
Received: 27 June 2023 Revised: 1 November 2023 Accepted: 16 November 2023

DOI: 10.1002/eqe.4052

RESEARCH ARTICLE

Equivalent static methods for seismic design of straight
integral abutment bridges

Andrea Marchi Paolo Franchin

Department of Structural and
Geotechnical Engineering, Sapienza
University of Rome, Rome, Italy

Correspondence
Andrea Marchi, Department of Structural
and Geotechnical Engineering, Sapienza
University of Rome, Rome, Italy.
Email: andrea.marchi@uniroma1.it

Funding information
Dipartimento della Protezione Civile,
Presidenza del Consiglio dei Ministri

Abstract
Integral abutment bridges (IABs) are becoming the solution of choice in the low
to mid-length ranges because of their low cost compared with traditional solu-
tions and their good performance under seismic actions. The main drawback
of these bridges is the need to consider soil-structure interaction to assess their
performance, a problem that is more pronounced for actions implying horizon-
tal deck movements, such as temperature or the specific focus of this paper,
that is, seismic action. In IAB design, simplified models are often used, where
soil-structure interaction is modeled by means of beams on non-linear Win-
kler springs for the evaluation of seismic behavior. This paper, starting from an
existing non-linear dynamic model (NLDM) that describes IABs longitudinal
seismic response, derives two equivalent static models: one non-linear and the
other linear, for displacement- or force-based design respectively. A parametric
study is carried out to assess the static models performance in terms of the main
design internal actions versus the NLDM. Finally, the assessed model errors are
discussed in the context of partial factors safety format.

KEYWORDS
displacement-based design, performance-based design, soil-structure interaction, simplified
analysis, Winkler

1 INTRODUCTION

Integral abutment bridges (IABs) are defined as single or multiple span bridges in which the deck is monolithically con-
nected to the abutment walls. They are very popular due to their low initial and maintenance costs, partly due to the
absence of bearings and joints.1,2 Their development started in the 1960s in the United States of America and they were
later adopted in the UK and Europe. In terms of seismic performance this type of bridges has exhibited, in the past, better
response compared to traditional bridges: in particular, after the 1989 Loma Prieta and 1994 Northridge earthquakes in
California, after the 2010–2011 Canterbury seismic sequence and 2013 Lake Grassmere earthquake in New Zealand and
after the 2011 Tōhoku Earthquake in Japan.3–5 Despite these advantages, the main issue remains, that is dealing with the
soil-structure interaction of the abutment walls and the supporting piles under various loading condition, especially for
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seismic actions.6 Indeed, the mandate for the revision of the structural Eurocodes, specifically indicated seismic design of
IABs among the necessary extension of scope.
In an IAB the concept is to accommodate deck horizontal displacements (e.g., displacements caused by the expansion

and contraction due to seasonal temperature fluctuations) with the flexibility of the soil-foundation system rather than
with bridge expansion joints. Therefore, in IABs the piles are usually the most flexible elements and are expected to
accommodate the lateral movements.7 This flexibility is provided, usually, using a stub abutment supported by a single
row of driven piles or using a frame abutment supported by bored piles. In the long term, due to this cyclic deformations,
these bridges experience a buildup of lateral earth pressures on the abutments due to a soil-mechanics phenomenon
known as ratcheting.8 Due to this behavior and to limitations of the moment resisting structural scheme, the maximum
length of IABs is generally limited.9–11 Further, from the design point of view, evaluation of the pressure build-up and
of the associated internal forces is by no means a trivial task. These difficulties are even more relevant in the seismic
case, where for moderate and high seismicity the pressures and forces can be larger than those induced by the thermal
movements, dominating the design. For this reason, there is no widely accepted codified analysis method for the seismic
design of IABs.
This paper proposes two such practice- and code-oriented equivalent static methods. Section 2 summarizes a non-

linear dynamic model (NLDM) in which the soil-structure interaction is approximated by means of non-linear Winkler
subgrade, Section 3 presents simplified methods through equivalent static models, while Section 4 illustrates a parameter-
sensitivity analysis for the dynamic and the two equivalent static models. Based on this analysis, parameters are selected
for the parametric study reported in Section 5, where 5.3 compares the performance of the simplified methods with that of
the dynamic one and the prediction error of both models is assessed in terms of bias and coefficient of variation. Finally,
5.4 discusses how partial factors should incorporate these model errors.
Finally, it needs to be remarked how IAB construction practices differ from country to country. In this paper reference

is made to the Italian practice, where abutments are of the diaphragm-type, in general quite stiff, and when IABs have
multiple spans they are simply supported on sliding bearings over the intermediate piers. Californian practice, or, to
remain in Europe, the Slovenian one,12 have piers that frame into the deck,which is a concrete one. In such cases, piers and
abutments share the horizontal seismic action. The basic dynamics of the IAB, as determined from non-linear dynamic
analysis, does not change, but for themore simplifiedmethod, the equivalent linear one (Section 3.2), iterationmight need
to be introduced on the earth pressure distribution, for example, similarly to what is done by Vogt13 in order to achieve
consistency between displacements and the sharing of lateral reaction between piers and abutments. This load-sharing is
instead an outcome of the analysis in the non-linear static method.

2 NON-LINEAR DYNAMIC REFERENCEMODEL

In this model the non-linear dynamic behaviour of IABs under seismic action is described by means of non-linear shear
springs to account for the site-response in layered soil deposits (called soil-column elements) and non-linear Winkler
springs between structural and soil-column elements, to account for soil structure interaction (called interface elements).
This model was first proposed by Franchin and Pinto in 2014,14 later extended in Marchi 202215 and calibrated versus
high-fidelity FEM in Marchi et al. 2022.16 Figure 1 shows the model in its main components. The structural elements
are modeled as elastic linear, because the focus of the paper is models conceived for design and, according to the second
generation Eurocode 8,17 in this type of bridges structural damage should be prevented due to difficulty in the repair. Non-
linear elements can of course be used for structural members and have actually been used in response analysis carried for
higher than design intensities (see the risk assessment in Franchin et al.18).
The soil-column elements go from the model base at 𝑧 = −𝑧𝑏 up to the top of the embankment, at 𝑧 = 𝐻, in order to

model both the deposit site response and the embankment response. There are two soil columns (Figure 1 shows only
the right part because the model is symmetric with respect of the center line 𝑥 = 0) and their nodes, with the same depth
𝑧, are constrained to have the same horizontal displacements, while vertical displacements of the soil-column nodes are
zero. These elements can be considered decoupled from the rest of the model, since the area 𝐴𝑠, and therefore their mass
and stiffness are so large that they are not affected by the response of the rest of the system.
Soil-column elements (Figure 1C) have a Bouc-Wen constitutive law, as modified by Gerolymos and Gazetas in 200519

to approximate the horizontal non-linear shear behaviour of the soil deposit. This model is defined through the following
equations:
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F IGURE 1 NLDM. NLDM, non-linear dynamic model.

𝐹(𝑢) = 𝑘0 𝑢𝑦 𝜁(𝑡) (1)

𝜁(𝑡)

𝜕𝑡
= 𝜃

𝑢(𝑡)

𝑢𝑦

{
1 − |𝜁(𝑡)|𝑛[𝛾 + 𝛽

�̇�(𝑡) 𝜁(𝑡)|�̇�(𝑡) 𝜁(𝑡)|
]}

(2)

where the usual Bouc-Wen parameter 𝐴 = 𝛾 + 𝛽 is set to unity and the hardening slope ratio 𝛼 is set to zero.20 The 𝜃

function approximates soil degradation during plasticization and is defined as:

𝜃 =

⎧⎪⎨⎪⎩
𝑠1 + 𝛼(𝜇𝑟 − 1) + 𝑠2

𝑠1 + 𝜇𝑟
𝜇𝑟 > 𝑠2

1 𝜇𝑟 ≤ 𝑠2

(3)

where 𝑠1 is a dimensionless parameter that controls the stiffness degradation upon stress reversal, 𝑠2 is a characteris-
tic value of ”strain ductility” 𝜇 = 𝛾∕𝛾𝑦 beyond which the effect of 𝜃 multiplier on stiffness degradation is activated,
and 𝜇𝑟 is a reference strain ductility defined for every unloading or reloading cycle as the ratio of half the difference
in strain 𝛾 between two previous reversals over the reference strain 𝛾𝑦 . The constitutive parameters of this model (𝑛,
𝛾, 𝛽, 𝑠1, 𝑠2 and 𝛾𝑦) are taken from Drosos et al.21 as a function of soil type through the plasticity index and confine-
ment pressure 𝜎0 (spherical part of the stress tensor). Initial stiffness is 𝑘0 = 𝐺0(𝑧)𝐴𝑠∕Δ𝑧, where 𝐴𝑠 is the area of
soil-column elements (see Figure 1C),𝐺0 soil low-strain shearmodulus,Δ𝑧 the element height and𝑢𝑦 = 𝛾𝑦 Δ𝑧 the yielding
displacement.
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4 MARCHI and FRANCHIN

Seismicmotion is input to the base of the soil-columns through a velocity proportional force time series applied to linear
dampers that model the absorbing boundary at the model base toward incident shear waves,22 equal to:

𝑓(𝑡) = 𝑐𝑏 �̇�(𝑡, −𝑧𝑏) = [𝜌𝑏 𝑉𝑠,𝑏 𝐴𝑠(−𝑧𝑏)]
𝜕𝑢(𝑡, −𝑧𝑏)

𝜕𝑡
(4)

where 𝜌𝑏 and 𝑉𝑠,𝑏 are the mass density and shear wave velocity at the model base, respectively, while 𝐴𝑠(−𝑧𝑏) is the area
of the soil-column at its base. The function �̇�(𝑡, −𝑧𝑏) is equal to the outcrop soil horizontal velocity as described in Joyner
and Chen.23
The horizontal behaviour of the near soil between the abutments and the embankment sufficiently unaffected by the

bridge displacement, is approximated by means of non-linear Winkler springs called herein ”interface elements”. These
elements have an elastic perfectly plastic compression-only constitutive law, with non-symmetric strength and stiffness
to differentiate for active and passive condition (Figure 1A). The largest compression corresponds to the passive threshold
𝜎′

ℎ,𝑝
= 𝜎′

𝑣 𝐾𝑝. The maximum value (corresponding to the lowest compression) coincides with the active threshold 𝜎′
ℎ,𝑎

=

𝜎′
𝑣 𝐾𝑎. Active and passive conditions differ also in terms of stiffness, defined by the characteristic active and passive lengths

𝑙𝑎 and 𝑙𝑝 defined in the work of Becci and Nova.24

𝑙𝑎 =
2

3
min(𝐻 + 𝐿𝑝; 2𝐻) tan

(
45𝑜 −

𝜑

2

)
𝑘𝑎 =

1.2 𝐸𝑠

𝑙𝑎
𝐴𝑖(𝑧) (5)

𝑙𝑝 =
2

3
min(𝐿𝑝;𝐻) tan

(
45𝑜 +

𝜑

2

)
𝑘𝑝 =

1.2 𝐸𝑠

𝑙𝑝
𝐴𝑖(𝑧) (6)

The values for the active and passive coefficients (𝐾𝑎 and𝐾𝑝 respectively) are taken from the theory of Lancellotta25 which
account also for the friction angle 𝛿 between soil and structure (in first approximation this angle can be taken equal to
2∕3 𝜑′).
In this article IABs with more than one span are also presented. Despite all the configuration possible for the integral

abutments and the intermediate piers, the focus is on the Italian practice, where the abutments are reinforced concrete
(RC) walls on a row of drilled RC piles and the deck over the intermediate piers is simply supported. Given the particular
support configuration the piers are described as a simple support (nodes are constrained only in the 𝑧 direction).

2.1 Features of seismic response as assessed by dynamic model

The response of the dynamic model is shown in Figure 2 for the case of a single-span integral abutment highway overpass
analyzed in Marchi et al. 2022.16 The figure shows bending moments time series and displacement profile at the instant
of maximum moment at deck-abutments joints for one sample motion and in terms of mode shapes. As it can be seen,
because of the very similar static scheme to a moment resisting frame structure, the maximum bending moment on the
superstructure is exerted at the deck-abutments joints. While for the piles, the most stressed cross-section is the top one
(piles’ head). These two quantities, called herein 𝑀𝑗,𝑚𝑎𝑥 and 𝑀𝑝,𝑚𝑎𝑥 for the maximum bending moment at joints and
piles head respectively, are taken as the most relevant in the IAB design and are defined in the following equations:

𝑀𝑗,𝑚𝑎𝑥 = max
[|𝑀left joint(𝑡)|, |𝑀right joint(𝑡)|] (7)

𝑀𝑝,𝑚𝑎𝑥 = max
[|𝑀left piles(𝑡)|, |𝑀right piles(𝑡)|] (8)

The first mode of vibration coincides in shape and period with the first vibration mode of the soil deposit. This is
consistent with the fact that the column elements have a large enough mass and stiffness to be unaffected by the other
elements in the system. It should be noted, however, that this first mode does not impose the largest curvature at the deck-
abutments joints and piles’ head, a role played by higher modes. This is also shown in terms of frequency spectrum of the
system response inMarchi 2022.15 These highermodes are thosewhere the structuralmass leans against the embankment,
which reacts limiting the strain and therefore the internal forces in the structure.
Figure 3 illustrates this beneficial aspect of the embankment-abutment interaction by showing the ratio of themaximum

bending moments calculated with the embankments to those without the embankments for the two ground motions of
Parkfield andYamakoshi used inMarchi et al.16 The analysis is carried out varying the deck span length𝐿𝑑 and considering
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F IGURE 2 Sample dynamic model response: (A) bending moment time series at two locations; (B) bending moment (top) and
displacement (bottom) profiles at the time of maximum deck-abutment joint instant; (C) first three mode shapes (mode 2 is related to deck
vertical response).
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F IGURE 3 Ratio of the maximum bending moment at deck-abutment joints and at piles head (Equations (7) and (8)) obtained with and
without the embankments, varying the deck span 𝐿𝑑 .

again a single-span case for the sake of illustrating this point. The ratio is always lower than one for 𝑀𝑗,𝑚𝑎𝑥 and mostly
smaller than one for𝑀𝑝,𝑚𝑎𝑥. The results in Figure 3 are consistentwith simple considerations in terms ofmodal properties:
the systemwithout the embankments has longer periods (first mode is relatedmostly to the deposit) and these correspond
to larger spectral displacements and, thus, higher bending moments.
A further important proof of the main role played by higher modes in determining the response of IABs is shown in

Figure 4, which illustrates the horizontal absolute acceleration profile averaged over 10 natural motions, selected to be
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6 MARCHI and FRANCHIN
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F IGURE 4 Absolute acceleration profiles at time of𝑀𝑗,𝑚𝑎𝑥 for three suites of 10 ground motions each, representative of low, moderate
and high seismicity (A); plateau acceleration profiles normalized to the respective 𝑆𝛼 (C); earth pressure distributions at time of𝑀𝑗,𝑚𝑎𝑥 for the
side against which the bridge leans (D).

spectrum compatible with the design uniform hazard spectrum (𝑇𝑅 = 975 years, highway overpass) at the three Italian
sites of Milano, Napoli and L’Aquila used later in the parametric study of Section 5 (the motions are those in Figure 11,
the soil profile is always the same). Figure 4A shows a linear profile on the abutments for all cases. Panel (C) shows that
this profile, normalized to the plateau acceleration 𝑆𝛼, as assessed in the records ensembles at 𝑧 = 0, that is, including
amplitude in panel (B), has maximum value at deck level which is 1.6, 1.2, and 0.8 times 𝑆𝛼 for the low, moderate and high
seismicity respectively. This constant 𝑐 can be seen as the product of a participation factor Γ times the modal ordinate 𝜙 in
the assumption that a single mode dominates the response. It is noted for later use how the ratio �̈�(𝑧 = 𝐻)∕𝑆𝛼 decreases
with seismic intensity and is on average 1.0 for moderate and high seismicity sites (Naples and L’Aquila). This constant 𝑐
is also, on average, equal to 0.25 on the abutment bottom section. Figure 4D finally shows the last important output from
the dynamic analyses, that is, earth pressure distributions for the 10 ground motions, at each intensity, at the respective
time of𝑀𝑗,𝑚𝑎𝑥, and the corresponding average profiles. The shape of these distributions inspires the proposed linear static
method in Section 3.2.

2.2 Scope of application

The models presented in this paper (dynamic model in Section 2 and static models in Section 3) describe only the longi-
tudinal seismic response of straight IABs. Since these bridges are mainly used, due to the structural scheme, for medium
and small span bridges like overpasses, the effect of the skew angle must be assessed
To assess the dependency on the skew angle, an extension to 3D of the NLDM presented in Marchi 202215 is employed.

The deck is modeled through a grillage to account for its spatial behavior in particular, the mass distribution and asso-
ciated rotational inertia in the deck plane, as well as distributed contact between wall and backfill (the main feature
of the dynamic behaviour of skewed bridges is the coupling of the deck in-plane translations and rotations, leading to
non-uniform contact pressures). The transversal relative displacements between the embankment and the abutment are
modeled through linear elastic spring with stiffness equal to a simple shear model for the embankment wedge although
it is common to disregard the tangential component of the response in the modeling of skew bridges, see for example,
Kaviani et al.26 The model is used to perform dynamic analyses for two return periods (𝑇𝑅 = 100 years and 𝑇𝑅 = 1000

years) for the site of L’Aquila, with 20 ground motions in each case.
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F IGURE 5 Ratio between the maximum bending moment of a skewed and non-skew (𝜗 = 0) IAB for 𝑇𝑅 = 100 years. (A)
deck-abutment joints; (B) piles’ head. IAB, Integral abutment bridge.
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F IGURE 6 Ratio between the maximum bending moment of a skewed and non-skew (𝜗 = 0) IAB for 𝑇𝑅 = 1000 years. (A)
deck-abutment joints; (B) piles’ head. IAB, Integral abutment bridge.

Figures 5 and 6 show the results in terms of 𝑀𝑗,𝑚𝑎𝑥 and 𝑀𝑝,𝑚𝑎𝑥, defined in Equations (7) and (8), normalized with
respect to the correspondent maximum moments for a skew angle 𝜗 equal to zero. The results show that the bending
moment at the piles head is the response quantity most sensitive to the skew angle 𝜗. It increases, on average, about 20%
with respect to the case 𝜗 = 0 for a skew angle of about 20◦. This is due in part to the torsional moment on the abutment,
caused by the bridge skewness and the horizontal earth pressure, transferred to the piles row. The deck-abutmentmoment,
on the contrary, increases for the same skew angle only about 10% (Figure 5A). For the higher seismic intensity (Figure 6A)
the effect of skew on 𝑀𝑗,𝑚𝑎𝑥 is even less pronounced. Therefore it can be stated, from the result of these preliminary
analyses, that themodels presented in this paper for straight IABs can still be applied to integral bridgeswith skew angles𝜗
up to 20◦ (a threshold forwhich skewness is often disregarded also in international guidelines, see for exampleCALTRANS
seismic design criteria 201927).
It should be specified that the three-dimensional model, developed as an extension of the two-dimensional one, as

opposed to the latter, has not been validated against a higher-order model. However, since the results obtained in terms
of the maximum skew angle allowed agree with what is stated by international design codes and applicability restrictions
of these bridges, the result of these analyses is evaluated as informative.

3 EQUIVALENT STATICMODELS

Staticmodels are based on the idea of representing the system in the configurationwhere themaximum internal forces are
attained. In particular, a non-linear staticmodel (NLSM) that presents the same deformed state as the complete system and
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F IGURE 8 LSM: (A) structural inertia forces, (B) bilinear pressure distribution. LSM, linear static model.

a linear static model (LSM) that presents equivalent earth pressure distributions as the NLDM at the instant of maximum
bending moments are developed. The concept behind both models is that the bridge, due to the inertia forces, displaces
against the embankments that restrain its motion and that occurs in frequencies around those of the first higher modes,
as shown in Figures 2 to 4.
To reduce a dynamic model into an equivalent static one it is necessary to introduce explicitly the inertia forces on the

structural elements. In the proposed static models this action is assumed as a horizontal distributed load equal to the
distributed mass multiplied by the plateau acceleration 𝑆𝛼 of the design spectrum for the deck and trapezoidal between
0.25 𝑆𝛼∕𝑔 𝑤𝑎𝑏𝑢𝑡. and 𝑆𝛼∕𝑔 𝑤𝑎𝑏𝑢𝑡. for the abutments (according to Figures 4C, 7 and 8).
Both the static models are derived from a truncation of the complete system at the piles head (non-linear soil elements

of NLDM with 𝑧 < 0 are removed). To have the same behaviour in the truncated model as in the complete one, static
impedances from literature28,29 are inserted to account for the removed elements. Static impedances of a single foundation
pile (figure A1), are given for a constant and a parabolic stiffness (𝐸𝑠 = const and 𝐸𝑠 = �̃�𝑠

√
�̃�∕𝑑 where �̃� is the depth

positive downwards) profile as:

constant: 𝐾𝐻𝐻 ≃ 1.00 𝐸𝑠 𝐷

(
𝐸𝑝

𝐸𝑠

)0.21

𝐾𝑀𝑀 ≃ 0.15 𝐸𝑠 𝐷3

(
𝐸𝑝

𝐸𝑠

)0.75

𝐾𝐻𝑀 ≃ 0.22 𝐸𝑠 𝐷2

(
𝐸𝑝

𝐸𝑠

)0.50

(9)
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MARCHI and FRANCHIN 9

parabolic: 𝐾𝐻𝐻 ≃ 0.80 �̃�𝑠 𝐷

(
𝐸𝑝

�̃�𝑠

)0.28

𝐾𝑀𝑀 ≃ 0.15 �̃�𝑠 𝐷3

(
𝐸𝑝

�̃�𝑠

)0.77

𝐾𝐻𝑀 ≃ 0.24 �̃�𝑠 𝐷2

(
𝐸𝑝

�̃�𝑠

)0.53

(10)

where 𝐾𝐻𝐻 is the pile horizontal stiffness, 𝐾𝑀𝑀 the flexural stiffness, and 𝐾𝑀𝐻 = 𝐾𝐻𝑀 the stiffness of the two coupled
degrees of freedom (rocking). 𝐸𝑠 is the Young’s modulus of the soil, 𝐸𝑝 that of the pile, and 𝐷 the diameter of the pile.
The limitations of considering these approximate impedances’ expressions lie both in the fact that: (a) in general they only
approximately correspond to the actual stiffness variation of the real stratigraphic profile of the deposit, through simplified
analytical variations; (b) they do not depend on frequency.
Another important limitation is that group effects are not considered. In fact, static impedances are simply multiplied

by the piles number 𝑛𝑝 to obtain group impedances. Appendix A presents a simple implementation of static impedances
by means of basic finite elements. Finally, it should be emphasized how the use of code-supplied static impedances is
likely the largest approximation in both the equivalent static methods, but it is a choice consistent with the anticipated
use of the proposed models by practitioners. Clearly the use of more refined formulations for the foundation impedances
(not considered herein) would lead to a better match in the piles’ bending moments.
Removing the soil-column elements, which incorporate the site-response analysis in the dynamic model, the action

(inertia forces on the deck and abutments) is taken either from a code-based response spectrum for the appropriate soil
category or from a 1D seismic response analysis for a given set of ground motions.

3.1 Non-linear static model

In this model the non-linearity is lumped in the interface elements between structure and embankments (Figure 7A).
Stress resultants on the structure are calculated through the deformations of the bridge and the interface soil
elements reactions.
In commercial finite-element software (such as, e.g., SAP2000) piece-wise linear constitutive laws that do not pass

through zero cannot be defined and this might be a problem in the interface element definition. The constitutive law is
thus “translated” upwards (see Figure 7B) by extrapolating the contribution of the horizontal stress at rest given by the
weight of the embankment on the soil column 𝐹0(𝑧) = 𝜎′

𝑣(𝑧) 𝐾0(𝑧) 𝐴𝑖(𝑧), where 𝜎′
𝑣(𝑧) is the vertical effective stress on

the soil due only to the embankment weight and 𝐾0(𝑧) the at-rest earth pressure coefficient at depth 𝑧.

3.2 Linear static model

The LSM includes only the structural elements and the foundation static impedances described previously (Figure 8).
Soil-structure interaction at the abutment walls is considered through appropriate earth pressure distributions on
the abutments.
Due to the relatively small total length of IABs, the longitudinal displacements at the two deck-abutments joints can be

assumed equal, therefore while one side attains the active pressure the other (the one towards which the bridge is displac-
ing) has a pressure distribution which is intermediate between the at-rest and the passive state. The pressure distribution
is conceived to replicate the qualitative shape of the profiles obtained from the NLDM at different intensities shown in
Figure 4D which can be approximated as bilinear, passive up to a certain depth and than constant. Analytically, it can be
expressed as:

𝜎𝑝,𝑚𝑜𝑏(𝜁) =

{
𝐾𝑝 𝛾 𝜁 𝜁 ≤ Δ𝐻

𝐾𝑝 𝛾 Δ𝐻 𝜁 > Δ𝐻
(11)

where the symbols are defined in Figure 8

Δ𝐻 = 𝑐 𝛼 𝐻 with 𝛼 =
𝑆𝛼(𝑤𝑑𝑒𝑐𝑘𝐿𝑡𝑜𝑡 + 2𝑤𝑎𝑏𝑢𝑡𝐻)

1

2
𝑔 𝛾 𝐻2 𝐾𝑝 𝐵

(12)

where 𝑤𝑑𝑒𝑐𝑘 and 𝑤𝑎𝑏𝑢𝑡 are the weight per unit length of the deck and the abutments, respectively, 𝐿𝑡𝑜𝑡 is the deck total
length,𝐻 the abutments height, 𝛾 and𝐾𝑝 the embankment unit weight and passive earth pressure coefficient,𝐵 abutment
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10 MARCHI and FRANCHIN

width (in the direction normal to the 𝑥–𝑧 plane). The constant 𝑐 depends on the number of spans: for IABswith single span
𝑐 = 0.58, for the two-span case 𝑐 = 0.65; for the three-span case 𝑐 = 0.59. These values are found with a wider parametric
study against the NLSM, where all 18 parameters are varied in an extended domain compared to the values listed in
Figure 9. Note that Equation (11) refers to a homogeneous embankment in terms of geotechnical parameters.
Note that 𝛼 has an approximate physical interpretation as the ratio of the structural inertia forces to the resultant of

passive pressure distribution developed over the full abutment height. Δ𝐻 must obviously increase with increasing 𝛼 ans
𝑐 regulates the amount of inertia forces that is resisted by the abutment wall ans the soil behind it and that exerted by
the foundations. In particular, the proportion going to the abutment is 1−(1−𝑐 𝛼)2

𝛼
. In the following the value 0.6, inter-

mediate for one, two and three-span structures is used, but a value of 𝑐 = 0.5 could be used to avoid under-designing
the foundations.
Initially, the model was conceived with a different earth pressure distribution 𝜎𝑝,𝑚𝑜𝑏 which led to an iterative scheme

to the evaluation of the model, because it depended on the horizontal displacements of the abutment.13 Moreover, the
previous definition led to a worse performance compared to the bilinear distribution described above despite always in
favor of safety (the median of the ratio between the bending moments calculated with the old LSM and the one calculated
with the NLDM was always higher than unity).

4 SENSITIVITY ANALYSIS

A sensitivity analysis has been carried out for the dynamic and the static models to evaluate the parameters with larger
influence on the maximum bending moments 𝑀𝑗,𝑚𝑎𝑥 and 𝑀𝑝,𝑚𝑎𝑥. The candidate parameters considered are: the deck
span length 𝐿𝑑 and width 𝐵, the abutment height𝐻 and thickness 𝑡𝑎, , piles diameter𝐷 and length 𝐿𝑝, bedrock depth and
damper coefficient 𝑧𝑏 and 𝑐𝑏, soil unit weight 𝛾, internal friction angle 𝜑′ and small-strain shear modulus 𝐺0, horizontal
plateau spectral acceleration 𝑆𝛼. The method by Morris used for this analysis indicates qualitatively the most influential
parameters and it also gives an indication of the interaction between parameters.30 It consists of the evaluation of the so
called elementary effects associated with 𝑖-th parameter and 𝑗-th path 𝐸𝐸

(𝑗)

𝑖
, which are similar to a numerical approxima-

tion of the partial derivatives (tangents) of the target function with respect to the 𝑖-th input parameter, normalized to the
“secant” 𝑓(𝐱

(𝑗)

𝑖
)∕𝐱

(𝑗)

𝑖
:

𝐸𝐸
(𝑗)

𝑖
=

𝑓
(
𝐱

(𝑗)

𝑖

)
− 𝑓

(
𝐱

(𝑗)

𝑖−1

)
Δ𝑖

⎛⎜⎜⎝
𝑥

(𝑗)

𝑖

𝑓
(
𝐱(𝑗)

)⎞⎟⎟⎠ (13)

where 𝐱
(𝑗)

𝑖
= 𝐱

(𝑗)

𝑖−1
+ Δ𝑖𝐞𝑖 is the value of the parameters’ vector at the step in the 𝑗-th path taken in the 𝑖-th direction, a step

of size Δ𝑖 related to the 𝑖-th variable and kept constant across all paths, while 𝐱
(𝑗)

𝑖−1
is the value of the parameters’ vector

at the end of the previous step. Paths are random sequences of 𝑛 steps, with a single step taken for each of the 𝑛 variables
in the parameters’ vector, in random order and starting at any random feasible point. The mean of the elementary effects
over these 𝑁 paths is approximately proportional to the parameter importance, while their standard deviation is related
to the interaction between parameters. Morris method is used due to its good performance and because it needs fewer
model evaluation compared to others, such as, for example, Sobol31 and other variance-basedmethods. The comparatively
smaller effort is relevant when models (like the dynamic model in Section 2, are costly to evaluate). Table 1 shows the
results in terms of themean absolute value of the elementary effects𝜇∗

𝑖
=

1

𝑁

∑𝑁

𝑗=1
|𝐸𝐸

(𝑗)

𝑖
| and their standard deviation𝜎𝑖 =√

1

𝑁−1

∑𝑁

𝑗=1
(𝐸𝐸

(𝑗)

𝑖
− 𝜇𝑖)2 where 𝜇𝑖 =

1

𝑁

∑𝑁

𝑗=1
𝐸𝐸

(𝑗)

𝑖
is the arithmetic mean of the elementary effects of the 𝑖-th parameter

over all the 𝑁 samples.32
Bold values indicate the first four most important parameters (higher 𝜇∗): the first in the dynamic and static mod-

els, is deck length 𝐿𝑑. The abutment thickness 𝑡𝑎 is also the second most relevant parameter while static models are
affected also by the plateau spectral acceleration 𝑆𝛼. This sensitivity of both dynamic and static models is partially
caused by the sensibility of the model response to the ratio between the deck and the piles-abutments flexural stiff-
ness (in fact also the piles diameter 𝐷, which concur in the evaluation of the piles horizontal stiffness, has a high value
of 𝜇∗). The dynamic model seems to be insensible to the soil and bedrock parameters 𝑧𝑏, 𝛾, 𝜑′, 𝑐𝑏, and 𝐺0 and this
is consistent with the observation that the model response is not governed by the first mode (first soil-deposit mode)
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12 MARCHI and FRANCHIN

TABLE 1 Sensitivity analysis results using Morris method.33 Models output is calculated in terms of maximum bending moments at
deck-abutment joints𝑀𝑗,𝑚𝑎𝑥 and at piles head𝑀𝑝,𝑚𝑎𝑥 .

𝑴𝒋,𝒎𝒂𝒙 𝑴𝒑,𝒎𝒂𝒙

NLDM NLSM LSM NLDM NLSM LSM
param. 𝝁∗ 𝝈 𝝁∗ 𝝈 𝝁∗ 𝝈 𝝁∗ 𝝈 𝝁∗ 𝝈 𝝁∗ 𝝈

𝐿𝑑 1.84 0.61 1.77 0.11 1.76 0.12 0.92 0.09 0.82 0.98 1.39 1.59
𝐵 0.08 0.05 0.04 0.05 0.10 0.13 0.29 0.06 0.33 0.40 0.46 0.48
𝐻 0.10 0.04 0.05 0.05 0.21 0.10 1.52 0.82 1.13 1.22 1.76 1.75
𝑡𝑎 0.14 0.20 0.23 0.07 0.14 0.15 0.64 0.43 0.47 0.42 0.51 0.48
𝐿𝑝 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝐷 0.11 0.50 0.11 0.07 0.16 0.05 1.82 1.32 1.82 0.37 1.34 0.33
𝑧𝑏 0.09 0.04 – – – – 0.18 0.01 – – – –
𝑐𝑏 0.08 0.37 – – – – 0.21 0.16 – – – –
𝛾 0.05 0.09 – – – – 0.00 0.03 – – – –
𝜑′ 0.04 0.00 – – – – 0.11 0.01 – – – –
𝐺0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.08 0.00 0.00
𝑆𝛼 – – 0.32 0.12 0.31 0.14 – – 0.99 0.41 1.22 0.75

Abbreviations: LSM, linear static model; NLDM, non-linear dynamic model; NLSM, non-linear static model.

0 2 4 6 8

105

-80

-60

-40

-20

0
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F IGURE 10 Soil profiles in terms of elastic modulus 𝐸𝑠 and the fitted profile for the evaluation of the static impedances28 for the three
Italian sites of Milano, Napoli, and L’Aquila.

which depends on the deposit thickness 𝑧𝑏, its unit weight 𝛾 and shear modulus 𝐺0. From Table 1 emerges that the
most important parameters to include in the parametric study are: structural dimensions 𝐿𝑑, 𝐻 and 𝑡𝑎; soil properties
(despite the low sensitivity cannot be ignored); pile diameter 𝐷. Abutment thickness 𝑡𝑎 can be defined as function of 𝐿𝑑,
𝐻 and number of spans, while 𝐷 can be considered equal to 1.2 m for the piles used in typical bridges foundations in
Italy.

5 PARAMETRIC STUDY

To validate of the proposed static models, a parametric analysis was performed to cover a representative range of integral
abutment overpasses in terms of number of spans, main span length 𝐿𝑑 (when there are three spans the side ones have
length equal to 𝐿𝑑∕2), abutment height 𝐻 and soil profile. All the cases are listed in Figure 9 and the parameters values
were chosen to be representative of typical integral abutment solutions proposed for Italian highway overpasses.34 Soil
profiles used are characteristic for the sites of Milano, Napoli, and L’Aquila, taken as representative of low, moderate, and
high seismicity, respectively, for the Italian territory.18 For the definition of the static impedances used in the staticmodel,28
the parabolic profiles for soils 1 and 3 and the constant profile for soil 2 were taken; as shown in Figure 10. Note that the
impedance profiles (in black) are fitted only in the shallow part of the profile; for a depth equal to the piles length 𝐿𝑝.
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F IGURE 11 Target spectrum (black) and selected ground motions spectra (grey) with their average (red).

TABLE 2 Plateau acceleration for the three sites and three intensities considered before (italics) and after the site-response analysis for
the three soil profiles.

MI NA AQ
𝑆𝛼,𝑏𝑒𝑑𝑟𝑜𝑐𝑘 0.17 0.53 0.82
Soil 1 (MI) 0.31 0.99 1.49
Soil 2 (NA) 0.21 0.71 1.17
Soil 3 (AQ) 0.29 0.99 1.56

Note: Values are expressed in 𝑔.

5.1 Seismic input

Seismic groundmotionswere selected tomatch the Italian code spectra for three seismic intensity levels (low,mediumand
high characterized by a PGA of 0.1, 0.2 and 0.35 g respectively) on rock/stiff soil at each of the three sites. For the purpose
of static analyses, that is, in order to determine 𝑆𝛼 at the bridge level (𝑧 = 0), these groundmotions have been used as input
to one-dimensional site response analysis with the chosen profiles without the embankments. The acceleration spectra of
the selected GMs, together with their average spectrum, are compared to the code target spectrum in Figure 11. The code
spectra refer to a return period 𝑇𝑅 of 975 years, appropriate for highway overpasses, on rock (soil A according to Eurocodes
classification). The return period of 975 years is chosen in accordance with the Italian code for the life-safe limit state of
highway structures (higher than ordinary importance), that is, with an exceeding probability of 10% in 100 years (in place
of the usual 50 years).
Table 2 lists the values of the plateau acceleration 𝑆𝛼 for the three sites and the three intensities. The first row reports

𝑆𝛼,𝑏𝑒𝑑𝑟𝑜𝑐𝑘, which is the value on rock/stiff soil, that is, the value from the target spectra used inGMselection (Figure 11). The
remaining three rows report the average of the spectral acceleration values obtained after site-response analysis for each
of the selected ground motion. The average is performed over the range of periods [𝑇𝐵, 𝑇𝐶] of the target code spectrum,
and it is thus the best estimate of 𝑆𝛼 at the surface, that is, the value to be used for static analysis.

5.2 Modal properties from the dynamic model

Figure 12 shows the vibration periods of the first 10 modes calculated using the NLDM. As it can be seen, apart from the
period of the first mode, which correspond to the fundamental soil deposit mode, higher ones fall within the [𝑇𝐵, 𝑇𝐶]

range of periods at which plateau acceleration occurs for the target spectra used in input ground motions selection (i.e.,
𝑇𝑖 ∈ [0.1 s,0.35 s] for 𝑖 = 2, 3, 4, 5). Since the structural response of this type of bridges is more influenced by the higher
modes, as pointed out previously, this corroborates the proposal of using 𝑆𝛼 in the static methods.

5.3 Comparison of internal forces

Figure 13 and Figure 14 shows the relationships between the maximum bending moment at deck-abutment joints (abut-
ment top cross-section)𝑀𝑗,𝑚𝑎𝑥 and themaximumbendingmoment at piles head (abutment bottom cross-section)𝑀𝑝,𝑚𝑎𝑥
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14 MARCHI and FRANCHIN
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1 F IGURE 1 2 Modal properties of the NLDM.
Plateau range of periods between [𝑇𝐵, 𝑇𝐶] of the target
spectra of Figure 11 are indicated with shaded area.
NLDM, non-linear dynamic model.
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F IGURE 13 Comparison between NLDM and NLSM in terms of bending moment at abutment top cross-section𝑀𝑗,𝑚𝑎𝑥 and at piles
head𝑀𝑝,𝑚𝑎𝑥 . NLDM, non-linear dynamic model; NLSM, non-linear static model.
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F IGURE 14 Comparison between NLDM and LSM in terms of bending moment at abutment top cross-section𝑀𝑗,𝑚𝑎𝑥 and at piles head
𝑀𝑝,𝑚𝑎𝑥 . LSM, linear static model; NLDM, non-linear dynamic model.
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MARCHI and FRANCHIN 15

TABLE 3 Statistic comparison of the ratio between static and dynamic models response in terms of maximum bending moment.

Model Section Median 𝐂𝐕 Correlation
NLSM Joint 1.00 0.16 0.96
NLSM Piles 0.90 0.24 0.94
LSM Joint 0.96 0.18 0.95
LSM Piles 0.82 0.33 0.91

Abbreviations: LSM, linear static model; NLSM, non-linear static model.

obtained using the dynamic model (NLDM) and static models (NLSM and LSM) over all cases listed in Figure 9. The
figures shows on the abscissae the dynamic model results and, on the ordinates, those computed via static models. The
1:1 line indicates a perfect agreement between the models in terms of response parameter𝑀𝑗,𝑚𝑎𝑥 and𝑀𝑝,𝑚𝑎𝑥. Red, black
and blue markers are associated with the seismic intensity level. For the two and three span cases, since the intermediate
piers are simply supported, the nodes over the piers are constrained only in the 𝑧 direction displacement.
As it can be seen fromFigures 13 and 14 there is a goodmatch between dynamic and staticmodels for both themaximum

bending moments on the deck-abutment joints and at the piles head. Table 3 shows the statistical parameters of the
ratio𝑀static model∕𝑀dynamic model. 𝐶𝑉 is the coefficient of variation and the correlation is calculated between dynamic and
static model results by the Pearson correlation coefficient 𝜌𝑋𝑌 = 𝐶𝑂𝑉(𝑋,𝑌)∕(𝜎𝑋 𝜎𝑌)where 𝐶𝑂𝑉(𝑋,𝑌) is the covariance
between 𝑋 and 𝑌 and 𝜎𝑋 , 𝜎𝑌 are the two standard deviations.
Linear static method is characterized by a coarser approximation compared to the other two models due to the static

impedance definition and approximated earth pressure. In fact the influence of the base impedance approximation in
LSM is higher due to the absence of the soil interfaces.

5.4 Partial safety factor to account for modeling uncertainty

The parametric study covers different intensities, number and length of spans, abutment heights and, finally, soil profiles.
The characterization of the median and coefficient of variation of the ratio of simplified-to-reference model response over
all these cases supports calibration of a lognormal model error term Θ. The latter can be employed to establish values for
a partial safety factor to be used in design.35
In general terms, a load-side and a resistance-side partial factors should be used in limit-state design, including the

seismic one. The former factor, 𝛾𝐸𝑑, applied to the representative value of the action-effect yields its design value, 𝐸𝑑, and
the latter, 𝛾𝑅𝑑, applied to the representative value of resistance provides its design value, 𝑅𝑑. As pointed out in Franchin
and Noto,36 however, design to EN199817 does not include a load-side factor on the seismic action effect, unlike those used
on permanent (dead) and variable (live, wind or snow) load effects, 𝛾𝐺 and 𝛾𝑄, for the corresponding design. For this
reason, a single resistance-side partial safety factor was proposed therein to account for the total uncertainty. In princi-
ple, all simplified design methods, including, for example, modal response spectrum analysis or equivalent linear static
analysis, should be characterized with a model error, in a way similar to what was done in the previous section for the
proposed analysis methods, that is, comparing predicted action effects with those obtained from a reference higher-level
method (non-linear dynamic for the seismic case, possibly on a reliable model, like the one calibrated versus even higher
order FEM in this case). Since this is not done consistently over all methods, it cannot be proposed only for the methods
presented herein, since it would unjustifiably introduce a penalization in the design process of otherwise robust and well-
performing structures such as IABs. But just to make the point, with the information in the previous section, and data
from Franchin and Noto,36 a load-side factor for the seismic action effects, for example, the deck-abutment joint and piles’
head moments𝑀𝑗 and𝑀𝑝, can be derived in the form:

𝛾𝐸𝑑 = exp
(
𝛼2

𝐸 𝛽𝑡𝑔𝑡 𝜎𝑇

)
exp (−𝜅𝐸 𝜎𝐸) (14)

where 𝛼𝐸 is the action-effect sensitivity factor, 𝛽𝑡𝑔𝑡 is the target reliability index in the reference period and for the consid-
ered limit state,37 𝜅𝐸 is the number of logarithmic standard deviations from the log-mean of the action-effect fractile 𝐸𝑘,
function of the corresponding number of log-standard deviations for the seismic action intensity for the considered LS,
𝑆𝑘, denoted as 𝜅𝑆 . Terms 𝜎𝑇 and 𝜎𝐸 are the total and the action effect logarithmic standard deviations, respectively, given
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16 MARCHI and FRANCHIN

by:

𝜎𝑇 =

√
𝜎2

𝐸 + 𝜎2
𝑅 (15)

with 𝜎𝑅 the log-standard deviation of the resistance, and:

𝜎𝐸 =
√

𝜎2
𝑆
+ 𝜎2

𝐸|𝑆 (16)

In the last equation,𝜎𝑆 and𝜎𝐸|𝑆 represent the uncertainty in the seismic action intensitymeasure, for example, the spectral
acceleration at the fundamental period, 𝑆𝑎(𝑇1), and the so-called record-to-record variability, that is, the uncertainty in
the effect 𝐸 conditional on 𝑆𝑎(𝑇1). The uncertainty 𝜎𝑆 is related to the hazard slope and therefore to the considered
spectral ordinate and seismicity of the site, varying between about 0.5 and 1.0.36 The record-to-record variability can be
safely assumed to be constant and about 0.3 (Cornell et al., 200238). Overall, 𝜎𝐸 varies between about 0.6 and 1.1. The
corresponding uncertainty on resistance depends on the considered failure mode and severity of damage (i.e., LS) and
varies between about 0.2 and 0.5.
Using the average value 𝛼𝐸 = −0.91, appropriate for the seismic design situation36; a value of 𝛽𝑡𝑔𝑡 = 1.76 for the reli-

ability index in 50 years, appropriate for the design of highway bridge structures (consequence class, or CC, 3a in the
Eurocode) at the significant damage or life safety LS,17,37 and the corresponding return period of the seismic action of
𝑇𝑅 = 600 years1, that is, 𝜅𝑆 = 1.4 and therefore 𝜅𝐸 = 1.3; values of 𝜎𝐸 = 0.85 and 𝜎𝑅 = 0.35, finally yields 𝛾𝐸𝑑 = 1.26.
The additional contribution of the lognormal model error Θ due to the equivalent static method of analysis modifies

the previous expressions in:

𝜎𝐸 =
√

𝜎2
𝑆
+ 𝜎2

𝐸|𝑆 + 𝜎2
Θ

(17)

𝛾𝐸𝑑 =
exp

(
𝛼2

𝐸 𝛽𝑡𝑔𝑡 𝜎𝑇

)
exp (−𝜅𝐸 𝜎𝐸)

𝜇Θ
(18)

Using the values for the NLSM from Table 3, 𝜇Θ = 1.0 and 𝜎Θ = 0.16 (for the latter the log-standard deviation is taken
equal to the coefficient of variation) for the deck-abutment joint and 𝜇Θ = 0.9 and 𝜎Θ = 0.24 for the piles’ head, provides
𝜎𝐸 = 0.87 and𝜎𝐸 = 0.88 leading to negligible differences in 𝛾𝐸𝑑. The only casewhere considering themodel errorwould be
needed is that of the linear static model, at the piles’ head, where 𝜇Θ = 0.82 and 𝜎Θ = 0.33, leading to 𝜎𝐸 = 0.92 and 𝛾𝐸𝑑 =

1.42 > 1.26, which amounts to a 13% increase in action effect. In can be concluded that using the proposed equivalent
NLSM does not require any specific precaution with respect to safety margins, and that the linear static one can be used
by increasing the piles’ head moment from analysis.

6 CONCLUSIONS

This paper presented two simplified design-oriented methods to analyze the longitudinal seismic response of IABs: both
are equivalent static methods, one non-linear and the other linear. The starting point for these proposals is the observation
of IAB’s response from a NLDM, previously developed by the authors. The main aspect of the dynamic response, as high-
lighted by this model (which has been at least compared with high-fidelity non-linear dynamic FEM), are that the larger
structural deformation and, thus, internal forces, develop due to higher modes which are structure-embankment modes.
Analysis of the acceleration profiles and earth pressure distributions led to the proposal of equivalent lateral forces, for
both methods, and of the pressure distribution for the linear one.
Analysis of the three-dimensional version of the NLDM for increasing skew angles allowed to define the scope of

application of the proposed methods, which can be used up to the commonly adopted limit of 20◦.
Sensitivity analysis has also been carried out to determine for all three models the most relevant parameters and set up

a parametric study to compare the response, in terms of design internal forces, from the simplified static methods and the
reference dynamic one. This resulted in a total of 30 cases, including single-, two- and three-span cases; low, moderate

1 Note that in this discussion the return period for highway overpasses, still considered more important than ordinary structures (CC3a rather than CC2)
is set to 600 years according the second generation Eurocode 8 Part 1-1, whereas comparison of results of equivalent static and dynamic analyses was
carried out for 975 years (Italian code). This has no influence on the conclusions.
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MARCHI and FRANCHIN 17

and high seismicity; three different non-homogeneous soil profiles and varying abutment height and span lengths. The
results of this study led to model error characterization in terms of bias (small) and coefficient of variation (smaller for
the non-linear method, as expected). This additional model uncertainty is then considered in terms of its incremental
effect with respect to other components of the total uncertainty, such as the uncertainty in the intensity measure and the
record-to-record variability, leading to the conclusion that the proposed methods can be employed in practice without the
need for specificmodifications to the safety format. Future research on design-orientedmethods could focus on simplified
procedures to account for thermal moments and their combination with seismic ones.
Finally, it is once again remarked that even though the IAB configurations considered are representative of Italian prac-

tice, whereby abutments are of the strong diaphragm type, decks are mostly composite steel-concrete ones, and supported
on sliding bearings over the intermediate piers, the non-linear static method is applicable as is also in the case of piers
framing into a concrete deck, or in any case restraining it against lateral movements, thus taking part in the lateral-load
resisting mechanism.
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APPENDIX: STATIC IMPEDANCESMODELING IN FINITE ELEMENT SOFTWARE
The static impedances used to discretize the behaviour of piles and the surrounding soil interacting with them in static
analysis methods described in Section 3 can be modeled in various ways into finite element software. Impedances are
linear elastic elements in which the stiffness is defined through a matrix since there are coupling components between
the translational and rotational degree of freedoms. Since for the piles the behaviour is mainly coupled in the horizontal
component, the static impedances are defined through the system of equations outlined in Figure A1.
Decoupled from thehorizontal-rotational behaviour (𝑢 − 𝜙) is also present the vertical one, defined through the stiffness

𝐾𝑣𝑣. The values of the impedances 𝐾ℎℎ, 𝐾𝑚𝑚 and 𝐾ℎ𝑚 are defined, for example, in the work of Gazetas.28 The evaluation
of the stiffness 𝐾𝑣𝑣 is more complicated, since it is related to the vertical deformability of the soil-pile system, which
depends on the friction between the lateral surface of the piles and the deformability of the soil under the piles tip. In
the commercial software SAP2000 it’s possible to define elements with coupled stiffnesses in various degrees of freedom,
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while in other finite element software, like OpenSees (to date), this is not possible. In Figure A1 an equivalent system that
can be used to model static impedances with springs and linear elastic beam elements is outlined.
The system of equations governing this structural scheme is:

[
𝐹

𝑀

]
=

⎡⎢⎢⎢⎢⎣
3𝑘𝑓

𝐿3

3𝑘𝑓

𝐿2

3𝑘𝑓

𝐿2

3𝑘𝑓

𝐿
+ 𝑘𝑚

⎤⎥⎥⎥⎥⎦
[
𝑢

𝜑

]
Parameters:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑘𝑓 =
𝐾3

ℎ𝑚

3𝐾2
ℎℎ

𝑘𝑚 = 𝐾𝑚𝑚 −
𝐾2

ℎ𝑚

𝐾ℎℎ

𝐿 =
𝐾ℎ𝑚

𝐾ℎℎ

(A1)

Where 𝑘𝑓 is the flexural stiffness of the Euler-Bernoulli beam element, 𝐿 its length and 𝑘𝑚 the stiffness of the rotational
spring (see Figure A1). Note that without the rotational spring, the system is ill-conditioned and is characterized by only
two parameters instead of three (there must be three parameters to correlate with the three static impedances 𝐾ℎℎ, 𝐾𝑚𝑚,
and 𝐾ℎ𝑚).
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