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Abstract: The development of smart grids requires the active participation of end users through
demand response mechanisms to provide technical benefits to the distribution network and receive
economic savings. Integrating advanced machine learning tools makes it possible to optimise the
network and manage the mechanism to maximise the benefits. This paper proceeds by forecasting
consumption for the next 24 h using a recurrent neural network and by processing these data using a
reinforcement learning-based optimisation model to identify the best demand response policy. The
model is tested in a real environment: a portion of the Terni electrical distribution network. Several
scenarios were identified, considering users’ participation at different levels and limiting the potential
with various constraints.

Keywords: demand response; distribution network; machine learning; optimisation; smart grid

1. Introduction

The distribution network (DN) faces a challenging transition period due to the spread
of renewable energy sources, which, at the European level, are expected to reach 40% of the
energy mix in 2030 to reduce greenhouse gas emissions by 55% compared with 1990 [1]. The
grid must move from a static infrastructure, with large generation centres and unidirectional
power transmission, to a more agile infrastructure, with many distributed energy resources
(DERs) and millions of IoT devices connected and continuously exchanging data with
the grid. In smart grids, end-users can actively participate in the transition with their
choices (energy communities, electric vehicles, and demand shifting). Several solutions
must be adopted and implemented in the grid. In this paper, the authors focus on the
impact of optimised demand response (DR) systems on the DN, seeing the benefits of mass
deployment.

Electrical utilities consider using DR programs to improve their networks’ stability,
efficiency, and reliability in response to increased power demand [2] or when the grid
is affected by unplanned events [3]. The goal of DR is to allow consumers to contribute
to the operation of the electric grid by reducing or shifting their electricity usage to off-
peak hours, allowing the grid to relax. Advancements in automated infrastructure and
DN technology have enabled residential consumers to participate in demand curtailment
plans [4]. Distribution system operators (DSOs) require an advanced management system
to proactively manage access to large-scale flexible resources using smart grid technologies
to achieve a reliable, robust, cost-effective, and optimised network. A DSO’s management
system is a centralised platform capable of hosting various optimisation schemes and
integrating and managing loads, generation, and other field devices at all distribution
voltage levels in real time. It can determine the DR to keep the active DN within safe
operating limits. As a result, in addition to financial benefits for DR participants, DSOs
can address technical network issues such as voltage or thermal constraints, transformer
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overloading, or cable congestion. The potential of DR has already been recognised by
authorities worldwide [5], but, despite the efforts of various stakeholders over the last
decade, DR programs still need to be established as tools for flexibility provision in power
system operations [6].

The existing body of literature delves extensively into DR, covering a spectrum of
facets including its social implications and user engagement [7–9], market strategies and
economic offers [10–13], the impact on the electricity grid, IoT technologies, the automation
required to implement DR mechanisms [14,15], and the role of DSO, energy retailers, and
aggregators in the flexibility market [16,17]. In the context of DR’s implementation and
the impact on the electricity DN, a comprehensive review highlights its advantages in
reducing peak loads and enhancing reliability [18]. Zakariazadeh et al. [19] introduce a
method for determining load reduction to manage voltage profiles, utilising real-time data
from remote units for precise control. Analysing DR’s impact based on building energy
efficiency, a system-wide DR management model for residential customers is presented
in [20], aiming to flatten the total load profile with minimum individual cost, while an
ML-based service that requires reinforcement learning (RL)-based optimisation control,
namely, grid operation optimisation is underscored in [21]. DR’s role as a DER enabler is
highlighted in [22], where multi-objective techniques facilitate DR implementation in IoT
parking stations for green energy electric vehicle charging.

Optimisation of the DN using DR mechanisms and the introduction of advanced tools
for decision support within the network is a debated topic in the literature. Some review
papers provide an indication of which models are most used in order to optimise load
scheduling, also considering behavioural or intrinsic constraints. In [23], it is pointed out
that the main methods used in the literature for studying automatic DR programmes can
be divided into classical optimisation methods (linear programming, non-linear program-
ming, and mixed integrator linear programming), heuristic optimisation (particle swarm
optimisation, genetic algorithm, fuzzy logic control), and meta-heuristic optimisation (such
as the firefly algorithm). The use of machine learning (ML) for grid optimisation prob-
lems is more limited, but more and more articles can be found in the literature that use
these methods as a model for load management or pricing in DR mechanisms. In [24],
it is reported that, considering only ML models applied to the power grid, 52% of the
studies about load forecasting use artificial neural networks with one hidden layer and
that supervised learning is also widely used (32%), whereas unsupervised learning and
deep learning (DL) are rarer. For the problem of optimal scheduling of loads, there is more
variety of models used, with 50% using swarm artificial intelligence, 22% using RL, and
the remainder distributed between unsupervised, evolutionary algorithms, artificial neural
networks, and mechanism design. Further statistics can be found in the review [25], mainly
focusing on ML models applied to local energy communities.

Several studies focus on electric vehicles, whose recharging can be shifted in time
depending on the network needs and the constraints imposed by the user, e.g., in [26],
an optimal solution is proposed based on solving a stochastic problem, considering an
uncertainty when the car is recharged and exploiting price variation as an enabler. In [27],
three control algorithms based on linear optimisation are used in order to best manage
multiple charging points and consider random consumption profiles of electric vehicles.
Other types of devices typically used for DR are electrical energy storage systems, which
can modulate their energy input or withdrawal according to the needs of the grid. This
approach is followed in [28], where an optimal power management mechanism is presented
for grid-connected PV systems with storage based on dynamic programming. In [29],
a load scheduling optimisation has been realised for domestic consumers in order to
implement DR mechanisms based on price differences. DR extends to microgrids, as
discussed in-depth by Osman et al. [18], who propose a multi-objective darts game theory
optimisation algorithm that is particularly useful post-disaster for forming microgrids
and implementing emergency DR programs. In [30], both frequency and voltage issues
are addressed by proposing a centralised, adaptive load-shedding algorithm, leveraging
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phasor measurement units (PMUs). Zhu et al. [31] present a distributed algorithm to flatten
load profiles while minimising individual customer costs.

As described previously, the literature concerning the application of DR mechanisms
presents numerous models and mechanisms mainly simulated on electrical datasets, often
aimed at cost-effectiveness analyses and dynamic pricing programme scheduling. A lack is
noted in the availability of real data and the use of innovative models based on machine
learning. Indeed, by addressing these challenges and shortages, this paper aims to prepare
an optimal management mechanism of network flexibility resources with DR, using RL
analytics applied to a real Italian DN. Within the tool, a forecast model, i.e., a recurrent
neural network (RNN) based on gated recurrent unit (GRU) layers, allows for identifying
the trend in the load and generation in the next 24 h; this model has been used for online
forecasting based on streaming dataset collected from real grids on a continuous basis. The
optimisation and forecasting ML models have been chosen as an example of a real and
effective application and do not claim to be the most effective algorithms.

In addressing the gap in the literature, the contributions of this paper can be sum-
marised as follows:

• Modelling and testing an original ML-based forecasting model, with continuous model
training, applied to the PV production trend and industrial and domestic consumption
trends;

• Modelling and testing an original ML model for optimising an electricity grid, lever-
aging local flexibility resources;

• Integration of the models and deployment on a real power grid, analysing the benefits
for the DN.

This paper is organised as follows: the introductory section presents the problem, the
literature analysis, and the contributions of this article to the existing literature. Section 2
presents the ML-based forecasting models used for load and generation prediction and grid
optimisation, as well as the methodological outline of this study. Section 3 presents the real
case study of the Terni DN. Section 4 shows the results of applying the models in the real
case, using the previously defined indicators, and finally, Section 5 reports the conclusions.

The work performed in this paper was founded by the IoT-NGIN European Project [32]
and leverages the experience and contribution of some of the Consortium partners.

2. Methodology and Models

In order to evaluate the effectiveness of the ML tools developed, some energetic
indicators highlighting the benefits of the DN are used. These indicators are network losses,
the self-consumption rate (SCR), the self-sufficiency rate (SSR), and the reverse power flow
(RPF), i.e., the energy flowing from the DN to the primary substation (PS) in the opposite
direction to the one commonly followed. The equations to calculate SSR and SCR are as
follows [33].

SCR = 1− Ei
Ep

(1)

SSR =
Ep − Ei

Ea + Ep + Ei
(2)

where Ei is the energy fed into the grid, Ep is the energy produced, and Ea is the energy
absorbed by the grid.

2.1. Forecasting Model

The forecasting model is based on online learning, i.e., the training of ML models
is performed continuously when new data are available. This paradigm acquires great
importance in the context of IoT due to the large number of sensors or devices that can
be present in common scenarios and the large amount of information captured by them
dynamically. The online learning service supports both application programming interface
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(API) REST requests and streaming data since most IoT devices generate communication
flows in real time.

Forecasting the power generated by the grid over a future time frame, based on
historical data collected from grid sensors, consists of predicting the following power
values from the last past measured ones. For example, given the last measured 36 h of
generated power, the model can predict the next 24 h. Forecasting is computed using a
trained ML model that inferences the prediction based on a given input tensor of measured
values. This is an example of a univariate time series prediction problem addressed using
ML modelling techniques. Before the ML model is ready for computing predictions, it must
be trained with historically generated power data. As the data are continuously pushed by
the sensor into an MQTT topic, learning is conducted using an IoT-NGIN MLaaS online
learning service [21] that collects online data from the topic and trains the model after
applying the following data pre-processing procedure: (i) power is computed from sensor
data, (ii) the data are resampled by averaging over each hour, (iii) the data are scaled in the
range [0, 1] as required by the ML algorithms applied during training, and (iv) the data are
windowed across collected power data to create a dataset with the shape required by the
ML training algorithms.

The ML model designed for forecasting the generated power of the grid is a DL model
with layers based on RNNs [22]. RNNs have been demonstrated to work well in predicting
the future behaviour of time series, although they present some disadvantages, such as the
vanishing gradient problem [34]. To overcome this problem, alternative architectures for
ML models, evolving from RNNs, have been proposed, including LSTM and GRUs [35].
For the power forecasting problem, the GRU is used since it solves the vanishing gradient
problem suffered by the original RNN and converges faster than other types of RNNs
(e.g., LSTM). After the recurrent layers, fully connected layers are added for applying
linear transformations to the outputs of the GRU layer. Figure 1 depicts the layers of the
implemented architecture.
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This proposed model is trained to minimise the mean squared error (MSE) between
the real values and the predictions. In order to understand the performance of the fore-
casting model, the lower the MS, the better the effectiveness. The MSE is calculated using
Equation (3):

MSE =
1
n

n

∑
t=1

(xt − x̂t)
2 (3)

where xt is the real value of the PV production or the building consumption time se-
ries at hourly intervals t of the evaluation period and x̂t is the produced forecast of the
respective model.

A module is implemented for explainable artificial intelligence (XAI), which attempts
to explain the predictions made to answer the question: Why has the model made this
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prediction? XAI is a set of methods and processes that help to comprehend and trust the
prediction of the ML model. Moreover, it helps to characterise model performance by
providing the impact of the input data for a given prediction, adding transparency to the
prediction and capacity for model bias detection.

The OL service is deployed into MLaaS using Kserve [36] with Kubeflow [37]. Kserve
allows for deploying three types of components: predictor, transformer, and explainer.
Each of these components exposes a REST API as an HTTP service.

The monitoring service consists of an HTTP endpoint deployed using the FastAPI
framework [38], a Prometheus engine [39], and a Grafana web tool [40].

2.2. Grid Optimisation Model

The grid optimisation model, aiming to maximise its SCR and SSR ratios, is designed
as an RL-based optimisation model [41]. RL is an ML discipline centred on the learning
of optimal behavioural policies for the decision-making of a group of agents interacting
in a common environment, leading to a maximisation of a cumulative reward (i.e., expert-
defined performance metric). In the context of control systems, the learned policy allows
for deploying deterministic or stochastic control logic/instructions for agents interacting
with the end system, such as maximising the grid SCR and SSR ratios. Some of the main
concepts of RL involving the environment, agents, states, actions, rewards, observations,
and policies are shown in Figure 2:

• The environment refers to the physical or simulated space that the agents interact with.
• Agents are entities that are affected by and are in a position to interact with the

environment by taking action.
• Agents take a state (e.g., vector) that represents their status at every point in time.

States are defined as a discrete or a continuous closed set.
• A set of actions is defined for the agents to take. This group is defined as a discrete or

a continuous closed set.
• Rewards are given by the environment after the undertaking of actions by the au-

tonomous agents.
• Observations are pre-processed snapshots (e.g., in the form of vectors) collected after

each transition, which gather relevant variables from the environment as well as the
previous state and the actions taken, resulting in the state and the observed reward.

• Policies, in broad terms, are the learned (deterministic or stochastic) mapping between
the set of states and the set of actions.
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Depending on the problem to be tackled, experience is gathered with interactions in
either a simulated or a real (digital or physical) environment. Based on the knowledge
of the environment, it is possible to distinguish between model-free and model-based
approaches [41]. For the reinforcement algorithm to learn/approximate an optimal policy,
it needs to buffer enough experience from the environment. The experience collected in the
model comprises transitions (steps within episodes), which are made up of observations
including relevant variables from the environment, the previous agent status, the action
taken, the following states, and the observed reward. In the following, the RL elements for
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the grid optimisation model are described. The RL service is deployed using KServe with
the Tensorforce framework [42].

2.2.1. Environment

As interactions with the real grid are not possible, a grid simulator is implemented
based on the pandapower framework [43]. This framework uses the Flow Pypower power
solver [44] to create a calculation network program to automate and optimise power sys-
tems. As a result, the simulator describes the same environment state as the real grid when
connected with the same sources of power generation and consumption. The operation
of the simulator is as follows: once the electrical network is specified in pandapower, the
simulator reads the power loads demanded by all the consumer groups connected to the
grid and the power generated along a day. The data have a resolution of 15 min, so there
are 96 values per day of domestic and industrial consumers’ power demand. Next, the
simulator introduces the loads on the grid and performs a simulation. Then, the simulator
outputs the grid state, consisting of the parameters to be optimised: network losses, SCR,
SSR, and RPF.

2.2.2. States

The optimiser acts on the customers’ energy demand: it modulates the distribution of
energy demand throughout the day, so it is necessary to know the state of energy demand
or, equivalently, the distribution of current energy demand. Two types of customers can
be distinguished: domestic and industrial. There are 13 loads (client groups) of each. To
understand better what the data look like, a pre-analysis of a dataset collected over a
year was carried out. Figures 3 and 4 show the average distribution of, respectively, each
domestic and industrial load for one day. The available data, provided by the grid owner,
do not show the annual curve for each user but provide an averaged curve relating to
the industrial cluster and one relating to the domestic cluster, as well as the photovoltaic
production curve per unit of installed power. Furthermore, the capacities of each load and
each photovoltaic system are known. In fact, the user curves are proportional to each other
according to the installed power. To simplify the optimisation model, it only acts on higher
loads, i.e., those having a stronger influence on the grid (the top eight loads, combining
four domestic and four industrial loads, are selected since they cover, respectively 70% and
77% of the total cluster load). It is considered that the flexibility of users, i.e., the ability to
vary their consumption curve, is proportionally the same for all users, with the difference
being that larger users are able to provide higher-performance services for the entire DN.
Reducing the number of actors simplifies the computational aspects of the problem and
speeds up the solution.

It can be seen that the trend in domestic users peaks in the morning hours, and the
two main peaks are around lunchtime and dinnertime. This is an averaged curve, which
therefore considers full- and part-time workers, students, and pensioners. The curve for
industrial and commercial users presents a peak in the early hours of the day, corresponding
to the start-up of engines and other consumer devices, and a slow decrease in consumption,
interrupted only by a recovery around noon.

Discretisation of States

As the power demand continuously changes, it must be discretised, as a discrete state
space is needed for training the optimiser in a reasonable time. The state space should
be as small as possible in order to be completely explored by the optimiser so that the
complete policy is learned. However, an excessive reduction of the time interval would
increase the state space, imposing higher exploration time on the optimiser training process.
After initial tests with quarter-hourly discretisation, it was noted that an extremely large
number of episodes were required by the optimiser to explore the state space, despite
running on a very high-performance HPC cluster. Hence, it was decided to carry out
hourly load discretisation. An approach with much lower discretisation times, such as
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15 s or less, would be desirable for electrical aspects (overcurrents, voltage issues. . .), for
energy aspects, such as SCR or SSR, as the objective of the grid optimiser, there is no need
to use short analysis times. In this respect, the Italian legislation also uses hourly resolution
times for the calculation of the SCR for the calculation of incentives for renewable energy
communities [45].

Therefore, the states consist of the sum of all the loads, discretised by the hour. This ap-
proach ended with 48 states, consisting of two vectors of 24 elements each (one for domestic
consumers and another for industrial consumers). Each state could take a continuous value
in the range [0, 1], that is, the percentage over the total daily demand for each daily hour.
Therefore, the range [0, 1] was also discretised into 10 bins. Furthermore, it is possible to
apply a further normalisation by dividing the state value by a “load threshold” so that
the possible states of demand in the range [0, 1] are constraints (to reduce the state space
dimension) to those values with a higher likelihood of being explored and applied by the
optimiser. In this way, the simulator can explore more states in a reasonable time.
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2.2.3. Actions

The RL-based optimiser seeks to optimise the energy demand of the grid. To do so, the
distribution of energy demand of each load is shifted throughout the day. This optimiser
uses four sets of discrete actions (see Table 1).

Table 1. Action subset.

Action Subset Length

Domestic demand cluster selection 4
Industrial demand cluster selection 4

Domestic initial time slot 24
Industrial initial time slot 24
Final domestic time slot 2
Final industrial time slot 2

Demand shift for domestic cluster 2
Industrial shift for domestic cluster 2

The first action set is the load selection. This action set includes eight possible actions
(select one load from the eight available). The second action set determines the start and
end time of the energy displacement. The third action set determines the percentage of
energy that is shifted at different times. Three different energy shifts were considered: 1%,
5%, and 10%. For example, if from 8:00 a.m. to 9:00 a.m. there is an energy demand of
10 kW and it is chosen to make a 10% shift to the time slot between 9:00 a.m. and 10:00
a.m., the second time slot will increase the power demand by 1kW, and the energy demand
from 8:00 a.m. to 9:00 a.m. will decrease it by the same amount. This resulted in a set of
147,456 possible actions.

The energy demand shift presents several restrictions: (i) the total energy demanded
by a load must remain constant throughout the day, (ii) the shift can only occur within two
contiguous time slots, i.e., the displacement cannot be applied to any arbitrary distant time
slots, and (iii) the demand cannot be negative.

The power demand load describes the daily demand, with a 15 min interval, resulting
in a 96-value vector for a full day. In order to be aligned with the state discretisation of 1 h
(as described in Section 2.2.2), the optimiser resamples the loads by averaging the samples
within each hour.

2.2.4. Rewards

The objective of the system is to optimise the operation of the grid. This version tries
to maximise the SSR and SCR. The reward function is the mean of both parameters. In
order to obtain greater flexibility during the training process, the reward is computed as a
weighted average:

R =
1
2
(α·SCR + (1− α)·SSR) (4)

By tuning the α parameter, it is possible to address the optimisation needs and
promote SSR over SCR (or vice versa). In this way , we can force SCR and SSR to evenly
contribute to the reward, by setting α = 1

2 , or make the reward equal to the SCR, by setting
α = 1.

2.2.5. Agents

The optimisation model includes agents for the training of PPO, DQN, and DDQN [41].
The optimisation model was implemented using the Tensorforce RL framework. For
training, some improvements were conceived and implemented, including:

• Variable number of steps per episode: some experiments show that the reward fell
down after some steps and was incapable of going up for the rest of the episode. To
avoid wasting time in the training process, the episode is concluded when the obtained
rewards go down a customisable threshold of 20%.
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• Variable exploration time: the training process supports the configuration of a variable
exploration rate, which can be diminished as the learning process progresses over
more learning episodes.

• State density matrix: the optimisation training process registers all the states visited by
the agent, intended to give a clear vision of the agent’s preferable combination of states,
aiming to understand the reasons for the agent to choose such a state combination as
optimal. This state’s matrix consists of 48 columns, corresponding to the 24 h of both
domestic and industrial consumers, and 10 rows, corresponding to the 10 state bins
available for each state.

3. Case Study

ASM Terni S.p.A. is a multi-utility in Terni municipality, an Italian city in the Um-
bria area, which manages operations for the administration of electricity, gas, and water
networks and is responsible for waste collection and disposal. ASM, through its business
unit Terni Distribuzione Elettrica, owns and operates the DN serving 65,000 users. ASM
manages 65,000 smart meters, 700 secondary substations, and three PS. In total, 1276 LV
solar plants and 53 MV PV make up Terni’s distributed generation’s installed power of
63.4 MVA; 40% of the DN’s yearly energy consumption is met by this DER. Additional
information about ASM DN can be found in [46–48], which, respectively, exploited the
digital twin concept in the power DNs, investigated false data impact, and analysed the
integration of a hydrogen supply chain for feeding vehicles based on fuel cell technology.

In order to evaluate the effectiveness of the ML tools developed, a portion of the Terni
network in MV was used as a case study, as depicted in Figure 5, consisting of 14 nodes, one
of which represents a PS, while the others represent secondary substations and 30 power
lines. Each of the 13 secondary substations feeds a different capacity of industrial loads,
for a total of 650 kW of installed power and domestic loads (3374 kW), and some of them
have photovoltaic systems (3663 kW). Regarding the historical data from the last 5 years,
a yearly average curve of industrial and domestic loads and PV production is available,
with a granularity of 15 min. These curves are used as a baseline in the optimisation tool. A
PMU is located in the PS, which is capable of monitoring voltage, active and reactive power,
and other electrical parameters in real time; this sensor is used for forecasting analysis.
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Figure 5. Schematic diagram showing the portion of the 20 kV grid used as a case study. Some nodes
are connected via different sections of the line, for example, the overhead and cable types or with
different typologies. For reasons of graphic clarity, they were not distinguished here.

Experiments were conducted using an Atos HPC cluster of 12 nodes with 720 cores
each and a total memory of 2968 Gb. Experiments were conducted on 16 cores and 128 Gb
RAM, which took days to complete.

4. Results
4.1. Forecasting Results

To verify that the proposed ML architectures are valid, it was used to predict the
voltage trend and the active and reactive power of the PMU, located in a PS, a smart meter,
and two power quality analysers. Forecasting was carried out using a dataset collected for
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18 months through the MQTT topic broadcast by sensors, by training the proposed models.
The predicted data were chosen to have a time horizon of 24 h and a resolution of one hour,
whose forecasting was based on the last 36 h of data averaged every hour, resulting in an
input tensor of 36 values. The proposed models were trained with the hyper-parameters
listed in Table 2. The optimiser, called Adam, is an algorithm for first-order gradient-based
optimisation of stochastic objective functions, based on adaptive estimates of lower-order
moments [49].

Table 2. Hyper-parameters for power forecasting models.

Hyper-Parameters Value

Epochs 50
Learning Rate 0.005

Optimiser Adam
Loss Function Mean squared error

Batch size 128

After training the model, inferences for forecasting the generated power were com-
puted, comparing predictions with actual measure power. Figure 6 shows the actual power
data (orange line), inferences performed using the ML model (blue points), and the forecast-
ing intervals with 90% confidence (blue area). The forecasting intervals can be computed
when the errors between the actual data and the model predictions present a distribution
that can be considered Gaussian. To confirm the errors came from a Gaussian distribu-
tion, they were subjected to normality tests: Shapiro–Wilk [50], Anderson–Darling [51],
and D’Agostino–Pearson [52]. These tests consist of statistical hypothesis tests that check
whether the data contain specific properties. Thus, two hypotheses are defined: the null
and alternative hypotheses. The null hypothesis supports that the data probably come
from a normal distribution, while the alternative hypothesis suggests that the data present
a different distribution. The statistical test returns a probability known as the p-value. If
the result presents a value lower than the defined significance level (0.05 in this case), then
the null hypothesis must be rejected so that the data distribution can be assumed to be
normal. Table 3 lists the p-values obtained.
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Table 3. Normality test results (p-values) for power forecasting models.

Normality Test Value

Shapiro–Wilk 0.47
Anderson–Darling 0.76
Agostino–Pearson 0.10

Within the confidence intervals, the model learns the seasonal variations in the gener-
ated power quite well, as depicted in Figure 6, obtaining an MSE of 0.009 during training.
As shown in Figure 6, there is good matching between the observed and predicted values
within the confidence interval, which captures both the trend and seasonality in the future
series behaviour.

4.2. Results of Grid Optimisation Using the Demand Response

The grid optimisation model was trained with the agent’s hyperparameters listed
in Table 4. In our experiment, α = 1 was chosen because, from the DSO’s point of view,
it is more convenient to implement a DR mechanism that favours the self-consumption
of local DER to reduce RPF and reduce demand from the grid. A high SCR means low
grid losses. SSR, on the other hand, is more related to consumers and the possibility of
becoming grid-independent.

Table 4. Hyper-parameters for grid optimisation models.

Hyper-Parameter Value

RL Algorithm PPO
Learning Rate 0.001

Optimiser Adam
Multistep 10
Batch size 1

Reward discount 10%
α 1

Load threshold 30%

Initial experiments were conducted to determine each episode’s optimal duration (i.e.,
#steps), which resulted in 2000 steps. Also, as described before, better optimisation results
were obtained by applying a normalised discretisation of the state space. The results show
the agent was exploring the state space much better than if normalised discretisation had
not been applied. Figure 7 shows the matrix space of visited loads after completing the
experiment.
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Figure 7. Load state space.

As a result of training, the reward was improved (Figure 8) after applying learnt
actions on the user’s demand load, resulting in better SCR. The achieved SCR of around
52% is very high, considering that the portion of the grid in question has an average daily
production of 23.6 MWh and a consumption of 12.9 MWh. Thus, the maximum SCR that
can theoretically be achieved is 55%, which occurs in the case of completely zero energy
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absorption from the grid. In Figure 8, five different episodes of the training have been
depicted.
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Figure 8. Reward evolution over episodes considering α = 1.

In Figure 9, domestic loads are shown before (i.e., left) and after being optimised (i.e.,
right) along hours in the day on the x-axis. A similar trend is recognised for industrial
loads. The optimised load shows a shape closer to the theoretical optimal load, with a bell
shape, where the load is concentrated at noon. For the optimiser to reach the optimal shape,
an extremely longer episode duration, beyond our computing capability, is required to
exhaust the exploration of the state space in order to compute the optimal policy. However,
the initial training results, within our computational constraints, show progress in the right
direction.
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Further experiments are required to improve the optimised SSR and SCR values to
become close to the theoretical ones. This can be accomplished by reducing the dimension
of the state space so that within the affordable computation time, the agent can exhaust the
state space when searching for optimal user demand loads.

5. Conclusions

This paper shows some of the services developed within the European IoT-NGIN
project and their integration within the electricity infrastructure of ASM Terni. This paper
aimed to show the application of ML tools within the DN and highlight the added value
that can be obtained. Analytics for forecasting and grid optimisation were presented. The
GRU-based forecasting applied to a PMU, a smart meter, and two power quality analysers
indicated the active and reactive power and voltage values in the next 24 h. At the same
time, the grid optimisation tool, which consists of an electrical simulation part using
pandapower and an RL-based optimisation part for the consumer curves, managed the
decisions of the DR mechanisms on a portion of the medium voltage network (14 nodes) of
ASM Terni. Technical details of the services were provided, accompanied by some results.
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A limitation of this paper is its simplified approach to user participation in DR mechanisms,
which does not take into account the real availability of flexibility resources (storage, loads
that can be shifted over time, etc.), which was assumed to be a portion of the total load.

In future research, we plan to test additional ML models for application in these topics,
compare the results, and apply the models to a more significant portion of the electrical
network. Furthermore, we plan to evaluate how the integration between the forecasting
service and the optimisation service can be strengthened using single analytics that exploit
the results provided by both services in a cascade.
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Abbreviations

API application programming interface
DER distributed energy resources
DL deep learning
DN distribution network
DR demand response
DSO distribution system operator
GRU gated recurrent unit
LSTM long short-term memory
ML machine learning
MQTT message queuing telemetry transport
MSE mean squared error
PMU phasor measurement unit
PS primary substation
RL reinforcement learning
RNN recurrent neural network
RPF reverse power flow
SCR self-consumption rate
SSR self-sufficiency rate
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