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Monitor, anticipate, respond, and learn: developing and interpreting a 

multilayer social network of resilience abilities 

Abstract 

Resilient performance is influenced by social interactions of several types, which may be 

analysed as layers of interwoven networks. The combination of these layers gives rise to 

a “network of networks”, also known as a multilayer network. This study presents an 

approach to develop and interpret multilayer networks in light of resilience engineering. 

Layers correspond to the four abilities of resilient systems: monitor, anticipate, respond, 

and learn. The proposal is applied in a 34-bed intensive care unit. To map relationships 

between actors in each layer, a questionnaire was devised and answered by 133 staff 

members, including doctors, nurses, nurse technicians, and allied health professionals. 

Two multilayer networks were developed: one considering that actors are 100% available 

and reliable (work-as-imagined) and another considering suboptimal availability and 

reliability (work-as-done). The multilayer networks were analysed through actor-centred 

(Katz centrality, degree deviation, and neighbourhood centrality) and layer-centred 

metrics (inter-layer correlation, and assortativity correlation). Strengths and weaknesses 

of social interactions at the ICU are discussed based on the adopted metrics. 

Keywords: resilience engineering; social network analysis;  multilayer network: 

complexity; intensive care unit. 

1. Introduction 

Resilience is a characteristic of complex socio-technical systems, explaining why and 

how these systems do not break down, by adjusting their performance in face of 

constraints and opportunities (Hollnagel, 2017). Resilience is also emergent, which 

means that it is a new property that arises at system level from interactions between 

individual parts of the system, such as people, software, and hardware (Cilliers, 1998). 

This paper explores a particular type of interaction that gives rise to resilience, namely 

social interactions in the workplace. The modelling of how these interactions influence 

resilience is challenging as they have different purposes (e.g. advice-seeking, nurturing 

friendship), and all may be influential depending on the context (Koirala and Hakvoort, 

2017).



Four general types of social interactions are discussed. They are associated with the four 

abilities of resilient systems (HolInagel, 2017), which have been used in resilience 

engineering (RE). RE is the discipline concerned with finding, assessing, and influencing 

resilience through design, in socio-technical systems (Nemeth and Herrera, 2015). These 

abilities are (Hollnagel, 2017): (i) monitoring, which implies in knowing what to look for, 

or being able to monitor what could seriously affect the system’s performance in the near 

term, positively or negatively; (i) responding, which implies in knowing what to do, or 

being able to respond to regular and irregular changes, disturbances, and opportunities in 

the system; (#7) learning, which implies in knowing what has happened, or being able to 

learn from experience, in particular to acquire the right lessons from the right experience; 

and (iv) anticipating, which implies in knowing what to expect, or being able to prepare 

for developments further into the future, such as disruptions, constraints or opportunities 

in the system. 

Social interactions are one of the possible ways to boost those four abilities. As social 

interactions take place in messy real-life situations, it is reasonable to expect that an 

interaction may simultaneously target at two or more abilities. Also, interactions focused 

on a certain ability (e.g. monitor) may trigger other ability-centred interactions (e.g. 

respond) at a later moment in time. However, while dependence between resilience 

abilities is expected in theory (Patriarca, et al., 2018a), empirical data supporting the 

understanding of what that looks like in practice is scarce. 

In this study, Social Network Analysis (SNA) (Wasserman and Faust, 1994) is used to 

model interactions between the four abilities of resilient systems. In our proposal, 

interactions related to each resilience ability are modelled as layers of a multilayer 

network. Each layer consists of nodes (i.e. people) and edges (i.e. purpose of the 

interaction). Although sharing the same nodes, each layer conveys different information 

on the edges. If the same actors are present in every layer the network is denoted as 

multiplex (Nicosia et al. 2013), which is the type investigated in this study. While some 

previous studies adopted SNA for modelling resilience in socio-technical systems 

(Bertoni et al. 2020; Long et al., 2014; MeCurdie et al., 2018), none of them took a 

multilayer perspective. That is a drawback as the multilayer network is effectively a new 
network, and therefore it offers insights that are not observable at the single-layer level — 

people ezardiess oe purpose alihe sazia interaction (Dickinson et a., 2016)



Our perspective is aligned to Wood's (2015) view of resilience as layered interwoven 

networks that adapt to surprises as conditions evolve. While sound in principle, such 

perspective of resilience has remained mostly at a conceptual level (Berg et al., 2018). 

We aim at bridging such gap in the literature by investigating two research questions 

(R0Os), as follows: 

RO: How can a multilayer social network be developed to map resilience in a socio- 

technical system? 

RO2: How can traditional metrics used in multilayer social networks, at both actor and 

layer levels, be interpreted in light of resilience engineering” 

These questions are investigated through an application of SNA to the modelling of social 

interactions in the ICU of a tertiary care teaching hospital located in Brazil. A number of 

problems in today’s healthcare systems are influenced by social interactions, such as silo- 

working, poor communication, and professional isolatton (Pomare et al., 2020). 

Healthcare has been one of the top studied sectors in RE, which may be justified by the 

sector’s high complexity (Braithwaite, 2018). 

A survey questionnaire was devised to gather information related to social interactions 

between caregivers at the ICU. Data on four types of interactions corresponding to the 

resilience abilities were collected and used to develop a multilayer social network, thus 

addressing RQI1. Next, selected actor-centred and layer-centred metrics derived from the 

multilayer network were calculated and interpreted from an RE lens, thus addressing 

RQ2. The study reported in this paper expands the data analysis conducted by Bertoni et 

al. (2020) at the same ICU, which focused on the identification of key resilient players in 

ability-based layers. 

2. Background 

2.1 Resilient healthcare: concept and previous studies in ICUs 

When applied to healthcare, resilience engineering has been referred to as resilient 

healthcare, which is the “ability of the healthcare system to adjust its funetioning prior to, 

during, or following changes and disturbances, so that it can sustain required performance 

under both expected and unexpected conditions” (Hollnagel et al., 2013, p. xxv). 

A core idea of resilient healthcare is the distinction between work-as-imagined (WAI) 

and work-as-done (WAD). WAI is commonly defined top-down, prescribing rules,



procedures, and policies that define what is expected to occur, in various levels of detail. 

WAD represents what actually occurs in the workplace, stressing the adaptations needed 

to adjust to real work conditions (Hollnagel, 2014). In complex systems, such as 

healthcare, there is inevitably a gap between WAI and WAD; however, none is 
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In the context of ICUs, in addition to Bertoni et al. (2020), a few other works have 

explicitly adopted a resilient healthcare lens. Paries et al. (2013) investigated the merger 

of two separate ICU services in a university hospital, describing how resilience 

contributed to the improved performance of the new unit in terms of quality and safety of 

care. Clay-Williams et al. (2015) proposed improvements in clinical guidelines in an ICU, 

making them more compatible with WAD. Rosso and Saurin (2018) proposed the joint 

use of the Functional Resonance Analysis Method (FRAM) and value stream mapping to 

understand how resilience played out in the patient flow from an emergency department 

to an ICU. Bueno et al. (2019) conducted a systematic literature review, analysing how 

guidelines for coping with complexity were accounted for in 91 improvement 

interventions at ICUs. Ransolin et al. (2020) explored the influence of the built 

environment on the resilient performance of caregivers in an ICU. 

In most of the aforementioned studies, theoretical and practical implications were 

discussed in light of the four abilities of resilient systems. Alders’ (2019) study was the 

only fully focused on the four abilities in ICUs, by assessing them through the resilience 

assessment grid proposed by Hollnagel (2017). One of the findings was that resilient 

performance strongly benefited from social interactions between care providers. In a



similar vein, Horsley et al. (2019) presented a framework for the improvement of ICU 

team resilience. 

2.2 Multilayer social networks analysis: definitions and metrics 

A single-layered social network (SSN) is defined by a tuple (V, E), where V is a set of 

actors and E is a set of edges defining relations between actors. In a multilayered social 

network (MSN), pairs of actors are connected by multiple edges and the network is 

defined by a tuple (V, E,L), where L is a set of distinct layers, each associated with a 

different type of relationship between actors (Magnani and Rossi, 2011). 

At each layer ! information on actors and edges may be summarized in an adjacency 

matrix A,, with element a;; signalizing the existence of a relationship between actors i 

and j, through a binary value, or the strength of this relationship though a continuous non- 

negative value. A common approach to MSN analysis is to merge layers of the SSN 

through flattening of matrices A, (Dickinson et al., 2016). Several metrics at the actor and 

layer level may be calculated for MSNs. Next, we briefly review the five metrics used in 

our case study. These metrics reflect key attributes of complex systems, which therefore 

have implications for resilient performance. Three of the metrics are actor-centred: Katz 

centrality, degree deviation, and neighbourhood centrality. 

Katz centrality C Se relates the centrality of an actor i to centralities of the incoming 

neighbours, taking into account immediate neighbours and those reachable through a 

larger number of steps. Thus, Katz centrality assumes that nodes increase their centrality 

if they are connected to central nodes. It is worth noting that, since the multilayer network 

considers every edge, it represents a different network with a new topology; this may 

result in Katz scores substantially different from those obtained for the individual layers. 

A decay parameter & is used to assign larger weights to closer neighbours, through the 

following expression (Katz, 1953): 

k CP = N La (A) (1) 

where A* is the adjacency matrix from a given layer or from the flattened network, and 

N is the total number of actors in V. The value of a is usually set to 1; A: Where Amax 
Max 

is the largest eigenvector associated with A.



Degree deviation, G; of actor i, is the standard deviation of i’s centrality measurements 

on a subset £ of network layers, which may include all layers in the network (Brédka et 

al., 2011). A low value of G; may indicate that i is either homogenously active or inactive 

on the layers. When calculating G; in a directed network with weighted edges, two 

approaches could be considered: (7) use Katz as centrality measure, or (77) use the degree 

centrality measure given by the sum of edges leaving and arriving at i, ignoring weights. 

We used approach (#7) since degree reflects a local property less dependent on the graph’s 

topology and corresponds to the neighbour concept presented next. 

Degree deviation reflects the diversity of actors’ interactions, which is another key 

attribute of complexity that influences resilience (Dekker, 2011). Thus, it is reasonable to 

expect that actors do not have a uniform participation across the four ability-based 

networks — i.e. their degree deviation would be higher than zero. 

Neighbours of an actor i are defined as all actors directly connected to i. In directed 

networks, incoming and outgoing connections are considered in the determination of 

neighbours. Neighbourhood centrality of actor i is defined as the total number of i’s 

neighbours in the subset £ of layers of interest, such that each neighbour is only computed 

once (Brédka and Kazienko, 2018); i.e., 

Neighbourhood (i, £L) = |neighbours(i, £L)| (2) 

Similarly to degree deviation, neighbourhood centrality also reflects diversity. However, 

it is concerned with the diversity of neighbours across the network layers, which may be 

useful in providing diverse perspectives for decision-making (Page, 2010). 

In addition to the actor-centred measures, two layer-centred measures are used in our 

analysis: interlayer correlation and interlayer assortativity. Interlayer correlation is 

calculated determining the proportion of edges that are common to pairs of layers, 

regardless of the weights assigned to them. It is a measure of similarity, and therefore 

redundancy between layers. As such, this metric also explores diversity at the layer level. 

Assortativity correlation between a given pair of layers is obtained by first generating 

for each layer a vector with entries given by the strength of edges in that layer (incoming,



outgoing or both) and organizing entries such that they refer to the same edges in both 

vectors. Then, Pearson’s correlation between those vectors is calculated (Nicosa and 

Latora, 2015). At a single layer level, assortativity measures the preference of actors to 

attach to others that are similar in some way. Thus, a network is assortative if edges 

connect actors with similar degrees, high with high and low with low (Karrer and 

Newman, 2009). In MSNs, this metric assesses whether these preferences remain the 

same across all layers. Thus, assortativity correlation is yet another metric that reflects 

diversity of interactions between actors. 

As a support to the explanation above, Figure 1 depicts a multilayer network comprised 

of four layers, namely monitor, anticipate, respond, and learn. Each single layer (on the 

left side) renders a specific kind of directed relationship between five actors (A, B, C, D, 

E). Depending on the chosen criteria, an actor may be central in a layer and peripheral in 

the multilayer network (on the right side), in which the maximum possible network 

density is quadrupled in relation to any individual layer. The thickness of an arc is 

depicted as proportional to the frequency of the interactions between the corresponding 

dyad, which helps to highlight the difference between degree and Katz centrality. The 

former depends only on the number and values of incident arcs, whereas the second 

depends on the topology of the entire network. 

MONITOR RESPOND 

A A 

Ei B E® ®B 

A 

. 
D Cc D E 

È B 

ANTICIPATE LEARN 

A A n È 

E er re 7 MULTILAYER 

. . 
D Cc D C 

SINGLE-LAYER 

Figure 1. Examples of single and multilayer networks



3. Method 

3.1 Research stages 

The ICU chosen for this study is part of a teaching hospital in Southern Brazil, which has 

around 5,000 employees and 850 inward beds. The ICU has 34 beds and it has two 

adjacent pods: one of them with 21 beds and another with 13 beds. Other recent resilience 

engineering studies have been carried out at this same ICU by the same research group 

involved in the present work (e.g., Ransolin et al., 2020). 

Figure 2 presents the three main research stages: data collection, multilayer modelling, 

and data analysis. There are two major sub-stages in the multilayer modelling, which need 

to be justified upfront. Initially, a WAI network was devised by simply considering the 

frequency of interactions between actors.
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Figure 2. Stages of the research method 
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To obtain data for the development and interpretation of the MSN, we (7) designed and 

validated a survey questionnaire, (7) applied the questionnaire to the target population 

(primary data collection), and (i) carried out semi-structured interviews with some actors 

(secondary data collection). The same data collection procedures were used by Bertoni et 

al. (2020) at the same ICU. Therefore, the same database supported the study in Bertoni 

et al. (2020) — focused on actor-centered metrics at layer level, and the study described in 

this paper. Furthermore, the previous study included semi-structured interviews with five 

actors (two doctors and three nurses) that stood out based on actor-centered metrics at the 

layer level. Some of those interviews were re-interpreted in this paper for the purpose of 

the MSN.



A pilot survey was initially designed and tested with 8 of the 201 professionals working 

in the ICU. Feedbacks were incorporated in the survey and a final version was applied to 

the target population, comprised of four groups of care providers with at least one year of 

experience in the ICU. They are: doctors (DR), nurses (N), nurse technicians (NT), and 

allied health professionals (AH), such as psychologists, pharmacists, nutritionists, speech 

and occupational therapists. Residents were not included in the target population. 

There are three main sections to the survey questionnaire, which are summarized in Table 

1. An overview of the sections is given next. 

Section I (questions I to 7) — designed to colleci information on respondents, such as 

professional group, age, experience, and working shift. Questions 7.1 and 7.2 refer to two 

contextual information (i.e. frequency of interruptions and participation in daily rounds) 

explored by Bertoni et al. (2020), and out of scope in the present study. 

Section 2 (questions 8 and 9) — designed such that respondents were given the complete 

list of 201 ICU staff members and asked to indicate those they search for advice (face-to- 

face or through electronic means). Then, peers shortlisted from the full roster were scored 

regarding their availability (“’likelihood of peer being available”) and reliability 

(“frequency in which the peer provides exactly the information requested”), using a five- 

point scale, with the following descriptors: 1 — never; 2 — rarely; 3 — sometimes: 4 — 

frequently; and 5 — always. Availability relates to time and reliability relates to precision. 

These are the two main criteria for assessing variability (in time and precision dimensions, 

respectively) when modelling socio-technical systems in resilience engineering 

(HolInagel, 2012). 

Section 3 (questions 10 to 13) — a customized list of sought-after peers was generated for 

each respondent based on names indicated in section 2. In this section, they were asked 

to score the frequency of their interactions with those peers to monitor, anticipate, 

respond, or learn. For that, a 5-point scale was presented with the following anchors: 1 — 

never; 2 — less than once a month; 3 — one to three times a month; 4 — one to three times 

a week: and 5 — daily.



Table 1 - Overview of the survey questionnaire (Bertoni et al., 2020) 

  

  

  

  
  
  

  
  

  
  

  

  

  

  

  

  

  

  

  

  

  

Section name Question# Question name Possible responses 

Survey Starts Opening remarks 

i Name Full name 

2 How old are you? Number of years 

3 What is your gender? Male/female 

Physician, nurse, nursing technician, 
4 Palena pharmaceutical, nutritionist, 

n physiotherapist, speech therapist, social 
assistant, psychologist 

5.1 Indicate number of years since praduation 

i n Time working in ICUs (including other Number of years 

Demographie 5 ospitals) _ 
Data 5.3 Time working at this ICU 

54 Worked in other areas prior to the ICU? List Weiti 
riting 

them 

Morning, afternoon, morning and 
6 Work Shift afternoon, night shift 1, night shift 2, 

night shift 3, sixth shift 

7.1 Frequency of participation in Marks on a 5-point scale: 1 — never; 2 — 
multidisciplinary rounds 

ce a less than once a month; 3 — one to three 
F 7.2 Frequeney in which interruptions take place 2 z 5 

È è times a month; 4— one to three times a 
during work (phone calls, answering to peers, =; ; 

eto.) week: 5 — daily 

ha 8 From the list GE pera below, choose those you Miafci ca 
interact for advice or information 

9.1 Score the list of peers shortlisted in Question Marks ona 5-point scale: 1 — never: 2 — 
Non-network ; . San si 7 ; 

- 9 #8 regarding their likelihood of being available rarely; 3 — sometimes; 4 — frequently; 5 
attributes 

when needed — always 

9.2 Score the list of peers shortlisted in Question Marks on a 5-point scale: 1 — never; 2 — 

#8 regarding the frequency in which they rarely; 3 — sometimes: 4 — frequently; 5 
provide exactly the information requested — always 

From the list of peers shortlisted in Question #8, Aia sep pompeolle: L= even 
st "i ; È less than once a month; 3 — one to three 

Ability to identify those you consulti to understand what is È È 
7 10 ‘ i LE times a month; d — one to three times a 

Monitor happening or has occurred in real-time in the week: 5 dail 
ICU and how often that occurs * v 

From the list of peers shortlisted in Question #8, Manon ponescale Eve 2 
sa È «Î) Dt less than once a month; 3 — one to three 

Ability to identify those vou consult to anticipate short, È . ; 
‘Antici Il ; - times a month; 4 — one to three times a 

icipate medium and long-term trends concerning the week: 5 dii 

ICU and how often that occurs ny 

From the list of peers shortlisted in Question #8, Marks on a 5-point scale: 1 — never; 2 — 
6g E È less than once a month; 3 — one to three 

Ability to identify those you consult to know what to do . i È 
12 _ È times a month; 4 — one to three times a 

Respond when an event oceurs (cither expected or week: 5 dail 
unexpected) and how often that occurs a i 

point scale: 1 — never: 2 — 
From the list of peers shortlisted in Question #8, Marcona pori scale: Teva? 

sie - SE 2 - less than once a month; 3 — one to three 
Ability to identify those you consult to learn during regular x = 7 

13 i RI times a month; 4— one to three times a 
Leam days and in the occurrence of positive or È ; 

È week; 5 — daily 
negatives events, and how often that occurs 

Survey Ends Closing remarks 
  

The online platform Qualtrics was used to apply the survey. AIl ICU staff members listed 

in the roster were invited to answer the questionnaire. Three follow-up reminders were e- 

mailed to non-respondents; ICU team leaders and managers sent additional e-mails 

requesting them to complete the survey. There were 133 (out of 201) staff members who 

completed the questionnaire, yielding a 66.2% response rate. Respondents included 

nurses (78.1% of the total nurses), nurse technicians (72.2%), allied health professionals



(643%), and doctors (40.0%). Respondents were mostly female (72.9%) and 

experienced. The share of respondents from each professional group is fairly similar to 

their participation in the total population. The wider gap refers to doctors, who correspond 

to 20% of the population and 12% of the respondents. 

Regarding the secondary data collection, Bertoni et al. (2020) conducted semi-structured 

interviews with five actors (DR198, DR190, N12, N94, and N135) positioned among the 

top ten highest ranked in at least one of the ability-based networks — among the top ten, 

they were randomly selected for the interviews. 

3.3 Multilayer modelling 

3.3.1 Work-as-Imagined (WAI) network 

As previously mentioned, a questionnaire was designed customising a roster of actors to 

each respondent and using the list to collect data on six relational variables (henceforth 

denoted as the six dyads). Raw dyadic data may be represented as six directed graphs: the 

ability-based networks (monitoring, anticipating, responding, learning), in addition to 

reliability and availability networks.



In the WAI network, dyads represent idealised social interactions that give rise to 

adjacency matrices for resilience abilities. The WAI network has four layers, one for 

each resilience ability, with corresponding intra-layer adjacency matrices obtained from 

answers to questions 10 to 13 in Table 1. In each layer, the weights on actor i°s outgoing 

edges correspond to the Likert scores obtained from the actor’s questionnaire. Since all 

matrices share the complete list of 201 professionals in the ICU, some entries will be 

nulled, corresponding to non-existent connections between pairs of actors. 

Next, we carry out the WAI matrices' normalization. Each adjacency matrix is normalized 

dividing their respective Likert scores by the maximum scale value (5). Therefore, 

possible WAI weights span between 0 (i.e. 0/5) and | (i.e. 5/5). 

3.2.2 Work-as-Done (WAD) network 

We used the two remaining sets of dyads — availability and reliability — to obtain a more 

realistic representation of working conditions at the ICU and build the WAD network. 

Availability is an estimate of likelihood (in Bayesian terms) to receive support from actor 

] as rated by actor i. Reliability is a score reflecting actor i’s confidence that actor j is 

providing exactly the information requested. Availability and reliability scores have been 

used, after some manipulations, to build the modulation matrix F. 

The adjacency matrix for availability uses scores from question 9.1 in Table 1. We 

assumed that respondents were biased to a negligible extent when asked to evaluate 

others’ physical or behavioural availability. This assumption is reasonable since others’ 

openness may be viewed as an acceptable estimate of both accustomed relationship and 

reciprocity. Therefore, the only data manipulation performed when modelling availability 

consisted in converting the lowest Likert score 1 into 0, to represent the dyadic 

unavailability (i.e. Null dyad). 

The adjacency matrix for reliability uses results from question 9.2 in Table 1. Since 

reliability judgements have a potentially biased moral connotation, its assessments 

required a more careful data handling. For that, we took advantage of the reliability’s 

adjacency matrix structure in which actors in rows assess the reliability of actors in 

columns. We thus calculated a mean reliability value for the j-th actor adding scores in 

the j-th column of the adjacency matrix and divided it by the total number of judgements. 

Entries in all non-null cells in column j are replaced by the mean reliability value. Such 

approach is intended to compensate for individual liking or aversion biases.



To obtain the modulation matrix F used to adjust the adjacency matrices for resilience 

abilities considering actors’ availability and reliability, we multiplied the assessment in 

cell (i,j) of the availability matrix by the mean reliability value of actor j from the 

reliability matrix. 

The WAD network is finally obtained adjusting the WAI network by the modulation 

matrix F, yielding the adjusted adjacencey matrices for resilience abilities, which result 

from performing the Hadamard product between each ability adjacency matrix and F. 

The final result in this step is the WAD adjacency matrices for the resilience abilities, 

which are obtained through normalization of the adjusted adjacency matrices, dividing 

each matrix score by the maximum value (5). Possible WAD weights also span between 

0 and 1. Note that both WAI and WAD networks will have the same nodes. However, the 

WAD network will be less connected (with no or weaker connections), proportional to 

the entries in F, in which availability and reliability scores are manipulated. 

3.4 Data analysis 

In this stage, we analysed two sets of information from the multilayer network: (7) actor 

centred metrics, and (iî) laver-centred metrics. Measures in (7) include Katz centrality, 

neighbourhood centrality, and degree deviation. Actors were ranked according to their 

scores in each of these metrics. Metrics in (i) include interlayer correlation and 

assortativity. Algorithms used for calculating all metrics are mostly based on De 

Domenico et al. (2014), Azimi-Tafreshi et al. (2014), and De Domenico et al. (2015), and 

were implemented using R language. They are grounded on a compact tensorial 

representation of the entire network, i.e. the adjacency tensor. A tensor is a mathematical 

object that generalizes the notion of a matrix, which is a 2" order tensor. A tensor may 

sometimes be represented by a supra-matrix, i.e. a flattened matrix structured to retain all 

information distributed over the layers.



4. Results 

4.1. Acfor-centred measures 

Tables 2 and 3 display Katz centrality results for the multilayer WAI and WAD networks 

as well as for each ability-related layer, respectively. Only the ten best ranked actors are 

listed in these tables. Results show that only actor N94 appears among the top ten, both 

in the multilayer and the single layer, for both WAI and WAD. This means that this actor 

is well-connected to other central actors regardless of the resilience ability. 

In fact, N94 is also a key player herself as she has the largest degree (in and out-degrees) 

in both multi (67) and single layers. The following report from N94 suggested that her 

prominent role in the networks is partly due to her past managerial position in the ICU: 

“I have been working in this hospital for 12 years, always in the ICU. I served as chief 

nurse during two different periods. Thus, people refer to me for advice on care activities 

and administrative issues”. According to her report, N94 is also a reference for certain 

care activities, such as puncturing and extracorporeal membrane oxygenation. It seems to 

be beneficial that an actor is central herself and is also well-connected to other central 

actors. This tends to produce rich exchanges of information between those involved, 

supporting the four resilience abilities. 

By contrast, other actors displayed high Katz scores in the individual layers, while being 

poorly ranked in the multilayer network. An exemplar case is DR169, which at worst was 

the 4° in one of the WAD layers. However, in the correspondent multilayer, the Katz 

score of DR169 was 0.19, ranking at the 112" place. This is consistent with the fairly low 

overall degree of that actor in the WAD multilayer network (i.e. 34, ranked 35"). This 

reflects the lower diversity of DR169 contacts across the four layers, in comparison to 

N94. Therefore, DR169 is probably surrounded by a relatively small and stable number 

of co-workers who do not necessarily have very high central roles. This aligns with the 

expected everyday work of busy and specialized doctors. Table 2 conveys a similar 

pattern for other doctors as there was only one doctor (10° place) among the top ten Katz 

scores at the multilayer. Another way of interpreting these findings is that murses and 

nurse technicians work closely with several different central doctors, which do not 

interact that much with others central doctors. 

In turn, the ten best ranked actors are mostly the same at both the WAI and WAD 

multilayer networks. However, DR142 is ranked 30" in WAI, while being the 10! in



WAD. This means that he is available and/or reliable, despite being well-connected to a 

relatively low number of central actors. This type of actor, significantly better ranked in 

WALD in comparison to WAI, may in principle play a bigger role in the ICU by being 

connected to a wider number of central actors. 

By contrast, DR190 was fairly well-ranked in WAI (13'"), but less central in WAD (25). 

This means that her good connections with central actors have been underexploited, as 

she is not much available and/or reliable. As such, this actor may need organizational 

support to make the most from her good connections — e.g. less administrative tasks, 

making her more available for adding-value social interactions.
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Tables 4 and 5 present results for degree deviation (G;) of WAD and WAI multilayer 

networks, respectively. Low G; values indicate actors that are either homogeneously 

active or inactive on layers — actors with low G; values and active on layers were assumed 

to be in a more favourable position for resilient performance. 

Only the top 10 actors according to degree deviation and degree centrality are shown. 

Several actors had a homogeneous and relevant centrality in the four layers in both WAI 

and WAD, such as NT4 and N68. These actors could be assigned formal and standardized 

roles related to the four types of social interactions, as they can be trusted to be fairly 

available and reliable. For example, these actors could be regular members that attend 

ward rounds, or they could take part in committees that assess the ICU performance and 

devise action plans. 

Itis important to note that the lowest possible degree deviation (i.e. zero) not always goes 

hand in hand with the highest degree centrality. For instance, in the WAD network, actor 

N94 had the highest degree centrality (67) and the 7° highest degree deviation (1.4). 

Similarly, actor N186 had the third highest degree centrality (50) and the highest degree 

deviation (3.4). While these actors” contributions to resilience are relevant, they have 

unbalanced participation in the layers. This is not necessarily a weakness provided those 

actors have a relevant centrality in the individual layers, which is the case of N94 and 

N186. Another way of putting that is that these actors are strong assets for resilience in 

general, but even stronger in some abilities. This might be more a strength than a 

weakness, depending on the role these actors play in the workplace. 

Tables 6 (WAI) and 7 (WAD) present, for the top ten best ranked, the last actor-centred 

metrics of interest for the multilayer network: neighbourhood centrality. Results indicate 

a wide amplitude in neighbourhood centrality values. This metric conveys in a concise 

way that some actors, such as N94, have a much wider diversity of neighbours across the 

four layers. From the oui-degree viewpoint, a possible interpretation is that N94 requests 

information from people specialized in each ability. From the in-degree viewpoint, a 

possible interpretation is that N94 is a reliable and available source of information related 

to all four abilities as she is sought by a number of different people, each interested in 

ability-specific information.



Table 4. Partial view of degree deviation and Table 5. Partial view of degree deviation and 

    

  
  

          
  

    

  

  

centrality values for WAI centrality values for WAD 

Actor nes catania ARIE af coso Wap 

N68 0 42 NT66 0 46 

NT4 0 39 N68 0 40 

AH156 0 39 NT4 0 39 

NT44 0 38 NT44 0 34 

NT144 0 37 N34 0 30 

AH102 0 35 N39 0 30 

NT38 0 33 NT38 0 29 

NT91 0 Dil NTA47 0 29 

N39 0 30 N65 0 29 

N65 0 30 NT60 0 28 

Table 6. Neighbourhood centrality — WAI Table 7. Neighbourhood centrality— WAD 

Actor piste Actor in ci 

N94 70 N94 56 
N135 55 N135 52 
N186 52 N186 43 

NT66 48 NT66 42 

NT20 47 NT164 38 

N73 47 NT4 36 

NT164 46 NTIO 36 

N104 45 DR48 36 

NTI128 43 N104 36 

NT28 42 AH161 35         

4.2. Layer-centred measures



WAI 

Multilayer 

Learn 

Respond 

Anticipate 

Monitor 

  

WAD 

Multilayer 

Learn 

Respond 

Anticipate 

Monitor 

 



As for interlayer correlations, which measure the similarity or redundancy between pairs 

of layers, all correlation values are in the interval [0.78: 0.79]. These strong correlations 

are expected in real-world multiplex networks, as actors are the same in all layers (Nicosia 

and Latora, 2015). 

In turn, all assortativity correlations were in the interval [0.98; 0.99]. This suggests that 

actors have a clear preference for connecting with similar degree actors in all four layers. 

That can imply the formation of clusters of high degree and low degree actors, hindering 

diverse perspectives when monitoring, anticipating, responding, and learning. For 

example, it may be useful to make a high degree actor in the monitor network more 

connected to low degree actors in the learn network. 

The similar assortativity correlations for WAI and WAD convey that actors are not 

discouraged from interacting with the same peers despite their occasional low availability 

and low reliability. Possible reasons for that might be highly specialized knowledge and 

skills of many actors, individual preferences, and strict organizational structures, which 

leave actors with limited realistic options. Another interpretation is that, in face of the 

unavailability of preferred co-workers, there is no social interaction at all, and actors fill 

out information gaps on their own. This point is revealed in the report from N12: “we lake 

many actions and decisions on our own, because sometimes the doctors are sleeping ...s0 

we end up having to take the responsibilities”. 

Lastly, the benefits of having preferential actors for interactions is illustrated by the 

following report from DR169: rhe nurses know how I work, they know my way...for 

example, some topics that I approach during the multidisciplinary round, a break in the 

administration of sedation. The nurses Iwork with know that I will arrive in the morning 

and I will pause the sedation...some exams that the nurse collecis, some of their 

attitudes...so they don't even ask me what to do”. This report also raises the question of 

whether low frequency social interactions can still be effective, as they can be partly 

replaced by tacit knowledge and assumptions. 

5. Discussion 

The proposed steps for developing a multilayer social network of resilience abilities (see 

Figure 2) proved to be workable and insightful. Although these steps are not healthcare 

specific, adaptations for other contexts might be necessary in some portions of the 

questionnaire — e.g. relevant demographic information on the respondent, and examples



of what counts as a monitor, anticipate, respond, or learn social interaction. As a minor 

drawback, to generate MSN measures it is necessary to integrate the computing 

environment with specific libraries developed for dealing with multiplex networks; e.g. 

multinet, MUNA, Py3plex and Pymnet (McGee et al., 2019; Skrlj et al., 2019). 

The most distinctive aspect of our approach is the development of separate WAI and 

WAD networks, which in addition to the four ability-based layers translate RE ideas into 

the practice of social network analysis. Our findings pointed out that there were relevant 

differences between WAI and WAD at the actor-centred level. This means that the 

frequency of interactions between pairs of actors, per se, is not representative of the 

effectiveness of these interactions. However, since actors normally insist on contacting 

the same people, the structure of the WAI and WAD networks is similar. 

The ICU study shed light on how some multilayer metrics may be interpreted in light of 

resilience engineering (Table 8). Results suggest that the ICU has a number of actors that 

have effective interactions across the four layers, which is an asset for resilient 

performance — e.g. there were 37 actors (27.1%) with a Katz score higher than the 75-th 

percentile, 23 actors (17.3%) with neighbourhood centrality higher than the 75-th 

percentile, and 47 actors (35%) with zero degree deviation and high centrality. 

On the other hand, actors interact mostly with others with similar degrees, as indicated 

by the high assortativity correlations. That may point to organizational structures (e.g. 

stable and self-contained teams) and rigid social and professional hierarchies that either 

discourage or impede actors’ access to a broader set of co-workers. Although healthcare 

settings are known for communication barriers between professional groups (Creswick et 

al. 2009: Bate, 2000), our results suggest that this can also be a relevant issue within 

professional groups — e.g. high degree nurses communicating mostly with other high 

degree nurses. Organizational structures can also explain the finding that 9 out of the 10 

top Katz scores were either nurses (3) or nurse technicians (6). These professionals, 

especially nurse technicians, play a key role as second-order resilient actors (see 

definition in Table 8) as they work closely under the guidance of central doctors and 

central nurses. It also points out that many doctors do not strongly interact with highly 

central actors, which may stem from the greater autonomy and decision-making 

responsibilities of these professionals. 

As a drawback for an extended analysis of how well the ICU is performing, there is a lack 

of benchmarks from other ICUs. Another difficulty in this respect refers to the ambiguity



of some metrics from the viewpoint of resilience (e.g. neighbourhood and assortativity), 

which makes it difficult to generalize what counts as a desirable value. 

Considering this background, and whether or not benchmarks are available, the presented 

analysis can also play a role as a starting point for qualitative investigations that shed light 

on the underlying mechanisms that gave rise to the quantitative findings — e.g. to which 

extent is actors’ centrality influenced by organizational structures or personality traits? 

Table 8. Selected multilayer metrics and their connections to resilience engineering. 

  
Metrics Logical connections to RE ICU performance   

Katz centrality 

Actors with high Katz centrality can be those that 
display resilient performance first-hand, after getting 
advice or information from central actors. Thus, high- 

scored Katz actors can be second-order resilient actors, 

while those central actors around them can be first- 

order actors. 

High-scored Katz actors can enjoy a certain status by 
being close to powerful actors, besides being in a 

favourable position to learn from them. 

27.1% of the actors had a 
Katz centrality score 
higher than the 75-th 
percentile score (0.369) in 
the WAD multilayer 
network. 

  

Actors that strongly contribute to resilient 
performance can have low degree deviation, provided 

For WAD, 35% of the 
actors had a degree 

  

  

      

Degree this is associated with a high centrality in all four deviation score equal to 
deviation layers zero and at the same time 

had a high centrality 
(higher than the average) 

in each of the four layers. 
A high neighbourhood centrality indicates that an For WAD, 17.3% of the 

actor has different neighbours in each layer. This can actors had a 
Neighbourhood | stem from specialized neighbours in certain abilities. neighbourhood centrality 
centrality Diversity of perspectives is normally accepted as score higher than the 75-th 

beneficial to resilience (Page, 2010). However, low percentile score (32.0). 

neighbourhood centrality is not necessarily 
detrimental, provided the same actors are available 
and reliable for different types of interactions. 

Interlayer A high interlayer correlation tends to be desirable to | Inter-layer correlations 
correlation resilience. It suggests that social interactions are rich in | were strong for both WAI 

terms of contributing at the same time to the four | and WAD. 
abilities. 

Assortativity A high assortativity correlation suggests clusters of | Assortativity correlations 
correlation high degree actors and low degree actors. As a | were very strong both for 

downside, actors can lose sight of the context and miss 

out different perspectives. As an upside (Kazawa and 
Tsugawa, 2020), it makes the network more robust with 
respect to node removal, as they tend to be similar 
within each cluster.   WAI and WAD, 

suggesting that both the 
downside and the upside 
of high correlations tend to 
be amplified.    



A O S 3 n a s E.
 

S i] wu 

This paper presented an approach for the development and interpretation of multilayer 

networks, using the lens of RE. The steps for the development of the network encompass 

core concepts of RE: the four resilience abilities, work-as-imagined, work-as-done, and 

performance variability (Patriarca et al., 2018b). These RE concepts have been translated 

into the practice of social network analysis, offering a new perspective for the analysis of 

resilient performance. The multilayer network provided an emergent yet concise 

representation of the interactions between the four ability-based layers, being 

complementary rather than a replacement for the traditional analysis layer by layer. 

The five metrics adopted in this work pointed out strengths and weaknesses of social 

interactions at the ICU, which had not been identified by Bertoni et al. (2020) at the same 

setting. However, some of these metrics were ambiguous from the RE viewpoint (ie. 

neighborhood and assortativity), and some findings were counterintuitive at a cursory 

view. For example, two actors had very high degree deviations and very high degree 

centralities, while also being key assets for resilience. That background, when jointly 

considered with the lack of benchmarks for comparison, makes it difficult to establish 

generalizable and simple rules for the interpretation of the multilayer metrics from an RE



standpoint — the proposal in Table 8 is a starting point. Despite these limitations, the 

richness of information stemming from the multilayer network is valuable by itself, in 

addition to raising questions for further investigation. 

Some further limitations of this study should be mentioned. First, there was no primary 

qualitative data collection, which could have offered additional insight into the underlying 

reasons for the observed performance. Second, the pioneer nature of this research in terms 

of applying multilayer network analysis in resilient healthcare, hindered comparative 

analysis with other contexts. Third, while the response rate to the questionnaire survey 

was high (66.2%), some important actors may have been missed out. 

As for future studies, some opportunities may be highlighted, as follows: (7) to investigate 

whether actors’ centrality and network structures change in face of prolonged crisis and 

growing use of virtual interactions, as observed during the COVID-19 pandemic; (#) to 

develop other multilayer approaches for investigating resilient performance, e.g. by 

considering interactions between layers composed by nodes at the individual, team, and 

organizational levels — in this study, the nodes in all layers corresponded to individuals; 

(iîî) to assess the value of using other metrics at the multilayer level: (iv) to apply the 

proposed approach to other settings, not only in healthcare; (v) to use the results of the 

multilaver analysis as a basis for qualitative investigations that further explore the 
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