Time (s)

0 1 2 3 4 5 6 7 8 9 10

A
m
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i
t
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d
e

-80

-60

-40

-20

0

20

40

60

80

Recovred voice

Original voice

Recovered voice

Original voice

Figure 18. The original message m = voice and the recovered m̂(t) with initial conditions (x(0) =
y(0) = z(0) = 0) and (x̂(0) = ŷ(0) = ẑ(0) = 0). The orders for the transmitter are q1 = 0.905,
q2 = q3 = 0.9, whereas those for the receiver are set to 0.9.

7.3. Experimental Validation

Figure 19 shows the experimental validation of the proposed secure communication
scheme. We implemented the FOCS and SBS-SMO in the two microcomputers in the
transmitter and the receiver, respectively. The discrepancy between the theoretical and
the experimental aspects has been minimised through mathematical tools such as Rung
Kutta 4, approximation between fractional and integer transfer functions, and the Kalman
filter. Wireless transmission was facilitated by the NRF24L01 module. The obtained results
confirm the validity of the proposed idea from both mathematical and numerical aspects
and its readiness for application in the experimental field.
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Figure 19. Real-time investigation.

8. Conclusions

A novel approach to enhancing the security of encrypted communications is proposed
in this article. The proposed method involves the utilisation of a novel optimisation
algorithm in order to achieve the highest level of performance for the observer. To ensure
synchronisation between the emitter and receiver, we established an ideal SBS-SMO device
on the reception side.

In this work, we succeeded in transferring many pure mathematical concepts from
digital simulations and incorporating them into electronic circuits and microcontrollers
so that people could exploit them in their daily lives. Rung Kutta 4 was used to solve the
limitation in the memory of the atmega328p microcontroller to compute the cumulative
integration, as without it, we would need a memory allocation. We added capacitors to
the circuit to enhance the NRF24L01 module’s performance, and a stochastic filter was
implemented to denoise the recovered input (message) in the received part.

According to the obtained results, we have come to the conclusion that confidential
information can only be recovered by outside individuals if the following details are pro-
vided:

• The type of chaotic system utilised, such as Lorenz, Rossler, Chua’s, and Chen,
among others.

• The dynamic parameters of the chaotic system.
• The order and initial conditions of the system, as well as the state in which the message

was embedded.
• The mechanism of the synchronisation process, such as a controller or observer, and the

specific type of controller or observer.
• The characteristics of the encrypted and decrypted data, such as text, images, voice,

and video.

On the other hand, assembling all of this equipment is an extraordinarily challeng-
ing task.

Future studies will include:

• Transmitting secure images instead of voice or signal data.
• Improving fractional Chua’s systems through real-time implementation of new 4D or

6D fractional chaotic systems.
• Replacing the synchronisation observer with advanced and more recent algorithms

such as deep learning and machine learning approaches.
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