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Discrimination of thermal baths by single-qubit probes
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Nonequilibrium states of quantum systems in contact with thermal baths help distinguishing between envi-
ronments with different temperatures or different statistics. We extend these studies to a more generic problem
that consists in discriminating between two baths with disparate constituents at unequal temperatures. Notably
there exist temperature regimes in which the presence of coherence in the initial state preparation is beneficial for
the discrimination capability. We also find that nonequilibrium states are not universally optimal and detail the
conditions in which it becomes advantageous to wait for complete thermalization of the probe. These concepts
are illustrated in a linear-optical simulation.
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I. INTRODUCTION

The reduced dynamics of a quantum system interacting
with an external environment is typically insensitive to many
characteristic features of the latter [1–3]. However, some
macroscopic properties of the bath (say, its temperature) may
have a nontrivial influence on the resulting equations of mo-
tion, paving the way for the possibility of probing these
quantities via measurements performed on the system alone
[4–14].

Relying on these observations, in Ref. [15] a statistics
tagging scheme was presented, allowing the determination of
the fermionic or bosonic character of a thermal bath E by
detecting the modifications induced on a quantum probing
system A put in thermal contact with E for some proper
interaction time t . The analysis was conducted assuming the
temperature of the bath to be known and, most importantly,
equal in the two alternative scenarios. Under this condition,
waiting for the complete thermalization of A (i.e., setting
t → ∞) is clearly not a viable option to get useful information
on the nature of the bath. Indeed, as t diverges the probe will
be driven toward the same final thermal equilibrium configu-
ration irrespectively of the statistics of E , hence keeping no
track of its fermionic or bosonic character. As a consequence,
the optimal discrimination performances in Ref. [15] were
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obtained at times t where the evolved state of A was explicitly
in a nonequilibrium condition. Superiority of nonequilibrium
conditions for measurement purposes is not unique to the
statistics tagging procedure discussed in [15]; similar behavior
can be observed in thermometric tasks, when we want to infer
the temperature of a bosonic bath by the same interaction
with a probe. Even if the thermalized states corresponding
to different temperatures can be distinguished, there is an
advantage when measuring the probe at earlier times [16–18].
Interestingly enough, the statistics tagging setting and the
thermometric setting also share another common feature: In
both schemes the input states of the probe which ensure opti-
mal performances correspond to energy eigenstates of its local
Hamiltonian, with quantum coherence playing no fundamen-
tal role in the procedure (see, however, Ref. [8]). In an effort to
check the generality of these observations (i.e., the optimality
of using nonequilibrium observation times t and energy di-
agonal input states of the probe), here we cast the problem
studied in Ref. [15] in a more complex framework by looking
at the discrimination between two alternative thermal baths
models which differ both in terms of their statistical properties
and in terms of their associated temperatures. The analysis
relies on information-theoretic quantities which admit clear
operational interpretations in quantum metrology [19–22]. In
particular, the minimization of the Helstrom probability of
error [23] enables us to confirm that also for the generalized
statistics tagging scenario we address here, optimal discrimi-
nation performances are obtained by monitoring the probe at
times where it is in a nonequilibrium configuration. However,
in this case it turns out that such a result strongly relies on
the possibility of exploiting coherence in the input states of
A. Indeed, when restricting the study to initial configurations
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of the probe with no coherence among the eigenstates of the
system local Hamiltonian, we can exhibit explicit examples
of the model parameters for which the best discrimination
conditions are only met at equilibrium.

The paper is organized as follows. In Sec. II we introduce
the model and present the figure of merit we are going to
use in our analysis. Section III contains the main results of
the paper, discussing the role of coherent energy terms in the
input state of the probe as well as the fact that nonequilibrium
detection times are not always optimal if one restricts the anal-
ysis to initial configurations which are diagonal in the energy
eigenbasis. In Sec. IV the previous concepts are illustrated in
a linear-optical simulator [24,25]. The simulation allows us
to mimic two different dissipative channels for a two-level
system [26]. In the typical tagging scenario, in which we have
no a priori knowledge of which one of the channels is acting
on the probe, we perform a set of measurements on the system
and we reconstruct the original hypothesis via suitable statis-
tical inference. In particular, we rely on a Bayesian technique
[27] for constructing the error probabilities and providing a
connection of the latter with the theoretical figures mentioned
above. A summary and conclusions are presented in Sec. V.
Technical material is presented in the Appendixes.

II. MODEL

The model we study can be schematized as follows. At
time t = 0 a two-level (qubit) quantum probe A is prepared
in some fiduciary initial density operator ρ̂(0) and let to in-
teract for some time t with a partially unknown environment
E that can be of two types: bosonic at temperature 1/βb or
fermionic at temperature 1/β f (the values 1/βb and 1/β f

being assigned a priori). As in Ref. [15], we will attempt to
discriminate between the two alternatives by only performing
measurements on the reduced final state ρ̂(t ) of A, which
hence encodes all the information about the nature of E one
can access. This allows us to describe the whole scheme as
a standard hypothesis testing problem [23] where one has
to determine whether ρ̂(t ) corresponds to the density matrix
ρ̂b(t ) of A, which one would have obtained by evolving ρ̂(0)
under the influence of the bosonic bath of temperature 1/βb, or
to ρ̂ f (t ), which instead one would have obtained by evolving
the same ρ̂(0) under the influence of the fermionic bath of
temperature 1/β f . To quantify our ability in discriminating
between these scenarios we can then use the Helstrom error
probability (HEP) functional

H[ρ̂b(t ), ρ̂ f (t )] := 1
2 − 1

4‖ρ̂b(t ) − ρ̂ f (t )‖1, (1)

with ‖ · · · ‖1 being the trace-norm symbol. This quantity,
bounded within [0, 1/2], provides the smallest probability of
error one can get by optimizing over all possible measure-
ments performed on a single copy of ρ̂(t ) [23]. Accordingly,
having H[ρ̂b(t ), ρ̂ f (t )] = 0 corresponds to perfect distin-
guishable configurations, while having H[ρ̂b(t ), ρ̂ f (t )] = 1/2
corresponds to absolutely indistinguishable configurations.

In order to get an analytical expression for (1) we
assign ρ̂b(t ) and ρ̂ f (t ) in terms of two independent Gorini-
Kossakowski-Sudarshan-Lindblad master equations for A

obtained under standard weak-coupling system-bath assump-
tions [1,2]. Assuming the free Hamiltonian of A to be

H0 = ω0

2
σ̂z, (2)

we move into the interaction picture to write the master equa-
tions as [15,28,29]

˙̂ρq(t ) = γ [1 + sqNq(βq)]Dσ̂−[ρ̂q(t )] + γNq(βq)Dσ̂+[ρ̂q(t )],
(3)

the index q = f , b referring to the two hypothetical initial
configurations of the bath. In the above expression sq = +1
(−1) for q = b ( f ), γ is the inverse time constant associated
with each elementary excitation-deexcitation process,

Dσ̂±[· · · ] := σ̂±[· · · ]σ̂ †
± − σ̂

†
±σ̂±[· · · ] + [· · · ]σ̂ †

±σ̂±
2

(4)

represent the Lindblad dissipators associated, respectively,
with the system ladder operators σ̂− = |0〉 〈1| and σ̂+ =
|1〉 〈0| (|0〉 and |1〉 representing, respectively, the ground and
excited states of A), and

Nq(βq) := 1

eβqω − sq
(5)

is the Bose-Einstein (Fermi-Dirac) distribution for q = b ( f ),
with ω an effective energy parameter [3,29] that contains
a contribution from the bare energy ω0 of A and from the
chemical potential of the baths.1 Introducing the Pauli vector
operator �̂σ := (σ̂x, σ̂y, σ̂z ) and writing the density matrix of

the system in the Bloch vector formalism ρ̂q(t ) = 1+�̂σ ·�a(q) (t )
2 ,

Eq. (3) can then be conveniently cast in the form

ȧ(q)
z (t ) = −γqa(q)

z (t ) − ξq,

ȧ(q)
x (t ) = −γq

2
a(q)

x (t ),

ȧ(q)
y (t ) = −γq

2
a(q)

y (t ), (6)

where now

γb := γ coth(βbω/2), γ f := γ ,

ξb := γ , ξ f := γ tanh(β f ω/2), (7)

showing that in the case of equal temperatures, the evolution
occurs at faster scales for the bosonic bath scenario. Explicit
integration of (6) leads finally to the solution

a(q)
z (t ) = e−γqt (az(0) − a(q)

z (∞)) + a(q)
z (∞),

a(q)
x (t ) = e−γqt/2ax(0),

a(q)
y (t ) = e−γqt/2ay(0), (8)

with ax,y,z(0) the Cartesian components of the Bloch vector
associated with the input state ρ̂(0) of A and

a(q)
z (∞) = − tanh(βqω/2) (9)

defining the equilibrium (thermal) configuration of the sys-
tem [of course a(q)

x (∞) = a(q)
y (∞) = 0]. Notice that the third

1We suppose ω to be the same for b and f . When the chemical
potential is different between the fermionic and bosonic cases, we
can opportunely redefine β f and βb to preserve Eq. (5).
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component of the Bloch vector decays with a characteristic
time scale 1/γq, while the one associated with the other two
components is twice as long (see, e.g., Ref. [3], p. 149).

III. DISCRIMINATION PERFORMANCES

Using the fact that the trace norm of the difference be-
tween ρ̂b(t ) and ρ̂ f (t ) is just given by the Cartesian distance
‖�ab(t ) − �a f (t )‖2 of the associated three-dimensional Bloch
vectors, from (8) it follows that Eq. (1) can be expressed as

H[ρ̂b(t ), ρ̂ f (t )]

= 1
2 − 1

4

{[
(e−γ f t − e−γbt )az(0) + a( f )

z (∞)(1 − e−γ f t )

− a(b)
z (∞)(1 − e−γbt )

]2

+ (e−γ f t/2 − e−γbt/2)2
[|�a(0)|2 − a2

z (0)
]}1/2

. (10)

A close inspection reveals that all pure input states ρ̂(0) with
the same initial value of az(0) achieve the same performance
[this simply follows from the symmetry of Eq. (6) around the
z axis]. Furthermore, and most importantly, for all assigned
values of t and az(0), one may notice that the associated HEP
can be reduced by setting the length of �a(0) at its maximum 1,
i.e., imposing the initial state of the probe to be pure. In other
words, mixedness in the input state is always detrimental,
implying that, in order to find the best input configuration, it
is sufficient to restrict the search to the set of pure states. This
leads to

H[ρ̂b(t ), ρ̂ f (t )]|pure = Hp[t ; az(0)] := 1
2 − 1

4

{[
(e−γ f t − e−γbt )az(0) + a( f )

z (∞)(1 − e−γ f t ) − a(b)
z (∞)(1 − e−γbt )

]2

+ [
e−γ f t/2 − e−γbt/2

]2[
1 − a2

z (0)
]}1/2

, (11)

which only depends on the z component az(0) ∈ [−1, 1] of
the unit vector �a(0). It is worth recalling that setting az(0) = 1
[az(0) = −1] corresponds to initializing A in the excited state
|1〉 (ground state |0〉) of its local Hamiltonian. In contrast, in
the pure case scenario we are facing in Eq. (11), the con-
dition |az(0)| < 1 identifies input states of the probe which
are proper superpositions of the energy eigenstates of the
model. Our next goal is to minimize Hp[t ; az(0)] with respect
to all possible choices of az(0) and of the evolution time t ,
for given values of the temperatures 1/β f and 1/βb. Before
doing so, however, we find it useful to consider first what
happens when az(0) = 1, a choice that is known to provide
the best discriminating strength for statistical tagging under
an equal bath temperature assumption (i.e., β f = βb) [15] and
for thermometry [16].

A. Input excited state

Setting az(0) = 1, i.e., assuming A to be initialized in the
excited state |1〉 of the model, Eq. (11) reduces to

Hp(t ; 1) = 1
2 − 1

4

∣∣e−γ f t − e−γbt + a( f )
z (∞)(1 − e−γ f t )

− a(b)
z (∞)(1 − e−γbt )

∣∣, (12)

which we minimize numerically with respect to t as a func-
tion of β f and βb. The optimal times t̄ we obtain and the
corresponding values of Hp(t̄ ; 1) are reported in Figs. 1(a)
and 1(b), respectively. The plot reveals an asymmetry: For
βb � β f (fermionic bath hotter than bosonic bath) the best
discrimination is still attained at finite time (t̄ < ∞), where A
has not achieved full thermalization and is hence in a nonequi-
librium configuration in line with the findings of Ref. [15];
in contrast, for βb < β f (fermionic bath cooler than bosonic
bath) it can be more advantageous to discriminate between
the two channels by exploiting the steady state properties
(t̄ = ∞). This happens above the critical curve that defines
the discontinuity in the contour plot of Fig. 1(a). An analytical
treatment of this transition is given in Appendix A, from
which it results that, expressed in the x = tanh(β f ω/2) and

y = tanh(βbω/2) coordinates of Fig. 1, such critical curve is
identified by solving the set of transcendental equations

(2 − e−τ )(1 + x) − (
2 − e− τ

y
)
(1 + y) = 0,

e−τ (1 + x) − e− τ
y y−1(1 + y) = 0, (13)

with τ � 0. We remark that the core of the above observa-
tion remains unchanged when we evaluate the discrimination
efficiency of the process adopting different figures of merit.
For instance, in Figs. 1(c) and 1(d) we focus on the Chernoff
quantity [30,31]

Q[ρ̂b(t ), ρ̂ f (t )] := minr∈[0,1] Tr
[
ρ̂r

b(t )ρ̂1−r
f (t )

]
, (14)

which via the inequality

H
[
ρ̂⊗N

b (t ), ρ̂⊗N
f (t )

]
� Q[ρ̂b(t ), ρ̂ f (t )]N

2
(15)

gives a bound to the asymptotic rate of HEP computed in
the case when one has the possibility of extracting infor-
mation from N identical copies of the final state of A. The
optimal values of t̄ obtained by numerically minimizing (14)
when initializing A in the excited state |1〉 are presented in
Fig. 1(c), which exhibits a critical trade-off analogous to the
one observed in Fig. 1(a): If we restrict the analysis to the
case where A is set in the excited state, there are configura-
tions of the model where the optimal discrimination efficiency
is attained only by letting the system reach its equilibrium
configuration.

B. Optimal input states of the probe

In this section we exploit the full domain of possibilities
offered by the model, minimizing the HEP value (11) not just
with respect to t , but also with respect to the full domain of
az(0), hence including the possibility of using input states of
A which explicitly exhibit coherence superpositions among
the excited and ground states of the model. An indication
that such special states could be of some help in improving
the performance of the scheme follows by observing that for
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FIG. 1. (a) Study of the optimal measurement time t̄ minimizing the Helstrom error probability Hp(t ; 1) of Eq. (12) associated with the
excited input state of the probe A, i.e., az(0) = 1, as a function of the bosonic and fermionic bath inverse temperatures βb and β f , respectively.
For convenience, we used the parametrizations e−γ t̄ for t̄ and tanh(βqω/2) for βq (see the plot labels). The discontinuity in the contour plot is
the boundary above which the discrimination is optimal only if performed on the steady state of the probe (t̄ = ∞, i.e., e−γ t̄ = 0), the same
holding for the pathological case βb = ∞ [tanh(βbω/2) = 1]. For all the other values of the parameters βb and β f the optimal time is finite
(t̄ < ∞, i.e., e−γ t̄ > 0). (b) Corresponding Helstrom probability of error Hp(t ; 1) evaluated at t = t̄ . (c) and (d) Same calculation as in (a) and
(b), respectively, but using the Chernoff quantity (14) instead of the Helstrom error probability.

|az(0)| < 1 it is not possible to find times t > 0 such that
Hp[t ; az(0)] reaches the worst case value of 1/2 corresponding
to an absolute impossibility of distinguishing between the two
bath scenarios. This implies that coherent energy input states
ensure a nontrivial susceptibility of the probe for all choices
of t , something that, on the contrary, is not generally granted
by setting az(0) = ±1, which, as discussed in Appendix B 1,
allows for crossing points between the trajectories of ρ̂b(t )
and ρ̂ f (t ). Values of |az(0)| < 1 can however do much more
than this and in some regimes they also give the absolute best
performance we can aim for. The details of this analysis are
provided in Appendix B 2, while in Fig. 2 we illustrate the
optimization of the HEP Hp[t ; az(0)] over time and input state
of the probe, as a function of the bath inverse temperatures β f

and βb.
The first thing to be noticed is that now, at variance with

the input excited state case discussed in Sec. III A, the op-
timal times t̄ are always finite apart from the asymptotic
regimes where the bosonic temperature converges to zero (i.e.,
βb → ∞) [compare Fig. 2(a) with Fig. 1(a)]. This shows that

optimality of nonequilibrium probing times is fully restored
once we do not restrict the probe input state to specific condi-
tions. Put differently, allowing coherence in the initial state
implies that the quantity {1/2 − Hp[t̄ ; āz(0)]}/t̄ , which we
can interpret as an information rate, is never exactly nullified
[āz(0) being the optimal choice for az(0)]. Second, Fig. 2(b)
reveals that, while using energy eigenstates (either excited or
ground states) of the probe as input is optimal for most of the
choices of the system parameter setting, there is a nontrivial
temperatures regime in which a coherent [|az(0)| < 1] initial
preparation is fundamental to reach the best performance.
More specifically, there is numerical evidence that whenever
the fermionic bath is hotter than the bosonic one (βb � β f ),
choosing the excited state of A as input is still the right choice
to provide optimal discrimination performances. The situation
changes however if the fermionic bath is cooler than the
bosonic one (βb < β f ): Here the optimal input choice depends
on the specific values of the temperatures and in particular
for sufficiently large β f coherent energy states can dominate
(notice also that, for small values of βb, the optimal input can
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FIG. 2. (a)–(c) Optimization of the HEP Hp[t ; az(0)] of Eq. (11) both over time and over the input state of the probe, the latter being a
generic pure state with a certain value az(0) of the z component of the Bloch vector. We report the following contour plots with respect to the
bath inverse temperatures β f and βb. The minimum H̄p[āz(0)] of the HEP is achieved (a) at a certain time t̄ and (b) for an optimal value āz(0)
of az(0). (c) Advantage coming from allowing coherent superpositions, where we show the gap between the (generally overestimated) quantity
obtained by restricting the analysis only to az(0) ∈ {1, −1} and the optimal value H̄p[āz(0)]. Notice that for β f , βb, and t̄ we used the convenient
parametrizations indicated in the plot labels. (d) Dynamical evolution of Hp[t ; az(0)] for a case [tanh(β f ω/2) ≈ 0.68 and tanh(βbω/2) ≈ 0.41]
in which coherent superpositions [āz(0) ≈ −0.42] give better performances than the energy eigenstates [az(0) ∈ {1, −1}] as input of the probe.
Notice that at t ≈ 1.8γ −1 the HEP associated with excited state reaches the worst case value 1/2, indicating zero susceptibility of the probe.

be the ground state of A). These facts are also highlighted in
Fig. 2(c), in which we show the gap between the minimum
of Hp[t ; az(0)] obtained by restricting the optimization only
to az(0) = 1 and az(0) = −1 and the optimal value H̄p[āz(0)]
obtained by allowing also energy coherent preparations.

In Fig. 2(d) we present as an example the temporal evo-
lution of the HEP for a specific choice of the temperatures
that admits as optimal the value āz(0) ≈ −0.42, which identi-
fies a coherent superposition of energy eigenstates. In such
a plot we show Hp[t ; āz(0)] in addition to the HEP values
Hp(t ; −1) and Hp(t ; 1) associated with the ground and excited
input states of A, respectively. Notice that while for small t ,
Hp(t ; −1) and Hp(t ; 1) perform better than Hp[t ; āz(0)], in the
long run the latter gives the lowest HEP values and leads
to the identification of the optimal time as t̄ ≈ 1.6γ −1 [see
Eq. (B14) for more on this]. Notice also that at t ≈ 1.8γ −1,
we have Hp(t ; 1) = 1/2, indicating that at this special time
the probe intialized in the excited state loses all its ability in
discriminating between the two alternative hypotheses: On the
contrary, as anticipated in the introductory paragraphs of the

section, Hp[t ; āz(0)] remains strictly below the 1/2 value for
all positive t .

IV. DISCRIMINATION EXPERIMENT
IN AN OPTICAL SIMULATOR

We can illustrate these concepts in a simulated thermaliza-
tion, carried out with a pair of qubits; the necessary gate is
implemented by means of optical elements and coincidence
counts. The setup, illustrated in Fig. 3, follows closely our
previous work in Ref. [24]. We stress that our simulator cannot
replicate directly the bosonic/fermionic nature of the bath; the
control parameters are exclusively the decay rates γ f or γb in
Eq. (6) and the population of the final thermal state. In this
respect, our implementation is a synthesis of the output state.
Therefore, we focus on the information content of the probe
rather than the interaction process.

We consider a two-level system initialized in the excited
state as the input probe. The expectation values of σ̂z measured
as a function of the normalized time τ = γ t are shown in
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FIG. 3. Linear optical simulator. The state at time τ can be sim-
ulated by mixing with weights wk the actions of two channels (k = 0
and k = 1), associated with excitation and deexcitation processes, for
a given rotation R(φ) (upper panel). By tuning wk and φ evolutions
at different temperatures and at variable times are simulated [24,25].
This is implemented in a linear-optical setup, based on polarization
coding on two photons from a down-conversion source (lower panel).
Single-qubit operations are either implemented by half waveplates or
in postprocessing of the data. The input state is fixed in the horizontal
polarization. Due to the use of a single partially polarizing beam
splitter (PPBS), there is a different transmission probability for the
horizontal and vertical components, which is compensated by biasing
the second R(φ) rotation [32]. Further, the weights wk have to be
modified accordingly.

Fig. 4 for different inverse temperatures βω = 0.5, 1, 2, taken
to be equal for fermionic and bosonic baths. The two different
curves in each panel illustrate how the decay rate of the probe
state gets modified by the two different statistics.

In a discrimination experiment, the sought outcome is a
binary decision on which one of the two hypotheses gives a
closer description of the data [33–38]. These will be obtained
as outcomes of a suitable observable, selected according to the
initial state and the measurement time. For our choice of initial
state, this observable always coincides with σ̂z. In many differ-
ent (and independent) runs of the experiment, one collects N0

events for the eigenvalue −1 and N1 events for the eigenvalue
+1 of σ̂z. Since the probabilities of obtaining either result

on a single copy are P(q)
i = [1 + (−1)i+1〈σ̂z〉(q)(t )]/2, where

the value of 〈σ̂z〉(q) is the expectation value predicted by the
experiment, the composite probability is P = (P(q)

0 )N0 (P(q)
1 )N1 .

Clearly, the probability P depends on the bath statistics and
temperature through the expectation value 〈σ̂z〉. We can thus
interpret P as a conditioned probability P(N0, N1|X ) of the
whole experimental run, given the condition X of the bath.
Invoking Bayes’s theorem, this is written

P(X |N0, N1) = 1

N P(N0, N1|X )P(X ), (16)

where N is a normalization constant and P(X ) is the a priori
probability which we take to be flat P(b) = P( f ) = 1/2. The
decision criterion is that when P(b|N0, N1) > P( f |N0, N1), the
bath is identified as bosonic with inverse temperature βb and
otherwise as fermionic with inverse temperature β f .

Taking inspiration from Refs. [23,39], we can quantify the
ideal discrimination error as

δ = 1
2

[
P
(
b, βb|N f ,β f

0 , N
f ,β f

1

) + P
(

f , β f |Nb,βb
0 , Nb,βb

1

)]
, (17)

where we have set N
q,βq

i = P(q)
i N (N = 10 or 100). This

provides an indication of the expected performance of the
Bayesian technique in light of the imperfections of our exper-
iment. On the other hand, this figure of merit does not capture
the impact of statistical fluctuations with respect to the mean
values.

The first case we analyze is that of statistical tagging
βb = β f , for which optimal discrimination necessarily occurs
at finite times. In Fig. 5 we show the behavior of δ for
βb = β f . We notice that the small discrepancies observed
with respect to the theory do not affect the estimation sig-
nificantly. It appears evident how, for high temperatures, the
choice of a preferable discrimination time becomes less strict
with increasing copies N . On the other hand, the proximity
of the two curves in Fig. 4(c) is reflected in the fact that at
low temperatures more copies are needed for a fully reliable
discrimination.

Concerning the more general scenario of different temper-
atures and statistics, we have evaluated δ for all permutations
of βω = 0.5, 1, 2 and for N = 10, 100 in the same ideal limit
as above. The results are shown in Fig. 6. Notably, for βb < β f

there is a special time instant where the discrimination is
impossible, in analogy to what we obtained for the HEP [see

FIG. 4. Simulated thermalization dynamics of the probe initialized in the excited state. The behavior of the expectation value 〈σ̂z〉 as a
function of the time τ = γ t is reported for (ω ≡ 1) (a) βb = β f = 0.5, (b) βb = β f = 1, and (c) βb = β f = 2. Blue (red) experimental points
refer to the bosonic (fermionic) statistics of the bath. Error bars are smaller than the size of the points.
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FIG. 5. Discrimination errors for statistical tagging. The error δ of Eq. (17) is evaluated for (a) βb = β f = 0.5, (b) βb = β f = 1, and (c)
βb = β f = 2 (ω ≡ 1). In all panels, points are evaluations of the expected errors based on the experimental probabilities and the curves are the
ideal cases for N = 10 (green squares) or N = 100 (purple triangles). The probe was initialized in the excited state.

Fig. 2(d)]. This can be observed in Figs. 6(a), 6(b), and 6(d),
where, in contrast to the other panels, δ takes the value 1/2
at an intermediate time. We report in Fig. 7 contour plots
showing the calculation of the optimal measurement time and
of the corresponding minimized error probability when using
the Bayesian method in the ideal situation. Consistently, the
results mimic the ones obtained via Helstrom and Chernoff
approaches (see Fig. 1).

Inspection of Figs. 6 and 7 suggests that working with N =
10 copies of the state would not lead to satisfactory tagging
capabilities, even without taking into account the relevance of
statistical fluctuations. In the same ideal limit, N = 100 copies
should be sufficient for nearly unambiguous tagging around

ideal time. In these conditions, it is important to quantify how
the deviations of N0 and N1 from their mean values affect the
tagging.

We then carry out the actual discrimination protocol as
follows. We generate, based on the experimental values of
P0 and P1, a vector of N = 100 outcomes 0,1.2 This is a
reliable evaluation of our experimental conditions, as the data
are marginally affected by systematic errors such as dark

2This is achieved by generating a random number r uniformly
between 0 and 1. If r < P0, then N0 is incremented by one unit
(starting from N0 = N1 = 0); otherwise N1 is incremented.

FIG. 6. Discrimination errors for statistical tagging. The error δ of Eq. (17) is evaluated for (a) βb = 0.5 and β f = 1, (b) βb = 0.5 and
β f = 2, (c) βb = 1 and β f = 0.5, (d) βb = 1 and β f = 2, (e) βb = 2 and β f = 0.5, and (f) βb = 2 and β f = 1 (ω ≡ 1). In all panels, points
are evaluations of the expected errors based on the experimental probabilities and the curves are the ideal cases for N = 10 (green squares) or
N = 100 (purple triangles). The probe was initialized in the excited state.
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FIG. 7. Same study as in Fig. 1 but for the error probability δ of Eq. (17) based on the Bayesian approach for (a) and (b) N = 10 and
(c) and (d) N = 100. To allow a direct comparison for different N and with the figures of merit of Fig. 1, we report instead of δ its rescaled
version 1/2[2δ]1/N . We remark that as for Fig. 1, the probe was initialized in the excited state.

counts and we are considering samples much smaller than
those collected to estimate P0 and P1 in the calibration step.
The results are reported, for a vector of N = 100 generated
outcomes, in the histograms of Fig. 8 for different choices of
scenarios, considering both instances in which the probe is
associated with a bosonic or a fermionic bath, in accordance
with the fact that the error δ is symmetrized.

For each simulated time τ we indicate with different colors
the fraction of events in which the bath has been correctly
identified (blue) or mistaken (red) by following the Bayesian
decision rule explained above, now with the actual values
of N0 and N1, rather than their expected ones. The observed
behaviors qualitatively mirror the errors in Figs. 5 and 6. This
implies that, although N0 and N1 are now random variables,
this stochastic element does not impact considerably the dis-
crimination capability at the optimal time.

V. CONCLUSION

Statistical tagging [15] and, more generally, bath discrim-
ination are simple yet insightful instances of the possibility
of indirectly probing an environment [4–14,40]. In this set-
ting, information about the bath structure are retrieved via
measurements on a quantum probe which has interacted with

the bath until a selected measurement time t̄ . This approach
reveals how different properties of the bath affect the nature
of the optimal discrimination procedures. This is clear in
the tagging context presented here: A thermal bath has un-
known statistics, fermionic or bosonic, that we want to guess,
with the additional information of knowing the respective
temperatures, 1/β f and 1/βb, associated with the two bath
instances. Here the quantum nature of the problem is mani-
fested both in the statistical properties of the bath and in the
coherence of the single-qubit probe. As intuitively expected,
the best discrimination capability can only be attained by
enforcing the probe initial state to be pure. For input energy
eigenstates, our inspection has revealed a transition between
temperature regimes in which either equilibrium, t̄ → ∞,
or nonequilibrium states, t̄ < ∞, are optimal. Such behavior
has been illustrated both theoretically and in a linear-optical
simulation. However, only the inclusion of input states with
quantum coherence allows one to reach the highest possible
discrimination capability and also implies that nonequilibrium
measurement conditions are generally optimal, breaking in
this way the aforementioned transition.

Extensions of this work may concern baths with richer fea-
tures, such as very large baths presenting squeezing or, to the
other extreme, small environments, entailing more involved
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FIG. 8. Bayesian bath discrimination. The histograms report the events correctly identified in blue (lower part of the histogram bars) and
the incorrect ones in red (upper part of the bar). The discrimination tasks are (a) statistical tagging with βb = β f = 0.5, (b) statistical tagging
with βb = β f = 2, (c) bath discrimination with βb = 0.5 and β f = 1, and (d) bath discrimination with βb = 2 and β f = 1 (ω ≡ 1). The probe
was initialized in the excited state.

treatments. There we can expect coherence properties of the
probe to become even more relevant, thus adding richness and
complexity to the observable phenomenology.

Note added. Recently, we became aware of a related work
by Mancino et al. [41] also dealing with metrological tasks
by means of indirectly measuring environments via quantum
probes.
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APPENDIX A: EXCITED INPUT STATE

Equation (1) clearly shows that the minimal values of
HEP are achieved when ‖ρ̂b(t ) − ρ̂ f (t )‖1 becomes maximum.
From Eq. (12) it follows that for the case of an excited input
state, i.e., for az(0) = 1, this quantity can be expressed as

||ρ̂b(t ) − ρ̂ f (t )||1 = D(t, x, y) := |(1 − e−γ t )(1 + x)

− (1 − e−γ t/y)(1 + y)|, (A1)

where, for ease of notation, we have introduced

x := −a( f )
z (∞) = tanh(β f ω/2),

y := −a(b)
z (∞) = tanh(βbω/2), (A2)

and made explicit γ f = γ and γb = γ /y. Studying Eq. (A1)
as a function of t , we can infer which instant is optimal to
perform a single measurement for discriminating between the
two hypotheses.

First, we notice that D(t, x, y) is nullified at t = 0 (ob-
viously) and at most at another point, since by solving
D(t, x, y) = 0 we have

1 + x

1 + y
= 1 − e−γ t/y

1 − e−γ t
. (A3)

The unicity of the solution can be argued using the monotonic-
ity of the right-hand side of Eq. (A3). Notice that the other
solution (at t = 0) cannot be obtained from Eq. (A3) since we
divided by 1 − e−γ t , which is nullified in that case. The first
derivative of D(t, x, y) with respect to time reads

D′(t ) = γ sgn[(1 − e−γ t )(1 + x) − (1 − e−γ t/y)(1 + y)]

× [(1 + x)e−γ t − (1 + y)y−1e−γ t/y], (A4)

which clearly is nullified in the long time limit γ t → ∞. To
find other zeros of D′ we have to solve the equation

1 + x

1 + y−1
= e−γ t (y−1−1), (A5)

which can have at most one solution since the right-hand side
is a strictly decreasing function. In addition, it is possible to
prove that, calling t1 and t2 the zeros at finite time of D(t, x, y)
and of its first derivative, respectively, we have t1 � t2. Indeed,
they satisfy the two equations (A3) and (A5), from which we
derive

e−γ t2(y−1−1)

y
= 1 − e−γ t1/y

1 − e−γ t1
. (A6)

Now we can use the inequality e−γ t2 (y−1−1)

y � 1−e−γ t2/y

1−e−γ t2
, from

which t1 � t2 can be argued using the decreasing properties
of both sides of Eq. (A6).
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As a last step we want to study the behavior of the zeros
in the parameters x and y. It is straightforward to verify that
Eq. (A3) has no solutions if x < y, since there is no crossing
between the bosonic and fermionic evolutions in this case.
Notice that, following the definition of x and y, this last
condition is equivalent to requiring the inverse temperature β f

in the fermionic case to be lower than the one in the bosonic
case βb. Notice instead that Eq. (A5) is always nullified once,
independently of the values of x and y. In conclusion, we have
two possible qualitative trends for the trace norms (A1).

(i) If β f < βb, D(t ) starts from 0 and is never nullified
again. The derivative of D is zero once in such a way that
there is one single maximum. This case includes the analysis
done in [15], in which β f = βb was considered.

(ii) If β f > βb, D(t ) reaches a maximum in t2 and then
decreases to a point t1 in which it attains the value 0. After
t1, D(t ) starts increasing again and remains monotonic when
going to infinity.

Analysis of the critical point

For the sake of characterizing the optimal measurements,
we should find the maxima of the trace norm studied in
the preceding section. In the case β f < βb there is only one
maximum and the measurement should be clearly done in
the instant of time associated with that maximum. In the case
β f > βb the intermediate maximum could be either greater or
lesser than the value attained by D(t ) at infinitely long times.
In the following we will show that, again, dependent on the
values assumed by the inverse temperatures β f and βb, either
one or the other strategy can be the best one.

To give a clear formulation to this question from a formal
point of view, let us define the function

g(t, x, y) = D(t ) − lim
t→∞ D(t ). (A7)

The zeros of the function defined above correspond to the
points at which D(t ) attains the same value as it does at
t = ∞. Thus, if the equation g(t, x, y) = 0 has no solutions,
the absolute maximum is clearly located at t → ∞. Other-
wise, given the properties of D(t ) enumerated in the preceding
section, the function g(t, x, y) can have at most two zeros,
depending on the values of x and y. In this last case, the max-
imum is not located at t = ∞, since this last point is equal to
at most two other values that the function D(t ) attains at finite
time. It is also understood that the points at which g(t, x, y)
has a unique zero (which from now on will be referred to as
critical) are the ones at which D(t ) has two absolute maxima
(identical in value). If we fix the value of y to some value
ȳ, we have that at a critical point the solution xc(t, ȳ) of
g(t, x, ȳ) = 0 must be such that ∂

∂t x(t, ȳ) = 0 evaluated at the
critical point [this last property is derived from the regularity
of g and the definition of critical point, in which the equation
g(t, x, y) = 0 passes from having zero to two solutions]. We
can then derive, using the definition of g, the set of equations
for the critical point

(2 − e−γ t )(1 + x) − (2 − e−γ t/ȳ)(1 + ȳ) = 0,

e−γ t (1 + x) − e−γ t/ȳ ȳ−1(1 + ȳ) = 0, (A8)

which replacing γ t with τ gives Eq. (13). For instance, choos-
ing ȳ = 1/2, we have xc = 2

√
2−1√

2+1
and γ tc = ln(

√
2+1√

2
). Then,

if we choose x < xc the better strategy is to measure at finite
time, while if x > xc the measurement at the steady state is the
optimal one [see Fig. 1(a)].

APPENDIX B: DISCRIMINATION WITH GENERIC PURE
INPUT STATES

Here we proceed with an analytical analysis of the HEP
functional Hp[t ; az(0)] defined in Eq. (11).

1. Loss of susceptibility under noncoherent inputs

The worst discrimination scenario is attained when HEP
reaches its maximum value 1/2. When this happens the proba-
bility of error is maximum and we cannot recover information
on the nature of the bath from the state of A. From Eq. (1)
this happens when ‖ρ̂b(t ) − ρ̂ f (t )‖1 = 0, i.e., when the two
trajectories intercept. From Eq. (11) we observe that this can
only occur when

(e−γ f t/2 − e−γbt/2)2
[
1 − a2

z (0)
] = 0,

(e−γ f t − e−γbt )az(0) + a( f )
z (∞)(1 − e−γ f t )

− a(b)
z (∞)(1 − e−γbt ) = 0. (B1)

However, setting |az(0)| < 1, i.e., allowing the input state of
A to be a nontrivial superposition of the energy eigenstates,
corresponds to

e−γ f t/2 = e−γbt/2,
[
a( f )

z (∞) − a(b)
z (∞)

]
(1 − e−γbt ) = 0, (B2)

which can only be fulfilled for t = ∞ and β f = βb. On the
contrary, setting az(0) = ±1 (i.e., forcing the probe to be in
one of the two eigenstates of the system), the system (B1)
reduces to a single equation

±(e−γ f t − e−γbt ) + a( f )
z (∞)(1 − e−γ f t )

− a(b)
z (∞)(1 − e−γbt ) = 0, (B3)

which, depending on the specific values of βb and β f , may
allow for nontrivial t > 0 solutions, i.e., indicating a loss of
susceptibility of the probe.

2. Full optimization

We are interested in determining the minimum value of
Eq. (11) with respect to all possible inputs (i.e., all possible
choices of az(0) ∈ [−1, 1]) and all possible times t � 0. Ac-
cording to (1) this is formally equivalent to determining the
maximum of ‖ρ̂b(t ) − ρ̂ f (t )‖1, which in this case is given by
the function

‖ρ̂b(t ) − ρ̂ f (t )‖1

= D[t ; az(0)] := {[
(e−γ f t − e−γbt )az(0) + a( f )

z (∞)

× (1 − e−γ f t ) − a(b)
z (∞)(1 − e−γbt )

]2

+ (e−γ f t/2 − e−γbt/2)2
[
1 − a2

z (0)
]}1/2

. (B4)
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The best way to approach the problem seems to first optimize
with respect to az(0) and then maximize with respect to t .
Again, we call [t̄ ; āz(0)] the point where the maximum value
of D2[t ; az(0)] is attained.

Let us fix t and rewrite D2[t ; az(0)] as a parabola in az(0),

D2[t ; az(0)] = f 2
−( f 2

+ − 1)a2
z (0) + 2A f− f+az(0) + f 2

− + A2,

(B5)
with

f± := e−γ t/2 ± e−γ t/(2y),

A := −x(1 − e−γ t ) + y(1 − e−γ t/y), (B6)

where we used (A2) to express the dependence upon βb and
β f . Since az(0) ∈ [−1, 1], āz(0) is either one of the extrema
−1 and 1 or the abscissa of the vertex V = A f+/[ f−(1 − f 2

+)]
of the parabola (B5). The condition for the vertex to be the
maximum is that the parabola is concave down and that the
abscissa of the vertex falls strictly inside the interval ] − 1, 1[:

f−
f+

(1 − f 2
+) > |A| ⇔ āz(0) = V ∈] − 1, 1[. (B7)

On the other hand, its violation imposes that the maximum is
one of the extrema depending on the sign of A,

f−
f+

(1 − f 2
+) � |A| ⇔ āz(0) = sgn[A]. (B8)

The equation above holds for A �= 0; when A = 0 the points
az(0) = 1 and az(0) = −1 are two equivalent maxima (still
provided the function is concave up).

Eventually, we have to find the maximum among
D2(t1;Vt1 ), D2(t2; 1), and D2(t2; −1) for all t1 satisfying in-
equality (B7) and t2 satisfying inequality (B8). The explicit

values of the three quantities above can be computed from
Eq. (B5) and read

D2(t1;Vt1 ) = f 2
−(t1)[ f 2

+(t1) − 1] − A2(t1)

f 2+(t1) − 1
, (B9)

D2(t2; 1) = [ f+(t2) f−(t2) + A(t2)]2, (B10)

D2(t2; −1) = [ f+(t2) f−(t2) − A(t2)]2. (B11)

Such a maximization procedure yields the point [t̄, āz(0)] we
were searching for fixed x and y. However, notice that, in
general (for both the case in which the concavity is up and
the case in which it is down) the sign of A determines the sign
of āz(0),

sgn[āz(0)] = sgn[A], (B12)

implying that in the region

y � x ⇒ āz(0) > 0. (B13)

Moreover, the condition (B7) cannot be satisfied for t suffi-
ciently close to 0 such that

γ t/2

ln
(

1
1−exp(−γ t/2)

) � y ⇒ āz(0) = sgn[A]. (B14)

This short time condition leads to the conclusion that the
coherent advantage can occur only in a “long run” but still
out of equilibrium, as previously illustrated in Fig. 2.
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