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1. Introduction 
 

Launchers are vehicles that have the objective of bringing payloads in orbit. Their story and 

evolution is tightly linked to rocket technology development. 

 

The design of a launch vehicle is a very challenging task, since it requires the combination 

of a wide variety of disciplines (aerospace, electronics, software, control etc.). 

 

In this thesis the focus is put on the control design for space launchers, so on the algorithms 

that have to command the actuators in order to keep the desired trajectory and thus lead to 

the mission success. The control design is a part of the discipline that takes the name of 

"Guidance, Navigation and Control" (GNC). 

 

For the control engineer the GNC domain is divided in: 

• Define the reference for the control system → guidance 

• Provide measurements to the control system → navigation 

• Compute the desired commands for the actuators in order to follow the reference 

trajectory → control 

 

The launch vehicle is an autonomous system and thus the control design plays a crucial role 

for the mission success.  

The flight Software, which runs on the On Board Computer, cyclically executes the GNC 

(Guidance Navigation and Control) algorithms to control the launcher from lift-off up to 

payloads release. 

 

The control design for a launcher vehicle presents several difficulties due to the complexity 

of the system. Some of the reasons that discourage from performing and implementing 

complicated control laws are: 

• The intrinsic instability of the vehicle 

• The presence of several disturbances (e.g. aerodynamic loads and elastic modes) 
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• The high variation of the structure (time varying properties)  

•  The algorithms computational time. 

 

In the next chapters will be recapped a compact set of equations (see [1], [3], [4]) that allows 

to model the launcher dynamics and will be presented the design of nonlinear feedback 

output regulation in absence of full state information. 

 

1.1. Guidance 
 

Guidance is the discipline that has as scope the generation of the trajectory to follow in order 

to achieve the mission destination. Specifically, the guidance system provides to the control 

system the reference inputs needed to track the optimal trajectory. 

Guidance can either be open loop or can adjust the reference based on the current launcher 

conditions (closed loop). 

Commonly three different phases are considered: atmospheric flight, exoatmospheric flight, 

and coast flight. 

 

1.1.1. Atmospheric Flight  
 

In this phase the objective is to minimize the aerodynamic load and heating to avoid 

severe damages to the vehicle. The atmospheric forces are a function of the angle of attack 

of the trajectory must be designed to minimize the angle of attack due to high dynamic 

pressure (Q*𝛼 constraint). The trajectory is computed offline (before the flight) and 

provided as input to the attitude steering commands to the vehicle. 
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In this figure it can be seen how a small disturbance that impacts in a variation of the angle 

of attack causes the generation of an aerodynamic moment (lift force "L") that leads to an 

unstable launcher behavior. 

 

Another phenomenon that has to be taken into account carefully is the elastic behavior of 

the structure. The flexible dynamics introduces frequencies that impacts the control 

frequency domain. Typically, in the control design are included specific filters in order to 

remove the bending frequency modes which otherwise could easily impacts the expected 

control behavior designed considering the rigid body motion. The elastic modes also 

impact the measurements done by the inertial platform device. 

 

FIG. 1 – Aerodynamic forces acting on launch vehicle (see [1]) 
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The time varying behavior due to the high amount of propellant that is consumed, 

especially in this phase, implies a huge variation in the structural properties of the vehicle 

(mass, inertia tensor) and due to the aerodynamic coefficients it causes a lot of difficulties 

in designing controllers and in verifying the stability of the vehicle under the action of the 

control laws. The absence of time varying metrics for stability leads to the need of a huge 

number of simulations for testing the behavior of the controller in different mission 

conditions. 

 

1.1.2. Exoatmospheric Flight 
 

The exoatmospheric manuevers requires though computationally expensive optimization 

solutions for  the two-point boundary value problem. Due to the  real time constraints of the 

on-board algorithms, complex on-line optimization problems are discouraged. 

 

1.2. Navigation 
 

The navigation algorithms compute the estimation of the vehicle position and velocity 

(linear and angular) from measurements provided by an aninertial measurement unit 

(IMU), which is composed by and electronic unit and a set of accelerometers and 

gyroscopes. 

Basically, provided an initial position and velocity, the IMU integrates accelerations in three 

orthogonal directions to derive velocity. This result is then integrated to determine a new 

position as a function of time. 

 

 

1.3. Control 
 

The control system is devoted to command the actuators to achieve the desired trajectory 

and attitude based on the guidance computations. 

Since the launcher operates in different environments, from sea level to outside of the 

atmosphere, the control task is very challenging in order to guarantee the stability of the 
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vehicle in all these situations considering the different type of external perturbations and all 

the mass and structural variations that the launcher faces during the flight. 

The main control actuator is called TVC (“Thrust Vector Control”), which consist in two 

electromechanical actuators that move the nozzle to produce specific torques to correct the 

launcher attitude. 

Due to the axial symmetry of the launcher structure, the rigid body motion is typically 

divided in the pitch-yaw plane and roll plane. The TVC is devoted to keep the desired 

attitude in terms of pitch and yaw while for the roll control separated thrusters are 

commonly used. The roll dynamics is mostly stable during the flight and specific correction 

are enough to keep it minimal when necessary and continue to consider the dynamics 

decoupled. 

 

Launcher (Physics)

IMU

On Board Computer

Guidance

Control
Navigation

TVC

Desired Nozzle Deflections

Lane 1

Lane 2

Gyros

Accelero

TVC Displacement 1

TVC Displacement 2

 

 

 

FIG. 2 – Common GNC scheme for launcher 
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2. Modeling 
 

The modeling of a Launch vehicle is a very challenging task. The classical derivation of the 

equations of motion applies to general aerospace vehicles. What is crucial for the modeling 

is the characterization of the different types of environmental conditions that “disturbs” the 

classical rigid body dynamics and kinematics formulation. The modeling aspect is crucial 

for control system design, but also the choice of a proper model approximation for the 

controller tuning. This because the number of states and effects considered can make 

unfeasible the approach of designing a controller starting from the full nonlinear equations. 

Depending on the flight scenario and the mission time, different aspects become either more 

or less negligible. Knowing this is fundamental for the success of the controller.  

In this chapter will be derived the equations of motions that can be used for analysis and 

control design of a launch vehicle.  

 

2.1. Reference frame 
 

In order to model properly the launch vehicle it is necessary to define some reference frames. 

Typically, several coordinates are used, from standard ECI (Earth Centered Inertial) and 

Body frame for rigid body and kinematics description, to orbit, trajectory and wind 

reference frames. 

 

2.1.1. Common Reference frames 
 

As stated before the reference frame definition is fundamental in order to characterize the 

motion of bodies in space. Below some of the commonly used frames for aerospace 

applications will be described. 

 

• Inertial reference frame 

An inertial frame is not rotating with respect to the “fixed stars”. In this frame the  

Newton’s law of inertia are valid.  
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The frame has its origin in the earth center of mass.  

The direction of  I axis is aligned with the Earth’s mean equator and equinox at 12:00 

terrestrial time on 1st January 2000. 

The direction of  K axis is aligned with the earth’s spin axis at 12:00 terrestrial time 

on 1st January 2000. 

The direction of  J is defined such that it completes the set of unit vectors to define a 

right-handed frame, and is rotated to the east about the celestial equator. 

 

 

• Body reference frame 

Attached to the vehicle’s body. This frame is mostly used for control systems design 

and when it is necessary to describe rigid body motion with respect to an inertial 

frame of reference. 

 

• Wind-axes frame 

FIG. 3 – ECI reference frame (see [33]). 
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During the atmospheric flight phase the launcher is subject to aerodynamic forces 

due to the wind action over its structure. It is useful to express these forces in the 

wind-axes frame. 

 

 

 

 

2.1.2. Euler Angles 
 

 

Three parameters are sufficient to describe the orientation of a rigid body in space. 

The most common and easy way to define the orientation of a rigid body with respect to an 

inertial reference frame are the Euler angles. 

Firstly the concept of rotation matrix must be introduced. A rotation matrix is used to 

describe rotations of an element in  in the two or three dimensional space. An elementary 

counterclockwise rotation of a vector in the bi-dimensional space is described by the 

following matrix. 

 

 𝑅(𝛳) = [
cos(𝛳) − sin(𝛳)

sin(𝛳) cos(𝛳)
] 

 

FIG. 4 – Example of Reference frame definition for aerospace application (see [20]) 
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 The following equation expresses the relation between the original and the new rotated 

vector 

𝒗′ = 𝑅(𝛳)𝒗 

 

 

 

 

 

 

 

For the 3 dimensional space three rotation matrices are defined; namely around the x-axis, 

the y-axis and the z-axis. 

 

 
𝑅(𝛳𝑥) = [

1 0 0
0 𝑐𝑜𝑠⁡(𝛳𝑥) 𝑠𝑖𝑛⁡(𝛳𝑥)
0 −𝑠𝑖𝑛(𝛳𝑥) 𝑐𝑜𝑠⁡(𝛳𝑥)

] 

 

 

 

𝑅(𝛳𝑦) = [

𝑐𝑜𝑠⁡(𝛳𝑦) 0 −𝑠𝑖𝑛(𝛳𝑦)

0 1 0
𝑠𝑖𝑛(𝛳𝑦) 0 𝑐𝑜𝑠⁡(𝛳𝑦)

] 

 

 

 

FIG. 5 – The body-fixed reference frame attached to the spacecraft. 
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𝑅(𝛳𝑧) = [
𝑐𝑜𝑠⁡(𝛳𝑧) 𝑠𝑖𝑛⁡(𝛳𝑧) 0
−𝑠𝑖𝑛(𝛳𝑧) 𝑐𝑜𝑠⁡(𝛳𝑧) 0

0 0 1

] 

 

 

 

Rotations matrices are referred also as direction cosine matrices, because their elements are 

the cosines of the unsigned angles between the body-fixed axes and the world axes. 

 

The Euler rotation theorem states that every rotation can be obtained by means of three 

elementary rotations. Therefore, by fixing a set of rotation on each axis, it is possible to 

define every rotation from one frame to another. 

 

Consider the rotation around the z-axis then around the y-axis and finally the x-axis, the 

resulting rotation matrix is given by:  

 

𝑅(𝛳𝑥, 𝛳𝑦, 𝛳𝑧) = ⁡𝑅(𝛳𝑥)𝑅(𝛳𝑦)𝑅(𝛳𝑧) ⁡

= ⁡ [

𝑐⁡(𝛳𝑦)𝑐⁡(𝛳𝑧) 𝑐⁡(𝛳𝑦)𝑠(𝛳𝑧) −𝑠(𝛳𝑦)

𝑐(𝛳𝑧) 𝑠(𝛳𝑥) 𝑠(𝛳𝑦) −⁡𝑐(𝛳𝑥) 𝑠(𝛳𝑧) 𝑠(𝛳𝑧) 𝑠(𝛳𝑥) 𝑠(𝛳𝑦) +⁡𝑐(𝛳𝑥) 𝑐(𝛳𝑧) 𝑠(𝛳𝑥) 𝑐(𝛳𝑦)

𝑐(𝛳𝑥) 𝑐(𝛳𝑧) 𝑠(𝛳𝑦) +⁡𝑠(𝛳𝑥) 𝑠(𝛳𝑧) 𝑐(𝛳𝑥) 𝑠(𝛳𝑧) 𝑠(𝛳𝑦) −⁡𝑠(𝛳𝑥) 𝑐(𝛳𝑧) 𝑐(𝛳𝑥) 𝑐(𝛳𝑦)

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

This combination is named "3-2-1" (one of the Euler angles sets) and is widely used for 

aerospace applications. 

These three angles are commonly named as roll, pitch and yaw.  
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There exist many combinations of Euler angles, each defining a different rotation matrix. 

Therefore, it is always necessary to define which set will be used to describe the system. 

 

The angular velocity vector can be computed from the Euler angles rate, thus introducing 

the attitude kinematics equation for the vehicle: 

 

𝝎⃗⃗⃗ 𝑩 = 𝝋̇𝒊𝑩⃗⃗  ⃗ ⁡+ ⁡ 𝜽̇𝒋′𝑩⃗⃗⃗⃗  ⃗ ⁡+ ⁡𝝍̇𝒌𝑩⃗⃗⃗⃗  ⃗ ⁡= ⁡ [
𝟏 𝟎 −𝒔𝜽
𝟎 𝒄𝝋 𝒔𝝋𝒄𝜽
𝟎 −𝒔𝝋 𝒄𝝋𝒄𝜽

] ∙ ⁡ [

𝝋̇

𝜽̇
𝝍̇

] 

 

 

 

 

 

2.2. Launch Vehicle Equations 
 

The equations of motion for a launch vehicle, considering the relative motion between 

particles and time varying properties due to fuel sloshing, gas flowing, flexible 

characteristics and engine rotation, are quite tough. 

FIG. 6 – Roll, pitch and yaw angle (www.machinedesign.com) 
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There are many books and famous papers that well describe this complex system, either for 

generic aerospace vehicles or more precisely for rocket launchers (See [3], [4], [22], [23], [24]). 

 

The position of a mass element can be expressed, in the inertial reference frame, as follows: 

 

𝑹⃗⃗ 𝒊 = 𝑹⃗⃗ 𝟎 +⁡𝒓⃗ 𝒊 
 

 

With 𝑹⃗⃗ 𝟎  as the position of the body fixed frame origin in the inertial frame and 𝒓⃗ 𝒊   the 

position of the mass element in the body frame. 

 

Differentiating the previous equation it yields: 

 

𝑹⃗⃗ 𝒊
̇ = 𝑹⃗⃗ 𝟎

̇ + ⁡𝒓𝒊̇⃗⃗  ⃗ ⁡+⁡ 𝝎⃗⃗⃗ ⁡𝒙⁡𝒓𝒊⃗⃗  ⃗ 

 

 

where 𝑅⃗ 0
̇  is the velocity of the body fixed-axis frame origin in the body reference frame, 

𝑅⃗ 𝑖
̇ the velocity of the mass element in the inertial reference frame and 𝑟𝑖̇⃗⃗  the velocity of the 

mass element in the body reference frame. 

 

The expression of the derivative of ⁡𝒓⃗ 𝒊 is due to the fact that this vector is not expressed in 

an inertial frame. Thus, its derivation is equal to the one of the vector modulus plus the 

derivation of the frame (by introducing the rotation velocity of the body frame with respect 

to the fixed inertial frame). 
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So the derivation of a vector in a non inertial reference frame can be expressed as: 

 

𝒓⃗ 𝒊
̇ = +⁡𝒓𝒊̇⃗⃗  ⃗ ⁡+ ⁡ 𝝎⃗⃗⃗ ⁡𝒙⁡𝒓𝒊⃗⃗  ⃗ 

 

 

while in an inertial reference frame the following expression holds: 

 

𝑹⃗⃗ 𝒊
̇ = 𝑹𝒊̇

⃗⃗⃗⃗ ⁡ 

 

 

By similar arguments, the acceleration of the mass element in the inertial frame can be 

derived: 

𝑅𝑖⃗⃗  ̈⃗ ⁡ = 𝑅0⃗⃗ ⃗⃗ 
̈ ⁡+ ⁡ 𝜔⃗⃗ ̇⁡𝑥⁡𝑟𝑖⃗⃗ ⁡+ ⁡ 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑟𝑖⃗⃗ ) ⁡+ ⁡𝑟𝑖̈⃗⃗ ⁡+ ⁡2𝜔⃗⃗ ⁡𝑥⁡𝑟𝑖̇⃗⃗ ⁡ 

 

 

In the case of solid-fuel launchers, the one studied in this presentation, the mass elements 

can be split between the ones related to the launcher structure and unburned fuel and the 

burned fuel ones. When deriving the velocity expression, it appears the contribution of the 

relative motion of the burned fuel mass elements with respect to the body reference frame. 

FIG. 7 – Reference frame and control volume (see [1]) 
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∫ 𝑟̇ 
⁡

𝑚

𝑑𝑚⁡ = ⁡∫ 𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  
⁡

𝑚𝑠𝑡𝑟

𝑑𝑚⁡ +⁡∫ 𝑟𝑓̇⃗⃗⃗  
⁡

𝑚𝑓

𝑑𝑚⁡ = ⁡∫ 𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  
⁡

𝑚𝑠𝑡𝑟

𝑑𝑚⁡ + ∫ 𝑣𝑓⃗⃗⃗⃗ 
⁡

𝑚𝑓

𝑑𝑚⁡ 

 

 

𝑟 𝑓
̇ = ⁡ 𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  ⁡+ ⁡𝑣𝑓⃗⃗⃗⃗  

 

 

From the previous equations for the control volume it can be derived the expression for the 

force equation 

 

𝐹 = ⁡∫ 𝑅𝑖⃗⃗  ̈⃗
⁡

𝑚

𝑑𝑚⁡

= ⁡∫ [⁡𝑅0⃗⃗ ⃗⃗ 
̈

⁡

𝑚

+⁡𝑟𝑠𝑡𝑟̈⃗⃗ ⃗⃗ ⃗⃗  ⁡+ 𝜔⃗⃗ ̇⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ⁡+⁡ 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ) ⁡+ ⁡2𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  ]𝑑𝑚⁡

+⁡∫ [𝑣𝑓̇⃗⃗⃗⃗ 
⁡

𝑚

⁡+ ⁡2𝜔⃗⃗ ⁡𝑥⁡𝑣 𝑓]⁡𝑑𝑚⁡ 

 

 

The previous equation can be rearranged as: 

 

𝐹 ⁡+⁡𝐹𝑢⃗⃗  ⃗ ⁡+ ⁡𝐹𝑐⃗⃗  ⃗ ⁡+ ⁡𝐹 𝑅 =⁡∫ [⁡𝑅0⃗⃗ ⃗⃗ 
̈

⁡

𝑚

+⁡𝑟𝑠𝑡𝑟̈⃗⃗ ⃗⃗ ⃗⃗  ⁡+ 𝜔⃗⃗ ̇⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ⁡+⁡ 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ) ⁡+ ⁡2𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  ]𝑑𝑚⁡⁡ 

 

 

with: 

 

⁡𝐹𝑐⃗⃗  ⃗ = ⁡−2𝜔⃗⃗ ⁡𝑥⁡ ∫ 𝑣𝑓⃗⃗⃗⃗ 
⁡

𝑚𝑓

⁡𝑑𝑚𝑓⁡, 𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠⁡𝑡𝑒𝑟𝑚 

 

 

𝐹𝑢⃗⃗  ⃗ = ⁡−
𝜕

𝜕𝑡
⁡∫ 𝑣𝑓⃗⃗⃗⃗ 

⁡

𝑚𝑓

⁡𝑑𝑚𝑓⁡, 𝑈𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑔𝑙𝑎𝑠𝑠⁡𝑓𝑙𝑜𝑤⁡𝑤. 𝑟. 𝑡⁡𝑡ℎ𝑒⁡𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

 

𝐹𝑅⃗⃗⃗⃗ = ⁡−⁡∫ 𝑣𝑓⃗⃗⃗⃗ 
⁡

𝐴𝑓

(𝜌𝑓𝑣𝑓⃗⃗⃗⃗ ⁡ ∙ ⁡𝑑𝐴⃗⃗⃗⃗  ⃗) ⁡= ⁡−𝑚̇𝑢⃗ ,⁡⁡⁡𝑚𝑓 ⁡= ⁡⁡ 𝜌𝑓𝑣𝑓 , 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒⁡𝑓𝑜𝑟𝑐𝑒⁡𝑡𝑒𝑟𝑚 
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The Reactive force needs a particular attention as it expresses the thrust force due to the 

exhausted gas.  

The term 𝑚̇ is the mass flow rate and 𝑢⃗⃗  is the gas velocity vector. 

 

The other terms on the right side of the forces equation are the typical terms of a rigid body 

with constant mass characteristics, with:  

• D' Alambert term → 𝑚𝑅0⃗⃗ ⃗⃗ 
̈  

• Euler force term → ∫ 𝜔⃗⃗ ̇
⁡

𝑚
⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ⁡𝑑𝑚 

• Coriolis force term → ∫ 𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  
⁡

𝑚
⁡𝑑𝑚 

• Centrifugal force term → 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡ ∫ 𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ 
⁡

𝑚
𝑑𝑚) 

• Force applied by structural dynamics → ∫ 𝑟𝑠𝑡𝑟̈⃗⃗ ⃗⃗ ⃗⃗  
⁡

𝑚
⁡𝑑𝑚 

 

Concerning the moments: 

𝑀0
⃗⃗ ⃗⃗  ⃗ = ⁡∫ 𝑟 

⁡

𝑚

𝑥⁡𝑅⃗ ̈⁡𝑑𝑚⁡ 

 

 

can be rearranged by similar arguments as for the force equations: 

 

𝑀0
⃗⃗ ⃗⃗  ⃗ ⁡+ ⁡𝑀𝑢

⃗⃗ ⃗⃗  ⃗ ⁡+ ⁡𝑀𝑐
⃗⃗⃗⃗  ⃗ ⁡+⁡ 𝑀⃗⃗ 𝑅

=⁡∫ 𝑟 𝑠𝑡𝑟⁡x⁡[⁡𝑅0⃗⃗ ⃗⃗ 
̈

⁡

𝑚

+⁡𝑟𝑠𝑡𝑟̈⃗⃗ ⃗⃗ ⃗⃗  ⁡+ 𝜔⃗⃗ ̇⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ⁡+ ⁡ 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ ) ⁡+ ⁡2𝜔⃗⃗ ⁡𝑥⁡𝑟𝑠𝑡𝑟̇⃗⃗ ⃗⃗ ⃗⃗  ]𝑑𝑚⁡⁡ 

 

 

with: 

𝑀𝑐
⃗⃗⃗⃗  ⃗ = ⁡−2∫ 𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ 

⁡

𝑚𝑓

𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑣 𝑓)⁡𝑑𝑚𝑓⁡ 

 

 

𝑀𝑢
⃗⃗ ⃗⃗  ⃗ = ⁡−

𝜕

𝜕𝑡
∫ 𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ 
⁡

𝑚𝑓

𝑥⁡⁡𝑣 𝑓⁡𝑑𝑚𝑓⁡ 

 

 

𝑀𝑅
⃗⃗ ⃗⃗  ⃗ = ⁡−∫ (𝑟𝑠𝑡𝑟⃗⃗ ⃗⃗ ⃗⃗ 

⁡

𝐴𝑓

𝑥⁡⁡𝑣 𝑓)(𝜌𝑓𝑣 𝑓 ⁡ ∙ ⁡𝑑𝐴⃗⃗⃗⃗  ⃗⁡⁡ 
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For more details refer to [1]. 

Together with the equations for rotational and translational dynamics, the flexible 

contributions must be taken into account (see [23]). 

 

Considering the linear elastic framework, the modal representation can be formulated by 

means of the following expressions: 

 

𝑥 (𝑡) = ⁡∑𝜑⃗ 𝑖

∞

𝑖=0

∙ 𝜉𝑖(𝑡)⁡⁡ 

 

 

with: 

• 𝜉
𝑖
(𝑡) → i-th modal coordinate 

• 𝜑⃗⃗ 
𝑖
 → i-th modal shape 

 

The rigid body equation for the translation dynamics can be stated as: 

∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ⁡𝑚(𝑡)𝑎𝐶𝑜𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⁡+ ⁡∑𝑚𝑖̇

𝑖

𝑣𝑖⃗⃗⃗   

 

 

This equation brings back to the classical Newton formulation for the rigid body motion 

where the presence of the variable mass is just approximated as an external force term 

(Thrust force). 

 

With the approximation of the so called “Solidification Principle” (see [1]): “The equations of 

the body of a launch vehicle at any instant t can be written in the 

form of equation of motion of a fictitious flexible body which would be obtained if it «solidified» at the 

instant t. To this «solidified» flexible body there should be applied, in addition to the external forces 

(F) on the vehicle, the only the reaction active.” 

 

Therefore, by neglecting the following terms: 
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⁡∫ 𝑟̇ 𝑠𝑡𝑟

⁡

𝑚

𝑑𝑚⁡ ≈ 0, ∫ 𝑟̈ 𝑠𝑡𝑟

⁡

𝑚

𝑑𝑚⁡ ≈ 0 

 

 

and defining the center of mass as: 

 

∫ 𝑟 𝑠𝑡𝑟

⁡

𝑚

𝑑𝑚 = 𝑚𝑟 𝑐⁡ 

 

 

The translation equations can be stated as follows: 

 

𝐹 ⁡+⁡𝐹𝑅⃗⃗⃗⃗ ⁡= 𝑚 ∙ [𝑅0⃗⃗ ⃗⃗ 
̈ ⁡+ ⁡ 𝜔⃗⃗ ̇⁡𝑥⁡𝑟𝑐⃗⃗ ⁡+ ⁡ 𝜔⃗⃗ ⁡𝑥⁡(𝜔⃗⃗ ⁡𝑥⁡𝑟𝑐⃗⃗ )] 

 

By introducing the following expressions: 

 

𝑟0̇⃗⃗  ⃗ ⁡= ⁡ [
𝑈
𝑉
𝑊
] , 𝑟0̈⃗⃗  ⃗ ⁡= ⁡ [

𝑈̇
𝑉̇
𝑊̇

],⁡⁡⁡⁡𝑟𝑐⃗⃗ ⁡= ⁡ [

𝑥𝑐𝑔
𝑦𝑐𝑔
𝑧𝑐𝑔

],⁡⁡⁡ 𝜔⃗⃗ ⁡= ⁡ [
𝑃
𝑄
𝑅
] 

 

 

The equations are rearranged as: 

𝐹𝑠⃗⃗  ⃗ ⁡= ⁡𝑚 [

(𝑈̇ + ⁡𝑄𝑊⁡ − ⁡𝑅𝑉) ⁡−⁡𝑥𝑐𝑔(𝑄
2 +⁡𝑅2) ⁡−⁡⁡𝑦𝑐𝑔(𝑅̇ ⁡− ⁡𝑃𝑄)⁡+⁡⁡𝑧𝑐𝑔(𝑄̇ + ⁡𝑃𝑅)

(𝑉̇ + ⁡𝑅𝑈⁡ − ⁡𝑃𝑊)⁡+⁡𝑥𝑐𝑔(𝑅̇ + ⁡𝑃𝑄) ⁡−⁡⁡𝑦𝑐𝑔(𝑃
2 ⁡+ ⁡𝑅2) ⁡+ ⁡⁡𝑧𝑐𝑔(𝑃̇ ⁡− ⁡𝑄𝑅)

(𝑊̇ + ⁡𝑃𝑉⁡ − ⁡𝑄𝑈) ⁡−⁡𝑥𝑐𝑔(𝑄̇ ⁡− ⁡𝑃𝑅) ⁡+⁡⁡𝑦𝑐𝑔(𝑃̇ ⁡+ ⁡𝑄𝑅) ⁡+⁡⁡𝑧𝑐𝑔(𝑃
2 ⁡+ ⁡𝑄2)

] 

 

 

By assuming that the center of mass is coincident with the origin of the body reference 

frame, the force equations are further simplified as: 

 

𝐹 ⁡= ⁡𝑚 [
𝑈̇ + ⁡𝑄𝑊⁡ − ⁡𝑅𝑉

𝑉̇ + ⁡𝑅𝑈⁡ − ⁡𝑃𝑊
𝑊̇ + ⁡𝑃𝑉⁡ − ⁡𝑄𝑈

] 

 

Concerning the rotational dynamics, from Euler equations the moment expressions are: 

 

∑𝑀⃗⃗ 𝐸𝑥𝑡𝐶𝑜𝑔 =
𝑑(𝐼(𝑡)𝜔⃗⃗ )

𝑑𝑡
⁡−⁡∑𝑟𝑖⃗⃗ 

𝑖

𝑥⁡(𝑚𝑖̇ 𝑣𝑖⃗⃗⃗  ) 
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Which can be written as (under the same assumptions considered for the translational 

equations plus that the cross inertia terms are negligible): 

 

𝑀⃗⃗ + 𝑀𝑅
⃗⃗ ⃗⃗  ⃗ = ⁡ [

𝐼𝑥𝑥𝑃̇ + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅

𝐼𝑦𝑦𝑄̇ + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅

𝐼𝑦𝑦𝑅̇ + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄

] 

 

About the elastic dynamics, in general a launch vehicle is characterized by having quite 

important bending modes with respect to the axial/torsion ones. For this reason, the elastic 

behavior of the vehicle can be modelled, in a first approximation, only considering the 

lateral deflections. 

 

 

 

 

 

 

The elastic deflections can be expressed as: 

 

 
𝛿𝑦(𝜂, 𝑡) ⁡= ⁡∑𝐾𝑖(𝑡) ∙ 𝜙𝑦𝑖(

∞

𝑖

𝜂) ≈∑𝐾𝑖(𝑡) ∙ 𝜙𝑦𝑖(

𝑁𝐸

𝑖

𝜂) 

 

 

FIG. 8 – See ref [15] 
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𝛿𝑧(𝜂, 𝑡) ⁡= ⁡∑𝜉𝑖(𝑡) ∙ 𝜙𝑧𝑖(

∞

𝑖

𝜂) ≈∑𝜉𝑖(𝑡) ∙ 𝜙𝑧𝑖(

𝑁𝐸

𝑖

𝜂) 

 

 

With 𝜙𝑦𝑖 representing the i-th mode shape on 𝑗𝐵 axis and 𝜙𝑧𝑖 on 𝑘𝐵 axis. 

Due to the axial-symmetry property of most of the launch vehicles, it can be assumed that 

𝜙𝑦𝑖 =⁡𝜙𝑧𝑖 ⁡= ⁡𝜙𝑖, 𝑓𝑜𝑟⁡𝑖⁡ = ⁡1. . 𝑁𝐸 , where 𝑁𝐸  represents the number of degrees of freedom 

required to model the structural dynamics. 

 

Considering the case of a “free-free” beam, the normal modes satisfy these conditions: 

 ∫𝜙𝑖

⁡

𝐿

(𝑥)𝜙𝑗(𝜂)𝑚(𝜂)𝑑𝜂⁡ = ⁡ {
0, 𝑖 ≠ 𝑗
𝑀𝑖 , 𝑖⁡ = ⁡𝑗

 

 

 

 

 ∫𝜂𝜙𝑖

⁡

𝐿

(𝑥)𝑚(𝜂)𝑑𝜂⁡ = ⁡0 

 

 

 

 

 

 

With 𝑀𝑖 as the generalized mass due to elasticity for the i-th mode and 𝑚(𝜂) the mass per 

unit length. 

 

The elastic angular deflections on 𝑗𝐵 and  𝑘𝐵 axes are determined by: 

 
𝛾𝑦(𝜂, 𝑡) ≈∑𝜉𝑖(𝑡) ∙ 𝜙𝑖̇ (𝜂)

𝑁𝐸

𝑖

 

 

FIG. 9 –  Mode shape for the case of a “free-free” beam See [4] 
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𝛾𝑧(𝜂, 𝑡) ≈∑𝐾𝑖(𝑡) ∙ 𝜙𝑖̇ (𝜂)

𝑁𝐸

𝑖

 

 

 

Using the Lagrange approach (detailed in Ref [15]), by means of the equations: 

 𝑑

𝑑𝑡
(
∂𝐸𝑐
∂𝑞̇𝑖

)⁡−⁡
∂𝐸𝑐
∂𝑞𝑖

⁡+ ⁡
∂𝐸𝑝

∂𝑞𝑖
⁡+ ⁡

∂D

∂𝑞𝑖
⁡= ⁡𝑄𝑖⁡ 

 

 

With:  

 

▪ qi → generalized coordinate i 

▪ Ec → Kinetic energy 

▪ Ep → Potential energy 

▪ D → Damping energy 

▪ Qi → generalized force associated to qi 

 

The lateral elastic dynamics are found to be: 

 𝐾𝑖̈ + ⁡2Ϛ𝑖𝜔𝑖𝐾𝑖̇ ⁡− ⁡2𝑃𝜉𝑖̇ ⁡+ ⁡(𝜔𝑖
2 ⁡− ⁡𝑃2 ⁡− ⁡𝑅2)𝐾𝑖 ⁡+ ⁡𝑄𝑅𝜉𝑖 ⁡

= ⁡
∫ −𝐹𝑦(𝜂, 𝑡)𝜙𝑖(𝜂)𝑑𝜂
⁡

𝐿

∫ 𝑚(𝜂)𝜙𝑖
2(𝜂)𝑑𝜂

⁡

𝐿

, 𝑖 = 1. . 𝑁𝐸 

 

 

 

 𝜉𝑖̈ + ⁡2Ϛ𝑖𝜔𝑖𝜉𝑖̇ ⁡− ⁡2𝑃𝐾𝑖̇ ⁡+ ⁡(𝜔𝑖
2 ⁡−⁡𝑃2 ⁡− ⁡𝑄2)𝜉𝑖 ⁡+ ⁡𝑄𝑅𝐾𝑖 ⁡

= ⁡
∫ −𝐹𝑧(𝜂, 𝑡)𝜙𝑖(𝜂)𝑑𝜂
⁡

𝐿

∫ 𝑚(𝜂)𝜙𝑖
2(𝜂)𝑑𝜂

⁡

𝐿

, 𝑖 = 1. . 𝑁𝐸 

 

 

From the previous two equations it can be highlighted the coupling between the rigid and 

elastic dynamics. 

The elastic characteristics (mainly frequencies and mode shapes) vary during the flight and 

they are found by interpolation of different models computed at specific flight instants. 

For more details refer to [1]. 
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2.2.1. Forces and Moments 

 
The main external terms that cause forces and moments to act on the launch vehicle can be 

summarized in the following categories: 

• Aerodynamics 

• Thrust 

• Gravity 

 

Other factors to be considered are the forces and moments caused by the nozzle and the 

sloshing of the propellant inside the tank. 

 

2.2.1.1. Aerodynamics 
 

The aerodynamics action is computed by means of parameters that express the forces and 

moments in the body axes. 

 

 

𝐹𝐴⃗⃗⃗⃗ ⁡= ⁡
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅 [

𝐶𝐹𝐴𝑥
𝐶𝐹𝐴𝑦
𝐶𝐹𝐴𝑁

]⁡ 

 

FIG. 10 –  Schematic view of a launch vehicle with elastic deformation (pitch plane) See [1] 
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With: 
▪ ρ → air density 
▪ 𝑆𝑅 → reference aerodynamic surface 

▪ 𝜌𝑉𝑟𝑒𝑙
2  → dynamic pressure 

▪ 𝐶𝐹𝐴𝑥 , 𝐶𝐹𝐴𝑦 , 𝐶𝐹𝐴𝑁 ⁡→ nonlinear aerodynamic coefficients 

 

The aerodynamic coefficients depend on many flight variables, so cannot be known apriori, 

but typically are obtained in terms of Mach number and the angle of attack. The uncertainty 

in the values of the aerodynamic parameters represents one of the main concerns for control 

design during the atmospheric flight. 

 

Since the aerodynamic actions depend on the flight variables, the aerodynamic loads might 

be cause of coupling between the different axes. In general, the coupling forces are 

represented by using stability derivatives (See [16], [17]). 

 

For axial-symmetric launch vehicles whit little lifting surfaces the main stability derivatives 

are related to the angle of attack (α) and the side-slip angle (β) 

 

The expression for the aerodynamic forces can be summarized as: 

 
𝐹𝐴𝑋 ⁡= −⁡

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅[𝐶𝐴0 +⁡∫
∂𝐶𝐴(𝜂)

∂α
⁡𝛼′(𝜂)𝑑𝜂]

𝐿

0

⁡ 

 

 

 

 
𝐹𝐴𝑌 ⁡= −⁡

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡𝛽(𝜂)𝑑𝜂]

𝐿

0

⁡ 

 

 

 
𝐹𝐴𝑍 ⁡= −⁡

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡𝛼(𝜂)𝑑𝜂]

𝐿

0

⁡ 

 

 

With 𝛼′ total incidence angle 

 

Concerning the moments contribution: 
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 𝑀𝐴𝑋 ⁡= 0 

 

 

 

 
𝑀𝐴𝑌 ⁡= ⁡

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡(𝜂𝑐𝑔 − ⁡𝜂)𝛽(𝜂)𝑑𝜂]

𝐿

0

⁡ 

 

 

 

 
𝑀𝐴𝑍 ⁡= ⁡−⁡

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡(𝜂𝑐𝑔 − ⁡𝜂)𝛼(𝜂)𝑑𝜂]

𝐿

0

⁡ 

 

 

In many aeronautical applications the forces are expressed in the wind reference frame as: 

 𝐹𝐴𝑋𝑤 ⁡= −⁡𝐷⁡ 

 

 

 

 𝐹𝐴𝑌𝑤 ⁡= 𝑌⁡ 

 

 

 𝐹𝐴𝑍𝑤 ⁡= −𝐿⁡ 

 

 

 

With: 

▪ D → drag force 

▪ Y → side force 

▪ L → lift force 

 

In the wind frame a straightforward expression for the angle of attack and side slip is 

derived by means of: 

 

 
𝛼⁡ = 𝑎𝑡𝑎𝑛(

𝑊𝑟
𝑈𝑟
)⁡ 
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𝛽⁡ = 𝑎𝑡𝑎𝑛(

𝑉𝑟
𝑈𝑟
)⁡ 

 

 

 
 

 

 
For the contribution to the elastic dynamics (see [1]): 

 

 
∫𝐹𝑦(𝑥, 𝑡)𝜙𝑖(𝑥)𝑑𝑥⁡⁡
⁡

𝐿

⁡= ∫(
⁡

𝐿

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡𝛽(𝜂)𝑑𝜂)

𝐿

0

𝜙𝑖(𝜂)𝑑𝜂⁡ 

 

 

 

 
∫𝐹𝑧(𝜂, 𝑡)𝜙𝑖(𝜂)𝑑𝜂⁡⁡
⁡

𝐿

⁡= ∫(
⁡

𝐿

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
∂𝐶𝑁(𝜂)

∂α
⁡𝛼(𝜂)𝑑𝜂)

𝐿

0

𝜙𝑖(𝜂)𝑑𝜂⁡ 

 

 

2.2.1.2. Thrust 
 

The propulsive force can be summarized as a force that is applied at the nozzle pivot point. 

The launcher is controlled by proper nozzle deflections via the so called “Thrust Vector 

Control” system generating the desired moments in order to keep the attitude and preserve 

stability all over the mission. 

FIG. 11 – Aerodynamic angles (See [1]) 
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Commonly, the thrust is modeled with a simple profile that depends on the flight time in 

the proximity of the mission trajectory, since the thrust is influenced by the external pressure 

and thus depends on current altitude. 

 

A common approximation consists in dividing the thrust component in two terms: 

swivelled and not swivelled thrust (See [1]). 

 

 𝑇(𝑡) = 𝑇𝑠(𝑡) ⁡+ ⁡𝑇𝑐(𝑡) 

 

The forces can be computed as: 

 

 
𝐹𝑇⃗⃗⃗⃗ ⁡= [

𝑇𝑠
0
0
] +⁡[

𝑐𝜀𝑐𝛿 −𝑠𝜀 𝑐𝜀𝑠𝛿
𝑠𝜀𝑐𝛿 𝑐𝜀 𝑠𝜀𝑠𝛿
−𝑠𝜀 0 𝑐𝜀

] [
𝑇𝑐
0
0
] + [

0
𝛾𝑧
𝛾𝑦
]⁡(𝑇𝑐 +⁡𝑇𝑠) 

 

 

  

With 𝛿⁡𝑎𝑛𝑑⁡𝜀 being the nozzle deflections in the pitch and yaw plane, respectively. 

In case of small angles deflections the total forces, including elastic contributions, can be 

summarized as: 

 

 

𝐹𝑇⃗⃗⃗⃗ ⁡=

[
 
 
 
 
 
 

𝑇𝑠 + 𝑇𝑐

𝑇𝑐𝜀⁡ +⁡(𝑇𝑐 +⁡𝑇𝑠)⁡∑𝐾𝑖(𝑡) ∙ 𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖

−𝑇𝑐𝛿⁡ +⁡(𝑇𝑐 +⁡𝑇𝑠)⁡∑𝜉𝑖(𝑡) ∙ 𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖 ]
 
 
 
 
 
 

 

 

 

 

For the moments: 
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𝑀𝑇
⃗⃗ ⃗⃗  ⃗ ⁡=

[
 
 
 
 
 
 

𝑀𝑥

𝑙𝑐(−𝑇𝑐𝛿(𝑇𝑐 +⁡𝑇𝑠)⁡∑𝜉𝑖(𝑡) ∙ 𝜙𝑖
′(𝜂𝑇)) − (𝑇𝑐 + 𝑇𝑠)∑𝜉𝑖(𝑡) ∙ 𝜙𝑖

′(𝜂𝑇)

𝑁𝐸

𝑖

𝑁𝐸

𝑖

−𝑙𝑐(𝑇𝑐𝜀(𝑇𝑐 +⁡𝑇𝑠)⁡∑𝐾𝑖(𝑡) ∙ 𝜙𝑖
′(𝜂𝑇)) − (𝑇𝑐 + 𝑇𝑠)∑𝜉𝑖(𝑡) ∙ 𝜙𝑖

′(𝜂𝑇)

𝑁𝐸

𝑖

𝑁𝐸

𝑖 ]
 
 
 
 
 
 

 

 

 

For the elastic contributions, considering only the bending modes the generalized force 

lateral components are: 

 

 
∫𝐹𝑦(𝜂, 𝑡)𝜙𝑖(𝜂)𝑑𝜂⁡ = ⁡−⁡(
⁡

𝐿

𝑇𝑐𝛿⁡ +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝐾𝑖(𝑡) ∙ ⁡𝜙ì
′(𝜂𝑇))

𝑁𝐸

𝑖

𝜙𝑖(𝜂𝑇) 

 

 

 
∫𝐹𝑧(𝜂, 𝑡)𝜙𝑖(𝜂)𝑑𝜂⁡ = ⁡−⁡(
⁡

𝐿

𝑇𝑐𝜀⁡ +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝜉𝑖(𝑡) ∙ ⁡𝜙ì
′(𝜂𝑇))

𝑁𝐸

𝑖

𝜙𝑖(𝜂𝑇) 

 

 

2.2.1.3. Gravity 

 

The gravity force is usually expressed in the inertial reference frame as: 

 

 
𝐹𝐺⃗⃗⃗⃗ = 𝑚𝑔 [

−𝑠𝜃𝑔𝑐𝜑𝑔
𝑐𝜃𝑔𝑐𝜑𝑔
−𝑠𝜑𝑔

] 

 

 

By considering the typical mission length of an expendable launcher, the assumption to 

neglect the effects of the earth rotation can be done. Therefore, the angles 𝜑
𝑔

and 𝜃𝑔 can be 

seen as the longitude and latitude at the current time of flight.  

 

In the body frame the force component can be rearranged in order to get: 

 

 
𝐹𝐺⃗⃗⃗⃗ = 𝑚 [

𝑔𝑥
𝑔𝑦
𝑔𝑧
] 

 

 

With g defined as:   
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𝑔 =

𝐺𝑀𝐸

𝑅𝐸
2  

 

 

The moments can be neglected because the gravity field can be assumed to be uniform in 

the vicinity of the Earth (see [1]). 

 

2.2.2. Final Equations 
 

The system can be described by means of 6 D.o.f dynamics equations, plus NE  elastic 

equations and 3 kinematics equations (see [1]). 

 

 

 

{
 
 
 
 

 
 
 
 𝑚(𝑈̇ + ⁡𝑄𝑊⁡ − ⁡𝑅𝑉) ⁡= ⁡−𝑚𝑔𝑥 +⁡(𝑇𝑐 +⁡𝑇𝑠) −

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅[𝐶𝐴0 +⁡∫
𝜕𝐶𝐴(𝜂)

𝜕𝛼
𝛼′𝑑𝜂]

𝐿

0

𝑚(𝑉̇ + ⁡𝑅𝑈⁡ − ⁡𝑃𝑊) ⁡= ⁡𝑇𝑐𝜀 +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝐾𝑖(𝑡) ∙ ⁡𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖

−
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝐴(𝜂)

𝜕𝛼
𝛽(𝜂)𝑑𝜂⁡ − ⁡𝑚𝑔𝑦

𝐿

0

𝑚(𝑊̇ + ⁡𝑃𝑉⁡ − ⁡𝑄𝑈) ⁡= ⁡−𝑇𝑐𝛿 +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝜉𝑖(𝑡) ∙ ⁡𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖

−
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝐴(𝜂)

𝜕𝛼
𝛼(𝜂)𝑑𝜂⁡ − ⁡𝑚𝑔𝑧

𝐿

0

 

 

 
 

{
 
 
 

 
 
 

𝐼𝑥𝑥𝑃̇ + (𝐼𝑧𝑧 −⁡𝐼𝑦𝑦)𝑄𝑅⁡ = ⁡𝑀𝑥

𝐼𝑦𝑦𝑄̇ + (𝐼𝑥𝑥 −⁡𝐼𝑧𝑧)𝑃𝑅⁡ = ⁡ 𝑙𝑐(−𝑇𝑐𝛿 +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝜉𝑖(𝑡) ∙ ⁡𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖

) −⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝜉𝑖(𝑡) ∙ ⁡𝜙𝑖(𝜂𝑇) +

𝑁𝐸

𝑖

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼
(𝜂𝑐𝑔 − 𝜂)𝛼(𝜂)𝑑𝜂

𝐿

0

𝐼𝑧𝑧𝑅̇ + (𝐼𝑦𝑦 −⁡𝐼𝑥𝑥)𝑃𝑄⁡ = ⁡−𝑙𝑐(𝑇𝑐𝜀 +⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝐾𝑖(𝑡) ∙ ⁡𝜙𝑖
′(𝜂𝑇)

𝑁𝐸

𝑖

) −⁡(𝑇𝑐 +⁡𝑇𝑠)∑𝐾𝑖(𝑡) ∙ ⁡𝜙𝑖(𝜂𝑇) +

𝑁𝐸

𝑖

1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼
(𝜂𝑐𝑔 − 𝜂)𝛽(𝜂)𝑑𝜂

𝐿

0

 

 

(𝐾𝑖̈ + ⁡2Ϛ𝑖𝜔𝑖𝐾𝑖̇ ⁡− ⁡2𝑃𝜉𝑖̇ ⁡+⁡(𝜔𝑖
2 ⁡−⁡𝑃2 ⁡−⁡𝑅2)𝐾𝑖 ⁡+ ⁡𝑄𝑅𝜉𝑖)∫𝑚(𝑥)𝜙𝑖

2(𝑥)𝑑𝑥
⁡

𝐿

⁡= ∫(
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼

𝐿

0

𝛼(𝜂)𝑑𝜂)
⁡

𝐿

− (−𝑇𝑐∆𝜀(𝑇𝑐 + 𝑇𝑠)∑𝐾𝑖(𝑡) ∙ Ф𝑖
′(𝜂𝑇⁡

𝑁𝐸

𝑖

))Ф𝑖(𝜂𝑇), 𝑖

= 1. . 𝑁𝐸 

 

 

(𝜉
𝑖
̈ + ⁡2Ϛ

𝑖
𝜔𝑖𝜉𝑖

̇ ⁡+ 2𝑃𝐾𝑖̇ ⁡+⁡(𝜔𝑖
2⁡−⁡𝑃2⁡−⁡𝑄2)𝐾𝑖⁡+ ⁡𝑄𝑅𝐾𝑖)∫𝑚(𝑥)𝜙𝑖

2(𝑥)𝑑𝑥
⁡

𝐿

⁡

=∫ (
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼

𝐿

0

𝛼(𝜂)𝑑𝜂)
⁡

𝐿

+ (𝑇𝑐∆𝛿(𝑇𝑐+𝑇𝑠)∑𝜉
𝑖
(𝑡) ∙Ф𝑖

′(𝜂
𝑇⁡

𝑁𝐸

𝑖

))Ф𝑖(𝜂𝑇), 𝑖 = 1. .𝑁𝐸 

 

 

{

𝜑̇ = ⁡𝑝⁡ + ⁡𝑠𝜑𝑡𝑛𝜃 ∙ 𝑞⁡ + ⁡𝑐𝜑𝑡𝑛𝜃 ∙ 𝑟

𝜃̇ = ⁡𝑐𝜑 ∙ 𝑞⁡ − ⁡𝑠𝜑 ∙ 𝑟

𝜓̇ ⁡= ⁡
𝑠𝜑

𝑐𝜃
∙ 𝑞⁡ +⁡

𝑐𝜑

𝑐𝜃
∙ 𝑟

 

 

 

 

 

2.2.3. Addionatal Elements 
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In order to better characterize the whole system dynamics, several other effects might be 

taken into account (see [1])., namely: 

 

▪ Sloshing effect → due to the movement of the propellent inside the tank 

▪ Actuator dynamics → The control action required by the controller cannot be 

instantaneously implemented and the actuators might not be able to dispense all 

the required actions (saturation and discrete time evolution) 

▪ Measurements → the sensors devoted to measure the states of the system are 

subjects to errors like drift, bias and measures are corrupted by noise 

▪ Engine inertia → the nozzle is a rigid body attached to the launcher. They 

exchanges forces each other 

 

2.2.3.2. Sensor Dynamics 
 

The sensor dynamics can have a huge impact on control design. In fact the measurements 

are discrete and available for processing over time intervals (depending on sensor 

capabilities). 

The measurement done for example by an IMU, through gyros and accelerometers, are 

affected also by the elastic dynamics, the sensors imprecision and added noise. 

 

The main measured variables can be approximatively modeled in this way (see [1]).: 

 

 
𝜃𝑇 = 𝜃𝑅 +⁡𝜃𝐸 ⁡+ ⁡𝜃𝑛𝑜𝑖𝑠𝑒 ⁡= ⁡ 𝜃𝑅 ⁡− ⁡∑𝜙𝑖

′(𝜂𝐺)𝜉𝑖 +⁡

∞

𝑖

𝜃𝑛𝑜𝑖𝑠𝑒 

 

 

 
𝑞𝑇 = 𝑞𝑅 +⁡𝑞𝐸 ⁡+ ⁡𝑞𝑛𝑜𝑖𝑠𝑒 ⁡= ⁡ 𝑞𝑅 ⁡− ⁡∑𝜙𝑖

′(𝜂𝐺)𝜉𝑖 +⁡

∞

𝑖

𝑞𝑛𝑜𝑖𝑠𝑒 

 

 

And the lateral velocity measurement 

 
𝑤𝑇 = 𝑤𝑅 +⁡𝑤𝐸 ⁡+ ⁡𝑤𝑛𝑜𝑖𝑠𝑒 ⁡= ⁡𝑤𝑅 ⁡− ⁡ 𝑙𝐼𝑀𝑈𝑞𝑅 −∑𝜙𝑖

′(𝜂𝐺)𝜉̇𝑖 +⁡

∞

𝑖

𝑤𝑛𝑜𝑖𝑠𝑒 
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2.2.3.3. Actuator dynamics 
 

The nozzle and TVC dynamics can be added by considering the elastic characteristics and 

the actuated deflection command with respect to the commanded one. 

 

 ∆𝛿T = ∆𝛿TR +⁡∆𝛿TE⁡ 

 

 

Typically, the actuator dynamics can be modeled with transfer function (see [1]), in order 

to characterize the delay in the actuation execution. Indeed when the actuator is not 

modelled it is implicitly assumed a transfer function equal to 1 (instantaneous execution). 

Modeling the actuators can allow to realize other limitations in controller design for 

example the saturation imposed by the actuation system and so on. 

 

 
∆𝛿TR(s) =

𝜔𝑎
2

𝑠2 + ⁡2Ϛ𝜔𝑎𝑠⁡ + ⁡𝜔𝑎2
⁡∆𝛿Tc⁡ 

 

 

 

2.3. Simplified Model 
 

 

The behavior of a launch vehicle during the mission is commonly divided in two parts, 

named "long period dynamics" and "short period dynamics". 

The “long period dynamics” derives its name from the long period response to the 

oscillations about the nominal trajectory. During this analysis, the vehicle is modelled as a 

point mass. 

However, for example it is not realistic to assume that the propulsion force can be 

instantaneously oriented since it is strictly linked with the vehicle attitude and actuator 

dynamics. The induced Oscillations about the vehicle mass center must be damped out to 

satisfy the mission requirements. These oscillations have a relative short period response 

time and their study take the name of “short period dynamics” (see [4]).  
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The control design has a huge impact on the trajectory errors especially in the atmospheric 

phase, by managing conflicting requirements like minimizing these errors and keeping the 

angle of attack small for the structure integrity (see [1]).  

Linearization is a common approach for designing ad hoc controller with simplified 

models on specific flight conditions. 

 

2.3.1. Model Linearization 
 

The control design for complex dynamical systems is often prohibitive without proper 

assumptions. There could be models with too many state variables or including 

disturbances and uncertainties which may render unfeasible the design of a control law 

that is capable of satisfying the performance and stability requirements. 

In many cases, as it is common for aerospace applications, it is used to approximate the 

model to be able to use standard control methods. To do this it is important for the control 

engineer to have a good understanding of the physics of the system considered and to 

know that approximations are only valid locally. As an example in the aeronautic field, it 

is common to consider “trimming” conditions. 

 

The system linearization around specific dynamic conditions is a common method used 

since it allows to approximate nonlinear models with linear time invariant system and so 

to design controllers and verify standard stability margins (for example gain and phase 

margins) with standard methods. 

 

The linearization, or 1st order Taylor series expansion, consists in approximating the 

system by truncating the Taylor series expansion at the 1st order term. 

 

Consider the nonlinear time invariant system described by: 

 

 𝑥̇ = 𝑓(𝑥, 𝑢)⁡ 
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The equilibrium point for the system is given by the values of x, u (𝑥0, 𝑢0) for which: 

 

 𝑥̇|(𝑥0𝑢0) = 𝑓(𝑥, 𝑢)|(𝑥0𝑢0) = 0⃗
 ⁡ 

 

 

 

The linearized system around the equilibrium point is given by: 

 

 
𝑥̇̃ =

𝜕𝑓

𝜕𝑥|(𝑥0𝑢0)
𝑥̃ + ⁡⁡

𝜕𝑓

𝜕𝑢|(𝑥0𝑢0)
𝑢̃ 

                                           𝑥̃ = 𝑥 −⁡𝑥0, 𝑢̃ = 𝑢 −⁡𝑢0 

 

 

It is possible to linearize the system also around a “non-equilibrium” point. In this case 

further terms (the evaluation of f around that point) must be added to the linearized 

equation. 

This is common in the gain scheduling approach, where the system is linearized at chosen 

trajectory instants to update the control law gains values. 
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3. Control 
 

 

As mentioned in the previous chapters the control design for a launch vehicle is a 

challenging task. 

The equations of motion are highly nonlinear and the number of states can easily increase. 

Therefore, the direct approach on the full model is practically unfeasible. 

To make this task possible different assumptions and conditions are considered while 

designing the controller. In particular different approximations are assumed at different 

flight instants. 

This is the reason why the main technique used to control this type of system is what is 

known in literature as “Gain Scheduling”. 

The “Gain Scheduling” (See [10], [18]), as the name suggests, consists in freezing the model 

in different time instants over the trajectory and designing a standard control on a simplified 

linearized model over that interval. Stability margins criteria are guaranteed by performing 

standard linear stability analysis techniques. The “Gain Scheduling” is in practice very 

simple also at implementation level and has been proven to be efficient for launcher control. 

Of course, one of the main problem with this approach is due to the linearization applied to 

the model, which simplifies many of the heavy nonlinear couplings that can be appreciated 

on the equations previously reported. 

 

Another major challenge in the control design for launch vehicles is the time varying nature 

of the system. This is due to the high amount of burned fuel, especially in the first mission 

phases, that changes the dynamic properties of the vehicle (e.g. mass, inertia, thrust value, 

etc) together with the aerodynamic coefficients and elastic properties. 

 

In the literature, Zhu et al. (See [6], [8]) have done several studies in order to define new 

methods for the analysis of time varying systems. In particular, they have introduced the 

concept of “PD eigenvalues” to recall the eigenvalues that characterize the modes in the 

linear time invariant case. Zhu has also published an article with NASA (See [19]) where an 

adaptive controller for launcher has been developed based on this new theory. 
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Another approach used in the industry is based on “Linear Fractional Transformation” 

(LFT). This method, which allows to perform robust control design, even considering linear 

time invariant models, defines a structure for the system uncertainties, thus providing 

bounds on parameters variation. A similar approach to LFT takes the name of “Linear 

Parameter Varying”, where the parameters are allowed to vary inside some functions 

defining a polytope. These methods involve the solution of complex Linear Matrix 

inequalities problems and are based on numerical optimization algorithms. Another 

problem to take into account is the order of the resulting controller. 

Nonlinear design techniques showed to be very powerful in different control problem 

design. The possibility to avoid approximations introduced by classical linearization and 

the analysis tools that can be applied directly to the original system can allow to give a better 

insight into the controller design problem. The feedback linearization and zero dynamics 

(See [2]) relies on the properties of the original system in order to set-up a linearizing 

controller. Again the main drawback is related to the accuracy of the plant model, the 

availability of full state information and the class of nonlinear systems where these methods 

can be applied. 

 
3.1. Gain Scheduling 

 

The design of the “gain-scheduled” controller can be summarized in 4 iterations: 

 

▪ Linearizing the model 

The original model plant (nonlinear most of the times) is simplified and linearized 

around operating conditions. Some parts of the dynamics are neglected in order to 

reduce the order and the complexity of the model. 

 

▪ Design the controller  

For the LTI (Linear Time Invariant) characterization of the plant in the different time 

instants. 
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▪ Scheduling 

All the obtained controller are scheduled so that the gains are coherently adapted 

based on the evolution of the system along the studied path. 

 

▪ Perform stability analysis  

Local stability and margins are checked on the closed loop systems and multiple 

simulations are run. 

 

Typical “gain-scheduled” controller methods are based on: 

▪ Eigenvalues assignment 

▪ LQR 

▪ PID control 

 

The reason why “Gain-scheduling” is so used is the ability to perform standard and well-

known control techniques on several generated LTI models. Local stability can be also 

checked with standard methods and all the generated controller gains can be easily 

implemented based on mission timeline or flight dynamics conditions. 

The main drawback is that these controllers are designed on simplified model descriptions 

that neglects many nonlinearities and the time varying nature of the launcher in this case. 

Therefore, many simulations are required in order to guarantee that the controller is capable 

of performing its task on several environmental and off-nominal conditions. So, the 

performance is not guaranteed. 

 



  38 

 

 

 

 

3.1.1. LQR 
 

 

The linear quadratic regulation problem can be so formulated: given a linear controllable 

and exponentially stable system described by 

 {
𝑥̇ = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢

𝑦 = 𝐶𝑥
 

 

(4.26) 

with A and B bounded and with elements of 𝐶1 class, and given an initial time instant 𝑡𝑖, it 

is required to find the optimal regulator that optimizes the control action 𝒖 ∈ ⁡𝐶0[𝑡𝑖, ∞) 

and the system state 𝒙 ∈ ⁡𝐶1[𝑡𝑖, ∞) by minimizing the cost function 

 

 
𝐽 = ⁡

1

2
∫ [𝑥𝑇𝑄𝑥 +
∞

𝑡𝑖

𝑢𝑇𝑅𝑢]𝑑𝑡 
(4.27) 

 

Q is a symmetric positive semidefinite matrix, and R a symmetric positive definite matrix, 

both with elements bounded and of 𝐶1 class. 

These matrices define respectively the weight on the state vector and on the control input 

vector. This is also referred to as the infinite horizon LQR problem. 

 

The Riccati equation is introduced to solve the problem: 

FIG. 12 – Typical Gain Scheduling controller architecture 
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 𝐾̇(𝑡) = 𝐾(𝑡)𝐵(𝑡)𝑅−1(𝑡)𝐵𝑇(𝑡)𝐾(𝑡) − 𝐾(𝑡)𝐴(𝑡) − 𝐴𝑇(𝑡)𝐾(𝑡) − 𝐾(𝑡)𝐴(𝑡) − 𝑄(𝑡)

𝐾(𝑇) = 𝐹
 

(4.28) 

 

The Riccati equation has a unique solution. 

The control input that minimizes the cost index is in fact given by: 

 

 𝑢(𝑡) = ⁡−𝑅−1(𝑡)𝐵𝑇(𝑡)𝐾(𝑡)𝒙(𝑡) 
 

 

K is the solution of the Riccati equation associated to the original system: 

 

 𝐾̇(𝑡) = 𝐾(𝑡)𝐵(𝑡)𝑅−1(𝑡)𝐵𝑇(𝑡)𝐾(𝑡) − 𝐾(𝑡)𝐴(𝑡) − 𝐴𝑇(𝑡)𝐾(𝑡) − 𝐾(𝑡)𝐴(𝑡) − 𝑄(𝑡)

lim
𝑇→∞

𝐾(𝑇) = ⁡0  

 

 

The cost index assumes the following value: 

 

 
𝐽(𝑥, 𝑢) = ⁡

1

2
𝑥𝑖
𝑇𝐾(𝑡𝑖)𝑥𝑖 

 

 

Where 𝑥𝑖 is the initial condition on the state. 

 

In case A, B, Q and R are constants, and Q is also positive definite (so considering the 

infinite horizon linear time invariant problem), the algebraic Riccati equation solution (K) 

is given by 

 

 0 = 𝐾𝐵𝑅−1𝐵𝑇𝐾 − 𝐾𝐴 − 𝐴𝑇𝐾 −𝐾𝐴 − 𝑄 
 

 

For more details refer to [34], [35]. 

 

3.2. Feedback Linearization 
 

Given a nonlinear system of the form 
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 {
𝒙̇ = ⁡𝑓(𝒙) + 𝑔(𝒙)𝒖

𝒚 = ℎ(𝒙)
 

 

 

with x being the n-dimensional state vector, u the m-dimensional vector of the control 

variables and y being the output vector of the same dimension of the input variable (square 

MIMO system), the objective is to find a nonlinear controller  that can completely linearize 

the original systems, in order to successively design a linear controller based on the well 

known linear control theory for LTI systems. 

The major reference for the feedback linearization theory is provided in [2]. 

 

3.2.1. SISO Feedback Linearization 
 

First step for the analysis is to introduce the concept of relative degree. The type of system 

considered is "single input single output" (SISO). 

Refer to the previously introduced affine in the control SISO nonlinear system , the relative 

degree of the system in 𝑥0is equal to "r" if: 

 𝐿𝑔𝐿𝑓
𝑘ℎ(𝑥) = 0⁡⁡∀𝑥⁡ ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑥0, 𝑘 < 𝑟 − 1

𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑥0) ≠ 0⁡

 

 

 

Physically the concept of relative degree can be seen as the exact number the output function 

𝑦 = ℎ(𝑥) time derivative needed to make the input u appear explicitly in the equation.  The 

output time derivative can be expressed as: 

 𝑦 = ℎ(𝑥)

𝑦̇ = ⁡
𝑑ℎ
𝑑𝑡
= ⁡
𝜕ℎ
𝜕𝑥
𝜕𝑥
𝜕𝑡
=
𝜕ℎ
𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) = ⁡𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢

𝑦⁡̈ = ⁡⁡ 𝐿𝑓
2ℎ(𝑥) + 𝐿𝑔𝐿𝑓ℎ(𝑥)𝑢⁡⁡

⋮
𝑦𝑟 =⁡𝐿𝑓

𝑟ℎ(𝑥) + 𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑥)𝑢

 

 

 

In case of relative degree r the result of this process yields: 
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 𝑦 = ℎ(𝑥)

𝑦̇ = ⁡ 𝐿𝑓ℎ(𝑥)

𝑦⁡̈ = ⁡⁡ 𝐿𝑓
2ℎ(𝑥)⁡⁡

⋮
𝑦𝑟−1 =⁡𝐿𝑓

𝑟−1ℎ(𝑥)

𝑦𝑟 =⁡𝐿𝑓
𝑟ℎ(𝑥) + 𝐿𝑔𝐿𝑓

𝑟−1ℎ(𝑥)𝑢

 

 

 

If no relative degree can be defined around a point, the system will depend only on its initial 

condition and not on the input. 

 

If the relative degree equals the state dimension “n”, a coordinate transformation can be 

defined locally around 𝑥0: 

 𝜙1(𝑥) = ℎ(𝑥)

𝜙2(𝑥) = ⁡𝐿𝑓ℎ(𝑥)

𝜙3(𝑥) = ⁡⁡ 𝐿𝑓
2ℎ(𝑥)⁡⁡

⋮
𝜙𝑟(𝑥) = ⁡𝐿𝑓

𝑟−1ℎ(𝑥)

 

 

 

In case 𝑟 < 𝑛  , the coordinate transformation would not be complete, but it is always 

possible to find n+r more functions such that 

 
𝚽 = [

𝜙1(𝑥)
⋮

𝜙𝑛(𝑥)
] 

 

 

has a nonsingular Jacobian in the evaluated point 𝑥0 , so that Φ  is an admissible local 

coordinate transformation (Diffeomorphism). It can be shown that this choice can be done 

in order to get 

 𝐿𝑔𝜙𝑖(𝑥) = 0⁡∀⁡𝑟 + 1 ≤ 𝑖⁡⁡ ≤ 𝑛, ∀𝑥⁡ ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑥0 

 

 

The new system is described by: 
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 𝜙1̇ = 𝜙2(𝑥)

𝜙2̇(𝑥) = ⁡𝜙3(𝑥)

𝜙3̇(𝑥) = ⁡⁡𝜙4(𝑥)⁡⁡
⋮

𝜙𝑟̇(𝑥) = ⁡𝐿𝑓
𝑟ℎ(𝑥) + 𝐿𝑔𝐿𝑓

𝑟−1ℎ(𝑥)𝑢

𝜙𝑟+1̇ (𝑥) = ⁡ 𝐿𝑔𝜙𝑟+1(𝑥)

⋮
𝜙𝑛̇(𝑥) = ⁡𝐿𝑔𝜙𝑛(𝑥)

 

 

and the nonlinear controller is set to: 

 
𝑢 = ⁡

𝑣 − 𝐿𝑓
𝑟ℎ(𝑥)

𝐿𝑔𝐿𝑓
𝑟−1ℎ(𝑥)

 

 

So, if r = n, the system becomes  

 𝜙1̇ = 𝜙2(𝑥)

𝜙2̇(𝑥) = ⁡𝜙3(𝑥)

𝜙3̇(𝑥) = ⁡⁡𝜙4(𝑥)⁡⁡
⋮

𝜙𝑟̇(𝑥) = ⁡𝑣

 

 

where v is the new auxiliary input. The resulting system is controllable and linear, and v 

can be used to assign the desired system behavior. 

 

 

 

In case 𝑟 < 𝑛, the system is described by the following set of equations 

 𝜙1̇ = 𝜙2(𝑥)

𝜙2̇(𝑥) = ⁡𝜙3(𝑥)

𝜙3̇(𝑥) = ⁡⁡𝜙4(𝑥)⁡⁡
⋮

𝜙𝑟̇(𝑥) = ⁡𝑣

𝜙𝑟+1̇ (𝑥) = ⁡ 𝐿𝑔𝜙𝑟+1(𝑥)

⋮
𝜙𝑛̇(𝑥) = ⁡𝐿𝑔𝜙𝑛(𝑥)

 

 

 

This system can be split in a linear subsystem with the same characteristic of the previous 

one and a subsystem totally independent by the input and not affecting  the output value. 

FIG. 13 – Chain of integrators (see [2]) 
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In this case, after the coordinate transformation, it is highlighted the system zero dynamics. 

The importance of studying this dynamic is related to the fact that is it cancelled, so made 

unobservable, by the nonlinear controller action. So, its behavior has to be stable to avoid 

problems. 

The zero dynamics describe the internal behavior of the system when both input and initial 

conditions are chosen such that the output is zero. 

 

Considering the previous system in normal form, with 

 𝒛 = ⁡ [
𝜙1(𝑥)
⋮

𝜙𝑟(𝑥)
]⁡ 

 𝑧̇1 =⁡𝑧2
⋮

𝑧̇𝑟−1 =⁡𝑧𝑟
𝑧̇𝑟 = ⁡𝑏(𝒛, 𝜂) + 𝑎(𝒛, 𝜂)𝑢

𝜂̇ = ⁡𝑞(𝒛, 𝜂)

 

 

 

The zero dynamics of the system are described by  

 𝜂̇ = ⁡𝑞(𝟎, 𝜂) 
 

 

 

3.2.2. Square MIMO feedback linearization 
 

In the case of MIMO square systems (so multi input multi output systems with the same 

number of inputs and outputs) the same theory of the SISO case can be adapted in order to 

FIG. 14 – System representation in case r < n (see [2]) 
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define a nonlinear linearizing controller. Firstly, when dealing with MIMO systems, must 

be introduced the concept of vector relative degree. 

A system has a vector relative degree [𝑟1 … 𝑟𝑚] in 𝑥0⁡if: 

 𝐿𝑔𝑗𝐿𝑓
𝑘ℎ𝑖(𝑥) = 0⁡

∀∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑⁡𝑜𝑓⁡𝑥0, ∀⁡𝑗⁡𝑠𝑢𝑐ℎ⁡𝑡ℎ𝑎𝑡⁡1 ≤ 𝑗 ≤ 𝑚, 𝑘 < 𝑟 − 1, ∀⁡𝑖⁡𝑠𝑢𝑐ℎ⁡𝑡ℎ𝑎𝑡⁡1 ≤ 𝑗 ≤ 𝑚
 

 

 

and the following matrix: 

 

∆(𝑥) = ⁡ [

𝐿𝑔1𝐿𝑓
𝑟1−1ℎ1(𝑥) … 𝐿𝑔𝑚𝐿𝑓

𝑟1−1ℎ1(𝑥)

⋮ ⋱ ⋮

𝐿𝑔1𝐿𝑓
𝑟𝑚−1ℎ1(𝑥) … 𝐿𝑔𝑚𝐿𝑓

𝑟𝑚−1ℎ𝑚(𝑥)

] 

 

 

has its determinant computed in 𝑥0⁡different from zero. The matrix ∆(𝑥) is referred to as 

decoupling matrix. 

Under the previous conditions, by coordinate transformation, and applying the control 

input 

 𝑢 = ⁡∆−1(𝑥)(𝑣 − 𝑎(𝑥)) 

 

 

with 𝑎(𝑥) being 

 

𝑎(𝑥) = ⁡ [

𝐿𝑓
𝑟1ℎ1(𝑥)

⋮
𝐿𝑓
𝑟𝑚ℎ𝑚(𝑥)

] 

 

 

the system is linearized by nonlinear static state feedback.  

The condition of having the decoupling matrix nonsingular around 𝑥0 is due to the fact that 

its inverse appears in the control law in order to obtain a linearized MIMO system.  

If 𝑟1 + 𝑟2 +⁡…+⁡𝑟𝑚 = 𝑛 no zero dynamics are present and the system is written as 
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 𝑧̇1
1 = 𝑧2

1

⋮
𝑧̇𝑟−1
1 = 𝑧𝑟

1

𝑧̇𝑟
1 = 𝑣1
𝑧̇1
2 = 𝑧2

2

⋮
𝑧̇𝑟
2 = 𝑣2
⋮

𝑧̇𝑟
𝑚 = 𝑣𝑚

 

 

 

This system is described by m decoupled, linear and controllable subsystems. 

If zero dynamics are present, their behavior have to be analyzed for assuring the asymptotic 

stability of the system. 

 

 

 

 

 

3.3. Observation problem 
 

One of the drawbacks of the feedback linearization is the request of access to the full state 

information in order to design the nonlinear feedback that linearizes the original systems 

exactly. 

 

FIG. 15 – Subsystem resulting from MIMO feedback linearization with zero dynamics( see [2]) 
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Rarely in physical systems are available sensors that are capable of measuring all the state 

variables thus allowing to implement a full state feedback control.  

 

The problem of reconstructing the state of a system from the plant model knowledge and 

the available measurements is known as "Observability problem", that can be seen as the 

dual of the controllability problem. 

 

Further in applications the sensors that are devoted to provide the state information to the 

control algorithms are subject to noises and errors (bias etc.).  

 

This is the reason why the Kalman filter, since its definition, is still nowadays the most used 

algorithm to reconstruct the state dynamics and clean measurements from added noise. 

 

 

3.3.1. State Estimators 
 

3.3.1.1. Bayesian Estimators 
 

 

The Kalman filter is a recursive implementation of the Bayesian MMSE (minimum mean 

square error) estimator in case of random variables described by Gaussian distributions. In 

the following, in order to start and understand the properties of Bayesian filters, 

some details are presented (see [5]). 

 

Firstly, Bayesian filters deal with random variables (𝜃). 

 

The problem is of the following type: consider a generic non negative function Φ:⁡ℝ𝑝 → 𝑅, 

and define 

 

𝐽(𝛼) ≔ 𝐸[Φ(𝜃 − 𝛼)|𝑦𝑘] 

 

which is the conditional expectation given the measurements. 
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This expression can be explicited as: 

 

𝐽(𝛼) = 𝐸[Φ(𝜃 − 𝛼)|𝑦𝑘] = ∫ Φ(𝜃 − 𝛼)

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 

 

Since 𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃) (conditioned probability density) is not an a-priori information it is not 

always possible to find 𝐽(𝛼). 

The Bayesian estimator is given by: 

 

𝜃|𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼∈Ω
𝜃|𝑦𝑘

𝐽(𝛼) 

 

From bayes rule 𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃) can be written as: 

 

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃) =

𝑝
(
𝜃

𝑦𝑘
)
(𝜉𝑘, 𝜃)

𝑝𝑦𝑘(𝜉
𝑘)

 

 

 

 

Where 𝑝
(
𝜃

𝑦𝑘
)
(𝜉𝑘, 𝜃) is the joint density, and  𝑝𝑦𝑘(𝜉

𝑘) is the marginal density. 

 

𝑝𝑦𝑘(𝜉
𝑘) = ⁡ ∫𝑝

(
𝜃

𝑦𝑘
)
(𝜉𝑘, 𝜃)

Ω𝜃

𝑑𝜃 

 

Thus the joint density is required. It can be derived making use of a-priori information: 

 

 

The a-priori information typically available are: 

 

 𝑝
(
𝜃

𝑦𝑘
)
(𝜉𝑘, 𝜃) = 𝑝𝑦𝑘|𝜃(𝜉

𝑘 , 𝜃)⁡𝑝𝜃(𝜃)  
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𝑝𝑣(𝑖)(𝜂(𝑖)) 

𝑝𝜃(𝜃) 

 

𝑝𝑦𝑘|𝜃(𝜉
𝑘, 𝜃) can be obtained from a-priori information on measurement noise sequence: 

 

𝑝𝜈𝑘(𝜂
𝑘) → 𝑝𝑦𝑘|𝜃(𝜉

𝑘, 𝜃)⁡⁡ 

 

Consider this type of measurement equation: 

 

𝑦𝑘 = 𝑔𝑘(𝜃) + 𝜈𝑘 

 

Knowing the noise probability distribution it results: 

 

𝑝𝑦𝑘|𝜃(𝜉
𝑘, 𝜃) = ⁡𝑝𝜈𝑘(𝜉

𝑘 − 𝑔𝑘(𝜃)) 

 

In particular for a “Minimum Mean Square Estimator”(MMSE) the cost function is: 

 

Another important characteristic of this type of estimators is that it’s possible to get a closed 

form solution for the optimum. 

Suppose that Ω𝜃|𝑦𝑘 is a convex set (this assumption guarantees the fact that the solution of 

the optimization problem is admissible), then: 

In fact: 

𝐽(𝛼) = 𝐸 [||𝜃 − 𝛼||
2
|𝑦𝑘] = ∫ ||𝜃 − 𝛼||

2

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃) 

 

From the first order necessary condition for finding the extremals: 

 𝐽(𝛼) = 𝐸 [||𝜃 − 𝛼||
2
|𝑦𝑘]  

 𝜃|𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼∈Ω
𝜃|𝑦𝑘

𝐽(𝛼) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛼∈Ω
𝜃|𝑦𝑘

𝐸 [||𝜃 − 𝛼||
2
|𝑦𝑘] = 𝐸[𝜃|𝑦𝑘] 
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𝑑𝐽

𝑑𝛼
|
𝛼=𝛼∗

= 0 

𝑑𝐽

𝑑𝛼
=
𝑑

𝑑𝛼
∫ ||𝜃 − 𝛼||

2

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 =

𝑑

𝑑𝛼
∫ (𝜃 − 𝛼)𝑇(𝜃 − 𝛼)⁡

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃

= ⁡− ∫ 2(𝜃 − 𝛼∗)

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 = 0 

0 = ⁡ ∫ 2𝜃

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 − ∫ 2𝛼∗

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 =

= ⁡ ∫ 𝜃

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 − 𝛼∗ ∫ 𝑝𝜃|𝑦𝑘(𝑦

𝑘, 𝜃)𝑑𝜃

Ω
𝜃|𝑦𝑘⁡

. 

 

Since ∫ 𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃

Ω
𝜃|𝑦𝑘⁡

= 1 it follows that there is just one extremal that is: 

 

𝛼∗ =⁡ ∫ 𝜃

Ω
𝜃|𝑦𝑘⁡

𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃 = 𝐸[𝜃|𝑦𝑘] 

 

From second order necessary condition: 

 

𝜕2𝐽

𝜕𝛼2
=⁡

𝜕

𝜕𝛼
(
𝜕𝛼

𝜕𝛼
)
𝑇

= 2𝐼 ∫ 𝑝𝜃|𝑦𝑘(𝑦
𝑘, 𝜃)𝑑𝜃

Ω
𝜃|𝑦𝑘⁡

= 2𝐼𝑝𝑥𝑝 

 

Since the Hessian matrix is positive definite then 𝛼∗ is a global minimum. 

 

The MMSE of 𝜃, 𝜃|𝑘 = 𝐸[𝜃|𝑦
𝑘] is always centered: 

𝐸[𝜃|𝑘] = 𝐸[𝜃|𝑦
𝑘] = 𝐸[𝜃] 

 

The previous problem can be generalized for random time varying parameters, in 

particular: 

𝜃|𝑘 → 𝜃(𝑖|𝑘) 
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Where depending on “i" different problems are defined: 

 

𝑖 < 𝑘 leads to the problem of interpolation 

𝑖 = 𝑘 leads to the problem of filtering 

𝑖 > 𝑘 leads to the problem of prediction 

 

Another property of MMSE is the affinity in the measurements. 

Suppose again that the support  Ω𝜃|𝑦𝑘  is a convex set and that the joint probability 

𝑝
(𝑦

𝑘

𝜃
)
(𝜉𝑘, 𝜃) is jointly Gaussian then:  

𝐸[𝜃|𝑦𝑘]⁡𝑖𝑠⁡𝑎𝑓𝑓𝑖𝑛𝑒⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⁡(𝑀𝑦𝑘 + 𝐻) 

 

If this condition is holding, as a result: 

 

𝜃(𝑖|𝑘) is linear in the measurements (this problem is solved by Kalman filter) 

𝜃|𝑘 is linear in the measurements 

 

In particular it can be shown that under these conditions the conditioned probability 

𝑝𝜃|𝑦𝑘(𝜉
𝑘, 𝜃), for the static case (but this can be easily generalized to time varying case), is 

Gaussian with this mean and covariance matrix: 

 

𝐸[𝜃|𝑦𝑘] = 𝜃̅ + Ψ𝜃𝑦𝑘Ψ𝑦𝑘
−1(𝑦𝑘 − 𝑦̅𝑘) 

Ψ𝜃|𝑦𝑘 = Ψ𝜃 −Ψ𝜃𝑦𝑘Ψ𝑦𝑘
−1Ψ

𝜃𝑦𝑘
𝑇  

 

Where: 

 

Ψ𝜃𝑦𝑘 = 𝐸[(𝜃 − 𝜃̅)(𝑦
𝑘 − 𝑦̅𝑘)𝑇] = Ψ

𝑦𝑘𝜃
𝑇  

𝜃̅ = 𝐸[𝜃] 

𝑦̅𝑘 = 𝐸[𝑦𝑘] 
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For the proof and more details on Bayesian filters see [5]. 

The MMSE is given by: 

 

𝜃|𝑘 =⁡ 𝜃̅ + Ψ𝜃𝑦𝑘Ψ𝑦𝑘
−1(𝑦𝑘 − 𝑦̅𝑘) 

Ψ𝜃̂|𝑘 = Ψ𝜃 −Ψ𝜃𝑦𝑘Ψ𝑦𝑘
−1Ψ

𝜃𝑦𝑘
𝑇  

 

It can be noticed from the previous expression that as the number of measurements increase 

(the vector 𝑦𝑘) the computational effort increases as well and can easily become expensive. 

This leads to the necessity of a recursive implementation. 

 

Furthermore it is required to verify that the joint probability 𝑝
(
𝜃

𝑦𝑘
)
(𝜉𝑘, 𝜃) is Gaussian in order 

to guarantee affinity. For this two properties are needed: 

• Linearity in the measurement equation: 𝑦𝑘 = 𝐶𝑘𝜃 + 𝜈𝑘 

• 𝜃, 𝜈𝑘 must be Gaussian and uncorrelated 

 

Not only each component of the noise sequence has to be uncorrelated with 𝜃 , but the 

sequence must be internally uncorrelated. 

 

Considering the time varying case: 

Linearity of measurement and model equations: 

𝑦(𝑖) = 𝐶(𝑖)𝜃(𝑖) + 𝜈(𝑖) 

𝜃(𝑖 + 1) = 𝐴(𝑖)𝜃(𝑖) + 𝑚(𝑖) 

 

If  𝜃(𝑖 + 1) is linear then 𝜃(𝑖) is linear with respect to 𝜃(0) and the noise sequence {𝑚(𝑖)}, 

then also 𝑦(𝑖) is linear with respect to 𝜃(0) and {𝑚(𝑖)} 

For the gaussianity of the joint probability then are needed the assumptions of gaussianity 

and uncorrelation on 𝜃(0), {𝑚(𝑖)} and {𝜈(𝑖)} 
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Another fundamental property for a Bayesian estimator, which guarantees a necessary and 

sufficient condition, to be “minimum mean square error” is the so called “Orthogonality 

Principle” which expresses some orthogonality condition between the estimation error and 

the measurement equation. 

 

 

 

 

 

Assume that Ψ𝑦𝑘  is invertible, and consider the family of centered and affine in the 

measurement estimators {𝜃|𝑘} (for static case) and {𝜃(𝑖|𝑘)} (for dynamic case). 

Necessary and sufficient condition to be MMSE is (see [5]): 

 

𝐸[𝑒̂|𝑘𝑦
𝑘𝑇] = 0,⁡for static case 

𝐸[𝑒̂(𝑖|𝑘)𝑦𝑘
𝑇
] = 0,⁡for dynamic case 

 
 

3.3.1.2. Kalman Filter 

 

The idea behind the Kalman filter is a recursive implementation of Bayesian MMSE 

estimator. 

The Kalman Filter theory was developed by R.Kalman and R.Bucy around 1960. It’s used in 

order to compute state estimation considering a physical system affected by measurement 

and process noises. 

 

FIG. 16 – MMSE orthogonal to 𝜃|𝑘  (see [25])  
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Consider a dynamical system where the random variable is the state to be estimated, with 

{𝑢(𝑖)}𝑎𝑛𝑑⁡{𝜈(𝑖)} Gaussian sequences: 

 

𝑥(𝑖 + 1) = 𝐴(𝑖)𝑥(𝑖) + 𝐵(𝑖)𝑢(𝑖), 𝑖 = 0, … , 𝑘 − 1 

𝑦(𝑖) = 𝐶(𝑖)𝑥(𝑖) + 𝜈(𝑖), 𝑖 = 1,… , 𝑘 

 

Thus: 𝑥(𝑖) = 𝜃(𝑖). 

Consider 𝑥(𝑖) to be a linear function of 𝑥(0) and {𝑢(𝑖)}, then: 

 

1. 𝑦(𝑖) is a linear function of 𝜈(𝑖), 𝑥(0), 𝑢(𝑖) 

2. 𝑦𝑘 is a linear function of {𝜈(𝑖)}, 𝑥(0), {𝑢(𝑖)} 

3. If 𝜈(𝑖), 𝑢(𝑖), 𝑥(0) are Gaussian and uncorrelated (mutually and internally) then the 

joint probability 𝑝
(
𝑥(𝑖)
𝑦(𝑖)

)
 is Gaussian. 

The affinity in measurements property (given by the above statements) is fundamental for 

getting a recursive expression for the filter 

 

Consider the following general equation for the filter: 

 

𝑥̂(𝑖 + 1|𝑖 + 1) = 𝐺(𝑖 + 1) ⁡𝑥̂(𝑖|𝑖) + 𝐹(𝑖 + 1)𝑦(𝑖 + 1) 

 

𝐺(𝑖 + 1) is the recursive term (see dependence from previous filtering action) and 𝐹(𝑖 + 1) 

is the correction term for the current measurement. 

The matrices 𝐺, 𝐹  must be chosen in order for the filter to be centered and optimal in 

Bayesian sense. Furthermore, even if the system considered is stationary the Kalman filter 

is not. 

 

Regarding the centering property of the estimator, suppose that  𝑥̂(𝑖|𝑖) is centered and that 

the process and measurement noise have zero mean, it is required to ensure that⁡(𝑠𝑒𝑒⁡[5]): 
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𝐸[𝑥̂(𝑖 + 1|𝑖 + 1)] = 𝐸[[𝐺(𝑖 + 1) ⁡𝑥̂(𝑖|𝑖) + 𝐹(𝑖 + 1)𝑦(𝑖 + 1)]

= 𝐺(𝑖 + 1)𝐸[𝑥̂(𝑖|𝑖)] + 𝐹(𝑖 + 1)𝐸[𝑦(𝑖 + 1)]

= 𝐺(𝑖 + 1)𝐸[𝑥(𝑖)] + 𝐹(𝑖 + 1)𝐸[𝐶(𝑖 + 1)𝑥(𝑖 + 1) + 𝜈(𝑖 + 1)] 

= 𝐺(𝑖 + 1)𝐸[𝑥(𝑖)] + 𝐹(𝑖 + 1)𝐸[𝐶(𝑖 + 1)(𝐴(𝑖)𝑥(𝑖) + 𝐵(𝑖)𝑢(𝑖)) + 𝜈(𝑖)]

= 𝐺(𝑖 + 1)𝐸[(𝑥(𝑖)] + 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖)𝐸[𝑥(𝑖)] 
 

Centering implies 𝐸[𝑥̂(𝑖 + 1|𝑖 + 1)] = 𝐸[𝑥(𝑖 + 1)], then: 

𝐸[𝑥(𝑖 + 1)] = 𝐺(𝑖 + 1)𝐸[(𝑥(𝑖)] + 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖)𝐸[𝑥(𝑖)] 

𝐸[𝑥(𝑖 + 1)] = [𝐺(𝑖 + 1) + 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖)]𝐸[𝑥(𝑖)] 

Since : 

𝐸[𝑥(𝑖 + 1)] = 𝐸[𝐴(𝑖)𝑥(𝑖) + 𝐵(𝑖)𝑢(𝑖)] 

 

and {𝑢(𝑖)} has zero mean value: 

 

𝐸[𝑥(𝑖 + 1)] = 𝐸[(𝐺(𝑖 + 1) + 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖) + 𝐴(𝑖) − 𝐴(𝑖))𝑥(𝑖) + 𝐵(𝑖) + 𝑢(𝑖)] 

 

Then it’s clear that for this to be satisfied it must be verified: 

 

𝐺(𝑖 + 1) + 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖) − 𝐴(𝑖) = 0 

From which: 

𝐺(𝑖 + 1) = 𝐴(𝑖) − 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖) 

 

It has been supposed that 𝐸[𝑥̂(𝑖|𝑖)]is centered, so for proper initialization: 

 

𝐸[𝑥̂(0|0)] = 𝐸[𝑥(0)] 

 

This highlights the importance of a good filter initialization values, but this requires the 

knowledge of the mean at the initial step which could not be provided. 

 

In practice the main implemented version for linear systems is the stationary filter (see [11]), 

which under some hypothesis (Controllability, observability or stabilizability) converges as 

the number of iterations increase despite of the initializations (is asymptotically optimal). 
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Another key property to be verified is the optimality (see [5]). This will be guaranteed by 

appropriate choice of 𝐹  matrix, starting from the already mentioned principle of 

orthogonality between the estimation error and the measurements. 

 

It must be verified that: 

𝐸[𝑒̂(𝑖 + 1|𝑖 + 1)𝑧(𝑖+1)
𝑇
] = 0 

 

With proper manipulations: 

 

𝐸[𝑒̂(𝑖 + 1|𝑖 + 1)𝑧(𝜏)𝑇] = 0, 𝜏 = 1,… , 𝑖 

𝐸[𝑒̂(𝑖 + 1|𝑖 + 1)𝑧(𝑖 + 1)𝑇] = 0 

 

For (1): 

 

𝑒̂(𝑖 + 1|𝑖 + 1) = 𝑥(𝑖 + 1) − 𝑥̂(𝑖 + 1|𝑖 + 1)

= 𝐴(𝑖)𝑥(𝑖) + 𝐵(𝑖)𝑢(𝑖) − 𝐺(𝑖 + 1) ⁡𝑥̂(𝑖|𝑖) − 𝐹(𝑖 + 1)𝑦(𝑖 + 1)

= 𝐴(𝑖)𝑥(𝑖) + 𝐵(𝑖)𝑢(𝑖) − (𝐴(𝑖) − 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖))𝑥̂(𝑖|𝑖) − 𝐹(𝑖 + 1)𝑦(𝑖 + 1) 

 

The proof is quite involved in terms of manipulations (see [5]), but it can be demonstrated 

that the final equation of 𝐹 is given by: 

 

𝐹(𝑖 + 1) = Ψ𝑒̂(𝑖 + 1|𝑖 + 1)𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖+1)

−1  

 

So the correction term depends on covariance of estimation error and the noise covariance.  

𝐹 is like the gain on the input (the actual measurement).  

Since there is the dependence on the covariance of estimation error it’s straightforward that 

the filter can’t be stationary. 

 

For the covariance of the estimation error: 
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Ψ𝑒̂(𝑖+1|𝑖+1) = Γ(Ψ𝑒̂(𝑖|𝑖)) (𝐼 + 𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖)

−⁡1𝐶(𝑖 + 1)Γ (Ψ𝑒̂(𝑖|𝑖)))
−1

 

With: 

 

Γ (Ψ𝑒̂(𝑖|𝑖)) = 𝐴(𝑖)Ψ𝑒̂(𝑖|𝑖)𝐴
𝑇(𝑖) + 𝐵(𝑖)Ψ𝑢(𝑖)𝐵(𝑖)

𝑇 

 

Even in this case it is fundamental the initialization (for the filter optimality): 

 

Ψ𝑒̂(0|0) = 𝐸 [(𝑥(0) − 𝑥̂(0|0))(𝑥(0) − 𝑥̂(0|0))
𝑇
] = 𝐸[(𝑥(0) − 𝐸[(𝑥(0)])(𝑥(0) − 𝐸[(𝑥(0)])𝑇]

= Ψ𝑥(0) 

 

A failure in the initialization leads to possible errors in the state estimation. 

 

Now the final form of the Kalman filter can be obtained (see [5]): 

 

𝑥̂(𝑖 + 1|𝑖 + 1) = 𝐺(𝑖 + 1) ⁡𝑥̂(𝑖|𝑖) + 𝐹(𝑖 + 1)𝑦(𝑖 + 1)

= (𝐴(𝑖) − 𝐹(𝑖 + 1)𝐶(𝑖 + 1)𝐴(𝑖)) ⁡𝑥̂(𝑖|𝑖)

+⁡Ψ𝑒̂(𝑖 + 1|𝑖 + 1)𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖+1)

−1 𝑦(𝑖 + 1)

= 𝐴(𝑖)⁡𝑥̂(𝑖|𝑖) + Ψ𝑒̂(𝑖 + 1|𝑖 + 1)𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖+1)

−1 [𝑦(𝑖 + 1) + 

−𝐶(𝑖 + 1)𝐴(𝑖)⁡𝑥̂(𝑖|𝑖)] 

Ψ𝑒̂(𝑖+1|𝑖+1) = Γ(Ψ𝑒̂(𝑖|𝑖)) (𝐼 + 𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖)

−⁡1𝐶(𝑖 + 1)Γ (Ψ𝑒̂(𝑖|𝑖)))
−1

 

𝑥̂(0|0) = 𝑥̅(0) 

Ψ𝑒̂(0|0) = Ψ𝑥(0) 

 

Looking at last term in the state estimation equation ,  [𝑦(𝑖 + 1) − 𝐶(𝑖 + 1)𝐴(𝑖)⁡𝑥̂(𝑖|𝑖)] , there 

is the “Innovation Process” that represents the difference between the last available measure 

and the result that it would have in absence of noise at step (i+1) considering the state one 

step prediction.  
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It evaluates the new information content with respect to the previous (if the innovation is 

zero then the prediction and measurement agree). 

 

The filter works online because it requires the measurement at current step (𝑖 + 1) as can be 

noticed in the innovation process term. 

 

Instead the covariance of the estimation error can in principle be computed offline, because 

uses just the a-priori information on {Ψ𝑢(𝑖)}, {Ψ𝜈(𝑖)}, Ψ𝑥(0). 

 

If the gaussianity is not assumed for 𝑥(0), {𝑢(𝑖)}, {𝜈(𝑖)}, the Kalman filter gives the optimal 

MMSE among all possible affine and centered estimates (see [5][). 

 

In case of deterministic and stochastic inputs, the previous expression can be split into 

deterministic and stochastic components (see [5]): 

 

𝑥(𝑖) = 𝑥𝑠(𝑖) + 𝑥𝑑(𝑖) 

𝑥̂(𝑖 + 1|𝑖 + 1) = 𝑥̂𝑠(𝑖 + 1|𝑖 + 1) + 𝑥𝑑(𝑖 + 1) 

 

The deterministic part evolves on model prediction, the stochastic is estimated via Kalman 

filter algorithm. 

 

All the probability distribution functions assumed in the Kalman filter are Gaussian so it is 

possible to consider the corresponding locus of equal probability around the predicted and 

estimated values of the state, that constitute the mean of the conditional probability 

distribution function that is propagated by the filter (see [25]). 

From the next figures a graphical interpretation is given.  

The ellipses represent the contour of equal probability around the mean, the dashes lines 

correspond to the actual filter dynamics that involves the mean values, and the solid lines 

are the exact values of the random variables estimated (see [25]). 
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There is also a steady state implementation of the Kalman filter that can ensure the 

asymptotic optimality despite of the initialization.  

The KF can also handle the case where process and measurement noises are correlated (see 

[5]). 

 

 

FIG. 17 – Error ellipsoid propagation in the Kalman filter prediction cycle (see [25])  

FIG. 18 – Error ellipsoid propagation in the Kalman filter filtering cycle (see [25])  
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In the next paragraph will be instead presented the most used approximation of the original 

Kalman Filter, the Extended Kalman Filter and after a more recent implementation named 

“Unscented Kalman filter”. 

 

3.3.1.3. Extended Kalman Filter 

 

The extended Kalman filter needs arise from the necessity of using a Kalman filter for 

nonlinear state estimation, since most of physical systems are governed by nonlinear 

dynamics. Being an approximation of its original version implies that it is no more optimal 

because it does not minimize the minimum mean square error. 

However because the filter performs very well in many practical cases it has become the 

standard for KF algorithm. 

 

Given a discrete nonlinear dynamical system with additive process and measurement noise: 

 

𝑥(𝑖 + 1) = 𝜙(𝑥(𝑖), 𝑢(𝑖)) + 𝑤(𝑖) 

𝑦(𝑖) = ℎ(𝑥(𝑖)) + 𝜈(𝑖) 

 

The algorithm steps are: 

 

1. State Prediction: 

 

𝑥̂(𝑖 + 1|𝑖) = 𝜙(𝑥̂(𝑖|𝑖), 𝑢(𝑖))  

 

2. Covariance Prediction: 

 

Ψ𝑒̂(𝑖+1|𝑖) =  𝐴̃(𝑖)Ψ𝑒̂(𝑖|𝑖) ⁡𝐴̃(𝑖)
𝑇 +⁡𝐵̃(𝑖)Ψ𝑤(𝑖) ⁡𝐵̃(𝑖)

𝑇⁡ 

 

3. Covariance update: 

 

Ψ𝑒̂(𝑖+1|𝑖+1) = Ψ𝑒̂(𝑖+1|𝑖)(𝐼 + 𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖)

−⁡1𝐶(𝑖 + 1)Ψ𝑒̂(𝑖+1|𝑖))
−1

 

 

4. State update: 

 

𝑥̂(𝑖 + 1|𝑖 + 1) = ⁡ 𝑥̂(𝑖 + 1|𝑖) + Ψ𝑒̂(𝑖 + 1|𝑖 + 1)𝐶
𝑇(𝑖 + 1)Ψ𝜈(𝑖+1)

−1 [𝑦(𝑖 + 1) + 

−ℎ(𝑥̂(𝑖 + 1|𝑖), 𝑖 + 1)] 
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Even in this case is fundamental a good filter initialization for the state and covariance of 

estimation error. 

 

As can be noticed in step (2) the covariance one step prediction is based on state transition 

matrix and input matrix. 

 

Those matrices are obtained at each instant linearizing around the previous prediction 

step. In particular the linearization step is performed in this way: 

At first step: 

𝐴̃(0) = ⁡
𝜕𝜙(𝑥(0), 𝑢(0))

𝜕𝑥(0)
|
𝑥̂(0|0)

 

At generic “i” step: 

 

𝐴̃(𝑖) = ⁡
𝜕𝜙(𝑥(𝑖), 𝑢(𝑖))

𝜕𝑥(𝑖)
|
𝑥̂(𝑖|𝑖 − 1)

 

 

It’s evident that at each filtering step, after the one step prediction there is the linearization 

process which will be used for next prediction step. 

 

Considering the case of a discrete nonlinear dynamical system in presence of input and 

measurement noise: 

 

 
𝑥(𝑖 + 1) = 𝜙(𝑥(𝑖), 𝑢̃(𝑖)), 𝑢̃(𝑖) = 𝑢(𝑖) + 𝑤(𝑖) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦(𝑖) = ℎ(𝑥(𝑖)) + 𝜈(𝑖) 

 

In this case will change the prediction step of the covariance of estimation error and the 

system dynamics will be linearized with respect to the stochastic component in order to 

derive the input matrix. 

 

At generic “i-th” step: 
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𝐴̃(𝑖) = ⁡
𝜕𝜙(𝑥(𝑖), 𝑢(𝑖))

𝜕𝑥(𝑖)
|
𝑥̂(𝑖|𝑖 − 1)

 

𝐵̃(𝑖) = ⁡
𝜕𝜙(𝑥(𝑖), 𝑢(𝑖))

𝜕𝑢(𝑖)
|
𝑥̂(𝑖|𝑖 − 1),𝑢(𝑖−1)

 

 

The prediction step relies on system linearization and this could lead to estimation error in 

case of highly nonlinear dynamics because of the first order approximation introduced. For 

more details see [5]. 

 

An intuitive example that can give a visualization of the error that possibly is introduced by 

these assumptions is shown in the next two figure (see [26]) 

 

 

 

 

FIG. 19 – One step gaussian prediction on the linear system case (Image from 

https://www.cs.cmu.edu/~16385/s17/Slides/16.4_Extended_Kalman_Filter.pdf)  
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3.3.1.4. Unscented Kalman Filter 
 

 

The main drawback of the Extended Kalman Filter is that the assumption of gaussianity 

might be lost or not applicable due to the nonlinear nature of physical systems. 

While the sum of gaussian variables returns a gaussian variable, this doesn’t happen when 

nonlinearities characterize the system evolution. 

Further, the optimal Bayesian solution requires the propagation of the description of the full 

probability density function (pdf) (see [28]). 

Despite all the estimators use some kind of approximation for the solution, in practice due 

to the implementation unfeasibility, the Kalman Filter remains the most used algorithm in 

the industry, since it uses only the first two statistical moments for the state evolution and 

update (mean and covariance). 

 

Julier and Uhlmann described the “Unscent Transformation” to address the deficiencies of 

the 1st order approximation introduced by the EKF and to have a more direct way to 

transform the mean and covariance information. 

FIG. 20 – One step gaussian prediction on the nonlinear system case (Image from 

https://www.cs.cmu.edu/~16385/s17/Slides/16.4_Extended_Kalman_Filter.pdf)  
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Basically, this consists in choosing a set of points, called “sigma points”, in order to represent 

the state mean and covariance. The nonlinear function is applied to each point to obtain a 

set of transformed points. 

Then the statistics of the points is computed to get an estimate of the nonlinear 

transformation of the mean and covariance (See [27]). 

 

 

 

 

 

The idea behind the UKF is not to approximate the nonlinear system to a linear system 

(process and observation model) but to approximate the covariance and the mean. 

 

The sigma points are computed as follows: 

 

Consider a nonlinear process of the following form: 

 ⁡𝑥̇ ⁡= 𝑓(𝑥) 
 

 ⁡𝑦⁡ = ⁡𝑔(𝑥) 
 

 

• Choose a set of sigma points in order to characterize the true mean and covariance 

of the random variable “x” (the number is 2n+1) 

 

FIG. 21 – The sigma points under the Unscent Transformation (Image from [27])  
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𝑋0 =⁡ 𝑥̂, 𝑊0 ⁡= ⁡

𝜆

(𝑛⁡ + ⁡𝜆)
, 𝑖⁡ = ⁡0 

 

 

 
𝑋𝑖 =⁡ 𝑥̂ ⁡+ ⁡(√(𝑛 + 𝜆)𝛹(𝑥)𝑖, 𝑊𝑖 ⁡= ⁡

1

2(𝑛⁡ + ⁡𝜆)
, 𝑖⁡ = ⁡1, . . . , 𝑛 

 

 

 
𝑋𝑖 =⁡ 𝑥̂ ⁡− ⁡(√(𝑛 + 𝜆)𝛹(𝑥)𝑖, 𝑊𝑖 ⁡= ⁡

1

2(𝑛⁡ + ⁡𝜆)
, 𝑖⁡ = ⁡𝑛 + 1, . . . , 2𝑛 

 

 

With “𝜆” as a scaling parameter and (√(𝑛 + 𝜆)𝛹(𝑥)
𝑖
  i-th row of the matrix 

√(𝑛 + 𝜆)𝛹(𝑥). 

The weights 𝑊𝑖 associated to each point are such that their total sum is 1 

 

 
⁡⁡∑𝑊𝑖

2𝑛

𝑖⁡=⁡0

⁡= ⁡1, 

 

 

• The sigma points are propagated through the nonlinear output function 

 

 ⁡𝑌𝑖 ⁡= 𝑔(𝑋𝑖), 𝑖⁡ = ⁡0, . . . , 2𝑛⁡ 
 

 

• The estimated mean and covariance is computed accordingly: 

 

 
⁡⁡𝑦̂ ⁡= ⁡∑𝑊𝑖 ⁡ ∙ ⁡𝑌𝑖

2𝑛

𝑖⁡=⁡0

⁡ 

                                                    𝛹(𝑥) ⁡= ⁡∑ 𝑊𝑖 ⁡ ∙ ⁡ (𝑌𝑖 ⁡− ⁡ 𝑦̂) ∙ (𝑌𝑖 ⁡−⁡ 𝑦̂)
𝑇2𝑛

𝑖=0  

 

 

Accurate up to the 2nd order of Taylor series expansion 

 

The algorithm steps are: 

 

• Prediction 
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The state estimate is augmented with the mean and covariance of the process noise 

 
⁡⁡⁡𝑋(𝑘−1)|(𝑘−1)

𝑎𝑢𝑔
⁡= ⁡ [

𝑥̂(𝑘−1)|(𝑘−1)
𝑇

𝐸[𝑤𝑘
𝑇]

]⁡ 

                                                    𝛹(𝑥) ⁡= ⁡ [
𝛹(𝑘−1)|(𝑘−1) 0

0 𝑄𝑘
] 

 

 

The set of  2𝑛𝑎𝑢𝑔 + 1 sigma points ( 𝑛𝑎𝑢𝑔 being the dimension of the state plus the 

process noise) is computed as described previously (the square root of (𝑛 + 𝜆)𝛹(𝑥) 

could be computed by means of Cholesky decomposition for computational effort). 

 

The sigma points are propagated through the system nonlinear dynamics 

 

 ⁡𝑋𝑘|𝑘−1
𝑖 ⁡= 𝑓(𝑋𝑘−1|𝑘−1

𝑖 ), 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔⁡ 
 

 

The weighted sigma points are summed in order to give the state and covariance 

prediction for the next iteration step 

 

 ⁡𝑥̂𝑘|𝑘−1 ⁡= ⁡∑𝑊𝑖
𝑠

𝑖

𝑋𝑘|𝑘−1
𝑖 , 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔⁡ 

                     𝛹𝑘|𝑘−1 ⁡= ⁡∑ 𝑊𝑖
𝑐

𝑖 [𝑋𝑘|𝑘−1
𝑖 −⁡𝑥̂𝑘|𝑘−1][𝑋𝑘|𝑘−1

𝑖 −⁡𝑥̂𝑘|𝑘−1]
𝑇 , 𝑖⁡ =

⁡0, . . . , 2𝑛𝑎𝑢𝑔 

 

 

Where the weights for the covariance matrix, 𝑊𝑖
𝑐, are computed as the ones for the 

state with the attention on the 1st weight that is derived from: 

 

 
𝑊0

𝑐 ⁡= ⁡
𝜆

(𝑛⁡ + ⁡𝜆)
⁡+⁡(1⁡ −⁡𝛼2 ⁡+ ⁡𝛽), 𝑖⁡ = ⁡0 

 

 

And the scaling parameter “λ” is now computed as 

 

 𝜆⁡ = ⁡𝛼2(𝑛𝑎𝑢𝑔 ⁡+ ⁡𝑘) ⁡−⁡𝑛𝑎𝑢𝑔 , 𝑖⁡ = ⁡0 
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• Update 

The state and covariance predictions are augmented with the statistics of the 

measurement noise 

 

 
⁡⁡⁡𝑋𝑘|(𝑘−1)

𝑎𝑢𝑔
⁡= ⁡ [

𝑥̂𝑘|(𝑘−1)
𝑇

𝐸[𝑣𝑘
𝑇]
]⁡ 

                                                    𝛹(𝑥) ⁡= ⁡ [
𝛹(𝑘−1)|(𝑘−1) 0

0 𝑅𝑘
] 

 

 

The sigma points are computed from the augmented state and covariance 

 

The sigma points are propagated through the measurement function “h(x)” 

 

 ⁡𝛾𝑘|𝑘−1
𝑖 ⁡= ℎ(𝛸𝑘−1|𝑘−1

𝑖 ), 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔⁡ 
 

 

The predicted state and covariance measurement are computed via the sigma 

points 

 

 ⁡𝑧̂𝑘|𝑘−1 ⁡= ⁡∑𝑊𝑖
𝑠

𝑖

𝛾𝑘|𝑘−1
𝑖 , 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔⁡ 

                     𝛹𝑧𝑘𝑧𝑘 ⁡= ⁡∑ 𝑊𝑖
𝑐

𝑖 [𝛾𝑘
𝑖 −⁡ 𝑧̂𝑘][𝛾𝑘

𝑖 −⁡ 𝑧̂𝑘]
𝑇 , 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔 

 

 

The cross covariance matrix (between the state and the measurement) is used to get 

the UKF gain 

 

 

 ⁡𝛹𝑥𝑘𝑧𝑘 ⁡= ⁡∑𝑊𝑖
𝑐

𝑖

[𝛸𝑘|𝑘−1
𝑖 −⁡𝑥̂𝑘|𝑘−1][𝛾𝑘

𝑖 −⁡ 𝑧̂𝑘]
𝑇 , 𝑖⁡ = ⁡0, . . . , 2𝑛𝑎𝑢𝑔⁡ 

 

 

 

 ⁡𝐾𝑘 ⁡= ⁡𝛹𝑥𝑘𝑧𝑘𝛹𝑧𝑘𝑧𝑘
−1 ⁡⁡ 
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Finally, the updated state estimate and covariance matrix are obtained weighting 

with the Kalman gain 

 

 ⁡𝑥̂𝑘|𝑘 ⁡= ⁡ 𝑥̂𝑘|𝑘−1 +⁡𝐾𝑘(𝑧𝑘 ⁡− ⁡ 𝑧̂𝑘)⁡ 

                                            𝛹𝑘|𝑘 ⁡= ⁡𝛹𝑘|𝑘−1 ⁡− ⁡𝐾𝑘𝛹𝑧𝑘𝑧𝑘𝐾𝑘
𝑇 

 

 

During the Unscent transformation the sigma points are chosen so that as the dimension of 

the system increases the same happens to the sphere that bounds all the sigma points. 

Despite the fact that it correctly captures the mean and covariance of the prior distribution, 

it samples nonlocal effects. To counter this, the sigma points can be scaled either close or 

far from the mean of the prior distribution through the scaling parameter “λ”. 

As further remark the main drawback of this algorithm concerns the choice of the sigma 

point via the weights selection, which can be different depending on the system 

considered and so it makes not easy the implementation and the success of the estimation. 
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4. Case of Study 
 

In this paragraph, a case of study for attitude control applied on launcher vehicle based on 

nonlinear output regulation feedback design will be presented. 

 

The objective of the controller is to keep the desired attitude during the flight, so that the 

attention can be focused on the rotational dynamics: 

 

 

{
 
 

 
 

𝐼𝑥𝑥𝑃̇ + (𝐼𝑧𝑧 −⁡𝐼𝑦𝑦)𝑄𝑅⁡ = ⁡𝑀𝑥

𝐼𝑦𝑦𝑄̇ + (𝐼𝑥𝑥 −⁡𝐼𝑧𝑧)𝑃𝑅⁡ = ⁡−𝑙𝑐𝑇𝑐𝛿 +⁡
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼
(𝜂𝑐𝑔 − 𝜂)𝛼(𝜂)𝑑𝜂

𝐿

0

𝐼𝑧𝑧𝑅̇ + (𝐼𝑦𝑦 −⁡𝐼𝑥𝑥)𝑃𝑄⁡ = ⁡−𝑙𝑐𝑇𝑐𝜀 −
1

2
𝜌𝑉𝑟𝑒𝑙

2 𝑆𝑅∫
𝜕𝐶𝑁(𝜂)

𝜕𝛼
(𝜂𝑐𝑔 − 𝜂)𝛽(𝜂)𝑑𝜂

𝐿

0

 

 

 

{

𝜑̇ = ⁡𝑝⁡ + ⁡𝑠𝜑𝑡𝑛𝜃 ∙ 𝑞⁡ + ⁡𝑐𝜑𝑡𝑛𝜃 ∙ 𝑟

𝜃̇ = ⁡𝑐𝜑 ∙ 𝑞⁡ − ⁡𝑠𝜑 ∙ 𝑟

𝜓̇ ⁡= ⁡
𝑠𝜑

𝑐𝜃
∙ 𝑞⁡ +⁡

𝑐𝜑

𝑐𝜃
∙ 𝑟

 

 

 

 

The aerodynamic moments can be considered as an external disturbance acting on the system. 

When the angle of attack is kept very close to zero also their presence tends to diminish. 

 

As first approximation we can rearrange the rotational equations plus kinematics in order to get a 

nonlinear systems affine in the control, namely: 

 

 {
𝑥̇ = ⁡𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝑢(𝑡)

𝑦⁡ = ⁡ℎ(𝑥, 𝑡)
 

 

 

With: 
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𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 −

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅
𝐼𝑥𝑥
⁄

−
(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅

𝐼𝑦𝑦
⁄

−
(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄

𝐼𝑧𝑧
⁄

𝑝⁡ + ⁡𝑠𝜑𝑡𝑛𝜃 ∙ 𝑞⁡ + ⁡𝑐𝜑𝑡𝑛𝜃 ∙ 𝑟
𝑐𝜑 ∙ 𝑞⁡ − ⁡𝑠𝜑 ∙ 𝑟
𝑠𝜑

𝑐𝜃
∙ 𝑞⁡ +⁡

𝑐𝜑

𝑐𝜃
∙ 𝑟 ]

 
 
 
 
 
 
 
 
 

 

 

 

 

 

𝑔(𝑥) =

[
 
 
 
 
 
 
 
 −
(𝑇𝑐 − 𝑙𝑐)

𝐼𝑥𝑥
⁄ 0 0

0 −
(𝑇𝑐 − 𝑙𝑐)

𝐼𝑦𝑦
⁄ 0

0 0 −
(𝑇𝑐 − 𝑙𝑐)

𝐼𝑧𝑧
⁄

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 
 
 
 

 

 

 

 

 
𝑦(𝑥) = [

𝜑
𝜃
𝜓
] 

 

 

The input acting on the roll dynamics was added in order to get a square system, so with 

the same number of inputs and outputs. Anyway, it could be considered to be the 

presence of external thrusters that act just to stabilize the roll motion during the flight. 

Another important statement is that due to the axial symmetry of the launcher, it is very 

common to decouple the yaw-pitch motion from the roll dynamics, which is very close to 

zero and at least stabilized by a devoted actuation system in general. 

So for the simulations the roll motions will be considered almost zero and it will be seen as 

it is almost a stable dynamics over time. 

 

 𝐿𝑔1ℎ1(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡1⁡0⁡0]𝑔1(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑔2ℎ1(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡1⁡0⁡0]𝑔2(𝑥) ⁡= ⁡0 
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 𝐿𝑔3ℎ1(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡1⁡0⁡0]𝑔3(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑓ℎ1(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡1⁡0⁡0]𝑓(𝑥) ⁡= ⁡𝑝⁡ + ⁡𝑠𝜑𝑡𝑛𝜃𝑞⁡ + ⁡𝑐𝜑𝑡𝑛𝜃𝑟 

 

 

 
𝐿𝑔1𝐿𝑓ℎ1(𝑥) ⁡= ⁡⁡−

𝑇𝑐𝑙𝑐
𝐼𝑥𝑥

 

 

 
𝐿𝑔2𝐿𝑓ℎ1(𝑥) ⁡= ⁡⁡−

𝑇𝑐𝑙𝑐
𝐼𝑦𝑦

𝑠𝜑𝑡𝑛𝜃 

 

   
 

 

 

 
𝐿𝑔3𝐿𝑓ℎ1(𝑥) ⁡= ⁡⁡−

𝑇𝑐𝑙𝑐
𝐼𝑧𝑧

𝑐𝜑𝑡𝑛𝜃 

 

 

 
 𝐿𝑔1ℎ2(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡1⁡0]𝑔1(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑔2ℎ2(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡1⁡0]𝑔2(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑔3ℎ2(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡1⁡0]𝑔3(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑓ℎ2(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡1⁡0]𝑓(𝑥) ⁡= ⁡𝑐𝜑𝑄⁡ − ⁡𝑠𝜑𝑅 

 

 

 𝐿𝑔1𝐿𝑓ℎ2(𝑥) ⁡= ⁡⁡0 

 

 
𝐿𝑔2𝐿𝑓ℎ2(𝑥) ⁡= ⁡⁡−

𝑇𝑐𝑙𝑐
𝐼𝑦𝑦

𝑐𝜑 

 

   
 

 

 

 
𝐿𝑔3𝐿𝑓ℎ2(𝑥) ⁡= ⁡⁡

𝑇𝑐𝑙𝑐
𝐼𝑧𝑧

𝑠𝜑 
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𝐿𝑔1ℎ3(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡0⁡1]𝑔1(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑔2ℎ3(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡0⁡1]𝑔2(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑔3ℎ3(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡0⁡1]𝑔3(𝑥) ⁡= ⁡0 

 

 

 𝐿𝑓ℎ3(𝑥) ⁡= ⁡ [⁡0⁡0⁡0⁡0⁡0⁡1]𝑓(𝑥) ⁡= ⁡
𝑠𝜑

𝑐𝜃
𝑄⁡ +⁡

𝑐𝜑

𝑐𝜃
𝑅 

 

 

 𝐿𝑔1𝐿𝑓ℎ3(𝑥) ⁡= ⁡⁡0 

 

 
𝐿𝑔2𝐿𝑓ℎ2(𝑥) ⁡= ⁡⁡−

𝑇𝑐𝑙𝑐
𝐼𝑦𝑦

𝑠𝜑

𝑐𝜃
 

 

   
 

 

 

 
𝐿𝑔3𝐿𝑓ℎ2(𝑥) ⁡= ⁡⁡

𝑇𝑐𝑙𝑐
𝐼𝑧𝑧

𝑐𝜑

𝑐𝜃
 

 

 

 

 

 
The decoupling matrix obtained is: 

 

 

𝐴(𝑥) ⁡= ⁡

[
 
 
 
 
 
 
−𝑇𝑐𝑙𝑐
𝐼𝑥𝑥

−
𝑇𝑐𝑙𝑐𝑠𝜑𝑡𝑛𝜃

𝐼𝑦𝑦
−
𝑇𝑐𝑙𝑐𝑐𝜑𝑡𝑛𝜃

𝐼𝑧𝑧

0
−𝑇𝑐𝑙𝑐𝑐𝜑

𝐼𝑦𝑦

𝑇𝑐𝑙𝑐𝑠𝜑

𝐼𝑧𝑧

0
−𝑇𝑐𝑙𝑐𝑠𝜑

𝑐𝜃𝐼𝑦𝑦

−𝑇𝑐𝑙𝑐𝑐𝜑

𝑐𝜃𝐼𝑧𝑧 ]
 
 
 
 
 
 

 

 

 

which gets singular for 𝜃⁡ = ⁡
𝜋

2
⁡+ ⁡𝑘𝜋 

However, for that value of the pitch angle also the Euler angles representation gets singular, 

so it’s a standard condition to be avoided. 
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The inverse is: 

 

𝐴(𝑥)−1 ⁡= ⁡

[
 
 
 
 
 
 
−𝐼𝑥𝑥
𝑇𝑐𝑙𝑐

0 −
𝐼𝑥𝑥𝑠𝜃

𝑇𝑐𝑙𝑐

0 −
𝐼𝑦𝑦𝑐𝜑

𝑇𝑐𝑙𝑐
−
𝐼𝑦𝑦𝑐𝜃𝑠𝜑

𝑇𝑐𝑙𝑐

0
𝐼𝑧𝑧𝑠𝜑

𝑇𝑐𝑙𝑐
−
𝐼𝑧𝑧𝑐𝜃𝑐𝜑

𝑇𝑐𝑙𝑐 ]
 
 
 
 
 
 

 

 

 

The system has uniform vector relative degree with value 2 with respect to every output, so 

no zero dynamics exists and can be defined a coordinate transformation that is a 

diffeomorphism. 

 

 

𝑏(𝑥) ⁡= ⁡ [

𝐿𝑓
2ℎ1(𝑥)

𝐿𝑓
2ℎ2(𝑥)

𝐿𝑓
2ℎ3(𝑥)

] ⁡

= ⁡ [

1 𝑠𝜑𝑡𝑛𝜃 𝑐𝜑𝑡𝑛𝜃 𝑐𝜑𝑡𝑛𝜃 ∙ 𝑄 − 𝑠𝜑𝑡𝑛𝜃 ∙ 𝑅 (𝑠𝜑 ∙ 𝑄⁡ + ⁡𝑐𝜑 ∙ 𝑅)/𝑐𝜃2 0
0 𝑐𝜑 −𝑠𝜑 −𝑠𝜑 ∙ 𝑄 − 𝑐𝜑 ∙ 𝑅 0 0

0
𝑠𝜑

𝑐𝜃⁄
𝑐𝜑

𝑐𝜃⁄ (𝑐𝜑 ∙ 𝑄 − 𝑠𝜑 ∙ 𝑅)/𝑐𝜃 (𝑠𝜑 ∙ 𝑄⁡ + ⁡𝑐𝜑 ∙ 𝑅)𝑠𝜃/𝑐𝜃2 0

] 𝑓(𝑥) 

 

 

The linearizing controller is defined as: 

 
𝑢(𝑥) ⁡= ⁡𝐴(𝑥)−1((

𝑣1(𝑥)
𝑣2(𝑥)
𝑣3(𝑥)

) − ⁡𝑏(𝑥)) 

 

 

Assuming that there is no knowledge of the unmeasured state, the EKF is introduced in 

order to provide the state estimate to the nonlinear controller. 
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Plant Model
Extended Kalman Filter

Nonlinear Controller

Measured States

Full Estimated States

Reference to Track

 

 

 

 

 

First is shown the behavior of the nonlinear controller in the case of full information 

feedback. 

 

Provided an initial attitude for the vehicle, in the next figure it is shown the free evolution 

behavior: 

 

FIG. 11 – Nonlinear Output Feedback control Scheme 
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Clearly the system is not stable in free evolution. Even if the roll motion, as previously 

stated, is characterized by a stable dynamics the divergent behavior of the pitch and the 

couplings between the three rotational dynamics make it unstable too. 

 

Applying the nonlinear feedback and required a desired attitude of: 

𝜃⁡ = ⁡1⁡[𝑟𝑎𝑑], 𝜓⁡ = ⁡0.1⁡[𝑟𝑎𝑑] 

 

The action of the controller makes the system stable and the desired reference is reached. 

 

 

 

 

 

It is again important to underline the fact that the first controller was added to get a square 

MIMO system but the actual controller computation is not applied to the original system. 

FIG. 12 – Free evolution of the uncontrolled system, Attitude behavior 

FIG. 13 – System under the action of the full state nonlinear feedback, Attitude behavior 
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Anyway from the previous figure it can be seen that the roll motion is characterized by a 

stable dynamics and in order to keep it to 0 a separate controller can be used in specific 

flight instants. 

 

Concerning the new virtual input that acts on the linearized system, "v", different methods 

can be used to assign the desired dynamics, for example standard "pole-placement" or 

LQR and so on. The idea is that limitation in the "TVC" actuation system performance can 

be taken into account when designing the linear controller in order not to ask 

instantaneous or not-realistic performances that could not be actuated. 

 

Considering now the case where no full state information is available to the controller, the 

Extended Kalman filter is added to the controller architecture in order to reconstruct the 

unmeasured state dynamics. 

 

Here is the state estimation error as output of the EKF algorithm during the system 

evolution. 

 

 FIG. 14 – Estimation error [rad/s] of the angular velocities as output of the EKF 
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The EKF is able to reconstruct the state dynamics accurately. Of course a big impact on the 

time of convergence and good behavior of the filter is due to the initial guess of the 

unmeasured states, that anyway can be guessed due to the fact that the launcher has to be 

kept stable all over the flight (high values of these states will lead to the instability of the 

vehicle). 

 

The result of the nonlinear output feedback controller is the following: 

 

 

 

 

 

Clearly until the EKF has almost estimated the angular velocities the controller does not 

perform exactly the linearization and this implies an oscillatory behavior on the system 

response with respect to the case of the full state feedback. However these oscillations are 

acceptable. 

FIG. 15 – System under the action of the nonlinear output feedback controller. Attitude behavior [rad] 
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5. Conclusions 
 

 

The present work had the objective to describe the architecture of a nonlinear output 

feedback for the control of the attitude of a launch vehicle. Briefly were recalled the 

equations of motion that can be used to model this type of systems with all the references 

for a more comprehensive reading. 

The classical architecture used for launcher control was shortly described together with 

some references to innovative methodologies to deal with such complex dynamical system 

(like LPV). 

The challenges for designing an efficient controller are many and from theoretical analysis 

to possible implementation a lot of problems arise due also to the limits in the 

computations, on the system knowledge and the sensors and actuators present on board. 

The nonlinear control techniques can however be seen as a more innovative solution to 

handle this system, even considering all the limitations illustrated in the previous 

chapters. 

The major challenge is related to the time varying nature of the system and the future goal 

would be to try to take into account this aspect in the definition of an adaptive controller 

and of stability criteria which do not rely on the first order system approximation and LTI 

methodologies. 
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