Supporting information

Surface modification of polyester films with polyfunctional amines: effect on bacterial biofilm formation

Gianmarco Mallamaci¹, Benedetta Brugnoli¹, Alessia Mariano², Anna Scotto d'Abusco², Antonella

Piozzi¹, Valerio Di Lisio³, Elisa Sturabotti¹, Sara Alfano¹, Iolanda Francolini^{1,*}

Table S1: FTIR ratio between the intensity (A_{1640}/A_{1180}) and the area $(Area_{1640}/Area_{1180})$ of the adsorption at 1640 cm⁻¹ (stretching CO-NH) and the adsorption at 1180 cm⁻¹ (stretching C-O-C) (A_{1640}/A_{1180}) for PLA aminolyzed with HDA at different reaction conditions. ND = Not determinable.

SAMPLE NAME	A ₁₆₄₀ /A ₁₁₈₀	Area 1640/Area1180
PLA	0.036	0
PLA_HDA_5 50°C EtOH	0.157	0.158
PLA_HDA_15 50°C EtOH	0.358	0.251
PLA_HDA_5 rt EtOH	ND	ND
PLA_HDA_5 rt MeOH	0.025	0.022
PLA_HDA_15 rt EtOH	0.045	0.032
PLA_HDA_15 rt MeOH	0.18	0.22

Figure S1. ATR-FTIR spectra of PHB-HV films aminolyzed with HAD and PAH. Surface aminolysis is confirmed by the presence of the absorption bands at 1640 cm⁻¹ and 1540 cm⁻¹ due to the introduced CO-NH amide groups. The bands at 1450 cm⁻¹ and 1180 cm⁻¹ are reference bands.

Figure S2. ¹H-NMR and ¹³C-NMR spectra of pure PHB-HV (no aminolysis).

¹H NMR (400 MHz, CDCl₃) δ 5.43 – 5.01 (sext, 1H, β-CH), 2.71 – 2.31 (2xdd, 2H, α-CH₂), 1.27 (d, 3H, γ-CH₃).

 13 C NMR (101 MHz, CDCl₃) δ 169.59 (C=O), 67.90 (β-CH), 41.08 (α-CH₂), 20.05 (γ-CH₃).

Figure S3. ¹H-NMR and ¹³C-NMR spectra of the aminolyzed film PHB-HV_HDA_15

¹H NMR (400 MHz, CDCl₃) δ 5.34 – 5.14 (sext, 1H, β-CH), 2.69 – 2.33 (2xdd,2H, α-CH₂), 1.25 (d, 3H, γ-CH₃) (EtOH traces at ca. 3.7 and 1.2).

 ^{13}C NMR (101 MHz, CDCl_3) δ 169.29 (), 67.77, 40.95 , 19.93. (EtOH traces).

Figure S4. ¹H-NMR and ¹³C-NMR spectra of the aminolyzed film PHB-HV_PAH_15 ¹H NMR (400 MHz, CDCl₃) δ 5.36 – 5.07 (sext, 1H), 2.78 – 2.36 (2xdd, 2H), 1.27 (d, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.78 , 68.26 , 41.45 , 20.42.

Sample	µmol NH2/g	µmol /mm²	C (%)	H (%)	0 (%)	N (%)	Ratio N/C (%)
PLA	-	-	45.99	5.24	48.77	0	-
PLA_HDA_5	39.0	0.009	42.45	5.19	52.36	0.056	0.13
PLA_TEPA_5	13.9	0.004	44.51	5.42	50.07	0	-
PLA_PALA_5	20.0	0.006	44.37	5.45	50.18	0	-
PLA_HDA_15	51.1	0.010	47.44	5.72	46.65	0.19	0.40
PLA_TEPA_15	22.1	0.005	48.10	5.62	47,66	0	-
PLA_PALA_15	52.4	0.011	50.09	6.91	42.98	0.06	0.12
PHB	-	-	54.12	6.88	39.00	0	-
PHB_HDA_15	46.25	0.005	53.73	6.85	39.12	0.30	0.55
PHB_TEPA_15	55.53	0.013	54.41	7.12	38.11	0.36	0.66
PHB_PALA_15	66.82	0.013	44.68	5.47	49,83	0.02	0.04
PHB-HV	-	-	54.70	7.20	38.10	0	-
PHB- HV_HDA_15	85.71	0.0061	54.86	7.46	37.12	0.56	1.02
PHB- HV_TEPA_15	61.72	0.018	53.87	7.35	37.26	1.52	2.82
PHB- HV_PALA_15	200.51	0.024	51.28	7.07	41,61	0.04	0.08

Table S2: Density of surface amino groups for the aminolyzed polymers, as determined with the ninhydrin colorimetric test, and element composition.

The most reactive amine seems to be HDA as evidenced by the high density of surface amino groups at 5% amine concentration. When a higher amine concentration was used (15%), the sample PLA_PAH15 showed the highest N/C ratio, this finding being presumably related to the polymeric nature of this amine rather than to a higher degree of aminolysis.

Figure S5: GPC chromatograms of pure PHB-HV and amminolyzed with HDA or PAH 15% amine concentration.